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Abstract

GPS is a critical tool often used in terrestrial location and navigation. However, GPS

relies on a system of satellites in medium earth orbit and is prone to dropouts at higher

latitudes, and may be susceptible to spoofing or other attacks. Thus, it is prudent to

examine possible alternatives. Recently, star tracking has been of interest in global

positioning. There are many implementations of a star tracker using an imaging-based

optical system to capture star locations in order to estimate position using celestial

navigation techniques. These imaging systems are performance limited by blurring

imposed by atmospheric turbulence, platform jitter, and measurement noise. An

interferometric system for locating stars can be used as an alternative to accurately

locate stars in the sky. The use of one or more 3 or 4-aperture interferometers

may allow for greater noise immunity in the phase error induced by atmospheric

turbulence, and allows a larger baseline to be used as compared to the diameter of

a single lens imaging system in some configurations. Such a system could sample at

a rate higher than the Greenwood frequency, which helps reduce error in boresight

angle retrieval. In the system described herein, the performance limitations would

be dominated by atmospheric tilt and boresight angle retrieval. When the boresight

angle can be retrieved, the system could be reasonably expected to produce a position

estimate RMS error of less than 30 meters.

xi





Chapter 1

Introduction

1.1 Introduction

In acquiring a global position estimate, all that is needed are three fixed reference

points and a measurement to those points. In GPS, these references are not fixed, but

rather, are on a very precisely known trajectory in orbit around Earth. Measurements

to four or more satellites are made, and from this a position estimate is acquired. In

a star tracker system, the star-field is assumed to be very accurately known, and

given a precise time, the star-field measured can be estimated and overlaid over the

known starfield to give an estimate of position[1, 2, 3]. As an application of the van

Cittert-Zernike theorem, light from stars could be captured using an interferometric

1
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Figure 1.1: Diagrams of various considered baseline configurations

setup, and rather than imaging a whole star-field, a single star would be imaged and

the angle thereto precisely measured[4, 5, 6, 7].

In developing this paper, we considered many different aperture geometries, and while

all are fundamentally similar, certain configurations have distinct advantages and

disadvantages, discussed in section 1.2. The considered baseline configurations can

be seen in Figure 1.1. After much consideration, the configuration chosen for analysis

is a 4-aperture configuration, with two independent baselines. Furthermore, three

of these setups would be used, each tracking an individual star. A three-aperture

interferometer would allow us to measure both azimuth and elevation to an arbitrary

star. Similarly, two two-aperture interferometers with noncolinear baselines would

allow for the same azimuth and elevation estimates, without needing neutral density

filters or beamsplitters. Further constraints are that the device should be somewhat

portable, so baselines <1 m are considered, with 4 cm apertures and 1 ms exposure

times.

Amplitude interferometry is used here to measure information on a star. If we consider

2



a 2-aperture interferometer, the fringe pattern disregarding diffraction effects from the

aperture is given by[6]

I(x) = (I1 + I2)

[
1 + V cos

(
2πx

L
+ φ

)]
(1.1)

where L is the fringe period, and V is the visibility of the fringe pattern, given by

V =
Imax − Imin
Imax + Imin

(1.2)

In this fringe pattern, there are two principal parameters of concern, visibility, V , and

phase, φ. Following the procedure in Goodman[6], both phase and visibility could be

measured as a function of measured photo-electron counts on each detector element.

However, while the visibility could be estimated from the measurements, the length

of baselines considered herein is small enough that the visibility can reasonably be

approximated as 1 when not possible to calculate, but is always close to 1. Further-

more, the only information gained in our setup from estimating the visibility would

be an estimate of the angular radius, which is entirely unimportant in this topic. The

visibility does play a role in both the fringe and the expected RMS error of the phase

estimate, but we can assume that we know the visiblity already since we assume we

know which star we are measuring, and referencing a star chart to determine position.

3
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Figure 1.2: Measured fringe relationship with phase offset

Thus, the estimate of φ, φ̂ will be the estimator of principal concern, because the

phase estimator will be what is used to determine the current location. The phase

of (1.1) will be a function of the angular offset from the surface normal, as seen in

Figure 1.2. The estimate of the fringe phase gives rise to the estimate of the boresight

angle, which in turn generates the position estimate, which will have an RMS error

of rσθ, where r is the radius of the earth and σθ is the variance of the boresight angle

measurments. This is useful in providing an estimator of the accuracy of the position

estimate.

There are two different methods for a physical implementation of a system:

1. The interferometers are mounted to a gimbal, and can be individually directed

at stars of interest, which would be selected and approximately located through

4



the use of a secondary star tracker, one with a large FOV, and the interferom-

eter would have a smaller (around 1 arcminute) FOV. Positioning data from

the interferometer could be combined with the gimbal to give accurate star

estimates.

2. The interferometer baselines are fixed to a craft or other structure, and the in-

terferometer is designed with a large FOV that is mechanically or electronically

restricted to “point” the interferometer at a particular star.

Each configuration has distinct advantages and disadvantages. The first configuration

has the advantage of being able to use simpler estimators, although it is at the cost of

moving parts. Furthermore, there are physical restrictions to an actual implementa-

tion, in that the detector can only be a finite length–if the range of possible boresight

angles is large, so must be the detector. Restricting the boresight angles greatly re-

duces the detector size. The second configuration has the advantage of fewer moving

parts, and only requiring one interferometer configuration to obtain an estimate of

multiple stars in rapid succession, although the physical size required of the detector

may not actually be possible.

For this paper, the first configuration is considered, and it is assumed that the gimbals

upon which the interferometers would be mounted can be steered to a much greater

accuracy than any of the estimators herein.

5



1.2 Interferometer concept of operations

Now, we have established that a single baseline pair of apertures in an interferometer

will only measure a single angle, as seen in Figure 1.2. Two angles are needed to

completely describe a star position in the sky, and so we consider an interferometer

with multiple baselines, configured such that both angles to the star can be retrieved.

Then, of importance is discussion of possible aperture geometries. Initially, a three-

aperture interferometer was considered, taking one of two possible configurations.

The primary concern for such was the potential to use the closure phase, which is

much less sensitive to atmospheric turbulence, but still acquire useful azimuth and

elevation estimates.

The three baseline configurations considered can be seen in Figure 1.1.

1. A two baseline system requires less complicated optics. The configurations in

Figure 1.1a and Figure 1.1b require 1 beamsplitter assuming φ31 is ignored, or

3 beamsplitters in order to measure φ31.

2. The two baseline system in Figure 1.1c captures more light, resulting in a more

accurate estimate of the phases. When using the beamsplitters, the number of

photons considered in each fringe will need to be at least halved as compared to

6



the two baseline system. Furthermore, there is an additional aperture, meaning

that the two baseline system captures roughly a third more light.

3. The math is greatly simplified. However, this is an advantage only over the

configuration in Figure 1.1a, since the math regarding the estimators in Fig-

ure 1.1b and c would be the same (with φ12 = φ1 and φ23 = φ2), it is nevertheless

a reason to discount the configuration in Figure 1.1a.

Therefore, the third configuration, seen in Figure 1.1c, is selected. With the baseline

configuration selected, a broader overview of the whole system design to generate a

position is necessary. As mentioned in the introduction, it is apparent that multiple

references are needed to generate a position estimate. While originally there was

some thought that only a single interferometer setup could be used, it has become

apparent that this is not the case. The process to generate a position estimate from

a single interferometer would be as follows:

1. Determine which star is to be observed, and obtain a general estimate of the

position of the star in the sky. This would be accomplished by using an imaging

star tracker, since multiple stars would be needed to identify a single star.

2. Point the interferometer at the star.

3. From the measured fringes, determine azimuth and elevation of the star, relative

to the interferometer plane. A simple rotational transformation would then be

7



able to convert this to an azimuth and elevation estimate relative to the horizon.

4. From an accurate time source, calculate sidereal time, and then calculate the

‘zenith location’ of the star: the location on earth where the star would be

directly overhead

5. Consider an arclength s, that is the length of the elevation estimate times the

radius of the earth.

6. The position of the interferometer is s away from the zenith location of the

star, and is the opposide of the azimuth direction from the zenith location of

the star.

This will provide a relatively accurate position of the interferometer, but it starts

to fail near the poles of the Earth. Even assuming that magnetic north is known

quite accurately (including the location of magnetic north/south), near the poles the

accuracy will invariably decrease. Furthermore, near the poles, selection of a star is

limited to one of two criteria: either a star is selected that is ‘away’ from the pole

(e.g., if the observation is in the northern hemisphere, a star south of the observer

would be selected); or a star is selected whose elevation in the sky, corresponding

to the arclength s as defined in the above procedure which in turn corresponds to a

circle with radius s, that does not contain the magnetic pole within the circle. These

constraints severely limit star selection near the poles, meaning that a star with a

sufficient visual magnitude may not be able to be selected.

8



While the constraints on a single interferometer, two baseline setup do not completely

preclude use at the poles, it is worthwhile to consider alternatives. One such alterna-

tive is using three of these interferometer setups. Still, only one imaging star tracker

would be needed, and the three stars would be selected from within the FOV of the

imaging star tracker. Then, each of the three interferometers would be directed to

observe one of the three stars selected within the FOV of the star tracker. From the

measurements taken by the three interferometers, the elevation could be calculated to

each star, which would still correspond to the arclength s. Then, a circle with radius

s is centered at each star (with different s for each star), and the intersection of the

three circles would give a position estimate. This would still be subject to noise as

in the previous cases, but not the constraints on star selection near the poles since

azimuth does not play into the position estimate at all.

1.3 Paper organization

The rest of the paper is organized as follows. In Chapter 2, sources of noise in the

interferometric fringe pattern measurement are discussed. Section 2.1 discusses the

general fringe parameters and relevant parameters. Section 2.2 considers that light

is not strictly monochromatic, and introduces a finite bandwidth into the classical

fringe. Section 2.3 discusses error as a result of non-zero detector width. Section 2.4

evaluates photon noise in the fringe pattern. Chapter 3 discusses the fringe pattern

9



relationship with boresight angle, and estimates error in the boresight angle that

results from atmospheric effects external to the interferometer. Chapter 4 gives an

estimator of position that is useful for comparisons, and develops a comparison to a

single aperture imaging system. Section 4.3 concludes the paper.

10



Chapter 2

Fringe Parameters and Estimation

2.1 Visibility and Phase of a Fringe Pattern

Regardless of the actual fringe pattern, of importance in estimating the phase error

will be the visibility V of the fringe, which is given in (1.2). Considering this, a

visibility of 0 will result in the phase of the fringe being irretrievably lost, while a

visibility of 1 will yield the best estimate of phase we can expect to obtain. Goodman

discusses the phase estimator as the phase of the DFT at the designed spatial fre-

quency. Furthermore, Goodman describes the fringe pattern at a single wavelength

in (1.1). Goodman goes on to develop the estimator of φ as arg(K (p0)), where p0 is

the integer number of fringe periods incident on the detector, and K (p) is given as

11



(2.1).[6] Following Goodman, we consider K(n) to be the number of photo-electrons

collected by the n-th detector element.

K (p) =
1

N

N−1∑
n=0

K(n) exp(j2πnp/N) (2.1)

Using this estimator of φ, Goodman derives an estimator of the standard deviation

of the phase estimator, σφ, which is given as

σφ ≈
σI

K̄R

=

√
2

K̄1 + K̄2

1

V
(2.2)

We can look at this as being in terms of the number of actual photon counts, which

could eventually be useful for determining the accuracy of an actual system, but for

now that is not considered. Instead, we use this knowledge, in a later section, to

derive the expected accuracy given a star’s visual magnitude and angular radius.

Attention is now turned to calculating the visibility of a given star since the visibility

will determine, in large part, the SNR of our phase estimate. The visibility of a disk

has long since been described[4], as

V (λ) = 2
J1(2παs/λ)

2παs/λ
(2.3)

where α is the angular radius of the disk, and s is the aperture separation. Then,

considering (2.3), it is apparent that larger α will result in a smaller visibility. The

12



largest angular subtended by a star corresponds to Betelgeuse, and so for various

aperture separations that made sense for the system being considered (s between

.125 and .75 m), the visibility was calculated for Betelgeuse. This is intended to

give a lower bound on the visibility. Furthermore, considering that the wavelength

would be in the 900nm range (±200nm), with a bandwidth of 25 to 100 nm, the

mean visibility was seen to always be in the range of .95-1 (although never actually

equaling 1), and the visibility within those bandwidths never dropped below .93. This

was verified in Mathematica, and some of these results can be seen also in Table 2.1,

where α was used corresponding to Betelgeuse, which has the largest angular radius

on record. This means that these visibilities are absolute worst-case visibilities, since

a smaller α will result in a larger visibility. As mentioned earlier, for s ≤ 0.5 m, the

visibilities range from 0.95 to 0.998, and can only be expected to be greater than this

for a single star. For separations greater than that, the visibility is still always greater

than 0.88, which is still usable, it would only result in a factor of 1.136 larger phase

error, as compared to a visibility of 1.

13



Table 2.1
Various visibilites at given wavelengths assuming α = 169.7 nrad,

corresponding to the angular radius of Betelgeuse

Visibility at λ =
Seperation (m) 800 nm 850 nm 900 nm 950 nm 1000 nm

0.125 0.997 0.997 0.997 0.998 0.998
0.250 0.986 0.988 0.989 0.990 0.991
0.375 0.969 0.973 0.976 0.978 0.980
0.500 0.946 0.952 0.957 0.961 0.965
0.625 0.916 0.925 0.933 0.940 0.946
0.750 0.880 0.893 0.905 0.914 0.922

2.2 Estimating parameters in the case of finite

bandwidth

There was concern that integrating over a finite non-zero bandwidth would be a

source of noise, and as such, the following fringe models was developed. The estimate

of the fringe at a single wavelength is given by Goodman [6] as (1.1). This fringe was

developed by Goodman as a result of considering only a single wavelength. Using the

classical equation for L derived from Young’s two-slit experiment,

L =
λD

s
(2.4)

it is seen that L is a function of wavelength, and when introduced into (1.1), the

fringe pattern takes on multiple frequencies. Furthermore, when we consider that the

14



detector array should be designed such that there are an integer number of periods

of fringe over the entire array[6], it is easily seen that this design constraint is not

possible given the bandwidth of this function. Therefore, the following fringe pattern

was developed, using the standard Fresnel functions “Si” and “Ci”, which represent

the Sin integral and Cosine integral, respectively, which are given as

Si(x) =

∫ x

0

sin t

t
dt

Similarly, Ci(x) is defined as:

Ci(x) = −
∫ ∞
x

cos t

t
dt

Next, we integrate (1.1) over a finte bandwidth λbw centered at λc:

1 +
V

λbw

∫ λc+
λbw

2

λc−
λbw

2

cos

(
2πxλD

s
+ φ

)
dλ (2.5)

Note that this assumes uniform visibility V over the entire bandwidth of integration.

This should not be an issue, as the bandwidth considered for the purposes here is

marginal (25-100 nm), but even over the relatively narrow bandwidth, the visibility

changes only minimally.

Therefore, given the assumptions so far, we can write the function of the fringe, given

15



the finite bandwidth λbw as:

f(x) =
1

2D

[
4πsx sin(φ)Ci

(
4πsx

2Dλ+Dλbw

)
− 4πsx sin(φ)Ci

(
4πsx

2Dλ−Dλbw

)
+ 4πsx cos(φ)Si

(
4πsx

2Dλ+Dλbw

)
− 4πsx cos(φ)Si

(
4πsx

2Dλ−Dλbw

)
+

+ 2Dλ cos

(
4πsx

2Dλ+Dλbw
+ φ

)
+Dλbw cos

(
4πsx

2Dλ+Dλbw
+ φ

)
− 2Dλ cos

(
4πsx

2Dλ−Dλbw
+ φ

)
+Dλbw cos

(
4πsx

2Dλ−Dλbw
+ φ

)]
(2.6)

Then, sampling this and taking the FT of the sampled points, we can see that at any

reasonable spacing and sample rate, the estimate of φ, which is simply the phase of

the FT of the sampled points at p = p0 is exactly equal to the actual phase φ. This

result was verified in Mathematica, simulating the fringe, sampling, then taking the

Fourier transform of the sampled points.

2.3 Integration of Fringe Pattern as a result of de-

tector element width

The next source of error considered is the error induced by integrating over the area

of a detector element, and then taking each element integration as a sample, and

further processing it by taking the Fourier transform of those elements.

16



Unlike in the previous section, an entirely simulation driven approach was used to

evaluate the phase estimate error, to determine if the error is a simply described one,

or if it will be a significant source of uncontrollable error.

Mathematica[8] was used to then generate estimated phase error plots, where

K(n) =

∫
En

f(x) dx (2.7)

then K(n) is the integrated intensity of the n-th detector element, and En is the x-axis

boundaries of the n-th detector element. Of note here is that for this integration, it

is important that the elements are indexed properly. If the elements are not indexed

properly, then there will be a constant offset in the phase error, in addition to the

error shown in Figure 2.1. The mean error can be accounted for however, as the error

is only a function of the design parameters of the interferometer, which are closely

known. Thus, we consider the phase error to be Eφ[φ̂ − φ] − E[Eφ[φ̂ − φ]], or the

expected error of the estimator minus the DC offset; which further assumes that the

estimate of the phase, φ̂ will be uniformly distributed.

However, even without considering the limitations and prior knowledge of φ, the

range of error, for a reasonable set of design parameters, is only on the order of tens

of microradians. As demonstrated in section 2.4, we see that this source of error will

be very much overpowered by photon noise. As such, this source of error is neglected.

17



-1.5 -1.0 -0.5 0.5 1.0 1.5
ϕ

-0.00004

-0.00002

0.00002

0.00004

E[ϕ-ϕ]-E[E[ϕ-ϕ]]

Figure 2.1: Phase error (E[φ̂ − φ] − E[E[φ̂ − φ]]) vs. φ; λ̄ = 900nm,
λbw = 50nm, 512 samples, p0 = 10

2.4 Photon Noise Limits

The last consideration for estimating the error in the phase estimate is the noise

induced by photon noise. That is, the error as a result of there being an integer

number of photo-events on each detector element, a finite number of photo-events

occurring over the entire detector element, and a random number of photo-events

occuring on the detector from exposure to exposure.

Using code provided by Dr. Roggemann[9] which was converted for use in Mathe-

matica, visual magnitudes, in conjunction with assumed aperture dimensions, were

used to generate real, expected photon counts[8, 10].

18



Goodman has done a thorough job of investigating photon noise in such an

interferometer[6], but uses his own notation, using the terms K̄i = αN AτIi with

α = hν̄
η

, where η is the quantum efficiency, h is Planck’s constant, and ν̄ is the mean

frequency of analysis. Therefore, we can see quite simply that K̄i is the expected

mean photon count over all detector elements arising from the i-th aperture. There-

fore, a logical extension to this is to use visual magnitudes to directly calculate photon

counts[8, 9]. Furthermore, the code provided in vmag_sub.m takes into account lens

and atmospheric transmission, as well as quantum efficiency, as in the equations con-

sidered by Goodman. As such, the photon counts produced by said code can easily be

said to be equivalent to K̄i. Also extending this is the assumption that all intensities

incident on the apertures are going to be equal; which is not unreasonable since all

apertures in the considered interferometer will have the same physical characteristics

and all will be directed at the same star. Given these assumptions, we can rewrite σφ

as

σφ =

√
1

Photon Count

1

V
(2.8)

Evaluating σφ for various visual magnitudes in Mathematica, we obtain Table 2.

From the sample data, we see that in a best case scenario, we have errors on the order

of 6-15 millirad. In Section 4.1 we will discuss how those errors relate to position

estimate errors.

19



Table 2.2
RMS Error and magnitudes for sample stars, η = 0.95, τ = 1 ms

Star Sun Sirius Canopus Arcturus Rigel Kentarus A Vega Capella Rigel

Vmag -26.72 -1.44 -0.62 -0.05 -0.01 0.03 0.08 0.18
Error 0.03476 0.006591 0.009615 0.01252 0.01273 0.01297 0.01327 0.01390
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Chapter 3

Boresight Angle Measurement and

Noise

3.1 Retrieving boresight angle from phase infor-

mation

As mentioned in the introduction, the phase angle, φ in (1.1) is a function of what will

be called the ‘boresight angle’ or, the angle from the surface normal of the interfer-

ometer to the source. If we consider that the boresight angle is θ, aperture separation

s, and focal length D, then an expression for φ–the phase angle–can be derived, using

one of two different approaches
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D

s

Figure 3.1: Illustration of relationship of measured phase (∆φ) and bore-
sight angle (θ)

3.1.1 Geometric optics approach

First, let θ = 0. Then, there will be maxima where the path lengths are both

multiples of the wavelength. Considering this, there should be a maximum where the

path lengths are equal. Now, consider the length from each aperture to the detector

plane to be length d0, and the lengths from each aperture to the detector plane are

equal because θ = 0. Now, consider the source is moved off-axis by θ. The new

location on the detector plane is given by forming a triangle, with length d1 from one

aperture, and d2 from the second aperture. Since we are concerned with the same

maximum moving, and we are considering the maximum where the path lengths are

equal, we can introduce a length ∆d, which describes the difference in path length,

d2 − d1. Using geometric identities, it can be shown that ∆d = d2 − d1 = s sin θ.

Finally, we consider the point where this maximum occurs to have moved by ∆x,
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which will later be shown to be proportional to ∆φ. These principles are illustrated

in Figure 3.1. Given these constraints:

d2 = d1 − s sin θ (3.1)

d1 =

√
D2 +

(s
2

+ ∆x
)2

(3.2)

d2
2 = D2 +

(s
2
−∆x

)2

(3.3)

substituting (3.1) into (3.3)

(d1 − s sin θ)2 = D2 +
(s

2
−∆x

)2

(3.4)

then substituting (3.2) into (3.4)

(√
D2 +

(s
2

+ ∆x
)2

− s sin θ

)2

= D2 +
(s

2
−∆x

)2

(3.5)

solving for ∆x

∆x =


−
√

4D2 sin2(θ)−s2 sin4(θ)+s2 sin2(θ)

2
√

1−sin2(θ)
θ < 0

√
4D2 sin2(θ)−s2 sin4(θ)+s2 sin2(θ)

2
√

1−sin2(θ)
θ ≥ 0

(3.6)

Now that the expression for ∆x has been obtained, the relationship with ∆φ is

∆φ = 2π
∆x

L
(3.7)
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where L is the fringe spacing given in (2.4). Then, substituting (3.6) into (3.7), we

obtain

∆φ =


−2π

L

√
4D2 sin2(θ)−s2 sin4(θ)+s2 sin2(θ)

2
√

1−sin2(θ)
θ < 0

2π
L

√
4D2 sin2(θ)−s2 sin4(θ)+s2 sin2(θ)

2
√

1−sin2(θ)
θ ≥ 0

(3.8)

Then, since φ is measured, and θ is the desired quantity, we solve (3.8) for θ:

θ =



arcsin


√

−
√

(π2(4D2+s2)+∆φ2L2)2−4π2∆φ2L2s2+π2(4D2+s2)+∆φ2L2

s2√
2π

 ∆φ ≥ 0

− arcsin


√

−
√

(π2(4D2+s2)+∆φ2L2)2−4π2∆φ2L2s2+π2(4D2+s2)+∆φ2L2

s2√
2π

 ∆φ < 0

(3.9)

If we consider that the boresight should be nominally pointed at the star, to within

approximately one arcminute (or approximately 300 microradians), we can use the

small angle approximation for this, and expect an error no greater than 1%, which is

significantly less than other sources of error

θ ≈

√
−
√

(π2(4D2+s2)+∆φ2L2)2−4π2∆φ2L2s2+π2(4D2+s2)+∆φ2L2

s2√
2π

×


1 ∆φ ≥ 0

−1 ∆φ < 0

(3.10)
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3.1.2 Fourier Optics Approach

If we instead want to consider an expression for φ that does not require use of the

focal length or period of the fringe pattern, a Fourier optics approach can be used.

Instead of considering the fringe pattern moving on the detector, it is considered that

we can treat the measured phase of the fringe pattern as the phase of the Fourier

transform at a specific spatial frequency [6].

For the sake of this treatment, we express our fringe pattern as a complex visibility,

which will be denoted as V. Then,

V = V e−jφ (3.11)

Now, considering that we are looking at a single star in the object space, at some

angles θx and θy being the zenith angles along the x and y axes respectively, with r

representing the distance to the object plane or star in this case.

f(x, y) = δ(x− r tan θx, y − tan θy) (3.12)

We can take the Fourier transform of this function to be

F (u, v) = exp(j2πr(u tan θx + v tan θy)) (3.13)
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We now consider our interferometers to measure at the spatial frequency fs

fs =
~s

λr
(3.14)

where ~s is a vector describing the length and orientation of the interferometer baseline.

Then, evauluating for orthogonal baselines oriented along the x and y axes:

Vx = F
( s
λr
, 0
)
,Vy = F

(
0,

s

λr

)
(3.15)

and finding φi corresponding to Vx and Vy,

φi =
2πs tan θi

λ
(3.16)

However, since φi is the argument of an exponential, we will only be able to measure

it modulo 2π. We see this same problem arise whether we use a geometric optics

approach as in the previous section, or the Fourier optics approach seen in this section.

3.1.3 Problems in boresight angle retrieval

While there is clearly an inverse function for θ, the range of that inverse function is

quite limited, owing to the fact that φ can only be measured to within a 2π range

through the Fourier estimate discussed in section 3. As an example, we’ll let D = s =
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0.5 m =⇒ L = λ = 900 × 10−9 m. Then, for ∆φ = 2π, θ = 1.8 × 10−6 rad, or less

than half an arcsecond. The problem is that the interferometer reading is supposed to

refine the position estimate of the star in question: but this would require knowledge

of the star location to less than half an arcsecond. If that was already known, a

position estimate accurate to roughly 15 meters could be obtained.

This is not impossible to compensate for, however. While the fringe pattern is given

in (1.1), there are a couple of effects that could be exploited. The simplest effect is

driven by the Fourier optics approach, where we pick two different baseline lengths

which ideally should have a very large lowest common multiple. Then, assuming the

baselines are concentric and oriented the same, we can generate a table of values for

each baseline that correspond to possible boresight angles. Then, for each baseline, we

write the possible boresight angles as the sum of a set of Dirac delta functions, which is

then convolved with a likelihood function, ideally corresponding to the measurement

noise. Then, the product of the two separate baseline likelihood functions could be

maximized to produce an ML estimate of the true boresight angle.

Another approach could be to exploit a diffraction pattern, which can be described

as an envelope on the fringe pattern. If we select a square aperture, it is known

that the diffraction pattern will be a sinc function. Then, since the sinc function

should have a larger period than the fringe pattern, a Fourier transform could give

us an estimate of the phase, and therefore location of the maximum of the diffraction
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pattern. Alternatively, if the diffraction pattern is simply known and not necessarily

a sinc function, a fit could be attempted to fit the envelope to the data, also providing

more information about the boresight angle.

Finally, the third approach considers that the fringe pattern derived in (2.6) is nomi-

nally a sin function, with a sinc-like envelope. This corresponds similarly to how it was

defined in the first place, as the integral over a uniformally distributed sin function at

multiple wavelengths; in the Fourier domain it would be similar to a rect function in

the frequency domain that is not centered at zero being inverse Fourier transformed.

Therefore, if the period of the sinc ‘envelope’ that arises from finite bandwidth could

be calculated, the Fourier phase of the envelope could give information as to the true

boresight angle.

3.2 Atmospheric Effects

3.2.1 Fringe Jitter

Of concern is that the tilt from atmospheric turbulence will produce a noticeable

error in the measured boresight angle. This type of tilt jitter has been discussed
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Figure 3.2: Calculated r0 and σθ for various zenith angles (ξ)

previously[7, 11], and the phase error will be given by

σθ =

√
0.170

(
λ

D

)2(
D

r0

)5/3

(3.17)

We consider σθ to be given in radians.

(3.17) is quite straightforward to evaluate, although in order to do so, a value for

r0 needs to be calculated, which is not as trivial. For this purpose, the H-V5/7

model is used[5], corresponding to moderate turbulence in the atmosphere. This is

then combined with (3.17), and calculated for various zenith angles (on which r0 is

dependent).

3.2.2 Refraction

For any elevation measurement deviating significantly from the zenith angle, there will

be a non-negligible amount of refraction that occurs. This however is well known,

and the true zenith angle can be computed to within 150mas using the procedure
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outlined by Stone[12].

3.2.3 Atmospheric Time Constant

There is another limitation imposed by the atmosphere, described by the Green-

wood frequency, which is essentially the maximum frequency at which the atmosphere

changes. While this will not contribute to noise, if higher precision is desired in the

position estimate, a trivial solution would be to average multiple position estimates.

Furthermore, if we consider that the exposure time considered herein is 1ms, then it

would seem that 1000 samples could be averaged over a second to reduce the posi-

tioning error. However, the tilt imposed by the atmosphere on a star measurement is

correlated in time, therefore two successive measurements will have a certain amount

of correlation. The maximum frequency at which the star could be sampled and

expect the atmospheric effects to be different is given by the Greenwood frequency.

The inverse of the Greenwood frequency can then be seen to give us an estimate of

how rapidly we can sample a star and assume different boresight measurements, also

called the Greenwood time constant. We will use a simplified form of the Greenwood

time constant which assumes a uniform windspeed[5]

τ0 =
0.32r0

v
(3.18)
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where v is the wind speed. We already have calculated r0 above, and we will assume

the wind speed is 21 m/s, as in the H-V5/7 model, This results in, at sea level, a

time constant of roughly 1.5 ms. While not a large limitation, it is clear that fewer

samples would be able to be averaged over a second, and because r0 increases as

height increases, fewer samples would be able to be averaged as the altitude of the

observer increases.

3.3 Azimuth and Elevation Estimates

The two baselines now give us two measurements of an angle to the boresight, which

are referred to as the boresight angles. As discussed earlier, we consider one baseline

along the x-axis, and one baseline along the y-axis. Then, the star in consideration is

on the plane defined by the three points (0, 0, 0), (0, 1, 0), (cos 90◦− θx, 0, sin 90◦− θx)

where θx is the measured boresight angle. Now, consider the general equation for a

plane:

n · (x− x0, y − y0, z − z0) = 0 (3.19)

where n is the surface normal vector, and (x0, y0, z0) is a point on the plane. Then,

from the earlier definition, we select (0, 0, 0) for the point on the plane, and the surface
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normal will be

n = (cos 90◦ − θx, 0, sin 90◦ − θx)× (0, 1, 0) = (cos θx, 0,− sin θx) (3.20)

therefore the equation of the plane will be

x cos θx − z sin θx = 0 (3.21)

Following the same procedure for the y-axis baseline, the equation for the plane will

be

− y cos θy + z sin θy = 0 (3.22)

If we were to solve these two equations as a system of equations, we would obtain

an equation for a line through the origin. If we let there be a sphere, such that the

radius of the sphere is 1, then we can write the equation for the surface of a sphere

as √
x2 + y2 + z2 = 1 (3.23)

Then, we solve the system of equations:



x cos θx − z sin θx = 0

−y cos θy + z sin θy = 0

√
x2 + y2 + z2 = 1

(3.24)
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We obtain: 

x = sin(θx) cos(θy)√
cos2(θx) cos2(θy)+sin2(θx) cos2(θy)+cos2(θx) sin2(θy)

y = cos(θx) sin(θy)√
cos2(θx) cos2(θy)+sin2(θx) cos2(θy)+cos2(θx) sin2(θy)

z = cos(θx) cos(θy)√
cos2(θx) cos2(θy)+sin2(θx) cos2(θy)+cos2(θx) sin2(θy)

(3.25)

after discarding the negative z solution, since the star observed can not be below the

interferometer plane.

Now, we can convert to spherical coordinates in the form (r, ξ, ψ), where ξ will be the

azimuth angle with respect to the x axis, and ψ will be the boresight angle, i.e. θ in

Figure 1.2. These coordinates are given as[13]



r =
√
x2 + y2 + z2

ξ = arctan y
x

ψ = arccos z
r

(3.26)

We can substitute our found equations into this system, and simplifying using Math-

ematica: 

r = 1

ξ = arctan(cot(θx) tan(θy))

ψ = arccos

(
cos(θx) cos(θy)√

sin2(θx) cos2(θy)+cos2(θx)

) (3.27)

As expected, since we let the radius of the sphere be equal to 1 in (3.24), we obtain
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r = 1 in this form as well. From this, a simple rotation is all that is needed to convert

this to azimuth with respect to north and zenith angle.
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Chapter 4

Results and Conclusion

4.1 Position Estimation

Attention is now turned to position estimation. It is considered that we now have a

zenith angle estimate to each of three stars, with some RMS error σzi relative to the

i-th star.

First, we consider that the interferometer is pointed at a given star, and that the given

star is already identified. Then, we can use a standard star map, such as J2000, to

look up the right ascension and declination of a given star. From this and an accurate

time source, we can calculate a ‘zenith location’ of the star, which is a location on

Earth where the star is at zenith or directly overhead. Then, we can use our measured
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zenith angle to calculate an arclength s to the star. This arclength is shortened based

on the elevation of the observer, which is assumed to be very precisely known. We

then consider that our actual position lies on a locus of points distance s away from

the zenith location of the star. We incorporate σzi by considering it as a width either

side of our locus of points, creating a Gaussian profile with the peak at exactly s away

from the zenith location. Then, two more loci are generated in the same procedure.

Finally, the product of the three locus profiles is generated, and the location of the

maximum is taken to be the position.

Before this estimator is derived, we will consider that this may not be an optimal

estimator; rather, it is intended to give an idea of the lower bounds of performance

for the use of an interferometer in determining position. In fact, we know that this is a

suboptimal estimator since we are immediately discarding information in the form of

the azimuth estimate, and only concerning ourselves with the zenith angle estimate.

Furthermore, we will derive this math on a plane, rather than on the surface of a

sphere. This should give us a reasonable approximation to the actual case wherein

the coordinates will lie on a sphere, owing to the fact that in selecting a star, we

should choose stars that are no more than about 20◦ away from zenith, and therefore

should all have relatively close zenith locations. This also greatly simplifies the math.

First, let us calculate the zenith location of a star, the location on Earth where the star

is directly at zenith. This calculation is quite trivial. Consider that the right ascension

36



and declination is precisely known. Then, also assume that the sidereal time is also

known, and is quite accurate. Then, the latitude of the zenith location will be the

declination, and the longitude will be the right ascension minus the current sidereal

time. Of course, in this estimate the latitude will be known to a very precise value,

as declination and right ascension have been measured to within miliarcseconds, and

sidereal time will be accurate to approximately the same accuracy as a clock, which

should yield sub-second accuracy, and consequently, sub-arcsecond accuracy in angle

measurement. We will consider this zenith location to be at the point (x0, y0).

Now, let us consider the zenith angle measurement, θ, which has an expected RMS

error of σθ. Then, we can consider that this gives an estimate of the distance to the

zenith location, by considering an arclength s, where s = rθ and r is the radius of

the Earth. Then, the locus of points that is s away from the zenith location can be

given by the equation for a circle, s2 = (x − x0)2 + (y − y0)2. Now, we can consider

that this circle will be in error by σxy = rσθ. Continuing this line of reasoning, we

can describe the likelihood function along this locus of points as

f(x, y) =
1

σxy
exp

−
(√

(x− x0)2 + (y − y0)2 − s
)2

2σ2
xy

 (4.1)

We can now consider this for various stars and arclengths. If we consider that the

boresight angle can be retrieved, then the noise will be dominated by atmospheric

tilt–as the G-tilt discussed previously–and we consider a σθ corresponding to a worst
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case scenario seen in the G-tilt discussion, or 5 microradians, and the radius of Earth

being 6370 km, then we can set up a simulation to test the accuracy of our position

estimator. This is simulated rather than calculated analytically since there are multi-

ple nonlinear functions of multiple Gaussian random variables; although we see later

that the resulting position estimates can be reasonably seen to be Gaussian.

The process is as follows:

1. Select 3 zenith locations on a plane, as well as our current position. This is

where our generated stars will be, and for simplicity, we select our position to

be at (0, 0).

2. From the star zenith locations, calculate a corresponding ‘actual’ zenith angle,

which is the distance from our position to the star zenith location, divided by

the radius of Earth.

3. Introduce noise into this zenith angle, which will correspond to our measured

zenith angle. This introduced noise is characterized by σθ, being zero-mean

Gaussian.

4. Generate arclengths from star measurements

5. Generate ML estimate of position from zenith locations of stars and measured

distances.
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Figure 4.1: ML position error density histogram, 100000 samples

When running this simulation, we can obtain a density histogram, an example seen

in Figure 4.1. We might expect that, for a 5 microradian error in boresight angle

measurement, we would see an error just less than 31 meters. The simulation resulted

in position errors in arbitrary orthogonal directions of roughly 26 meters, and we also

can show that they can be modeled as Gaussian, using the Cramer-von Mises test,

to a 95% confidence level, in this simulated example.
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4.2 Comparison to Single-Aperture Systems

Of concern in describing a system such as this three or four aperture interferometric

system is comparing the system to a similar single-aperture imaging star-tracker.

While there are many papers on the subject in determining orbital attitude, very

few exist that are designed to work within the atmosphere, and none with published

performance specifications. Therefore we will consider a theoretical model of such a

system, and explain why the interferometric system outperforms an equivalent single-

aperture system.

Fried has discussed, in-depth, the resolution limits imposed by atmospheric turbu-

lence. Furthermore, he has considered the resolution limits imposed by the atmo-

sphere, as well as near-field and far-field; with short and long exposure lengths,

although with long exposure lengths, near-field or far-field becomes irrelevant[14].

From his research, the optimal exposure is near-field, short exposure; then far-field,

short exposure; and finally long exposure. The interferometer clearly falls within the

far-field, short exposure category, with exposure times of 1ms selected herein. There-

fore the PSF of the interferometric exposure is quite narrow, although the system

will be exposed to tip and tilt which will vary the measurement. By comparison, the

traditional imaging star tracker will likely need to use a longer exposure time, which

is not suitable for use within the atmosphere for reasons that will be discussed here.
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One difficulty in comparing an imaging star tracker to the proposed interferometric

setup is the vast number of parameters that need to be optimized for a specific

application. In an environment outside of the atmosphere, a long exposure time is

a reasonable design consideration, but not as practical inside of the atmosphere, but

may be necessary.

In selecting exposure time for an imaging tracker, there are two primary considera-

tions:

1. Atmospheric effects will increase the angular extent of the star as the exposure

time increases, to a limit,

2. Blurred image processing recommends a higher number of photoelectrons to

increase accuracy

The first consideration implies that the shortest practical exposure time should be

used, ideally in the millisecond range, but the second constraint requires a longer

exposure time. This is, of course, without even considering other effects that may

need to be mitigated, such as platform vibration or motion.

To calculate the accuracy of a comparable star tracker, the previously calculated

photoelectron counts can be used, which would give a reasonable approximation of

an imaging tracker that has similar characteristics. Then, using the NEA, or Noise
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Angle Approximation by Leibe[2], we can describe the accuracy as

NEA =
FOV × Ecentroid
Npixel ×

√
Nstar

(4.2)

FOV is the field of view for a star tracker. For our purposes, we’ll consider a 20◦

FOV. Npixel is the number of pixels on a side of the detector; 256-1024 seems to be

a fairly common range in the literature[1, 2, 3], and so we chose 512 pixels. Nstar is

the number of stars used in centroiding; we select 20 stars. Finally, Ecentroid is the

subpixel accuracy of the centroiding algorithm, and we will include other noise effects

in this term. Within the atmosphere, we can include in Ecentroid the tilt imposed by

the atmosphere. Using our previous expression for G-Tilt, and since we are assuming

a 5 cm aperture, we can calculate a worst case tilt of about 10 microradians[11]. To

convert this to the pixel accuracy that Ecentroid is already in, we can use the expression

σθ
FOV

Npixel (4.3)

which gives us about 0.0144 pixels. Using our previously calculated photoelectron

counts, which we will say is roughly 1000-10000, we expect Ecentroid from only the

centroiding algorithm to be around 0.1 pixel. We can then add these two values

together, and calculate out our value for the NEA. Using these parameters, we get an

accuracy of about 0.001◦, which, when we multiply by the radius of the Earth, would

give us an accuracy of about 111.3 m.
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4.3 Conclusion

This paper has discussed how an interferomteric system to generate global positioning

information might work, and detailed what the major performance limitations should

be. For this paper, the primary consideration is that any such interferometric system

should be relatively portable, so a baseline around half a meter was considered. Expo-

sure times were also deliberately selected such that we could reasonably treat atmo-

spheric turbulence as being frozen. Given these constraints, we constructed a model

for the fringe pattern given finite bandwidth; constructed a model for measuring error

induced by finite detector element width; and finally photon noise. Then, using these

error metrics, we constructed a potential method for retrieving the boresight angle.

Finally, we constructed one estimator of position using three star measurements to

give us a reasonable bound on performance. In order to gauge the performance of a

potential interferometric system, a simple blurred image processing star tracker was

modeled, using similar constraints to that of the interferometric implementation. We

found that under similar exposure times and single aperture sizes, we could expect a

single exposure accuracy from the interferometric system to be on the order of 25-30

meters, while the single aperture imaging star tracker would provide an accuracy of

around 110 meters. Also considered was that even the single exposure performance

would likely need to be improved, for either system, and so the Greenwood frequency

was discussed as placing a maximum on the exposure rate.
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