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Abstract 

Even in today’s technology-filled world, nearly half of the global population still 

relies on some form of biomass to meet their daily energy requirement. Currently, 

improved combustion technologies (improved cookstoves) the most common 

intervention to reduce fuel usage and to reduce human exposure to harmful 

products of incomplete combustion. This report explores an alternative option 

to cookstove replacement: ventilation as a low-cost, low-impact solution for 

health risk reduction. 

1 Introduction 

Nearly half of the world uses some form of biomass combustion to meet their 

basic energy needs, such as cooking, light, and heat. Biomass fuels are largely 

unprocessed and non-uniform, and include crop residues, dung, wood, charcoal, 

and in some cases coal. Combustion of these fuel sources under the best of cases 

would still lead to a range of products of incomplete production (PICs), but 

unfortunately for the under-developed world, highly efficient cookstoves are 
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either unavailable or not used. Instead, most of the world’s heating, lighting and 

cooking is performed over three stones or a mud-clay u-shape, here called a 

traditional cookstove. While a well-tended traditional cookstove can achieve a 

similar level of combustion performance as some of the engineered cookstoves 

available on the market, usage with any cookstove is highly user-dependent and 

exposure to any products of combustion has been proven life threatening, 

especially to women and young children. In this study, the effect of ventilation 

and kitchen design on the ambient concentration of particulate matter and 

carbon monoxide was investigated, with hopes that a simple configuration would 

decrease contaminants as much as the best cookstove interventions, yet offer 

more likely use and long-term benefits. 

1.1 Background 

Approximately 3 billion people worldwide continue to rely on unrefined fuel 

sources, also known as biomass, to meet their daily household energy needs 

(WHO, 2015). Biomass ranges from completely unprocessed fuel sources such 

as animal dung and crop residue to more refined fuels such as charcoal, coal, and 
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kerosene. However, burning unrefined fuel sources is generally an incomplete 

combustion process, leading to the emission of carbon dioxide (CO2), carbon 

monoxide (CO), a variety of particulates including ultrafine particulates and 

polycyclic aromatic hydrocarbon, and in the case of coal, sulfur and nitric 

compounds (Smith, et al. 2004). These are also known as products of incomplete 

combustion (PIC), and are the primary components constituting household air 

pollution (HAP). 

 

While the exact daily dosages of atmospheric pollutants are difficult to determine, 

one thing is clear: acute and chronic exposure to air pollutants result in severe 

health risks. Exposure to HAP constitutes the third highest ranked global risk 

factor for disease burden as of 2010 (Lim, et. al. 2012) and is the cause of 

approximately 4.3 million deaths annually (WHO 2015). Children under five 

years of age are on average 2.9 times more likely to develop an acute lower 

respiratory infection (ALRI) than children who are not chronically exposed to 

HAP. Both men and women have a higher risk of developing life-threatening 

diseases such as chronic obstructive pulmonary disease (COPD), lung cancer, 
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ischemic heart disease (IHD), and strokes than people not exposed to products 

of biomass combustion (WHO 2014).  Although women’s personal exposure to 

particulate matter with an average aerodynamic diameter of 2.5 micrometers is 

over 100 µg/m3 higher than men (WHO 2014), men have a higher percentage 

of deaths attributable to smoke exposure (46% of total HAP deaths) due to 

disease susceptibility (WHO 2014). Acute and chronic exposure to PIC can also 

lead to a host of debilitating and potentially deadly respiratory, skin, and eye 

diseases. PIC has also been linked to low birth rates and an increased risk of 

stillborn births (Bruce et al. 2002). A 50-90% reduction in typical HAP levels is 

critical to achieving desired short- and long-term health benefits (Pinkerton and 

Rom 2013). Outside of the health spectrum, fuel gathering detracts from 

educational and entrepreneurial opportunities, has caused widespread 

deforestation, and can be dangerous for gatherers (Global Alliance 2015). 

Worldwide PIC emissions also contribute to climate change, although their exact 

contribution is still unknown. 
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Many indoor air quality improvement initiatives focus on the pollution source, 

the cookstove. This is done through increasing the thermal and combustion 

efficiencies by changes in the combustion chamber and the cookstove body. 

Decreasing the presence of pollution at its source has many positive attributes, 

but requires some initial financial investment either by the cookstove user, his or 

her family, or some form of cost subsidization. Depending on the user’s financial 

situation, this may be a large barrier to adopting cleaner cooking technologies or 

prevent their use of them all together. Also, improved cookstoves usually require 

some behavior modification on the user’s part, either through cookstove use or 

regular maintenance; these can be additional barriers to long-term adoption. 

Finally, studies have shown that even when improved cookstoves are purchased, 

or even cleaner forms of energy like LPG gas are in use, users will “stack” 

cooking technologies: use different cooking methods for different dishes or 

when cooking for large groups of people. Such user realities decrease the actual 

effect of improved combustion technologies after distribution and thus their 

viability as a solution (Pinkerton and Rom, 2013; Rehfuess et al. 2014). 
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1.2 Solution Development and Testing 

 

Engineered or improved cookstove research and development has changed 

drastically over the past forty years, and has had a range of social and societal 

implications for both the under-developed world and Earth as a whole. Starting 

in the 1970’s environmentally consciousness era, preliminary studies and 

advances were focused on the improvement of combustion efficiency to mitigate 

global deforestation. From that initial standpoint, cookstove advances have 

evolved alongside monitoring technology and a deeper understanding of HAP 

health impacts. Interventions are currently focused on the reduction of 

emissions, as decreasing contaminants at the source are the only real way to 

guarantee a healthy level of exposure (WHO 2014). Today a seemingly infinite 

range of cookstoves exist on today’s market: wood-burning, natural draft top-lit 

gasifiers (TLUD), solar cookers, briquette ovens, highly engineered cookstoves, 

local knockoffs, and of course, the ubiquitous traditional three stone or clay 

stoves.  
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Testing and accreditation has evolved as well. In February 2012, a twenty-two 

country collaboration passed the initial framework for internationally recognized 

cookstove testing procedures and rankings through the International 

Organization for Standardization (ISO) (United Nations Foundation 2015). The 

framework assigns the various aspects of cookstoves (fuel efficiency, total 

emissions, indoor emissions, and safety) to one of five tiers (Tier 0 to Tier 4), 

Tier 0 being the lowest performance and Tier 4 the highest. It relies primarily on 

the results from the Water Boiling Test (WBT) (PCIA 2014), a laboratory-based 

protocol, along with the newly developed Biomass Stove Safety Protocol. The 

International Workshop Agreements IWA 11:2012 makes excellent progress 

towards accurately representing the function and aspects of biomass cookstoves 

worldwide, aiding consumer and policy makers’ decisions (United Nations 

Foundation 2015). 

 

Unfortunately, the IWA 11:2012 framework relies on a laboratory run protocol: 

highly controlled conditions with cured fuel. This methodology was created to 

quantify small changes in the physical structure of a cookstove and accurately 
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compare different cookstove designs, not to replicate conditions seen in the field. 

Other less controlled testing protocols exist, but these receive less attention due 

to the heterogeneity (increase in variance) inherent in the tests. The Controlled 

Cooking Test (CCT; Bailis 2004) recreates a cooking event of a set meal instead 

of boiling and simmering water, but is still conducted under controlled 

circumstances. The Uncontrolled Cooking Test (UCT; Robinson et al.) allows 

users to use the cookstove as they would normally in their home. The Kitchen 

Performance Test (KPT; Bailis et al. 2007) is the final validation step conducted 

in the field, and combines quantitative and qualitative assessment techniques 

during real use conditions. These protocols were created with the intent that they 

be used in succession: starting with the WBT during design work iterations and 

ending with the KPT to assess an interventions true impact (PCIA 2014). 

However, given the amount of emphasis currently placed on WBT results, it is 

this author’s opinion that cookstove efficacy will continue to be judged by 

unrealistic standards for the foreseeable future. 
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The polar opposite approach is in-field investigation. These studies capture the 

exact conditions and functionality of cookstoves after introduction or adoption, 

yet are just as problematic. Between the confounding factors that impact 

combustion and the wide variability in domestic practices, large samples are 

needed to compensate for the enormous variance in the data. This requirement 

exponentially increases the cost and time needed to conduct a field study, both 

of which are limiting factors to any type of research. Hence field investigations 

tend to provide a limited snapshot of a location or region, and rarely use the 

same methodology, making any direct comparison between studies difficult. 

Also, until recently, air quality measurement instrumentation had not been 

developed to withstand the extremes experienced in field testing and monitor 

the concentration levels of HAP common in many homes throughout the 

developing world. No in-kitchen field measurement protocols have been 

developed and internationally agreed upon, although a few practices have been 

repeated, for example single monitors are placed 1.5 meters horizontally from 

and 1.5 meters above the cooking surface or personal exposure monitors are 

worn by the cooks themselves. 
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1.3 Kitchen 2.0 

 

A more transferrable solution to human exposure to HAP could be to improve 

the ventilation of the cooking space through changes in the kitchen structure 

itself. In developed countries, forced ventilation and fume hoods are 

requirements in areas where high levels of contaminants are being generated and 

these engineering controls require no or very little behavioral modification from 

the workers in the area. The installation of electrically powered fans in developing 

country kitchens is not feasible and the successful implementation of chimneys 

has had mixed success. However, the strategic placement of “windows” 

(openings without glass) and doors informed by prevailing wind patterns is 

seemingly inexpensive, transferrable, and locally sustainable. The idea of 

ventilation as a solution to human HAP exposure served as the motivational 

basis for this work: the Kitchen 2.0 project.  
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The objectives of Kitchen 2.0 were to: 

 Merge field and laboratory testing methodologies to better 

understand the impact an improved cookstove would have on the 

indoor air quality in developing country kitchens. 

 Determine if ventilation plays a significant role in indoor air pollution 

and if so, develop simple kitchen construction recommendations 

based on the testing results. 

 Gather data for as many structural configurations as possible to 

validate a computational indoor air quality model of the space. The 

computational model was developed for the U.S. Environmental 

Protection Agency (U.S. EPA) People, Prosperity and the Planet (P3) 

Competition and is not explained further in this report. 

 

This investigation was initially conducted as part of the team’s participation in 

the 2013 U.S. EPA annual P3 Competition, and was funded by grants from the 

U.S. EPA and the National Science Foundation (NSF). The experimental portion 
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discussed here was part of a larger, holistic analysis of indoor air quality, which 

included a social survey of homes and cooks from 12 countries around the world 

and a computational fluid dynamics (CFD) model of the model kitchen used 

during the experimental portion. The social survey and the CFD model will not 

be discussed further here; however a summary of the complete Kitchen 2.0 

project has been published in the International Journal of Engineering Service 

Learning (Ruth, et al. 2014). 

 

2 Research Methodology  

 

The Kitchen 2.0 project attempted to bring aspects of real-world situations to a 

controlled laboratory environment. This is illustrated by both the model testing 

facility and the experimental protocol. The testing facility allowed for a higher 

degree of control over the environmental factors that may affect HAP 

concentrations and transport within the test kitchen. The test kitchen dimensions 

and roofing materials reflected those commonly seen throughout the developing 

world, and specifically in rural Tanzania. Ambient concentrations of HAP, 

specifically particulate matter with an aerodynamic diameter of equal to or less 
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than 2.5 micrometers (PM2.5) and carbon monoxide (CO), were recorded in real-

time in 15 different locations inside the test kitchen. Field measurements are 

generally restricted to one location near the cookstove or attached on the cook’s 

person; the additional monitors in the test kitchen provided a higher resolution 

of the HAP spatial variability during and after a cooking event. Lastly, the CCT 

protocol was used in this study. The CCT protocol provides more insight into 

the functionality of the cookstove than the WBT protocol by utilizing a 

standardized meal, rather than boiling and simmering water. Unfortunately, 

variability is also a real-world aspect that was added as laboratory boundaries 

were expanded in this investigation (see Section 4 for discussion on this topic). 

 

2.1 Physical Model Setup 

 

Because testing was conducted during the inclement winter months, the Kitchen 

2.0 testing facility was constructed indoors in a repurposed manufacturing 

building (now the Advanced Power Systems Research Center (APSR)) near 

Hancock, Michigan. The Kitchen 2.0 facility consisted of model kitchen, with a 

size and shape representative of kitchens found in rural Tanzania as well as other 
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countries worldwide, situated inside of a ventilated clean room as shown in 

Figure 2.1 and Figure 2.2. The clean room, designed online through a portable 

boat shelter supplier, was needed to collect the HAP and vent all emissions 

outside of the APSR building via an industrial exhaust fan (constant fan speed: 

approximately 6000-6500 cfm) located under one of the clean room gables. It 

also provided a level of fire control as the walls of the clean room were made of 

fire-retardant polyurethane tarp. Any gaps in the tarp walls and edges along the 

floor were taped shut. Due to budget and space restrictions, the clean room 

dimensions were just large enough to accommodate the test kitchen and some 

additional instrumentation. It was assumed that the exhaust fan velocity was high 

enough to remove all of the emissions as they exited the test kitchen, preventing 

circulation within the Kitchen 2.0 testing facility, but this was never confirmed 

experimentally. See Table 2.1 for the clean room dimensions. 
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Table 2.1 Dimensions of the Kitchen 2.0 Clean Room and Kitchen 
Structure. 

 Clean Room Dimensions Kitchen Dimensions 

 Feet (ft) Meters (m) Feet (ft) Meters (m) 

Height at Apex 11.29 3.44 9.25 2.82 

Wall Height 8.50 2.59 6.58 2.00 

Length 20.00 6.10 11.98 3.65 

Width 15.00 4.57 7.90 2.40 

Volume (ft3; m3) 2968.75 84.07 748.80 21.14 

 

The model kitchen was framed using construction grade lumber (see Table 2.1 

above for the kitchen dimensions). The walls were constructed from 3 meter by 

1 meter plywood sheets; these were screwed onto the frame for easy removal and 

reattachment. Like the clean room, gaps between the plywood sheets were sealed 

with duct tape (except the gap between the bottom sheet and the floor, which 

was minimal). The roof was initially made of corrugated aluminum sheeting, but 

was later replaced with a thatched roofing material to study the ventilation 

difference between traditional and modern construction materials. The space 

between the top of the walls and the gables at either end of the test kitchen were 

sealed with plastic sheeting and remained so throughout the data collection 
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period. Likewise, the eaves (the space between the top of the walls and the edges 

of the roof) were sealed with plastic except when the eaves were tested as a 

ventilation factor. The windows (1 foot by 1 foot (30.48 cm by 30.48 cm) holes 

cut into six of the plywood panels) were either open or sealed closed with plastic, 

depending on the amount of ventilation desired. The door, roughly one third the 

length of the kitchen, was also sealed with plastic when minimal or no ventilation 

was desired. See Figure 2.1 below for reference. 

 

 

Figure 2.1: Kitchen 2.0 in the clean room. Tarps were used to cover the door and windows 
so they could be opened or closed easily. Note the gables at either end were always sealed 
during testing, and the eaves were sealed unless otherwise specified (photo credit: author). 
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Figure 2.2. Inside Kitchen 2.0 facing the central monitor location, cookstove location is the 

corrugated metal zone in lower left (photo credit: author). 

 

In an attempt to recreate natural wind conditions, two industrial pedestal fans at 

one end of the tent provided an artificial wind source when desired (high speed: 

3000 cfm; low speed: 1800 cfm). The fans were located approximately two feet 

from and faced the left two windows depicted in Figure 2.3 (with arrows pointing 

inward), blowing air into the kitchen structure. An industrial exhaust fan, 

mentioned earlier, provided a continuous flow of air parallel to the long sides of 
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the test kitchen). A complete diagram of the kitchen and its dimensions is located 

in Appendix A. 

 

Figure 2.3: Monitor placement diagrams. The black arrows located at each of the windows 

indicate the general air flow direction and are not to scale. The “central monitor location” 

represents the location of the APS, Q-Trak, DustTrak, and anemometer in addition to the two 

field monitors displayed in Figure 2 b). Not shown: two CO monitors placed at either gable 

under the roof (273-274.3 centimeters from ground). 

 

To determine the presence of HAP at specific locations within the kitchen and 

track their transport, a combination of small field monitors and more 

sophisticated instrumentation was used (see Table 2.2 for a complete list of the 

instruments used). This report will focus on the results from  the University of 

California Berkley Particle and Temperature Sensor (UCB-PATS PM2.5) 
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monitors (temperature and particulate matter with an aerodynamic diameter of 

2.5 micrometers or less (PM2.5)) and Lascar Electronics carbon monoxide 

monitors (CO), both of which are smaller, more robust monitors more 

commonly deployed in field research campaigns. The UCB-PATS PM2.5  and CO 

monitors were placed around the structure in a grid pattern around the kitchen 

at two heights (approximately 30 centimeters and 60 centimeters off the ground), 

representing typical squatting and standing heights of cookstove users in 

developing countries (as shown in Figure 2.3 above). In addition, two carbon 

monoxide monitors were located at the gables at either end of the kitchen 

structure to determine if there was vertical stratification. The TSI aerodynamic 

particle sizer (particle size distribution), Q-Trak (CO), DustTrak (PM10), 

anemometer, and one of each of the field monitors were co-located at 

approximately 1.5 meters from the cooking implement and about 1.5 meters off 

the ground at the central monitor location (see for reference). This distance is a 

common protocol in field data collection because it assesses the cook’s exposure 

with minimal interruption and allows for some dilution with the surrounding, 

reducing the chance of sensor over-saturation. All monitors had previously been 

factory calibrated. In addition, the PM2.5 and CO field monitors were removed 
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three times during the testing period to download data and clean the sensors. 

The monitors were then re-zeroed according to the manufacturer’s instructions 

prior to reinstallation. 
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Table 2.2: Experimental Monitors Used in the Kitchen 2.0 Project. 

Measurand Monitor Manufacturer 
Sampling 

Frequency 

Number of 
Monitors 

Used 

Air Flow 
Hot wire 
anemometer 

Lutron 10s 1 

CO EL-USB-CO300 Lascar Electronics 10 s 8 

CO/CO2 

Q-Trak Indoor Air 
Quality Monitor, 
Model 7575 

TSI, Inc. 5 s 1 

PM (<0.523-
19.81µm) 

Aerodynamic 
Particle Sizer 

TSI, Inc. 10 s 1 

PM2.5 UCB-PATS 
Berkley Air 
Monitoring Group 

1 min 10 

PM10 
DustTrak Aerosol 
Monitor, Model 8520 

TSI, Inc. 10 s 1 

Temperature Q-Trak, UCB-PATS 
TSI, Inc., Berkley 
Air Monitoring 
Group 

10 s 11 

Weight Top pan scale  As needed 1 

Wood Moisture 
Moisture Meter, 
Model MO220 

Extech Instruments 
3 times per 

trial 
1 

 

 



 

28 

 

2.2 Testing Protocol 

 

The CCT methodology was selected over the WBT for Kitchen 2.0 because the 

CCT reconstructs a real world cooking event while being a rigorous testing 

protocol. For this investigation, a cooking event reflects the time and energy 

required to cook two cups of white rice in four cups of water until all water has 

evaporated or been absorbed, and the cooked rice began to stick to the bottom 

of a 14.5 liter aluminum pot. Two to five iterations were completed of the same 

structural configuration, cookstove used, and artificial wind speed, with an 

average of three trials per setup. The researchers rotated cooking and observation 

duties throughout the data collection process. Most of the “cooks” had previous 

experience lighting and maintaining a campfire, which is similar to the three stone 

cookstove, but only two had experience operating an improved cookstove prior 

to the testing period. 

 

Prior to lighting the fire, all raw food ingredients, kindling and newspaper, 

firewood, and cooking vessels were weighed and recorded to the nearest tenth 

of a gram. Unless specified as a wet fuel test, cured American hardwood was 
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used for the primary fuel source (average wood moisture was approximately 9%). 

All firewood was split and cut to size according to the improved cookstove 

manufacturers’ recommendations. For the wet fuel tests, the cured firewood was 

re-saturated overnight so that the wood moisture content was approximately 

twice its original reading (on average 19% moisture content). Kindling consisted 

of either smaller pieces of the firewood or pieces of American softwood species. 

The small field monitors continuously recorded the concentration of PM2.5 and 

carbon monoxide throughout the space at preset sampling intervals (see Table 

2.2 for reference). The APS, Q-Trak, DustTrak, and anemometer were turned 

on approximately five minutes prior to lighting the fire for each trial to record 

the background contaminant concentrations, and then continued to collect 

removal and decay data for the analytes over a period of about 20 minutes after 

the fire had been extinguished (or when the ambient concentration of carbon 

monoxide detected by the Q-Trak returned to pre-trial levels).  

 

Three cookstoves were included in the investigation based on their extensive 

worldwide distribution and use: one traditional three-stone stove and two 
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improved cookstoves (StoveTec GreenFire Combo 2 Door Biomass Cook Stove 

and Envirofit G3300 Cook Stove; hereafter referred to as StoveTec and 

Envirofit). For the three-stone stove, three large rocks were arranged in a triangle 

so the pot was supported by all three. Kindling was wrapped in newspaper and 

placed on the ground under the pot, and then one piece of wood was placed 

between each of the stones (three total) so the tips overlapped on top of the 

kindling/newspaper bundle. The kindling/newspaper bundle was ignited first, 

and the wood pieces were pushed into the flames as the fuel burned. If the fire 

began to burn less vigorously or failed to ignite, the embers were fanned and/or 

addition kindling and newspaper was added. For both of the improved 

cookstoves, kindling was wrapped in newspaper and placed in the combustion 

chamber. The ends of one or two pieces of firewood (depending on the thickness 

of the wood) were placed on top of the fire starter bundle, and then the bundle 

was ignited. The ends of the firewood were pushed further into the combustion 

chamber as the fuel was consumed. Again, the fire was fanned if the flames began 

to die down, kindling and newspaper were added if necessary. To extinguish the 

fire, the burning pieces of wood were removed from the cookstove, blown out, 

and then the larger embers were extinguished by tapping them against the 
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ground. The smaller embers and remaining smoldering fuel was allowed to burn 

out. All unburned fuel, char, and ash, as well as the cooked rice, were then 

collected, weighed, and recorded to the nearest tenth after the die down period 

mentioned earlier. 

 

In addition to varying the cookstove used, eleven different physical structures of 

the modular kitchen were tested during the data collection period. This resulted 

in nineteen different combinations of cookstoves and structural configurations; 

trials for each combination were repeated two to five times, with an average of 

three trials. These combinations are described below in Table 2.3. A selected 

portion are illustrated below in Figure 2.4. The ambient temperature and 

humidity were not varied due to a lack of time and resources. 
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Table 2.3: Number of Trials per Cookstove and Structural Variation. 

  TSF TSF(W) EF EF(D) EF(O) ST ST(W) 

CV 

NO_NF 3 3 3   3  

NO_HF   3     

DONE_LF    1 2   

DONE_HF   3 1    

T_NO_NF       2 

O DONE_LF 3  3   3  

C  
NO_LF 3  3   3  

T_NO_NF 5       

E NO_LF      3  

3W DEO_LF   3     

2/3W DEO_LF   3     

 

CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed; E: Eaves under roof open; 3W: One side of kitchen open; 2/3W: All walls 

at 2/3 original height; DEO: Door and eaves under roof open; DONE: Door open, eaves sealed 

closed; NO: No other outlets; T: Thatched roofing instead of corrugated metal; NF: Fans off; LF: 

Fans on low; HF: Fans on high; TSF: Three-stone fire; TSF(W): Three-stone fire, wet wood; EF: 

Envirofit G3300 Cook Stove; EF(D): Envirofit Cook Stove place next to door; EF(O): Envirofit Cook 

Stove placed in corner opposite original position; ST: StoveTec GreenFire Combo 2 Door Biomass 

Cook Stove without Pot Skirt; ST(W): StoveTec Cook Stove, wet wood
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CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed; 3W: One side of kitchen open; DEO: Door and eaves under roof open; 

DONE: Door open, eaves sealed closed; NO: No other outlets; NF: Fans off; LF: Fans on low 

Figure 2.4: Pictorial representation of four Kitchen 2.0 configurations. 



 

34 

 

The CCT requires the physical presence of the cook (or researcher) to tend the 

fire in order to complete each cooking event in a timely and accurate manner. 

Because this investigation was not conducted in a ventilated fume hood, the 

researchers were exposed to acute, high levels of HAP. To reduce the risk of 

injury, researchers were required to wear safety glasses and particle respirators 

(3M) during all trials. Researchers also exited the clean room to fresh air 

immediately after extinguishing each fire. Hot embers and unburned wood were 

handled with tongs, and hot cooking implements were allowed to cool to the 

touch. Additional fire control measures included lining the walls around the 

cookstove location with metal paneling, a fire extinguisher located at the entrance 

of the modular kitchen, and using fire-retardant materials for the thatched 

roofing and clean room wall material. Researchers never worked alone, and the 

ambient CO concentration was measured by a separate household monitor 

placed in the kitchen structure.  
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3 Results 

 

PM2.5 and CO were monitored in real-time in a grid pattern at the walls of 

Kitchen 2.0, as well as at a central testing location approximately 1.5 meters out 

by 1.5 meters up from the typical cookstove location (see Figure 2.3 for 

reference). The data from all monitors was downloaded three times during the 

testing period. The PM2.5 and CO monitors were then zeroed in a clean 

environment before being replaced in their original positions; the PM2.5 monitors 

were also cleaned prior to reinstallation according to the manufacturer’s 

specifications. Start and stop times for igniting and extinguishing the trials were 

recorded manually during the testing period. All data was smoothed using a three 

minute moving average and was normalized to the length of its respective trial. 

 

3.1 Controlled Cooking Test Results 

 

Unlike the WBT, minimal inferences into a cookstove’s efficiency can be drawn 

using the CCT protocol unless testing is conducted under a hood system. Since 

the focus of Kitchen 2.0 was to better understand HAP concentrations in a 
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space, not to serve as a cookstove efficiency test, efficiency factors for the 

individual cookstoves were not calculated (these may be found elsewhere in 

literature; Jetter and Kariher, 2009, for example). However, the CCT does collect 

three quantities of interest: the amount of time required to complete a cooking 

task (hereafter referred to as “time to cook”) and the amount of fuel used per 

meal. When the amount of fuel used during each trial is normalized to the mass 

of food cooked, it is called the specific fuel consumption. Additionally, the 

hands-on nature of Kitchen 2.0 allowed the researchers to gather valuable 

qualitative data from the cooking experience; these have been paraphrased in 

Section 4.2.1. 

 

During the Kitchen 2.0 testing period, no significant difference was seen in the 

cooking times between cookstoves, even when the fuel was wet. However, the 

increased wood moisture caused both the equivalent fuel consumed and the 

specific fuel consumption to be dramatically higher for the wet fuel trials than 

the dry fuel trials. As the specific fuel consumption is the primary indicator for 

cookstove performance in the CCT, fuel quality is the only significant difference 
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in overall performance. These quantities are displayed in Table 3.1 with one 

standard deviation. 

 

Table 3.1. Time to Cook and Specific Fuel Usage for Three Stoves. 

 
Time to Cook 

(min) 

Equivalent Dry 
Wood Consumed 

(g) 

Specific Fuel 
Consumption (g 

fuel/kg food 
cooked) 

Average Fuel 
Usage (from 

literature) 

TSF (n=13) 26 ± 7 1659 ± 306 1334 ± 262 

1.57 ± 
0.497 
kg 
PEM-1 
a 

TSF(W) (n=3) 25 ± 8 4460 ± 448 3663 ± 337  

ST (n=12) 23 ± 5 1718 ± 267 1379 ± 204  

EF (n=25) 21 ± 2 2126 ± 389 1744 ± 342  

 
TSF: Three-stone fire; TSF(W); Three-stone fire, wet wood; EF: Envirofit G3300 Cook Stove; ST: 

StoveTec GreenFire Combo 2 Door Biomass Cook Stove without Pot Skirt 

 
aGranderson et al. 2009: kilograms of wood used per person equivalent meals.  

 

 

3.2 Concentration 

 

Periods of interest in the data were selected through graphical analysis of the 

PM2.5 and CO data from all 56 trials. The PM2.5 data shows a clear bimodal trend: 
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one peak occurring shortly after igniting the fuel (0 to 0.35 fraction complete) 

and one upon extinguishing the fire (0.35 to 0.75 fraction complete). The third 

PM2.5 time period (0.75 fraction complete to trial end) is assumed to be the decay 

and/or removal time of the contaminant, either through dry deposition or 

removal by the industrial exhaust fan. The CO data showed only one spike in 

concentration. The time periods of interest for the CO data were from 0 to 0.68 

fraction complete (while the cookstove was lit), and from 0.68 fraction complete 

to trial end (assumed to be the decay/removal period). Unlike particulate matter, 

the decay of CO is attributed to forced removal by the industrial exhaust fan or 

through leakage through gaps in the clean room structure. See Figure 3.1 

examples from three structural configurations, and Appendix B and Appendix C 

for trial-length, full kitchen average concentrations of PM2.5 and CO, 

respectively. 
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CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed; DONE: Door open, eaves sealed closed; NO: No other outlets; NF: Fans 

off; LF: Fans on low 

Figure 3.1: Particulate matter (PM2.5) (left) and carbon monoxide (CO) (right) full kitchen 

concentrations for three structural configurations. Each chart shows the results of one trial: 

A. CV_NO_NF, B. O_DONE_LF, C. C_NO_LF.  

A. 

B. 

C. 
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3.2.1 HAP Average for Full Kitchen 

 

The WHO recommends a 50-90% improvement in emissions from the three-

stone cookstove baseline in order to prevent serious health risks (WHO, 2015). 

Since emissions should be closely related to exposure, one would expect that a 

similar reduction in exposure would be necessary to ensure the occupants’ health.  

 

Little or no improvement in HAP was seen for one configuration regardless of 

the cookstove used: the all closed structural configuration (C_NO_LF), which is 

a common occurrence around the world. If the three-stone cookstove (TSF) is 

simply replaced with an improved combustion model, the Kitchen 2.0 results 

show that the reductions in the mean PM2.5 and CO concentrations do not meet 

the WHO recommended 50-90% reduction in PM2.5 and CO (see Table 3.2 

below). For absolute values, see Appendices B and C. 
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Table 3.2: Percent Change from the Three Stone (TSF) Geometric Mean. 

 PM2.5 CO 

 ST EF ST EF 

CV_NO_NF -23.1 -66.7 -38.0 -46.8 

O_DONE_LF -69.8 -43.9 -32.0 5.6 

C_NO_LF 6.3 26.4 -9.7 25.2 

 

CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed: DONE: Door open, eaves sealed closed: NO: No other outlets: NF: Fans 

off: LF: Fans on low; EF: Envirofit G3300 Cook Stove; ST: StoveTec GreenFire Combo 2 Door 

Biomass Cook Stove without Pot Skirt 

 

The greatest reduction in HAP was found by varying the cookstove and the 

structural configuration relative to a baseline, and then comparing percent 

changes in mean PM2.5 and CO concentrations (Table 3.3). The combination of 

the traditional, three stone cookstove (TSF) in a completely closed space 

(C_NO_LF) was selected to be the baseline combination as it represents no 

intervention (cookstove replacement or ventilation adjustment).  
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Table 3.3: Percent Change in HAP from a Closed, Three-Stone Fire 
Configuration. 

  PM2.5 (reference: 291.1 µg/m3) CO (reference: 57.1 mg/m3) 

  TSF TSF(W) ST EF TSF TSF(W) ST EF 

CV 

NO_NF -38.9 25.1 -53.1 -79.6 -35.8 -14.8 -60.2 -65.8 

NO_HF    -38.9    -21.6 

DONE_HF    -48.7    -48.2 

DONE_LF    -47.6    -59.8 

O DONE_LF 15.2  -65.2 -35.4 -50.0  -66.0 -47.1 

C  
NO_LF 0.0  6.3 26.4 0.0  -9.7 25.2 

T_NO_LF -36.8    -52.6    

E NO_LF   -79.6    -46.5  

3W DEO_LF   -55.4     -59.7 

2/3W DEO_LF    -55.0    -45.7 

 
CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed: E: Eaves under roof open: 3W: One side of kitchen open: 2/3W: All walls 

at 2/3 original height; DEO: Door and eaves under roof open: DONE: Door open, eaves sealed 

closed: NO: No other outlets: T: Thatched roofing instead of corrugated metal: NF: Fans off: LF: 

Fans on low; HF: Fans on high; TSF: Three-stone fire; TSF(W): Three-stone fire, wet wood; EF: 

Envirofit G3300 Cook Stove; EF(D): Envirofit Cook Stove place next to door; EF(O): Envirofit Cook 

Stove placed in corner opposite original position; ST: StoveTec GreenFire Combo 2 Door Biomass 

Cook Stove without Pot Skirt; ST(W): StoveTec Cook Stove, wet wood 

 

For a majority of the results above, the combined use of an improved cookstove 

and an increase in ventilation (air exchanges per hour) did result in the HAP 

reductions necessary. The greatest improvement in air quality was seen with the 

combination of cross-kitchen ventilation (CV_NO) and the Envirofit G3300 

cookstove (EF), even with no artificial wind (NF). It is important to note, 
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however, that the percent changes above were calculated from whole room 

averages and may not accurately capture the interspatial differences in HAP in 

the model kitchen. Certain locations, especially near the cookstove while it was 

lit, may not experience the amount of air quality improvement reported in Table 

3.5. 

 

3.3 Ventilation 

 

Theoretically, increasing the air removal rate will decrease the occupant exposure 

to HAP in a kitchen or living area. To see if this was true for Kitchen 2.0, air 

exchange rates were calculated for each of the structural configurations. The 

decay rates for both CO and PM2.5 were also found. 

 

3.3.1 Air Exchange by Configuration 
 

Carbon monoxide is a stable, generally non-reactive gas at short time intervals 

that is produced when there is insufficient oxygen available during the 

combustion process. Due to its physical characteristics in comparison to other 
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gases present in the air, it can be assumed to be well mixed in a space. The 

combination of its physical and reactivity characteristics make CO an ideal tracer 

gas, enabling the calculation of the venting quality of each structural 

configuration. The venting quality, represented by the number of air exchanges 

per hour, was determined for each of the nine CO monitors using the Basic 

Room Purge as reported in Grabow, et al. (2013) and shown below: 
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Dt Time elapsed (hr) 
V Volume of space (m3) 
Q Flow rate of air through room (m3/hr) 
Cinitial Initial CO concentration (ppm) 
Cending Ending CO concentration (ppm) 
ACH Air exchange per hour (hr-1) 

    

 

No significant difference in the ventilation quality calculation was seen by 

excluding monitors located under the roof apex at either end of the model 

kitchen, indicates that there was no CO vertical stratification. The pollutant was 
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thus assumed to be well-mixed in the space. Whole-kitchen average air exchanges 

are shown below in Figure 3.2. 
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CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed: E: Eaves under roof open: 3W: One side of kitchen open: 2/3W: All walls 

at 2/3 original height; DEO: Door and eaves under roof open: DONE: Door open, eaves sealed 

closed: NO: No other outlets: T: Thatched roofing instead of corrugated metal: NF: Fans off: LF: 

Fans on low; HF: Fans on high; W: wet fuel 
 

Figure 3.2: Average air exchanges for each of the structural configurations. Calculations were 
based on the CO removal from the test kitchen as monitored by the field CO monitors. 
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As shown above, there is a significant difference in the air exchange rates 

between the cross ventilation (CV) scheme with any kind of fan speed and the 

rest of the configurations, venting 1.6-1.75 times more per hour than the 

completely closed, low fan (C_NO_LF) setup. A similar result was found in 

Grabow et al. 2013 when one window above the cookstove and the test kitchen 

door was open (increasing the air exchanges per hour from 3.2 ± 1.3 hr-1 to 12 

± 1.2 hr-1 in a 24.6 m3 test kitchen).  While it is not possible to control the wind 

in a real world setting, recommendations for installing windows in the prevailing 

wet and direction, and opposing corners, is recommended. 

 

3.3.2 First –Order Decay Rates 
 

While no modeling was conducted as part of this investigation, the number of 

monitors placed around the kitchen space made it possible to calculate fairly 

accurate decay constants for future modeling endeavors. Using PM2.5 and CO as 

“tracers”, the first-order decay rates were calculated for individual trials and then 

averaged per structural configuration (see Table 3.4 and Table 3.5 below). The 

time intervals used for the decay rate constant calculations are 0.75 fraction 
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complete to end of trial for PM2.5 and 0.68 fraction complete to end of trial for 

CO.  The mean decay rate uncertainty is reported to one standard deviation. 
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Table 3.4. Mean PM2.5 Decay Rate Constants by Structural 
Configuration. 

 
CV O C E 3W 2/3W 

 N
O

_
N

F
 

N
O

_
H

F
 

D
O

N
E

_
H

F
 

D
O

N
E

_
L

F
 

D
O

N
E

_
L

F
 

N
O

_
L

F
 

T
_
N

O
_
L

F
 

N
O

_
L

F
 

D
E

O
_
L

F
 

D
E

O
_
L

F
 

ACH (hr-1) 3 ± 1 6 ± 1 6 ± 1 6 ± 1 3 ± 1 4 ± 1 4 ± 1 2 ± 1 2 ± 1 2 ± 1 

Mean 
PM2.5 
Decay 
Rate (hr-1) 

-0.12 
± 0.02 

-0.15 
± 0.01 

-0.15 
± 0.01 

-0.14 
± 0.02 

-0.12 
± 0.02 

-0.12 
± 0.03 

-0.11 
± 0.01 

-0.12 
± 0.02 

-0.13 
± 0.01 

-0.15 
±0.01 

Range 
(hr-1) 

0.07 0.01 0.03 0.04 0.05 0.07 0.02 0.04 0.01 0.03 

Min (hr-1) -0.16 -0.15 -0.17 -0.16 -0.14 -0.17 -0.12 -0.15 -0.14 -0.16 

Max (hr-1) -0.1 -0.14 -0.14 -0.12 -0.09 -0.1 -0.11 -0.11 -0.12 -0.13 

N (Trials) 13 3 4 3 9 8 5 3 3 3 

N (Data 
points) 

1563 330 490 390 1241 1079 670 430 380 320 

 

CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed: E: Eaves under roof open: 3W: One side of kitchen open: 2/3W: All walls 

at 2/3 original height; DEO: Door and eaves under roof open: DONE: Door open, eaves sealed 

closed: NO: No other outlets: T: Thatched roofing instead of corrugated metal: NF: Fans off: LF: 

Fans on low; HF: Fans on high; TSF: Three-stone fire; TSF(W): Three-stone fire, wet wood; EF: 

Envirofit G3300 Cook Stove; EF(D): Envirofit Cook Stove place next to door; EF(O): Envirofit Cook 

Stove placed in corner opposite original position; ST: StoveTec GreenFire Combo 2 Door Biomass 

Cook Stove without Pot Skirt; ST(W): StoveTec Cook Stove, wet wood 
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Table 3.5. Mean CO Decay Constants by Structural Configuration. 

 
CV O C E 3W 2/3W 

 

N
O

_
N

F
 

N
O

_
H

F
 

D
O

N
E

_
H

F
 

D
O

N
E

_
L

F
 

D
O

N
E

_
L

F
 

N
O

_
L

F
 

T
_
N

O
_
L

F
 

N
O

_
L

F
 

D
E

O
_
L

F
 

D
E

O
_
L

F
 

ACH (hr-1)  3 ± 1 6 ± 1 6 ± 1 6 ± 1 3 ± 1 4 ± 1 4 ± 1 2 ± 1 2 ± 1 2 ± 1 

Mean CO 
Decay 
Rate (hr-1) 

-0.04 
± 0.01 

-0.10 
± 0.00 

-0.10 
± 0.00 

-0.10 
± 0.01 

-0.04 
± 0.00 

-0.05 
±0.01 

-0.06 
± 0.00 

-0.02 
±0.01 

-0.02 
±0.01 

-0.03 
±0.01 

Range 
(hr-1) 

0.06 0.003 0.01 0.03 0.03 0.14 0.02 0.02 0.03 0.03 

Min (hr-1) -0.07 -0.10 -0.11 -0.11 -0.06 -0.13 -0.07 -0.03 -0.04 -0.04 

Max (hr-1) -0.01 -0.1 -0.01 -0.08 -0.02 0.01 -0.06 -0.004 -0.004 -0.01 

N (Trials) 13 3 4 3 9 8 5 3 3 3 

N (Data 
points) 

1718 246 396 343 1256 1088 680 432 384 336 

 

CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed: E: Eaves under roof open: 3W: One side of kitchen open: 2/3W: All walls 

at 2/3 original height; DEO: Door and eaves under roof open: DONE: Door open, eaves sealed 

closed: NO: No other outlets: T: Thatched roofing instead of corrugated metal: NF: Fans off: LF: 

Fans on low; HF: Fans on high; TSF: Three-stone fire; TSF(W): Three-stone fire, wet wood; EF: 

Envirofit G3300 Cook Stove; EF(D): Envirofit Cook Stove place next to door; EF(O): Envirofit Cook 

Stove placed in corner opposite original position; ST: StoveTec GreenFire Combo 2 Door Biomass 

Cook Stove without Pot Skirt; ST(W): StoveTec Cook Stove, wet wood 
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4 Discussion 

 

Ventilation, like cookstove adoption, is dependent on social factors outside of 

organizations’ control. The conclusions drawn from Kitchen 2.0 may not apply 

globally, or even regionally. It is the author’s opinion that any intervention should 

be chosen based on a number of considerations including cost, maintenance, and 

most importantly, cultural acceptability. 

 

4.1 CCT Observations 

 

In review, the Controlled Cooking Test (CCT) is a cookstove testing protocol 

similar to the Water Boiling Test (WBT) in that it can be used to determine 

cookstove efficiency, but it uses a set meal instead of boiling and simmering 

water. This is meant to be more representative of real-world situations: how the 

cookstove in question would perform under more real-world conditions (the 

efficacy of a cookstove rather than just efficiency). However, it does have some 

drawbacks. A “meal” is not defined by the CCT, meaning the results from any 

cookstove test could vary significantly between cultures. Fortunately, rice is 
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relatively universal staple, so the Kitchen 2.0 results should be applicable in most 

situations. Another drawback is additional data variability, because the focus of 

the test is to complete a cooking task. Factors considered in the WBT such as 

water temperature (an indicator for different cooking power levels) are not 

measured in the CCT. For Kitchen 2.0, even though the conditions were 

essentially the same trial to trial, using the CCT with different cooks very likely 

contributed variability from trial to trial. Additional repetitions of each 

configuration are needed to confirm the mean values presented in this work; this 

is discussed further in Section 4.2. 

 

4.1.1 Anecdotes from Kitchen 2.0 

 

The three-stone cookstove required nearly constant attention from the “cook”; 

two attendants were required for the three-stone fire, wet fuel trials. Two 

attempted wet fuel test with the second cookstove tested, the StoveTec 

GreenFire cookstove, failed (water never reached a boil). These results were not 

included in the results above because both CCT tests were never completed; the 

main wood pieces would not light. For all other trials, the StoveTec was easier 
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to light and to maintain. The “cooks” (members of the research team) noticed 

that fuel burned best in the StoveTec and Environfit cookstoves when the 

ignited ends were kept between mid-way and two thirds of the way into the 

combustion chamber (since the Kitchen 2.0 testing period, Aprovecho, the 

StoveTec manufacturer, has added a grill in the back of the combustion chamber 

to prevent users from pushing the fuel too far back). The Envirofit cookstove 

seemed to consume more fuel than the StoveTec cookstove, an observation 

which the data collection confirmed (see Table 3.1). For all cookstoves, the 

smaller fuel pieces burned more efficiently (less smoky, easier to ignite), but 

required more attention as they burned faster. 

 

The cooking experience itself was humbling, and created empathy for the billions 

who endure poor indoor air quality on a daily basis. Large amounts of smoke 

were released at the beginning of the cooking tests before the wood pieces caught 

fire. Even more smoke was released when the fire was extinguished; as a safety 

precaution, the researchers always left the kitchen and clean room to allow the 

pollution to vacate the structures before reentering. In general, the completely 
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sealed (C_NO_LF) cooking tests were despised. CO levels rose above 100 ppm 

at the cook’s level, and the amount of particulate matter in the air caused eye and 

respiratory irritation for all occupants in the test kitchen. The air quality was 

visibly better with any ventilation and the physical effects from short-term HAP 

exposure much less. For safety during future research, it is recommended that a 

way be found to conduct the cooking outside of the kitchen or rock dust 

respirators be used instead.  

 

 

Figure 4.1. Mollie Ruth in action during a three-stone fire trial. Photo credit: author. 
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4.2 Concentration 

 

Although conditions and methodology were nearly identical from trial to trial 

(for a given configuration), post-data collection showed a surprising amount of 

variability in the HAP concentrations (illustrated in Figure 4.2 below). Factors 

like fuel heterogeneity and seemingly insignificant differences in cooking styles 

likely affected the amount of emissions generated during each trial, which 

dictated the concentrations of HAP measured in the model kitchen. Uncertainty 

(one standard deviation) ranged from 23% to 82% of the room average 

concentration of PM2.5, but was much higher at individual monitor locations (one 

standard deviation range: 2% to 160% of average PM2.5 concentration per 

structural configuration). A similar amount of variation was seen in the CO data. 

This amount of variability is commonly seen in field-collected data, implying that 

the Kitchen 2.0 results more accurately reflect real world conditions than more 

controlled laboratory experiments; an underlining objective of Kitchen 2.0. 

Unfortunately, the variability may have obscured the true effect of ventilation on 

HAP in a kitchen. Many more replications for each structural configuration and 

the use of a more homogeneous fuel source are recommended for future work. 
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CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed: E: Eaves under roof open: 3W: One side of kitchen open: 2/3W: All walls 

at 2/3 original height; DEO: Door and eaves under roof open: DONE: Door open, eaves sealed 

closed: NO: No other outlets: T: Thatched roofing instead of corrugated metal: NF: Fans off: LF: 

Fans on low; HF: Fans on high 
 

Figure 4.2: Comparison of front of the room (unfilled bars) to back of the room averages 

(grey bars) for PM2.5. Each bar represents the arithmetic mean of the geometric means of the 

data per trial for one PM2.5 monitor (variation between trials was assumed normal) for the 

Envirofit cookstove. The uncertainty bars represent one standard deviation of the variance 

between individual trials. No wet fuel results are depicted here. 
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CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed: E: Eaves under roof open: 3W: One side of kitchen open: 2/3W: All walls 

at 2/3 original height; DEO: Door and eaves under roof open: DONE: Door open, eaves sealed 

closed: NO: No other outlets: T: Thatched roofing instead of corrugated metal: NF: Fans off: LF: 

Fans on low; HF: Fans on high 

 

Figure 4.3: Variation in carbon monoxide concentration by monitor: unfilled bars near the 
cookstove and grey bars to back of the room. Each bar represents the arithmetic mean of the 
full trial averages one CO monitor (variation between trials was assumed normal) for the 
Envirofit cookstove. The uncertainty bars represent one standard deviation of the variance 
between individual trials. No wet fuel results are depicted here. 
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4.3 Ventilation 

 

A combination of ventilation and improved cookstoves was sufficient to reduce 

concentration by the recommended 50-90% on average, except in the completely 

sealed configuration (see Table 3.2 and Table 3.3 in Section 3.2.1 above for 

reference). Under these circumstances, the use of an improved cookstove over 

the three-stone fire did not result in any change in HAP. In fact, in some 

instances the concentration of CO and PM2.5 was higher (see Figure 4.4 below 

for reference). Therefore, alternative interventions should be considered in these 

cases, such as a chimney or hood system, or developing some other kind of 

socially acceptable ventilation system. 
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TSF: Three-stone fire; EF: Envirofit G3300 Cook Stove; ST: StoveTec GreenFire Combo 2 Door 
Biomass Cook Stove without Pot Skirt; 

Figure 4.4: Percent change in full kitchen PM2.5 and CO concentrations by cookstove under 
completely sealed conditions (C_NO_LF). The results from the three stone cookstove, 
completely sealed (CV_NO_LF) combination were used as a baseline for the comparison. 

 

One important conclusion drawn from Kitchen 2.0 is that not all ventilation is 

created equal. Intuitively, if opening a window or the door of a space improves 

the IAQ a little, opening more windows and doors should result in an even 

greater improvement. This was not the case in Kitchen 2.0. The air exchanges 

per hour (Figure 3.2) when all of the windows and doors were open 



 

60 

 

(O_DONE_LF) was similar to that of the completely sealed (C_NO_LF) trials 

(3.0±0.8 hr-1 and 3.9±0.5 hr-1, respectively). The highest air exchange rate 

achieved was 6.3±0.8 hr-1 when only two windows were open (CV_NO_HF). 

Figure 4.2 and Figure 4.3 further illustrates this conclusion. Although no 

structural configuration significantly deceased the average PM2.5 concentration, 

the two-window “cross ventilation” (CV_NO_LF) set up is visibly superior to 

the other configurations tested. It should be noted that the lack of IAQ 

improvement in the all open (O_DONE_LF) trials may be due to mixing and 

reentry of HAP from the clean room. This phenomenon should be investigated 

in future studies. 

 

4.3.1 Comparison of Air Exchanges to Decay Rates 

 

A least squares regression analysis showed no correlation between the number 

of air exchanges per hour and the PM2.5 first-order decay rate for all of the 

structural configurations considered in this investigation. This suggests that 

ventilation is not the predominant removal force for PM2.5; other phenomena 

such as deposition may have a greater effect. On the other hand, the number of 



 

61 

 

air exchange rates per hour and the first-order decay rate for CO were well-

correlated to a linear fit. Therefore, ventilation may be one of the principal, if not 

the principal, removal forces for the contaminant. See Figure 4.5 below. 

 

 

Figure 4.5: Correlation between CO decay rate and the air exchange rates tested in Kitchen 

2.0. The error bars represent one standard deviation from the cookstove/structural 

configuration mean. 
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4.4 Exposure 

 

Improvement in human health by reducing exposure to HAP is one of the 

primary motives behind the development and distribution of improved 

cookstoves, as well as for this study. The WHO air quality guidelines (AQG) 

recommend a maximum exposure to PM2.5 and CO are 25 µg/m3 and 7 mg/m3, 

respectively, over a 24-hour period (WHO, 2014). These standards are compared 

with 24-hour exposure estimated from the Kitchen 2.0 results in Figure 4.6 and 

Figure 4.7 below. The Kitchen 2.0 estimates were calculated from the whole-

kitchen, geometric mean concentrations of PM2.5 and CO for a complete cooking 

event, and are based on the assumption that the cookstove will be lit only for 

four hours per day. Other sources of HAP exposure, such as environmental 

HAP, were not included in the estimates since only indoor HAP exposure is of 

interest here. Therefore, the Kitchen 2.0 results are likely to underestimate the 

total daily exposures to CO and PM2.5. 

 

Most of the cookstove and structural combinations considered in Kitchen 2.0 

met or were below the WHO 24-hour exposure limit for both PM2.5 and CO. 



 

63 

 

The two cases that exceeded the 24-hour PM2.5 guideline were the wet fuel and 

the completely sealed combinations. Excess moisture in fuel has a smothering 

effect, so the fuel only burns poorly at best. HAP in a completely sealed space 

has little to no outlet, so pollutant concentrations simply build as the cooking 

event progresses. Occupants living and working in both of these situations are 

at high risk for developing respiratory and cardiovascular disease. 
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CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed: E: Eaves under roof open: 3W: One side of kitchen open: 2/3W: All walls 

at 2/3 original height; DEO: Door and eaves under roof open: DONE: Door open, eaves sealed 

closed: NO: No other outlets: T: Thatched roofing instead of corrugated metal: NF: Fans off: LF: 

Fans on low; HF: Fans on high; W: wet fuel 

 

Figure 4.6: 24-hour average exposures to PM2.5 by cookstove and structural configuration. 

Each marker represents the mean of the trials per cookstove/structural configuration, and the 

errors bars represent one standard deviation from the mean.  
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CV: Two windows open, diagonally across kitchen; O: All windows and door open; C: All windows 

and doors sealed closed: E: Eaves under roof open: 3W: One side of kitchen open: 2/3W: All walls 

at 2/3 original height; DEO: Door and eaves under roof open: DONE: Door open, eaves sealed 

closed: NO: No other outlets: T: Thatched roofing instead of corrugated metal: NF: Fans off: LF: 

Fans on low; HF: Fans on high; W: wet fuel 
 

Figure 4.7: The calculated 24 hour exposure to CO by cookstove and structural configuration. 

No cookstoves in a completely sealed environment met the WHO air quality guideline (AQG) 

of 7 mg/m3. The wet fuel trial TSF(W) also exceeded the AQG. Error bars represent one 

standard deviation from the mean. 
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5 Conclusions 

 
The worldwide use of biomass and other unrefined fuel sources to meet daily 

household energy needs has potentially large negative ramifications for human 

health, the environment, and the global climate. Research and engineering in this 

field of interest has expanded exponentially in the last decade, with organizations 

ranging from community-level action committees to international aid 

organizations. Thousands of improved combustion cookstove options are 

available now on the market, but many of these cookstoves do not achieve a 

similar reduction in emissions (directly linked to human exposure) in the field as 

they do in laboratory testing. In an effort to merge controlled laboratory and real 

world conditions, the Kitchen 2.0 project examined the combined effect of 

structural differences and cookstove technology on HAP using the Controlled 

Cooking Test (CCT) under controlled ventilation conditions. Two household air 

pollutants particulate matter (PM2.5) and carbon monoxide (CO) were monitored 

in real-time at 15 locations in a model kitchen to assess the spatial variation in 

pollutant concentrations and to calculate the average concentrations of HAP in 

the space. 
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Based on the project results, the greatest improvement in air quality can be 

achieved through a combination of a cross-kitchen air flow (CV_NO_HF in the 

text) and a cookstove with an improved combustion chamber. This is likely due 

to the significant increase in the air exchange rate for the structural configuration, 

although there are no correlation between the removal of PM2.5, calculated as a 

first order decay rate, and the number of air exchanges per hour. Ventilation did 

play a large role in maintaining human exposure level below the WHO 24-hour 

AQG except when the fuel was wet.  

 

Additional research is needed. First, the Aprovecho Stove Tec cookstove failed 

two CCT trials when the fuel was wet. The author is unsure if the failures were 

due to user error or a limitation of the cookstove; this should be investigated 

further since cured wood is not guaranteed outside of the laboratory. Second, it 

was assumed for this work that there was no pollutant reentry, but due to the 

proximity of the clean room walls to the model kitchen, this is unlikely. The 

amount of HAP reentering into the model kitchen from the clean room should 

be quantified in future studies.  Finally, the concentrations of both pollutants 



68 

varied greatly from trial to trial, and the number of replications possible during 

Kitchen 2.0 for each structural/cookstove combination was time constrained. 

Additional trials are needed to quantify definitively the effect that ventilation has 

on indoor air quality.  

5.1 Recommendations to Key Stakeholders 

A few closing remarks for four critical stakeholder groups from the author: 

 Fellow researchers: The improved cookstoves did not perform as well as

expected, particularly when there is little or no air movement around the

cooktove and wet fuel is being burned. Real-world adaptations for the

laboratory-based Water Boiling Test should be developed so that

cookstove ratings reflect in-kitchen performance.

 Cookstove development agencies: The Water Boiling Test is a necessary

evil. It allows for the comparison of hundreds of technological solutions

under highly replicable conditions. However, more emphasis needs to be

placed on the other two testing protocols: the Controlled Cooking Test
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and the Kitchen Performance Test. Without obtaining data using all three 

protocols, the cookstove performance ratings will be meaningless. 

 Aid organizations: To reiterate the IWA 11: 2012 documentation,

selecting a cookstove should not be based solely on the tiered

performance rating. Cost, cultural acceptability, and maintenance should

also play an important role in the decision. As this work states, ventilation

can also improve indoor air quality. One or a combination of both should

be considered prior to implementation, depending on local customs.

 Community members: Particulate matter or “smoke” is a visible nuisance.

It causes eye and lung irritation, and stains your kitchen walls. Installing

two windows in your kitchen so that the wind blows through and out of

your kitchen will improve your family’s health and keep your kitchen

cleaner.
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APPENDIX B: Full Trial Results- PM2.5
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CV_NO_NF CV_NO_HF CV_DONE_HF CV_DONE_LF 

TSF (T1-4) ST (T5-7) EF (T8-10) TSF(W) (T47-49) EF (T11-13) EF (T14-16) EF (T19-20) 

Full Trial Average Time (hr) 0.8 0.7 0.8 0.9 0.7 0.7 0.8 

Full Kitchen Mean (µg/m3) 177.8 136.6 59.2 364.2 178.0 149.4 152.6 

Full Kitchen Standard Dev.  50.0 94.8 19.2 86.2 29.9 93.0 84.3 

Time to Cook (hr) 0.4 0.4 0.4 0.4 0.3 0.4 0.3 

Hourly Exposure (µg/hr*m3) 78.3 55.3 22.0 171.0 53.7 85.9 43.8 

Hourly Exposure Standard Dev. (µg/hr*m3) 11.7 28.1 3.5 85.8 12.4 63.1 12.7 

24-hr Exposure (WHO method; µg/hr*m3) 13.1 9.2 3.7 28.5 9.0 14.3 7.3 

24-hr Exposure Standard Dev. (µg/hr*m3) 1.9 4.7 0.6 14.3 2.1 10.5 2.1 

Kurtosis 9.5 15.8 47.5 4.5 13.6 21.3 11.5 

Skewness 2.4 3.0 6.0 1.8 3.1 3.6 2.6 

Range (µg/m3) 3841.3 2105.5 2608.1 4002.8 3089.2 3702.7 2845.7 

Minimum (µg/m3) 0.6 0.9 0.6 0.6 1.1 1.0 1.8 

Maximum (µg/m3) 3841.9 2106.4 2608.7 4003.3 3090.3 3703.7 2847.6 

Measurement Count 1394 864 954 1220 920 1370 1090 

CV: Two windows open, diagonally across kitchen; DONE: Door open, eaves sealed closed; NO: No other outlets; NF: Fans off; LF: Fans on low; HF: Fans on high; TSF: Three-stone fire; TSF(W): Three-stone fire, wet wood; EF: 

Envirofit G3300 Cook Stove; EF(D): Envirofit Cook Stove place next to door; EF(O): Envirofit Cook Stove placed in corner opposite original position; ST: StoveTec GreenFire Combo 2 Door Biomass Cook Stove without Pot Skirt; 

ST(W): StoveTec Cook Stove, wet wood  
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O_DONE_LF C_NO_LF E_NO_LF 3W_DEO_LF 2/3W_DEO_LF CV_T_NO_NF 

TSF (T21, 26, 29) ST (T22, 25, 28) EF (T23, 24, 27) EF (T30, 33, 35) ST (T31, 34, 36) TSF (T32, 37) ST (T38-40) EF (T41-43) EF (T44-46) TSF (T50-54) 

Full Trial Average Time (hr) 1.0 0.8 0.8 0.8 0.8 0.9 0.9 0.8 0.7 0.8 

Full Kitchen Mean (µg/m3) 335.3 101.3 188.1 368.0 309.5 291.1 59.3 129.8 131.1 183.9 

Full Kitchen Standard Dev.  405.7 45.5 139.7 149.2 312.0 14.4 30.6 43.1 52.6 115.0 

Time to Cook (hr) 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.3 0.3 0.4 

Hourly Exposure (µg/hr*m3) 220.0 46.5 58.1 257.3 309.9 289.2 36.3 53.5 54.5 83.2 

Hourly Exposure Standard Dev. (µg/hr*m3) 256.3 7.3 37.2 88.4 373.6 29.7 27.5 29.2 25.5 51.3 

24-hr Exposure (WHO method; µg/hr*m3) 36.7 7.8 9.7 42.9 51.7 48.2 6.0 8.9 9.1 13.9 

24-hr Exposure Standard Dev. (µg/hr*m3) 42.7 1.2 6.2 14.7 62.3 4.9 4.6 4.9 4.3 8.5 

Kurtosis 3.1 56.6 13.1 1.8 1.3 3.2 40.3 33.2 4.1 14.5 

Skewness 1.6 6.1 3.1 1.6 1.5 1.7 5.4 4.9 1.5 3.1 

Range (µg/m3) 3628.0 3185.8 3530.8 4595.3 4602.9 4397.4 3586.4 3950.9 1310.3 3841.3 

Minimum (µg/m3) 1.7 8.9 1.4 1.3 1.4 11.5 0.9 0.9 1.2 0.6 

Maximum (µg/m3) 3629.7 3194.7 3532.2 4596.6 4604.4 4409.0 3587.3 3951.8 1311.5 3841.9 

Measurement Count 1350 1080 1100 1139 1070 839 1220 1080 931 3212 

E: Eaves under roof open; O: All windows and door open; C: All windows and doors sealed closed; 3W: One side of kitchen open; 2/3W: All walls at 2/3 original height; DEO: Door and eaves under roof open; DONE: Door open, eaves 

sealed closed; NO: No other outlets; T: Thatched roofing instead of corrugated metal; NF: Fans off; LF: Fans on low; HF: Fans on high; TSF: Three-stone fire; TSF(W): Three-stone fire, wet wood; EF: Envirofit G3300 Cook Stove; 

EF(D): Envirofit Cook Stove place next to door; EF(O): Envirofit Cook Stove placed in corner opposite original position; ST: StoveTec GreenFire Combo 2 Door Biomass Cook Stove without Pot Skirt; ST(W): StoveTec Cook Stove, 

wet wood 
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APPENDIX C: Full Trial Results- CO 
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CV_NO_NF CV_NO_HF CV_DONE_HF CV_DONE_LF 

TSF (T1-4) ST (T5-7) EF (T8-10) TSF(W) (T47-49) EF (T11-13) EF (T14-16) EF (T19-20) 

Full Trial Average Time (hr) 0.8 0.7 0.8 0.9 0.7 0.7 0.8 

Full Kitchen Mean (mg/m3) 36.7 22.7 19.5 48.7 44.8 29.6 23.0 

Full Kitchen Standard Dev. (mg/m3) 8.9 2.5 2.1 17.3 3.5 6.3 6.7 

Time to Cook (hr) 0.4 0.4 0.4 0.4 0.3 0.4 0.3 

Hourly Exposure (mg/hr*m3) 22.9 9.5 8.6 25.5 14.2 14.7 9.9 

Hourly Exposure Standard Dev. (mg/hr*m3) 9.1 2.6 2.8 6.3 3.2 2.6 1.7 

24-hr Exposure (mg/hr*m3) 3.8 1.6 1.4 4.3 2.4 2.5 1.7 

24-hr Standard Dev. (mg/hr*m3) 1.5 0.4 0.5 1.0 0.5 0.4 0.1 

Kurtosis -0.2 7.1 53.9 0.4 16.7 7.8 5.0 

Skewness 0.0 1.8 4.4 0.6 3.0 1.7 1.8 

Range (mg/m3) 125.2 176.7 314.6 239.7 246.9 204.8 140.4 

Minimum (mg/m3) 12.7 9.6 7.3 23.3 0.4 0.0 1.1 

Maximum (mg/m3) 137.9 186.3 321.9 263.0 247.2 204.8 141.5 

Measurement Count 1240 768 848 968 552 889 763 

CV: Two windows open, diagonally across kitchen; DONE: Door open, eaves sealed closed; NO: No other outlets; NF: Fans off; LF: Fans on low; HF: Fans on high; TSF: Three-stone fire; TSF(W): Three-stone fire, wet wood; EF: 

Envirofit G3300 Cook Stove; EF(D): Envirofit Cook Stove place next to door; EF(O): Envirofit Cook Stove placed in corner opposite original position; ST: StoveTec GreenFire Combo 2 Door Biomass Cook Stove without Pot Skirt; 

ST(W): StoveTec Cook Stove, wet wood  
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O_DONE_LF C_NO_LF E_NO_LF 3W_DEO_LF 2/3W_DEO_LF CV_T_NO_NF 

TSF (T21, 26, 29) ST (T22, 25, 28) EF (T23, 24, 27) EF (T30, 33, 35) ST (T31, 34, 36) TSF (T32, 37) ST (T38-40) EF (T41-43) EF (T44-46) TSF (T50-54) 

Full Trial Average Time (hr) 1.0 0.8 0.8 0.8 0.8 0.9 0.9 0.8 0.7 0.8 

Full Kitchen Mean (mg/m3) 28.6 19.4 30.2 71.5 51.6 57.1 30.6 23.0 31.0 27.1 

Full Kitchen Standard Dev. (mg/m3) 13.0 6.3 14.3 19.6 22.9 3.9 4.9 4.9 14.1 2.2 

Time to Cook (hr) 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.3 0.3 0.4 

Hourly Exposure (mg/hr*m3) 18.3 9.8 15.5 29.8 27.5 35.4 13.0 9.2 12.1 11.3 

Hourly Exposure Standard Dev. (mg/hr*m3) 11.2 1.3 7.8 19.7 12.0 4.7 3.9 1.0 4.2 3.5 

24-hr Exposure (mg/hr*m3) 3.1 1.6 2.6 5.0 4.6 5.9 2.2 1.5 2.0 1.9 

24-hr Standard Dev. (mg/hr*m3) 1.9 0.2 1.3 3.3 2.0 0.8 0.7 0.2 0.7 0.6 

Kurtosis 0.7 6.2 11.5 1.4 4.5 -1.3 0.6 3.0 1.3 3.2 

Skewness 0.8 2.0 2.3 0.9 1.5 -0.4 0.5 1.2 0.7 1.0 

Range (mg/m3) 124.8 133.3 298.5 381.1 373.2 164.6 141.1 139.1 146.4 155.1 

Minimum (mg/m3) 12.9 12.5 11.0 7.1 11.3 19.2 15.9 22.2 18.8 0.0 

Maximum (mg/m3) 137.7 145.8 309.5 388.2 384.5 183.8 157.0 161.3 165.2 155.1 

Measurement Count 1072 864 880 904 856 672 976 864 744 1520 

E: Eaves under roof open; O: All windows and door open; C: All windows and doors sealed closed; 3W: One side of kitchen open; 2/3W: All walls at 2/3 original height; DEO: Door and eaves under roof open; DONE: Door open, eaves 

sealed closed; NO: No other outlets; T: Thatched roofing instead of corrugated metal; NF: Fans off; LF: Fans on low; HF: Fans on high; TSF: Three-stone fire; TSF(W): Three-stone fire, wet wood; EF: Envirofit G3300 Cook Stove; 

EF(D): Envirofit Cook Stove place next to door; EF(O): Envirofit Cook Stove placed in corner opposite original position; ST: StoveTec GreenFire Combo 2 Door Biomass Cook Stove without Pot Skirt; ST(W): StoveTec Cook Stove, 

wet wood 
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