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Abstract

Atmospheric turbulence near the ground severely limits the quality of imagery

acquired over long horizontal paths. In defense, surveillance, and border security

applications, there is interest in deploying man-portable, embedded systems incorporating

image reconstruction methods to compensate turbulence effects. While many image

reconstruction methods have been proposed, their suitability for use in man-portable

embedded systems is uncertain. To be effective, these systems must operate over significant

variations in turbulence conditions while subject to other variations due to operation by

novice users. Systems that meet these requirements and are otherwise designed to be

immune to the factors that cause variation in performance are considered robust. In addition

robustness in design, the portable nature of these systems implies a preference for systems

with a minimum level of computational complexity.

Speckle imaging methods have recently been proposed as being well suited for use in

man-portable horizontal imagers. In this work, the robustness of speckle imaging methods

is established by identifying a subset of design parameters that provide immunity to

the expected variations in operating conditions while minimizing the computation time

necessary for image recovery. Design parameters are selected by parametric evaluation

of system performance as factors external to the system are varied. The precise control

necessary for such an evaluation is made possible using image sets of turbulence degraded

xxv



imagery developed using a novel technique for simulating anisoplanatic image formation

over long horizontal paths. System performance is statistically evaluated over multiple

reconstruction using the Mean Squared Error (MSE) to evaluate reconstruction quality. In

addition to more general design parameters, the relative performance the bispectrum and

the Knox-Thompson phase recovery methods is also compared.

As an outcome of this work it can be concluded that speckle-imaging techniques are

robust to the variation in turbulence conditions and user controlled parameters expected

when operating during the day over long horizontal paths. Speckle imaging systems that

incorporate 15 or more image frames and 4 estimates of the object phase per reconstruction

provide up to 45% reduction in MSE and 68% reduction in the deviation. In addition,

Knox-Thompson phase recover method is shown to produce images in half the time

required by the bispectrum. The quality of images reconstructed using Knox-Thompson

and bispectrum methods are also found to be nearly identical. Finally, it is shown that

certain blind image quality metrics can be used in place of the MSE to evaluate quality

in field scenarios. Using blind metrics rather depending on user estimates allows for

reconstruction quality that differs from the minimum MSE by as little as 1%, significantly

reducing the deviation in performance due to user action.

xxvi



Chapter 1

Introduction

Scenarios where imaging systems are tasked with acquiring information about remote

objects over long horizontal paths are common to defense, border enforcement, and

surveillance applications. In these scenarios, the presence of atmospheric turbulence along

the imaging path corrupts acquired imagery. A variety of image reconstruction methods

have been proposed and are currently being developed to counteract turbulence effects

in these scenarios. However, incorporating these methods into a man-portable embedded

imaging system introduces a number of severe design constraints that complicated system

design. Specifically, these systems are often carried to an observation site implying strict

limitations on Size, Weight, and Power (SWaP). Minimizing SWaP in embedded systems

implicitly requires that the system have the lowest possible computational complexity. In

addition, to be practical, these methods must provide high quality imagery over a range of

1



turbulence conditions and variations in external parameters, including interaction by users.

In the language of product development engineering, systems that meet these requirements

are referred to as “robust”.

Speckle imaging systems are already recognized as being computationally efficient

compared to many of the methods proposed for horizontal imaging, though they have not

been shown to be robust. The aim of this work is to show that speckle image reconstructions

methods are robust to variation in external and user-controlled parameters. Further, I aim

to identify a subset of design parameters that result in high quality image reconstructions

at the lowest possible computation burden. It is hoped that this work will assist in the

development of embedded systems incorporating speckle imaging techniques and provide

a template for the evaluation of other methods.

1.1 Design for Robustness

The idea of robustness in engineering design was pioneered by Taguchi [3] who

defined robustness as being immune to the factors that cause variability in performance.

Incorporating robustness into product design first requires identifying a suitable quality

metric, and then all of the factors that affect product quality. Factors external to the system

are referred to as “noise” parameters, while those that are controlled by the designer are

referred to as “design” parameters. In a complete robustness analysis, noise and design
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parameters are varied over their expected range of variation and the quality, or performance,

recorded. This process identifies the design parameters that most affect system performance

and identifies optimum values for each parameter.

In Taguchi’s original work on robustness, quality was evaluated using a loss function, which

he developed. Since this early work, a number of other loss functions have been proposed.

While these metrics may differ in their purpose, they are generally related to the Signal to

Noise Ratio (SNR). In this work, the Mean Squared Error (MSE) in normalized intensity

value per pixel of the system output relative to a diffraction-limited reference image will be

used to evaluate quality. When properly normalized, the MSE is equivalent to the inverse of

the SNR. Therefore, the goal of this work will be to identify a set of design parameters that

provides the Minimum Mean Squared Error (MMSE) performance at the lowest level of

computational complexity. In the following sections I briefly describe speckle imaging and

identify important design and noise parameters. Descriptions of the conditions identified

as horizontal imaging scenarios and relevant noise parameters are also found in subsequent

sections.

1.2 Speckle Imaging

Speckle imaging has been used in the imaging of space objects from ground-based

observatories for over 40 years. Labeyrie [4] first recognized that high frequency spatial
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Figure 1.1: Long-Exposure (left) and short-exposure image (right) of the
visual binary stars Alcor and Mizar in the Ursa Major.

information was retained in short-exposure images of bright stars. In Fig.1.1, the

long-exposure and short-exposure of a visual binary star are compared. The long-exposure

image on the left of the figure demonstrates the blurring that reduces the detail in images

acquired through turbulence. The image on the right is affected by the same turbulence

conditions, but at short exposures, is seen to contain fine detail by way of multiple bright

patches or speckles. Labeyrie found that the size of these speckles is on the order of the

diffraction-limit of the imaging system. To recover information about the object Labeyrie

used a Fourier transforming lens to capture the amplitude spectrum from multiple short

exposures on a roll of film. The developed film was then played back and exposed onto

a slide over one long exposure. The resulting image effectively displayed the uncorrupted

Power Spectral Density (PSD) of the object. While this technique was useful in recovering

simple geometric information, such as the separation of binary stars, it does not provide the

phase information necessary for image recovery.
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In the years following Labeyrie’s experiments a number of phase recovery techniques were

proposed, many based on interferometric imaging techniques used by radio astronomers.

The two most popular methods used in speckle imaging rely on phase recovery from

ensemble averages of certain high order statistical quantities. One technique, originally

proposed by Knox and Thompson [5], relies on the image cross-spectrum, the frequency

domain equivalent of the object-intensity cross-correlation, for phase recovery. Weigelt [6]

later proposed using the bispectrum, or the Fourier transform of the triple correlation for

the same purpose. Since that time, the bispectrum has won favor for use in astronomical

imaging. Using the bispectrum is desirable because it is shift-invariant and provides

superior reconstruction quality at lower signal-to-noise ratios. All of the proposed phase

recovery methods rely on recursive recovery of the object phase using high-order statistics

of the object spectrum. Due to the inherent computational complexity of these operations,

significant computer time was necessary to recover useful imagery. Consequently, practical

use of speckle imaging was limited to research labs with access to supercomputing

resources.

The advent of affordable, high performance computing workstations in the 1990s led to a

great deal of research regarding speckle imagers and their performance limitations relative

to the imaging of space objects [7], [8], [9]. In these scenarios, imaging is generally

photon-limited requiring many thousands of frames acquired over many hours to generate

a single image. In addition, it was generally assumed the object of interest was imaged

within a field of view smaller than the isoplanatic angle of the atmosphere. The object
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is also assumed to exist against a flat background providing limited support. Using these

assumptions allowed for a comprehensive analysis of the performance of speckle imaging

techniques as a function of input SNR. This period also provided improved methods of

phase recovery from bispectrum by researchers such as Meng [10] and Matson [11].

Recently, there has been a renewed interest in applying speckle imaging techniques

to horizontal imaging scenarios [12]. However, the simplifying assumptions used to

characterize speckle imaging in the imaging of space objects do not necessarily apply in the

horizontal imaging case. Specifically, objects are likely to span multiple isoplanatic patches

and therefore experience non-uniform tip and tilt distortions. In these circumstances,

the linear system framework used to evaluate system performance analytically does not

apply. While it is possible to make heuristic arguments that analytic results for speckle

imaging performance remain valid under these anisoplanatic conditions, there is little, if

any, empirical evidence to support this argument. Images obtained in horizontal imaging

are also not likely to be photon-starved, although additive noise may be present in the

acquired imagery. In either case, turbulence strength, not per frame SNR is likely to limit

performance. Further, the importance of computation complexity and reconstruction rate

requires a change in focus. Rather than focusing only on image quality it is also valuable

to understand how few frames are required to provide acceptable reconstructions.
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1.3 Horizontal Imaging

Uneven heating of the ground by the sun results in temperature inhomogeneities in the

near-surface air mass. Large-scale temperature differences in the air mass are resolved

by the flow of air along pressure gradients. Due to the low viscosity of air, this

movement generates turbulent eddies with characteristic scale sizes on the order of the

inhomogeneities. As they flow, these eddies diffuse, breaking into smaller and smaller

eddies and eventually dissipating via molecular friction and increasing the temperature

in the air mass. During the daytime, the Sun continually supplies energy to this process

increasing the turbulence strength near the ground over the course of the day. Overall

turbulence severity reaches a peak shortly after midday and then decreases to a minimum

after sunset when the rate of Turbulent Kinetic Energy (TKE) generation via solar heating

is exceeded by the dissipation due to molecular friction. After sundown, turbulence

near the ground is less predictable with relative periods of strong and weak turbulence

attributable to synoptic-scale events in the troposphere. Near-ground turbulence conditions

remain unstable until solar heating returns with dawn generating another stable turbulence

minimum after which the diurnal turbulence process repeats.

The presence of turbulence near the ground affects light propagation by randomly refracting

light as it travels through the air volume. The same temperature differences that generate

flow of the air mass and turbulence also create randomly distributed differences in the
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index of refraction. The deviation in refractive index is small but, when accumulated over

long enough paths, can have deleterious effects on imaging systems. It is common to

model the turbulence volume between the light source and the imager as a random medium

and modeled such that the distribution of energy at various turbulence scale sizes reduces

logarithmically from large, or outer scale, inhomogeneities down to the inner scale where

molecular viscosity dominates. Mediums that conform to this model are referred to as

power-law media and, in the case where the roll-off in TKE in terms of wavenumber

between these two ranges follows a −
11
3

slope [13], the medium is referred to as a

Kolmogorov medium. The spatial distribution of TKE can be directly related to variations

the index of refraction in air, allowing analysis of the effect of atmospheric turbulence on

light wave propagation.

The effects of wave propagation through random media on imaging systems is traditionally

modeled as random phase perturbations to the wavefront phase. Fully characterizing the

effects of turbulence on light wave propagation requires solving the stochastic Hemholtz

equation. Analytic approaches often rely on a series of simplifying assumptions to make

a solution tractable. First, the medium is assumed to be homogeneous in as much

that it has the same turbulence properties (i.e. Kolmogorov medium) throughout the

volume. Next, the medium is generally assumed to be isotropic along the direction of

propagation. Turbulence strength is also assumed to be weak enough that scintillation

effects can be ignored. These two assumptions are often referred to collectively as the

Rytov approximation. Relative to the problem considered in this work, it is also common
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to assume the turbulence strength along the imaging is roughly dependent upon the height

above the ground [14]. Because of this dependence, the turbulence strength along the

imaging path can be assumed to be constant for the purely horizontal and slightly slanted

paths of interest in this work. An alternative to purely analytic approaches is the use of wave

propagation simulations incorporating random phase screens with Kolmogorov spatial

statistics. In particular, the Fourier split-step propagation method is known [15], [16],

[17] to provide an excellent match to experimental data. Though numerical simulations

are often used in place of analytical models, many of the same assumptions (the Rytov

approximation in particular) are still applied.

1.4 Approach

In this dissertation, I propose establishing the robustness of speckle imaging methods by

parametric evaluation of system performance as design parameters and noise factors are

varied. The system design parameters relevant here are:

• Nf - Number of input frames used to produce each image reconstruction.

• Np - Number of estimates of the object phase at each spatial frequency, �f , in the

estimated object spectrum Ô(�f )
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• The method used for object phase recovery. Both the bispectrum and

Knox-Thompson methods are evaluated.

• α - The Weiner filter noise parameter. α is a SNR dependent parameter in the

denominator of the pseudo-Weiner filter used for object recovery. Though the

parameter is technically SNR dependent, it is common to tune this parameter to

produce the highest quality image.

The external noise factors are:

• Turbulence strength - System performance is evaluated as turbulence strength is

varied over a range of turbulence strengths that produce “Low”, “Moderate” and

“Severe” image degradation.

• Estimate of C2
n - Image recovery in speckle imaging systems requires deconvolution

via a pseduo-Weiner filter of the estimate object amplitude spectrum using an

estimate of the long exposure atmospheric Optical Transfer Function (OTF), HLE .

A proven theoretical model for HLE [18] which is dependent on the distribution of

turbulence strength along the imaging path is often used for this purpose. After,

applying the assumptions of constant turbulence strength and assuming the imaging

path length, L, is known an estimate of the turbulence strength in terms of the

refractive index structure constant, C2
n is still required. It is assumed that either the

user, or the imaging system, are able estimate turbulence strength within an order of

10



magnitude of the true value and examine the sensitivity in system performance over

this range.

• σn - System performance is evaluated with various levels of additive Gaussian noise

added to input image frames.

The controlled conditions necessary to perform a parametric evaluation are enabled

by the development of a method for simulating anisoplanatic image formation through

turbulence over long horizontal paths. This method is used to generate 3 sets of 1000

turbulence corrupted image frames. The size of this data set allows for statistically

significant evaluation of system performance over at least N = 20 independent speckle

image reconstructions Nf = 50 input frames. In this work, system performance is evaluated

in terms of the MSE. The subset of parameters that result in the MMSE while minimizing

image reconstruction time will be identified as optimum.

A significant potential source of variation in the performance of speckle imaging systems is

the selection of the atmospheric OTF used for object amplitude recovery. This work makes

use of a well established theoretical model for the atmospheric OTF with a single free

parameter in C2
n . Using our simulated data set it trivial to choose a value of C2

n that results

in the highest quality image reconstruction. In the field, this parameter must be estimated

by the user; a difficult task even for experts. To address this issue the simulated data set

is used to compare the response of certain Blind Image Quality (BIQ) metrics to the MSE.

After establishing a baseline using simulated imagery, the BIQ metrics are applied to field
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imagery acquired during a recent Laser Communication System (LCS) Experiment [19].

1.5 Summary of Key Results

In this dissertation, the robustness of speckle imaging systems is evaluated in horizontal

imaging scenarios by parametric evaluation of the system design and noise parameters

that affect performance. This evaluation is enabled by the invention of a new method

for simulating image formation over long horizontal paths. It is shown that this method

can be validated to theoretical models for turbulence effects on imaging. In addition,

images simulated using this method contain the anisoplanatic distortions found in most

imagery acquired over horizontal imaging paths. The simulation model is used to generate

a 3000-frame data set based on the“Lena” test image. The distribution of MSE counts

across image frames in the data set is log-normally distributed with a mean value that

increases approximately linearly with turbulence strength over the range examined.

Parametric evaluation of speckle imaging performance is achieved by variation of the

system design and noise parameters detailed Section 1.4 using frames from the data set

as input frames. Performance statistics are measured for at least N = 20 reconstructions

for three levels of turbulence-induced image degradation. On average, across the three

conditions, the MSE of reconstructed image frames improved 48% compared to the input

data set and the deviation about the mean decreased by 68%. Further, performance near the
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limit available from speckle imaging methods is available using only, Nf = 15 input frames

and Np = 4 phase estimates per spatial frequency. In addition, the performance of the

Knox-Thompson method of phase recovery is shown to be equivalent to the bispectrum

method in horizontal imaging scenarios. Finally, it is shown that using the true value

of simulated turbulence strength in the inverse filter used for object amplitude recovery

does not guarantee the highest quality reconstructions. While poor estimates do result in

sub-optimal reconstruction, there is generally a wide range of values over which there is

little variation in performance.

Design engineers can set most of the design parameters evaluated here before the system

reaches the user. The one exception is the estimate of C2
n used for object amplitude

recovery. Though performance is rather insensitive to small variations in this parameter,

poor estimates can significantly degrade image quality. Using the MSE, and simulated

imagery, it is a trivial task to tune this value to its optimum; in the field, however, such

tuning is not possible. To overcome this limitation, two BIQ metrics are evaluated for use

as practical surrogates to the MSE. It is shown that both metrics are capable of producing

imagery that is subjectively identical to the MMSE image. Images chosen as optimum by

the blind metrics differ from the MMSE image by less than 4% on average.
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1.6 Organization

The remainder of this dissertation is comprised of content from three journal articles which

have either been accepted for publication or under review by the editors of SPIE Optical

Engineering. Changes to formatting and language in the articles have been made where

appropriate. Chapter 2 is derived from “Technique for Simulating Anisoplanatic Image

Formation Over Long Horizontal paths” [1] which was published online on May 15, 2012

in Optical Engineering. This paper provides an overview of the horizontal imaging problem

and the method used to develop the data set of simulated imagery used for the parametric

analysis described in Chapter 3. The content in Chapter 3 has been appears in the August

2012 issue of Optical Engineering as “Robustness of Speckle Imaging Techniques Applied

to Horizontal Imaging Scenarios” [2]. Evaluation of BIQ to the task providing optimal

imagery recovered using speckle imaging methods is found in Chapter 4. The content in

Chapter 4 was submitted to Optical Engineering on June 28,2012 under the title “Blind

Image Quality Metrics for Optimal Speckle Image Reconstruction in Horizontal Imaging

Scenarios.” A conclusion summarizing the findings in this body of work, and providing

guidance for further research are found in Chapter 5.
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Chapter 2

A Technique for Simulating

Anisoplanatic Image Formation Over

Long Horizontal Paths

1

1The material contained in this chapter was previously published in the journal Optical Engineering published
online on May 15, 2012 [1] and is scheduled to appear in print in the October 2012 issue of the journal. See
Appendix C for documentation of permission to republish this material.
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2.1 Introduction

In signal processing problems, recovery methods are commonly evaluated by simulation

of the noise or distortion process applied to a known signal. The performance of a

reconstruction method can be evaluated by direct comparison of the estimator output

to the known input. Similarly, robustness can be evaluated by examining the variation

in performance over a range of noise conditions. Extending this evaluation process to

image processing problems involving the observation of space objects though turbulence is

straightforward. Simulation methods [18] are well established and available commercial

software makes simulating a range of conditions trivial–but only under isoplanatic

conditions. Unfortunately, the isoplanatic assumption used to simplify simulation in these

circumstances does not generally apply to imaging over horizontal paths. In order to

evaluate the image reconstruction methods applied to the horizontal imaging problem a

different simulation method is needed.

The aim in developing a simulation model specific to horizontal imaging is to evaluate

the ability of past, present and future image reconstruction techniques to recover images

of scenes corrupted by turbulence featuring severe anisoplanatic distortions. Most

image reconstruction techniques used to compensate for atmospheric distortions, such as

multi-frame blind deconvolution and speckle imaging techniques, make use of multiple

frames to produce a single recovered image. Therefore, in order to effectively evaluate
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these techniques any simulation tool must reproduce horizontal imaging conditions over

many frames and under controlled conditions. A certain level of efficiency is also desired

if we are to generate enough frames to provide a level of statistical certainty in the

performance of these estimators.

The need for an absolute prior rules out the use of data collected in the field as a

substitute for simulation and previous attempts at modeling anisoplanatic conditions do not

provide the level of fidelity required. For example, Vorontstov [20] successfully produced

anisoplantatic effects using in the laboratory using a series of heaters placed between a

scene and an imaging system. Many images exhibiting anisoplanatic distortions can be

quickly acquired using this method and a truth object can be acquired by simply removing

the heating elements. While these images do contain severe anisoplanatic distortions

the turbulence is not guaranteed to be isotropic or homogenous resulting in fluctuation

non-Kolmogorov fluctuation statistics.

Carrano [21] developed a computer simulation method that began with an image

represented as a series of discrete sources with amplitude values derived from the object

intensity distribution and with uniformly distributed independent random phase values

assigned to each source. The complex field is propagated through the atmosphere and

turbulence effects introduced by phase screens placed along the imaging path. The

result of a single propagation using this method is a noise-dominated, speckled, intensity

image. To produce a fully formed image with sufficiently high signal-to-noise ratio

17



requires summation over several thousand speckle frames. In addition to the computation

time required, the presence of the random phase noise introduced by this method is

undesirable; the preference being to analyze noise effects independently. This same work

[21] introduces a method similar to the one presented here to create images of point sources.

However, this method makes use of a single screen and does not fully reproduce both the

anisoplanatic and seeing effects associated with the complete turbulence volume.

The method described in this paper is a simplification of the split-step method [22]

originally used to model the propagation of acoustic waves in underwater channels.

This method has since been extended to the simulation of light propagation through

the atmosphere [16],[15]. The approach taken here divides the simulated object into

blocks or patches smaller than the isoplanatic angle of the imaging system. As in other

methods, the atmosphere is simulated by a series of phase screens placed along the imaging

path. Propagation is approximated using geometrical optics to accumulate the phase

perturbations resulting from each screen. The accrued phase distortions are combined with

the unperturbed phase resulting from spherical wave propagation from the object to the

imaging aperture. These phase errors are used to develop a point spread function (PSF)

specific to each block-source in the object. These PSFs are then normalized, ignoring

scintillation, and scaled by an intensity value sampled from the object intensity distribution.

The summation over each intensity scaled, block-specific PSF results in an image featuring

anisoplanatic distortions and seeing effects attributable to imaging through turbulence over

horizontal paths.

18



The remainder of this paper is organized as follows. In section 2.2 and 2.3 the theoretical

framework used to justify the block-based approach is developed. In section 2.4 the

necessity of incorporating multiple phase screens in order to properly simulate the

turbulence volume along the imaging path is demonstrated. In section 2.5 the seeing

effects present in this implementation are compared to theory; the presence of anisoplanatic

effects is also verified. Using this method I have developed a set of 1000 images spanning

three turbulence conditions, the generation of this data set is described in section 2.6. The

Mean Squared Error (MSE) statistics in terms of per-pixel error in intensity for each image

frame when compared to a diffraction-limited image are also examined in this section.

Conclusions and suggestions for future work are provided in Section 2.7.

2.2 Theory

In this paper the problem of interest is the simulation of image formation under

anisoplanatic conditions. The approach taken here is to model the anisoplantic imaging

problem by dividing the object into regions small enough that isoplanatic conditions hold.

The general form for the noise-free image formed under anisoplanatic conditions is

i(xi,yi) =
∫∫

o(xo,yo)s(xi,yi,xo,yo, t)dxodyo (2.1)
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where o(xo,yo) is the object irradiance distribution in the object plane, i(xi,yi) is the image

formed by a monochromatic, incoherent imaging system located at a distance, L, from the

object plane. The combined effect of the imaging system and the atmosphere is defined by

a point spread function (PSF), s(xi,yi,xo,yo, t), which is seen to be a function of location in

the object and is time-varying.

Imaging under isoplanatic conditions can be considered as a special case of the general

equation described above. The image formed in this case is convolution of the

shift-invariant PSF with the object intensity distribution.

i(xi,yi) =
∫∫

o(xo,yo)s(xi − xo,yi − yo, t)dxodyo (2.2)

For the horizontal imaging case this condition holds if the angular extent of the object at

the imaging system is less than the isoplanatic angle defined for the horizontal case as[23]

θ0 =

⎡
⎣2.91k2

L∫
0

C2
n(z)z

5
3 dz

⎤
⎦
− 3

5

(2.3)

In this expression, k, is the wavenumber and C2
n(z) is turbulence strength along the imaging

path.

In this model the object is carved into a set of M by N blocks such that the angular extent of

each block as viewed from the imaging system is less than the isoplanatic angle, θo, of the

atmosphere along the imaging path. As a practical matter, while the isoplanatic angle may
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serve as an effective upper bound on the size of each region, the region can be no smaller

than the diffraction-limited angular sample rate of the imaging system Δθx,y = λ/2D where

D is the diameter of the imaging system and λ is the imaging wavelength. Given this limit,

even in the absence of turbulence effects, it would not be useful to reduce the size of each

block in the object plane to less than Δxo,Δyo =Δθx,yL. If this block size is used to partition

the object, the center of each block with index value of m = {1,2, ....M}, n = {1,2, ....N}

will be located at o(mΔxo,nΔyo).

Provided that angular extent of each region in this model is less than or equal to the the

angular diffraction-limit the continuous object intensity distribution in Eq. 2.1 can be

replaced by a discretely sampled image, ô(m,n), such that

ô(m,n) =
∫∫

o(x,y)δ (mΔxo,nΔyo)dxdy (2.4)

and because of the previous isoplanatic assumption the image formed under this model is

equivalent to the summation of a series PSFs, sm,n(xi,yi, t) ,unique to each block m,n and

weighted by ô(m,n) allowing Eq. 2.1 to be rewritten as

i(x,y) =
M

∑
m=1

N

∑
n=1

ô(m,n)sm,n(xi,yi, t) (2.5)

This result provides the basis for the development of the horizontal imaging simulation

model. Details regarding the implementation of the simulation are provided in the next
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section.

2.3 Generation of Block Specific PSFs

The method described in the previous section requires the generation of a single PSFs

for every block or isoplanatic region in the object. In the phase screen methods used

for simulation of imaging under isoplanatic conditions, a series of phase perturbations

are applied to an unaltered, uniform amplitude field distribution across the aperture

of an imaging system. The PSF may be derived in this case by taking the inverse

Fourier transform of the perturbed field. If the phase distortions have the proper spatial

statistics, the resulting PSF simulates the effects of atmospheric turbulence on imaging.

For the more general case used in this paper the phase distortions and derived PSFs

must display additional properties. Like the isoplanatic case, the power spectrum of the

phase fluctuations must conform to the Kolmogorov turbulence model. In addition, for

anisoplanatism to be expressed the PSFs for adjacent blocks must be correlated and the

degree of correlation must decrease as the separation between them increases.

The approach used in this model uses N Kolmogorov phase screens to represent the

turbulence volume. Using multiple screens builds in flexibility for future work, allowing

the turbulence conditions to vary over the imaging path. Distributing the screens along the

imaging path, rather than at a single location also ensures that both seeing and anisoplanatic
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effects are accurately represented. Screens are arranged with uniform spacing such that the

separation is zn = nL/N with n = {0,1,2...N −1} so that the n = 0 screen is placed at the

aperture and the final screen is placed Δz = L/N from the object plane.

In order to generate screens with the correct spatial statistics, the turbulence strength and

physical side length of the screens is required. Under isoplanatic conditions, the side-length

is taken to be the projection of the aperture through the turbulence volume and is the same

for each screen. In this model of the horizontal imaging problem the turbulence volume is

represented as the projection of the aperture to the extent of the object, where the object

is modeled as a series of blocks such the object has side length lo = MΔxo = NΔyo. Each

phase screen is modeled as a plane that intersects this volume at zn parallel to the object

plane. The side length of each screen used to generate the phase screen is

ln = D+n

(
lo −D

L

)
Δz (2.6)

Accounting for spherical wave propagation in the model, the turbulence strength defined

for each screen in terms of the Fried parameter, r0, is defined by [18]

r0n = 0.185

[
4π2

k2C2
n(

L−zn
L )Δz

] 3
5

(2.7)

The block-specific PSFs are generated by finding the region of each turbulence screen

“seen" by each object block as it propagates geometrically toward the aperture. This region
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is identified by forming a pencil ray between the center of the object block o(mΔx0,nΔyo)

and the origin of the optical axis located at the center of the imaging system aperture. Given

an image of size samplesi×samplesi, if each phase screen is generated such that it contains

samplesn =
L

Δz(N −n)
samplesi (2.8)

a region of equal size and sampling to the aperture may be extracted from the turbulence

screen without resorting to interpolation. To extract the region, the sample nearest to the

intersection between the pencil ray and the plane of the screen is found. The surrounding

samplesi/2− 1 pixels are then extracted and combined, without interpolation, with the

regions from the remaining screens, The block-specific PSFs are then derived from the

perturbation of the unaltered field distribution using the traditional method [18]. The

geometry relevant to the PSF generation process is summarized visually in Fig.2.1. The

phase fluctuations in each screen are constrained as a function of separation by the

turbulence strength specified when the screens are generated. As a consequence, for small

block sizes adjacent PSFs should be highly correlated and separated blocks less so. It also

follows (Eq. 2.7) that contributions to small scale fluctuations will be constrained to phase

screens nearer to the aperture.
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Figure 2.1: Visualization of the simulation geometry used to develop the
block-specific PSF. Note that the size of each phase screen increases from
the aperture on the right toward the object on the left

2.4 Representation of the Turbulence Volume As Discrete

Phase Screens

Most models for near-ground turbulence assume a single turbulence strength, C2
n , along

constant-height, horizontal imaging paths [14]. The assumption of a constant value of C2
n

allows for the turbulence volume to be modeled as a single phase screen under isoplanatic

conditions. Considering the interest here in expressing anisoplanatic effects, it is useful

to utilize multiple screens to properly express both seeing effects and anisoplanatism in

the simulation. Using two extreme conditions, it is possible to make a heuristic argument

to support this requirement. First, referring to Fig.2.1, consider first the case of a single

phase screen placed across the imaging aperture. Under this condition, seeing effects are
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reproduced exactly, but the entire field of view is within the isoplanatic angle of the imaging

system. In the other extreme case a phase screen is placed directly at the object. Severe

anisoplanatism will result but seeing effects, attributable to small scale fluctuations near the

aperture, will not be present.

How may screens are necessary in this context is unclear. A general requirement for

simulations relying on the split-step method is that the portion of the turbulence volume

represented by a each phase screen must account for no more than 10% of the total

scintillation along the imaging path [24],[16]. Though scintillation effects are ignored in

this implementation, a minimum of four phase screens is prescribed under this criteria

for C2
n = 10−14m−2/3 and L = 1000m. Similar criteria may be developed based on scale

analysis considering the predicted turbulence outer scale or the atmospheric coherence

length. These criteria result in a maximum number of screens which is generally quite large,

on the order of a few hundred. Understanding that increasing the number of phase screens

also increases computational requirements it is useful to understand how few screens can

be used without sacrificing accuracy in the model.

To begin, consider the simple case of a single phase screen placed at an arbitrary position

along the imaging path. Starting with Eq. 2.3 this condition can be approximated as

θ 1
0 =

⎡
⎣2.91k2C2

n

L∫
0

5
3

δ (z− zi)dz

⎤
⎦
− 3

5

(2.9)
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Figure 2.2: Predicted isoplanatic angle (solid) resulting from using a single
phase screen to represent the turbulence volume as the screen is moved
along a 1000m imaging path with the imaging system located at 0m. A
0.1m aperture is used and C2

n is 10−14 m−2/3. Note that the single screen
is less than the theoretical value (dashed) for distances greater than about
700m. Although not shown in this figure values become asymptotic as the
screen location near the aperture or the object

where the superscript in Eq. 2.9 indicates the use of a single phase screen to represent

the turbulence volume. Numerical evaluation of this expression (Fig.2.2) produces an

interesting, though not unexpected, result. For the conditions evaluated, the predicted

isoplanatic angle is θ0 = 17.7μrad using the continuous theoretical model given in Eq.

2.3. Using the single-screen discrete model in Eq. 2.9 with a screen at the midpoint

the predicted isoplanatic angle is θ 1
0 = 28.8μrad a severe underestimate of this quantity.

Inspecting Fig.2.2 it is also clear that the isoplanatic angle can be reduced by placing the

screen closer to the object. In fact, the theoretical value may be duplicated by placing the

screen at about 700 m for the 1000 m path length evaluated in this case. However, as noted

earlier, moving the screen closer to the object reducing the prevalence seeing effects.
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Table 2.1
Simulation turbulence parameters and derived values

C2
n r0

D
r0

θ0 θo

Condition (m− 2
3 ) (cm) (μrad) (pixels)

low 2.25×10−14 3.45 3 10.8 4
moderate 3.25×10−14 2.47 4 7.75 3

severe 5.25×10−14 2.02 5 6.33 2

The expression for the isoplanatic angle resulting from using a single screen can be

generalized for a model containing N uniformly spaced phase screens resulting in

θ N
0 =

⎡
⎢⎣2.91k2C2

n

n=N

∑
n=1

nL
N∫

(n−1) L
N

(
L
N

)( 5
3 )

dz

⎤
⎥⎦
− 3

5

(2.10)

Numerical evaluation of Eq. 2.10 indicates that the expression converges toward the

theoretical value in Eq. 2.3 as the number of uniformly spaced screens used increases

(Fig.2.3). In addition, is is also possible to evaluate how well each configuration

approximates the isoplanatic conditions predicted by theory. Using five screens results

in an error in the resulting isoplanatic angle which is on the order of the diffraction limit

for the conditions considered here while minimizing the computation resources needed for

simulation. This value is also exceeds the four screens specified for split-step modeling

based on the maximum scintillation criteria.
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Figure 2.3: Isoplanatic angle resulting in approximating the continuous
turbulence volume by a series of uniformly spaced, discrete phase screens.
In this figure, D = 0.1m, C2

n = 10−14m−2/3, and L = 1000m.

2.5 Model Validation

The stated goal of developing this simulation method is the quantitative evaluation of

image reconstruction techniques in the presence of turbulence featuring anisoplanatic

distortions. Statistically rigorous, quantitative evaluation of these methods requires large

data sets spanning a range of turbulence conditions. The choice was made to generate 1000

image frames over each of three turbulence conditions in the range of C2
n = 10−14 m−2/3

over a 1000m horizontal path using a 0.1m aperture imaging system. Three conditions,

summarized in Table 2.1, were identified as producing, low, moderated and severe image

degradation for this imaging system and path length. Corresponding values for the seeing

parameter, r0, and the isoplanatic angle, θ0 are also provided in Table 2.1. In addition,

values of D/r0 and the isoplanatic angle in terms of image pixels are included for reference.
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Having identified a range of turbulence conditions over which to generate a data set, a

prudent next step is the validation of the model over these conditions. Validation of seeing

effects is accomplished by comparing the long exposure PSFs produced for a single block

to established theory. The theoretical long exposure PSF may be found by inverse Fourier

transform of the ensemble average transfer function of the atmosphere is given here as [25]

HLE(u,v) = exp{−57.4C2
nL f

5
3

lenλ− 1
3 (u2 + v2)

5
6} (2.11)

where flen is the imaging system focal length. The corresponding response of in

the simulation method is found by averaging multiple frames when a single pixel,

approximating a point source, is provided as an input. In Fig.2.4 the average of 500 of these

frames is shown to match the theoretical values almost exactly over the span of turbulence

conditions considered.

The presence of anisoplanatism effects in the simulation model may be verified using a

similar procedure. Fig. 2.5 shows a set of outputs from the simulation model when a

pincushion image is provided as an input. Sources in the image were spaced 30 pixels apart

to prevent overlap and allow for visual verification of anisoplanatic effects over the image

frame. In each of the images provided, one for each turbulence case, the distortion affecting

each source clearly differs between sources and over the image frame. Quantifying the

onset of anisoplanatic effects is realized by correlating PSFs as a function of separation in

the image frame. The peak, normalized correlation coefficient as a function of separation
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Figure 2.4: Predicted and Simulated, Radially Averaged, Long-Exposure
PSFs for (A) Low, (B) Moderate, (C) Severe turbulence cases. Simulated
PSFs are generated using 500 frames
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Figure 2.5: Point sources on 30 pixel spacing demonstrating
anisoplanatism over a single image frame in simulator output for (A) Low,
(B) Moderate, and (C) Severe turbulence conditions.

for the three turbulence conditions examined can be found in Fig. 2.6 . For each value

in this figure a PSF was generated for the center location of the image and also at the

indicated distance in pixels along each image axis in both directions. The value recorded

represents the average of these four correlations over 100 instances. A consistent decrease

in correlation is observed as separation and turbulence strength increases indicating the

presence of anisoplanatic effects even at small angular separations in the image. Evaluation

at the isoplanatic angles predicted by theory Eq. 2.3 for each case (Table 2.1) yields a

correlation coefficient near 0.97 for each of the conditions examined.

2.6 The Horizontal Imaging Data Set

Following validation of the model, 1000 image frames were generated for each of the

turbulence conditions in Table 2.1 using the "Lena" [26] image as the common source

object for the data set. The Lena image features a human face, significant dynamic
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Figure 2.6: Average, peak, normalized cross-correlation between PSFs
as a function of separation in image pixels. Each data point represents
the average correlation between four PSFs along each axis and the PSF
generated for the center pixel averaged over 100 independent turbulence
volume realizations

range and an abundance of high-frequency spatial content; all important visual cues for

subjectively evaluating image quality. Generating each frame in MATLAB R© required

approximately 40 minutes on a Intel 2.1 GHz Xeon processor and approximately 90 days of

computer time were required to generate the data set. A turbulence-free, diffraction-limited

image and an example image from each of the data sets is provided in Fig. 2.7; note that

both atmospheric seeing and anisoplanatic effects are evident in the simulation output.

In addition to a data set, an objective metric is also needed to properly quantify image
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Figure 2.7: Simulator output for the (A) Diffraction-Limited, (B) Low, (C)
Moderate, (D) Severe turbulence conditions listed in Table 2.2

reconstruction performance; the MSE is used here though other metrics may suffice. To

provide a baseline for understanding the performance of these methods the MSE statistics

were collected for each data set and analyzed. The MSE in intensity value per pixel was

calculated for each frame by first centering the frame on the diffraction-limited reference
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Figure 2.8: MSE count frequency and associated log-normal fit for the
Low(A), Moderate(B), and Severe(C) data sets.

image in Fig. 2.7. The MSE for each image frame is then calculated as

MSE f =
1

MN

M

∑
m=1

N

∑
n=1

|i(m,n)−o(m,n)|2 (2.12)

Fig. 2.8 features the distribution of MSE per frame(Eq. 2.12) for each data set. A

log-normal distribution has also been fitted to each distribution having been found to

provide the best fit to the errors frequency in each distribution [27]. It is oberved that

the average MSE in each dataset increases from 673 counts for the low condition to 1165

counts for the severe condition approximately linearly as a function of turbulence strength

in terms of C2
n . The variation about the mean is observed to decrease slightly as turbulence

strength increases from 13.9% to 10.5%. A summary of the MSE statistics for each data

set can be found in Table 2.2.
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Table 2.2
Log-Normal Parameters for MSE Statistics

r0 μ σ2

(cm)
Low 3.45 673 8755

Moderate 2.47 917 11168
Severe 2.02 1165 14961

2.7 Conclusion

A simulation model that accurately reproduces seeing and anisoplanatic effects observed

in images acquired over horizontal path has been developed. This model has been used to

generate a data set of 3000 turbulence-corrupted images based on a pristine input image.

Using this data set, the performance and robustness of image reconstruction techniques

applied to the horizontal imaging problem may be objectively evaluated. A baseline

analysis of the image degradation in terms of the MSE in intensity value per pixel was

also undertaken for each data set. This analysis indicates that the distribution of errors in

each data set is log-normal with a mean value that increases with turbulence strength. To

be considered robust, the mean and variance in residual MSE present in reconstructions

derived from this data set must be lower than this established baseline.

Images in this data set were generated using five phase screens placed uniformly with

the aim of duplicating conditions found over horizontal or slightly slanted paths. It was

possible, using five phase screens, to validate seeing effects in the model to theory. It
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remains possible that anisoplanatic effects may still be slightly under-expressed. Using

more sophisticated workstations and incorporating additional phase screens the accuracy of

the model may be improved. Though not explored here, the distributed phase screen model

also allows for differing turbulence profiles to be explored. For example, by increasing

the relative turbulence strength of screens nearer the object it may be possible to simulate

severe slant path conditions. More specialized topographic scenarios (i.e. partially over

water paths) may be simulated in a similar manner by manipulating the turbulence strength

and spacing between screens. Of course, in all of the cases, including the one presented

here, some attempt at validation against field conditions is also warranted.
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Chapter 3

Robustness of Speckle Imaging

Techniques Applied to Horizontal

Imaging Scenarios

1

1The material contained in this chapter was previously published in the journal Optical Engineering published
online on August 3, 2012 [2] and is scheduled to appear in print in the August 2012 issue of the journal. See
Appendix C for documentation of permission to republish this material.
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3.1 Introduction

The turbulent atmosphere near the Earth’s surface has a deleterious effect on the

performance of horizontally-tasked imagers which must operate at ranges of a few hundred

meters out to several kilometers. The desire to improve the quality of imagery provided

by these systems has motivated research into methods for mitigating turbulence effects

encountered over horizontal paths. A significant number of these methods have their origins

in the imaging of space objects where the problem has been the subject of active research

for over 50 years. Due to differences in the physics of the underlying problem, some

of these methods are better suited to horizontal imaging than others. Specifically, in the

imaging of space objects, it is often convenient to assume that atmospheric turbulence is

concentrated in a thin layer directly above the imaging aperture. Moreover, objects of

interest are distant, spanning at most a few arc seconds. As a result of these conditions, the

effect of turbulence is constant over the angle subtended by the object, a condition referred

to as isoplanatic. In contrast, objects of interest in horizontal imaging scenarios generally

span much larger angles at more modest distances. As a consequence, the isoplanatic

assumption no longer holds. Indeed, in many horizontal imaging scenarios the isoplanatic

angle may be on the order to the diffraction limit of the imaging system.

Horizontal imagers are also likely to have significantly different operational requirements.

For example, they are generally operated by novice users and may be included in
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man-portable systems. In both cases, it is necessary that the system perform effectively

over a wide range of conditions without requiring user interaction. These systems are also

likely to have modest imaging apertures compared to those used in observatory telescopes.

In most horizontal imaging scenarios, reconstructions must also be provided to the user

in real-time, implying that a certain level of computational efficiency is required. For

portable systems, weight, and therefore power consumption is of concern. Consideration

of these requirements leads to the conclusion that some sort of embedded image processing

system is necessary to achieve operational goals. Bearing in mind the expense involved

in developing embedded systems, most engineering organizations would be reluctant to

expend the resources necessary without first fully vetting the underlying image processing

algorithm. Such efforts begin by finding a design solution most likely to meet the

requirements and then continue by evaluating the design over the expected variation in

operational parameters. The set of these parameter variations, including variations due to

use by novice users, are identified as the system noise parameters. Designs that possess

a certain level of immunity to the variation in these noise parameters are considered to be

robust.

It is interesting then, to understand which image post-processing techniques can be shown

to robust considering these requirements. A number of image post-processing techniques

have been developed specifically for use in horizontal imaging applications. For example,

Fraser [28] has suggested a method by which tip-tilt distortions are removed first globally,

and in successively smaller sub-regions, finally reaching the level of a single pixel; residual
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image blur is compensated by traditional deconvolution techniques. Carhart and Vorontsov

[20], [29] have suggested a technique based on the idea of lucky frame selection whereby

the highest quality subregions over a series of short exposure image frames are combined

to generate a single high quality image. The idea of applying speckle imaging techniques

to horizontal imaging scenarios was first suggested by Carrano [30]. The performance

acheived by speckle imaging, in particular, was promising enough that an embedded

speckle imaging system has been developed [31]. However, the degree to which any of

these methods maintain their performance over variation in operational conditions is still

largely unknown. In Chapter 2 a horizontal imaging simulation model [1] was developed

and used to develop a data set of 1000 images for each of three turbulence conditions

based on the “Lena” test image [26]. Utilizing this data set, the quantitative evaluation of

performance of each of these methods may be examined over the variation in their relevant

noise parameters. For speckle-imagers these parameters include design parameters such as

the number of input frames and the number of estimates of the object phase. Parameters

that are estimated or tuned by the user in the pseudo-Weiner filter are also treated as noise

parameters in this work.

In this work, the robustness of speckle imaging techniques applied to horizontal imaging

scenarios is evaluated. Beginning in section 3.2, the horizontal imaging problem is

discussed in a detail. A requisite review of speckle imaging and the factors important

in reconstruction performance using speckle imagers is provided in section 3.3. This

analysis continues by defining robustness as it applies to horizontal imagers in section 3.4,
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before providing results in section 3.5. The analysis indicate that, for daylight, horizontal

imaging scenarios speckle imaging performance is stable when more than 15 input frames

are used in each estimate along with 4 estimates of the object phase. Similarly, if the user

is able to provide a rough estimate of the seeing conditions along the path reconstructions

near the performance limit of the estimator may be obtained. A complete review of the

conclusions and recommendations resulting from this work are provided in section 3.6. It

is assumed that the target object does not significantly affect speckle imaging performance

as long as that target is a natural scene. To check this assumption these analyses are

repeated on a second simulated image set featuring the “Boats” reference image [32] and

the same simulation parameters as the “Lena” set. No significant performance differences

were observed between the two analyses. Summarized results of this second analysis and

a descriptions of the second data set are included as appendices to this dissertation for

completeness.

3.2 Horizontal Imaging

Horizontal imaging, as described here, can be considered a special case of the general

problem of imaging through turbulence. In general, the effect of turbulence is to

reduce the resolution available to imaging systems. It is often useful to describe the

resolution available to a turbulence-limited imaging system in terms of the equivalent

diffraction-limited radius, or atmospheric coherence radius, r0, defined by Fried [33],[18]
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as

r0 =

⎡
⎣0.4217k2

L∫
0

(
L− z

L

)
C2

n(z)dz

⎤
⎦
− 3

5

(3.1)

where λ is the mean imaging wavelength, L is the imaging path length, k = 2π/λ is the

wavenumber, and C2
n is turbulence strength parameter, provided as a function of distance,

z, along the imaging path. Note that the expression in Eq. 3.1 is valid for spherical wave

propagation, an appropriate assumption for the horizontal imaging conditions. It is also

common to assume that the turbulence strength, C2
n , is constant over the imaging path for

fixed heights above the ground. This second assumption allows Eq. 3.1 to be written as

r0 = (0.16C2
nk2L)−

3
5 (3.2)

This quantity may be used to define the effective resolution available to an imaging

system when the exposure time is much longer than the coherence time of turbulence in

atmosphere. Using a linear system framework the available image is expressed as the

convolution of an object irradiance distribution and a Point Spread Function (PSF) which

includes the effects of both the imaging system and turbulence effects. Analysis in this case

is usually performed with Fourier transformed quantities allowing the Fourier spectrum of

the resulting image, I(�f ) to be expressed as

I(�f ) = HLE(�f )O(�f ) (3.3)
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where O(�f ) is complex frequency spectrum of the object irradiance and [18]

HLE(�f ) = exp

⎧⎨
⎩1

2
−6.88

(
λD|�f |

r0

) 5
3

⎫⎬
⎭ (3.4)

is the long exposure atmospheric Optical Transfer Function (OTF) and D is the aperture

diameter of the imaging system.

A significant limitation of Eq. 3.4 is that is does not apply to imaging over short time-scales.

A similar expression for short-exposure [33] imaging is available but it does not include

bulk tip and tilt effects. These tip-tilt distortions are only uniform over an area smaller than

the isoplanatic angle, defined here as

θ0 =

⎡
⎣2.91k2

L∫
0

C2
n(z)z

5/3dz

⎤
⎦
− 3

5

(3.5)

Objects spanning angles greater than θ0 are subject to independent tip and tilt distortions,

in addition to higher order distortions, and are not shift-invariant. The presence of these

anisoplanatic distortions is a defining trait of imagery acquired over horizontal paths.

In addition to the assumptions regarding the turbulence characteristics over horizontal

paths, the definition of horizontal imaging used here is further limited to include the

following characteristics. First, it is assumed image acquisition occurs during daylight

such that image detection can be approximated with Gaussian statistics and that Poisson

statistics associated with photon-limited imaging can be safely ignored. As a result, for
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the high Signal to Noise Ratio (SNR) scenarios of interest here, the only relevant noise

characteristics of concern are due to read noise from the imaging CCD. It is also assumed

that acquisition takes place over horizontal or slight slant paths on the order of a few

hundred meters up to a few kilometers. Turbulence strengths over these paths can assumed

to be constant and magnitude of C2
n is limited such that scintillation effects are may be

ignored.

3.3 Speckle Imaging

In speckle imaging, the amplitude and phase of the object Fourier transform are estimated

in separate steps using the ensemble statistics of each quantity over the provided input

frames. A single reconstructed image frame is developed via inverse Fourier transform of

the combined estimates. The amplitude estimate is obtained by inverse filtering the average

Power Spectral Density (PSD) of each short exposure input frame using a Weiner filter

|Ô(�f )|2 =
〈|I(�f )|2〉

|ĤLE(�f )|2 +α
(3.6)

where ĤLE is the estimate of the long exposure Optical Transfer Function (OTF) of the

atmosphere based on Eq. 3.4. In astronomical imaging scenarios the quantity, ĤLE , in Eq.

3.6 is measured by observation of a nearby natural or artificial point source such as a star.

Such sources are not often found in horizontal imaging, requiring the turbulence strength
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used in Eq. 3.4 be estimated based on time of day and imaging path length via Eq. 3.2.

These estimates often lack accuracy, resulting in reduced reconstruction quality. Eq. 3.6

also includes a noise regularization parameter, α , which is generally tuned according to

user preference.

Taken on its own, the amplitude estimate provided by Eq. 3.6 lacks the object phase

information necessary to reconstruct an image. To estimate the object phase the object

cross-spectrum [5] or bispectum [6] are employed. These quantities are defined as

C(�f ,Δ�f ) = I(�f )I∗(�f +Δ�f ) (3.7)

for the cross-spectrum, and

B(�f ,Δ�f ) = I(�f )I(Δ�f )I∗(�f +Δ�f ) (3.8)

for the bispectrum. In both quantities, Δ�f represents an incremental offset in frequency

relative to �f . Phase is recovered using the Knox-Thompson technique by first substituting

Eq. 3.3 into Eq. 3.7 and expanding result in terms of the amplitude and phase of each
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quantity resulting in

C(�f ,Δ�f ) = |O(�f )||O∗(�f )||Hatm,n(�f )||H
∗
atm,n(�f +Δ�f )|×

exp
{

j
[
φo(�f )−φo(�f +Δ�f )+φH,n(�f )+φH,n(�f +Δ�f )

]}
(3.9)

In Eq. 3.9, Hatm,n is the, random, instantaneous atmospheric OTF, including imaging

system effects degrading deterministic object spectrum O( f ) and φH,n(�f ) is the phase

associated with this quantity. Taking the expectation of Eq. 3.9 over N image frames

results in

〈C(�f ,Δ�f )〉N = |O(�f )||O∗(�f )|〈|Hatm,n(�f )||H
∗
atm,n(�f +Δ�f )|〉N ×

exp
{

j
[
φo(�f )−φo(�f +Δ�f )+ 〈φH,n(�f )+φH,n(�f +Δ�f )〉N

]}

(3.10)

Amplitude and phase contributions from the atmosphere in Eq. 3.10 are referred to

the as the average atmospheric cross-spectrum transfer function. It can be shown, that

this quantity is real and therefore
〈

φH(�f )+φH(�f +Δ�f )
〉
= 0. Subsequently the object
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phase is retained in the cross-spectrum and may be recovered recursively. Specifically,

the phase at an unknown frequency, �f ′ = �f +Δ�f , is found using the cross-spectrum or

Knox-Thompson(KT) method as

φo(�f
′) = φo(�f )−〈φKT (�f ,Δ f )〉 (3.11)

A similar exercise may be undertaken using the bispectrum resulting in,

φo(�f
′) = φo(�f )+φo(Δ f )−〈φB(�f ,Δ f )〉 (3.12)

In both cases, phasor quantities are generally used to avoid modulo π ambiguities.

Initializing the recursions in Eq. 3.11 and Eq. 3.12 requires an assumption be made

regarding the object. The real-valued nature of images implies a zero phase value at DC,

|�f |= 0 in both methods, this assumption alone is sufficient to begin recovery using the KT.

For the bispectrum, it is also necessary to set the value adjacent to the origin, |Δ f = 1|,

to zero. This second assumption results in a loss of relative spatial information which is

of little consequence in imaging space-based objects but complicates the reconstruction

of extended scenes common to horizontal imaging. Upon further inspection of Eq. 3.11

and Eq. 3.12 it is also evident that if the desired object phase frequency, �f ′ = �f +Δ�f , is

fixed, there exist multiple independent values of �f and Δ�f which satisfy the relationship. In

practice, the estimate of the object phase at each spatial frequency in the object spectrum is

derived using multiple combinations in the bispectrum or cross-spectrum phase. A number
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estimators are available [10], [11], that can be used to obtain an optimum estimate for

the object phase, though these approaches introduce significant computational complexity.

The generalized approach taken uses only the average from a limited number of sub-planes,

Δ f , of the cross and bispectrum; this method can be described in a simplified form for the

bispectrum

φob(�f ′) =
1

Np

Np

∑
Δ�f=1

[
φo(�f ′ −Δ�f )+φo(Δ�f )−β (�f ′ −Δ�f ,Δ�f )

]
(3.13)

and the cross spectrum as

φoc(�f ′) =
1

Np

Np

∑
Δ�f=1

[
φo(�f ′ −Δ�f )−KT (�f ′ −Δ�f ,Δ�f )

]
(3.14)

The quantities β (�f ′,Δ f ) and KT (�f ′,Δ�f ) in Eq. 3.13 and Eq. 3.14 are the unbiased

estimators for the bispectrum [7], [18]

β (�f ,Δ�f ) = I(�f )I(Δ�f )I∗(�f +Δ�f )−

|I(�f )|2 −|I(Δ�f )|2 −|I(�f +Δ�f )|2 +2K +3Pσ2
n (3.15)
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and cross spectrum

KT (�f ,Δ�f ) = I(�f )I∗(�f +Δ�f )− I∗(Δ�f ) (3.16)

In Eq. 3.15, K is the total number photo-events in real image frames, or for arbitrary

units K = |I(�f = 0,0)|; σn is the standard deviation of the additive noise present in image

frames. Note that the SNR of the cross and bispectrum decreases as the magnitude of the

offset frequency sub-plane, Δ�f , increases [7]. So, it is not always the case that increasing

Np results in an improvement in image quality. The number of recursion paths, Np in Eq.

3.13 and Eq. 3.14 is taken to be the number of phase estimates used for each reconstruction.

As a design parameter, the number of phase estimates can affect both image quality and

reconstruction time.

Because the bispectrum is shift-invariant it is favored over the KT for phase retrieval in

most speckle imaging applications. Examining Eq. 3.7 and Eq. 3.8 it is also evident

that the bispectrum is identical to the cross-spectrum apart from a frequency dependent

scaling factor which provides for improved reconstruction performance at low light levels.

The shift-invariance and weighting of the bispectrum provide a substantial advantage in

photon-limited imaging cases. The scenarios of interest here are not photon-limited,

and while it may appear that shift invariance would still be preferred it is irrelevant in

the imaging of extended objects. For extended objects, the limited support condition is

enforced artificially by zero padding the scene presented to the estimator. This scene must
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be consistent between image frames imposing the requirement that images be registered

prior to processing. Under these conditions I assert that the bispectrum and KT methods

are essentially identical apart from the additional computations required to support the

weighting in the bispectrum algorithm. I also note that reconstructions produced using

the bispectrum method require a separate post-reconstruction registration step that adds

to the overall computation burden. In this work, the KT method is examined along side

the traditional bispectrum method used for speckle-imaging with the goal of proving the

assertion of equivalence between the two methods.

3.4 Robustness

The goal in this work is to establish the robustness of speckle imagers in horizontal imaging

applications. This goal is ambiguous due to the many definitions of robustness that exist

throughout engineering literature. In this work, robustness is defined as immunity to the

factors that cause variability in performance. These factors are further defined as both the

range of conditions over which the estimator is expected to operate and the range of user

controlled or free parameters. These are parameters that are either estimated or tuned by

the user and may affect estimator performance. Also included in this definition is a certain

stability of performance in the presence of noise in collected input frames.

Traditionally, the evaluation of robustness requires the use of a metric that can be directly
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related to the SNR. In this work, the Mean Squared Error (MSE) in normalized intensity

pixel values is used for this purpose. While not ideal as a metric of image quality, it is

well established and straightforward to implement. The main drawback to the use of the

MSE, or any SNR-based metric, is the requirement that a reference image be used in order

to evaluate the quality of the reconstruction. This requirement, and the need to carefully

control input conditions, strongly suggests that a simulation is necessary to perform this

analysis.

In a Chapter 2, a simulation model was developed that produces images containing both

anisoplanatic distortions and atmospheric blurring. To produce these images a reference

image is sampled spatially at the object plane at a rate equal to the angular diffraction limit

for the simulated imaging system. Using a geometric optics approach a ray is traced from a

sample in the reference image, located at the object plane, to every pixel in the detector of

the simulated imaging system. Turbulence effects are introduced via a series of random

phase screens, with Kolmogorov spatial statistics, placed uniformly along the imaging

path. Phase errors are accumulated along each ray and applied as a set of perturbations

to the unperturbed aperture field distribution. This perturbed aperture distribution is used

to develop a PSF that is specific to a single sample in the reference object and differs as a

function of separation in the object plane.

In this model a PSF is developed for each sample in the reference image. Images are

formed by summation over each PSF, weighted by the sampled intensity of the reference
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image. New images are created by repeating the process with new phase screen instances.

Using this technique a simulated data set of 3000 image frames was developed. The

simulated data set spans three turbulence conditions in the range of C2
n = 10−14 m−2/3.

Each frame simulates the image formed by a 0.1m aperture imaging system, with λ = 700

nm, observing a 0.75m object over a 1000 m path through a turbulence volume. For each

turbulence condition 1000 image frames were generated using the “Lena" [26] image as the

reference image. Intensity values in each simulated frame are normalized to values between

0 and 255 and each image is then registered against a diffraction-limited template using

the peak normalized cross-correlation coefficient. The MSE in normalized intensity value

per pixel, for each frame, i, with pixel locations, (m,n), compared to diffraction-limited

template, o is found as

MSE f =
1

MN

M

∑
m=1

N

∑
n=1

|i(m,n)−o(m,n)|2 (3.17)

A summary of the MSE statistics across the three turbulence conditions in the data set and

a summary of the turbulence parameters is found in Table 3.1. In a previous work [1] the

distribution of errors in terms of normalized intensity pixel values per frame over each data

set were found to be distributed log-normally. The MSE statistics presented in Table 3.1

are the best fit parameters to a log-normal distribution. Example output frames from the

simulation tool are provided in Fig. 3.1.

This baseline analysis of the simulated data establishes a criteria for the robustness of

53



Table 3.1
Simulation turbulence parameters and log-normal statistics used to

develop the “Lena” data set. The terms “Low”, “Moderate” and “Severe”
are used as labels to identify the data sets and indicate the effect of

integrated turbulence on imaging over the simulation path in the moderate
turbulence regime.

Condition C2
n r0 θ0 μMSE σMSE

(m− 2
3 ) (cm) (μrad)

“Low” 2.25×10−14 3.33 10.52 673 96
“Moderate” 3.75×10−14 2.45 7.74 917 106

“Severe” 5.25×10−14 2.02 6.38 1165 122

candidate estimators. To be considered a capable estimator the mean residual MSE of

reconstructed image frames must be lower than that of the input data set. Further, the

variance in the residual MSE across reconstruction frames must also be lower than the

variance in the input data set. Obviously, smaller values for both quantities is evidence

of a higher quality estimator. A parametric tuning of the design parameters associated

with speckle imagers will allows the identification of a subset of parameters on which to

optimize when designing and implementing systems based on these methods.

A number of parameters influence the reconstruction quality available to speckle imaging

systems. One obvious parameter is the severity of the turbulence conditions during the

observation time. The other parameters affecting image reconstruction quality are either

fixed by the designer or tuned by the user. These parameters are: the number of input

frames, the user estimate of C2
n , the noise regularization parameter, α in Eq. 3.6, and the

number of independent phase estimates per spatial frequency. The choice of the number

of input frames, Nf , and object phase estimates, Np, has a direct effect on the image
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Figure 3.1: Example frames from the “Lena” simulated data set. Image
frames in the panel are for (A) diffraction-limited, (B) “Low”, (C)
“Moderate”, and (D) “Severe” conditions.

reconstruction time and is therefore of interest to the designer. Estimates for the two

Weiner filter parameters are generally estimated or tuned by the user though the designer

may still choose to restrict the range of values available to the user to ensure adequate

reconstruction quality. Finally, the detection statistics for each pixel are assumed to be

adequately modeled by non-zero mean Gaussian processes. However, at high frame rates

the presence of additive noise attributable to imaging CCD electronics must be considered.
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Each of these factors are accounted for in this analysis of the robustness of speckle imagers.

3.5 Results

3.5.1 Effect of variation in α on reconstruction performance

This analysis begins by examining the influence of the the value of the Weiner filter noise

parameter, α in Eq. 3.6, on reconstruction performance. As mentioned previously, this

value is traditionally tuned according to user preference and has no theoretical minimum

value in the absence of additive noise. In the presence of noise, the optimum value of

this parameter is theoretically related to the SNR of the input signal and independent of

the distortion strength. In either case, it is of interest to understand the value of this

parameter that results in the minimum MSE; especially when additive noise effects are

considered. Based partially on experiment, a region of interest for this parameter was

established over the range α = {0.01...2.0}. Evaluation was undertaken for each of the

three turbulence conditions, with the number of frames was fixed at Nf = 50 allowing

for performance evaluation over N = 20 independent reconstructions. A default value of

Np = 5 phase estimates was used to estimate the phase at each frequency in the object

spectrum. The value of C2
n used in the Weiner filter is set to the theoretical value used in

the simulation model used to generate the data set. Results are displayed separately for
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the three turbulence conditions in Fig. 3.2. An optimum value near α = 0.4 was recorded

for each turbulence condition and is used as a default value in the analysis of the other

parameters explored in this work.

3.5.2 Effect of variation of α on reconstruction performance in the

presence of additive noise

The noise parameter in Eq. 3.6 is theoretically dependent on SNR. Bearing in mind this

dependence, the optimum value of α should vary as the level of additive noise in the image

is increased. To explore this relationship, zero-mean additive Gaussian, σn = {1,2, ..10}

was added to input frames and the value of α varied. The results of this analysis is presented

in Fig. 3.3. Examination of Fig. 3.3 indicates that MSE as affected by variation in the

Weiner filter noise parameter is at most a weak function of turbulence strength and saturates

for high noise levels. The slight increases in MSE at α = 0.4 and 1 can be attributed to

slight misalignments in image registration at high noise levels. Optimum values, specific

to the image set, were recorded and used when the evaluating the variation of the other

parameters examined in this work. No significant change in the variance in residual MSE

is observed regardless of the value of α or noise level.
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Figure 3.2: Evaluation of the effect on the post-reconstruction, residual
MSE observed by varying α for the (a) “Low”, (b) “Moderate”, and (c)
“Severe” turbulence conditions.
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Figure 3.3: Evaluation of the effect on the post-reconstruction residual
MSE observed by varying α for the bispectrum (a) “Low”, (b) “Moderate”,
and (c) “Severe” turbulence conditions including additive noise, and
similarly for the KT in (d), (e), and (f).In each figure, the solid lines
represent the mean reconstruction performance for σn = 1 and σn = 10 with
the dotted lines indicating the mean performance for σn = 2,3..9. Dashed
lines at the limit of the volume represent the deviation for the two extreme
cases.
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3.5.3 Effect of the estimate of C2
n on reconstruction performance

In addition to the noise parameter discussed above, the Weiner filter in Eq. 3.6 also requires

an estimate of the blurring function, ĤLE . The the long-exposure transfer function in Eq.

3.4 is used here and requires an estimate either of r0 or C2
n and the length of the imaging

path. An experienced user would not find it difficult to roughly estimate these parameters

by observation of the viewing conditions during acquisition. It may even be possible to

accomplish this task automatically. In either case, an exact or optimum estimate is unlikely.

Given the data sets represents conditions in the range of C2
n = 10−14 m−2/3, it is reasonable

to assume that the user can estimate turbulence strength within plus or minus an order

of magnitude and vary the estimate over this range to determine an optimum value. In

this case, C2
n is varied over the range of 10−15 to 10−13 m−2/3; values typical of overland

conditions during the day near the ground.

In this evaluation, the number of input frames was fixed as Nf = 50 allowing for evaluation

over N = 20 independent reconstructions. The noise parameter was fixed at α = 0.4 and

Np = 5. Values were recorded in Table 3.2 for the residual MSE at the value of C2
n that

yielded the minimum residual MSE. The MSE at the theoretical values are recorded in

Table 3.3. Note that in each case the minimum value of MSE is available when better seeing

conditions are assumed. This discrepancy is most pronounced for the “Low" turbulence

condition where the optimum value differs from the theoretical value by 33%. Despite this
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Table 3.2
Values of C2

n producing the minimum mean MSE in residual
reconstruction MSE and the recorded deviation at that value.

Min. MSE C2
n at Min. MSE Min. σMMSE

Condition 10−14 m−2/3

“Low” 318 1.5 11
“Moderate” 483 2.7 12

“Severe” 653 4.5 14

Table 3.3
Value of the mean MSE and deviation in reconstruction performance

available when theoretical values are used to estimate the blurring function.

Condition MSE σMSE

“Low” 338 18
“Moderate” 493 17

“Severe” 655 14

sizeable difference, the penalty incurred in MSE is rather small at 6%. At higher turbulence

strengths, this effect is less pronounced and examining Fig 3.4 it is evident that there is

little if any penalty for over estimating C2
n for moderate and severe turbulence conditions.

From these results it can be concluded that exact estimates of C2
n are only necessary when

seeing conditions are favorable and as seeing conditions degrade this parameter has less

importance. To reinforce this point, observe that performance is nearly optimum over the

range C2
n = 1 to 3×10−14 m−2/3 for the “Low” condition, C2

n = 2 to 5×10−14 m−2/3 for

the “Moderate” condition and for values greater than C2
n = 3×10−14 m−2/3 in the “Severe”

case.
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Figure 3.4: Evaluation of the effect on the post-reconstruction residual
MSE observed by varying C2

n for the (a)“Low”, (b)“Moderate”, and
(c)“Severe” turbulence conditions.
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3.5.4 Effect of the estimate of C2
n on reconstruction performance

including additive noise

Following a procedure identical to that used to evaluate the noise parameter in section 3.5.2

the sensitivity to estimates in C2
n was also examined including additive noise. The obvious

exceptions being that the best-fit values of α were used in the analysis and the value of

C2
n was varied to produce the results. These results are presented graphically in Fig. 3.5

separately for the bispectrum and KT phase estimation methods. It is observed that, in

general, the presence of noise has the affect of reducing the sensitivity to the value of C2
n

over the range of values considered.

3.5.5 Effect of the Number of Input Frames on Reconstruction

Performance

Input frames used for speckle imaging in astronomical imaging are typically dominated

by photon-noise requiring many input frames, between a few hundred to many thousands,

to produce an acceptable reconstruction image. It is reasonable to expect that the number

of input frames will have a similar importance in horizontal imaging scenarios, though

it is likely that far fewer frames will be necessary to achieve an asymptotic level of

performance. In thi examination of the importance of this parameter, the residual MSE

63



Figure 3.5: Evaluation of the effect on the post-reconstruction residual
MSE observed by varying C2

n for the (a) “Low”, (b) “Moderate”, and
(c) “Severe” turbulence conditions including additive noise using the
bispectrum. The same figures are also included for (d) “Low”, (e)
“Moderate”, and (f) “Severe” conditions using the KT method for phase
recovery. In each figure, the solid lines represent the mean reconstruction
performance for σn = 1 and σn = 10 with the dotted lines indicating the
mean performance for σn = 2,3..9. Dashed lines at the limit of the volume
represent the deviation for the two extreme cases.
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for scenarios where between 2 and 25 input frames are supplied to estimator producing

N = 40 reconstructions. Theoretical values of C2
n are used in the Weiner filter and α = 0.4.

As in previous analysis Np = 5. The result of this evaluation is provided for each turbulence

condition in Fig. 3.6

Inspecting Fig. 3.6 it is evident that performance approaches an asymptotic limit near Nf =

15 regardless of the turbulence strength. Here the mean residual MSE has been reduced by

43% on average across turbulence conditions and the deviation reduced by 70% compared

to the data set mean. Increasing the number of input frames from Nf = 15 to Nf = 25

provides only an additional 1% improvement in the mean MSE found in reconstructions

though the deviation is reduced an additional 7%. The mean and deviation in residual MSE

for the three data sets at Nf = 15 and Nf = 25 are summarized in Table 3.4.

3.5.6 Effect of the Number of Input Frames Containing Additive

Noise on Reconstruction Performance

Similar to the treatment of other parameters in this work, when noise, σn = {1,2, ..10},

is added to each input frame performance is maintained relative to the SNR of the input

frame. Results of this analysis are presented in Fig. 3.7 for three turbulence cases and

separately for the bispectrum and KT methods. The performance is roughly equivalent

between estimators with minor differences present at high noise levels. This equivalency
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Figure 3.6: Evaluation of the effect on post-reconstruction residual
MSE observed by varying the number of input frames for the (a)Low,
(b)Moderate, and (c)Severe turbulence conditions.
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Table 3.4
A comparison of the available MSE statistics available between Nf = 15

and Nf = 25.

Condition μ15 σ15 μ25 σ25

“Low” 357 29 353 26
“Moderate” 531 38 523 31

“Severe” 608 36 678 26

is demonstrated in Fig. 3.8 where the performance of both estimators is examined as a

function of additive noise at Nf = 15.

3.5.7 Effect of increasing the number of phase estimates on

reconstruction performance

From Eq. 3.11 and Eq. 3.12 it is obvious that multiple combinations of �f and Δ f may be

used to develop an estimate for the phase at the unknown frequency �f ′. Incorporating

multiple independent estimates improves the reliability of estimates of the unknown

phase. Independent estimates are obtained by making use of additional subplanes in the

bispectrum or cross-spectrum by increasing the value of Δ f in Eq. 3.7 and Eq. 3.8 for

a fixed value of �f ′. In this section the effect of increasing the number of independent

phase estimates on reconstruction quality is examined. Although more complex phase

estimation methods exist [10],[11] a simple averaging of phase quantities is used here.

This approach is similar to the standard weighting method [10] with equal weights applied

to each estimate.
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Figure 3.7: Evaluation of the effect on the number of input frames on
post-reconstruction residual MSE including noise effects for the bispectrum
(a), (b), and (c) and KT (d),(e), and (f) phase estimators. In each figure,
the solid lines represent the mean reconstruction performance for σn = 1
and σn = 10 with the dotted lines indicating the mean performance for σn =
2,3..9. Dashed lines at the limit of the volume represent the deviation for
the two extreme cases. 68
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Figure 3.8: Residual MSE as a function of the noise severity for each of the
turbulence conditions when Nf = 15. Bispectrum - solid lines, KT - dashed.

The results of this analysis are presented in Fig. 3.9. In this figure the number of planes,

Np, in the bispectrum and KT is varied from 1 to 10 with Nf = 50, α = 0.4 and C2
n set to

the theory-based simulation values each data set. From Fig. 3.9 it is immediately evident

that a majority of the improvement is available when only 2 phase estimates are averaged.

This result is not unexpected as the SNR of the bispectrum and cross-spectrum is higher

for smaller values of Δ f and decreases as the magnitude of Δ f increases. For image sets

with high SNR the use of additional subplanes reduces the variance in the reconstruction

quality but provides little marginal improvement in mean residual MSE. This reduction in

variance continues until Np = 5 subplanes.

Including additional phase estimates does not dramatically effect reconstruction quality

but it has a significant effect on reconstruction time. Having the option to use fewer
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Figure 3.9: Residual MSE as a function of the number of estimates, used
to inform the estimated phase at each spatial frequency for the (a) “Low”,
(b)“Moderate”, and (c) “Severe” turbulence cases. Results are presented for
the bispectrum (solid) and KT (dashed) in each figure.
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phase estimates allows the effective available frame rate to be increased by decreasing

the reconstruction time. In Fig. 3.10 this dependence is characterized for both phase

recovery methods. Two conclusions result from this analysis. First, for both methods

reconstruction time increases as the square in the number of phase estimates considered.

Second, the time required by the bispectrum to produce a reconstruction is roughly double

that of the KT method. From the first observation it is possible conclude that using more

than 5 phase estimates in speckle-imaging systems makes little sense. The second finding

is more interesting as the bispectrum is traditionally favored in the speckle imaging of

space objects. However, the analysis presented in this chapter indicates that reconstructions

produced by each method are equivalent under daylight horizontal imaging conditions. The

other chief advantage of the bispectrum, namely the shift-invariance, is negated by the

nature of the extended scenes being reconstructed. For any extended scene registration is

required regardless of the estimator used in order to provide a consistent version of the

scene. Considering the increase in reconstruction time associated with the bispectrum, and

in this absence of any other benefit, the Knox-Thompson method should be considered for

use in speckle-imagers assigned to horizontal imaging applications.
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Figure 3.10: Phase reconstruction time as a function of the number of
independent phase paths used to object spatial frequency for the bispectrum
(solid) and KT methods (dashed).

3.5.8 Effect of increasing the number of phase estimates on

reconstruction performance including additive noise

The examination of the number of phase estimates as a design parameter is completed by

analyzing the variation in performance in the presence of additive noise. After all the,

purpose of using of additional phase estimates is to improves reconstruction performance

when using low SNR input frames. Similar to the analyses of the other free-parameters,

additive noise with σn = {1,2, ..10} was added to the image frames and the reconstruction

performance evaluated as the number of phase estimates varied. The result of this analysis

is best interpreted graphically. Referring to Fig. 3.11, there is little improvement available

by incorporating more than Np = 5 phase estimates. In contrast to the noise-free case, it is
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necessary to include at least 4 estimates to ensure reconstruction performance at moderate

to high noise levels (σn > 5).

3.6 Conclusion

To be of practical use, image reconstruction methods used in automated of man-portable

horizontal imagers must maintain their performance over a range of input conditions. In

addition to the severe anisoplanatic distortions experienced in these scenarios, imaging

methods must be robust to uncertainty and variation in a number parameters controlled

by the designer or user. Based on the analysis in this chapter, it can be concluded that

speckle imaging techniques satisfies the stated definition for robustness over the conditions

evaluated. The analysis presented here also results in a number of recommendations

regarding the design of practical speckle imaging systems. Of the parameters considered,

estimates for turbulence strength, in terms of C2
n or some other measure, are likely to have

the largest associated uncertainty. However, even a rough estimate of turbulence strength

allows for nearly optimum reconstruction quality. In fact, there may be at most a weak

relationship between the turbulence conditions and the estimate for C2
n that produces the

best reconstruction quality. The results presented here also suggest that the number of input

frames be limited to Nf = 15 if operation requirements require a high frame-rate. Similarly,

under high SNR conditions the number of phase estimates may be limited to Np = 2, though

Np = 4 is recommended to preserve a certain level of noise immunity. Finally, most values
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Figure 3.11: Residual reconstruction MSE as the number of phase
estimates is increased in the presence of additive noise. In each figure,
the solid lines represent the mean reconstruction performance for σn = 1
and σn = 10 with the dotted lines indicating the mean performance for
σn = 2,3..9. Dashed lines at the limit of the volume represent the deviation
for the two extreme cases.
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of the Weiner filter noise parameter, α , provide near optimum reconstruction performance.

This allows the value to be tuned over a broad range according to user preference. Though

it may be desirable to calibrate an optimal value for α specific to an imaging system.

Perhaps the most interesting result of this work is the recommendation that the KT method

be used in place of the bispectrum for horizontal imaging applications. The KT method

provides performance equivalent to bipectrum but requires half the time to produce an

image. Bearing in mind that weight, power-consumption, and cost are important factors

in the design of horizontal imagers the KT should receive serious consideration for use

in these systems. As a final qualitative argument to this point, reconstructions based on

the design suggestion listed above are provided in Fig. 3.12. In this figure example input

frames are provided in the left column, reconstruction using the bispectrum method are

presented in the center column, reconstructions using the KT method are provided in the

right column. Images in the top row of the figure are for the “Low” turbulence condition,

with the “Moderate” and “Severe” conditions represented in the middle and bottom rows

respectively.
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Figure 3.12: Example input frames for the (a)“Low”, (d)“Moderate”, and
(g)“Severe” turbulence cases. Reconstructions using Nf = 15,Np = 4,α =
0.4, and the optimum values of C2

n listed in Table3.2 are presented for the
bispectrum (b),(e),(h) and KT (c),(f),(i).
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Chapter 4

Blind Image Quality Metrics for

Optimal Speckle Image Reconstruction

in Horizontal Imaging Scenarios

1

1The material contained in this chapter has been submitted for publication in the journal Optical Engineering.
See Appendix C for documentation of permission to republish this material.
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4.1 Introduction

Using man-portable imaging systems, it is possible to monitor sizable areas from

remote vantage points over long horizontal or slant paths. Atmospheric turbulence

along these paths introduces anisoplanatic distortions which corrupt acquired images,

severely limiting their ability to gather useful information. Image processing methods

are currently being developed which can counteract these effects. To be considered

capable, horizontally-tasked imaging systems must provide distortion-free imagery of

remote scenes to operators who are unlikely to be familiar with the underlying image

processing algorithm. Horizontal imagers used in portable systems must also be able

to meet challenging Size, Weight, and Power (SWaP) requirements. Implicitly, these

requirements limit the algorithms to those that are both computationally efficient and able

to provide real-time, or near real-time, imagery to the end user.

Of the many methods proposed to tackle this problem [28],[29],[20], techniques based on

speckle imaging have shown considerable promise in that they operate capably over a range

of imaging conditions when operated by novice users [30],[27]. In addition, real-time

embedded image processing systems based on speckle imaging methods are available

commercially [31]. An open problem specific to the application of speckle imagers to

horizontal imaging scenarios is the need to estimate of the atmospheric blurring function

in the absence of natural or man-made point sources. Accurate estimation of this quantity

78



is necessary to provide an optimum reconstruction of the scene. If too much blurring is

assumed, processing artifacts and noise will dominate the reconstructed images. On the

other hand, if the too little blurring is assumed recovered images will lack sharpness. In

a Chapter 3, the impact of estimating turbulence strength in terms of C2
n was evaluated

assuming a blurring function based on the theoretical long exposure atmospheric Optical

Transfer Function (OTF) and assuming the imaging path length was known. As an outcome

of this work, it is known that estimates of C2
n within an order of magnitude of the true

value result in reconstructions which were similar to the best reconstructions available

from the estimator both in visual quality and in terms of Mean Squared Error (MSE).

Unfortunately, estimating C2
n , even to an order of magnitude is likely beyond the ability

of novice operators.

Considering the wide range of C2
n values which result in optimum, or nearly optimum

reconstructions, it is reasonable to wonder if other quality metrics may be used to

autonomously tune the value C2
n used to atmospheric OTF model. One possibility would be

to use image sharpness metrics similar to those proposed for the imaging of space objects

in adaptive optics systems [34]. Image sharpness is certainly appropriate when imaging

objects comprised of many edges. However, natural scenes are comprised of objects

made up of edges and complex textures. Relative to speckle imaging, metrics based on

image sharpness may prefer OTF estimates associated with turbulence strength resulting in

over-expression of reconstruction artifacts and noise.
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Recent works in the area of Blind Image Quality (BIQ) assessment [35], [36], [37] provide

a promising alternative to metrics based purely on image sharpness. Most of these methods

rely upon models of the Human Visual System (HVS) or Natural Scene Statistics (NSS)

[37] to judge relative image quality. In each case, the aim is typically to provide an

alternative to the the MSE, which often fails to correlate with Mean Opinion Scores (MOS)

indicated by human evaluators [38]. This failure is particularly of common when image

defects are due to lossy compression schemes. Consequently, the majority of these methods

are based on the assumption that defects in the image are due to image compression.

As one might expect, these metrics excel at detecting compression specific artifacts like

blocking, but are less sensitive to the residual blur from poor estimates of atmospheric

blurring. A related novel BIQ technique relies on the concept of anisotropy [39] in image

entropy in order to assess quality. For brevity this metric is referred to as the ABIQ metric

for Anisotropic BIQ. This method benefits from being agnostic to imaging artifacts while

emphasizing edge sharpness without penalizing textures which may be evaluated as blurry.

In this work, the use of BIQ metrics based on edge detection [34] and anisotropy in image

entropy [39] are evaluated for the purpose of providing reconstruction that is equivalent

to the Minimum Mean Squared Error (MMSE) reconstruction of the scene available using

speckle imagers. Both the image sharpness metric and the ABIQ metrics are found able

to provide near optimal reconstruction using previously obtained simulated imagery and

imagery collected in the field. In particular, optimizing image quality via the image

sharpness method resulted in reconstructions that varied from the MMSE by less than 1%
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in most of the cases evaluated.

The remainder of this paper is organized as follows, in section 4.2 a brief summary of

speckle imaging techniques is provided as well as a description of the BIQ metrics utilized

in this paper. In section 4.3 the methods used to assess the suitability of these blind

measure in determining image quality are discussed with respect to the MMSE using both

a simulated data set [40] and field data [19]. Results are discussed in Section 4.4 with

conclusions and suggestions for future work are provided in Section 4.5.

4.2 Background

4.2.1 Speckle Imaging

Speckle imaging methods attempt to reconstruct a representation of a static scene from

multiple turbulence corrupted images of that scene. Recovery is achieved via estimation

of the object Fourier amplitude and phase from the statistics of the Fourier transform of

the image ensemble. Estimation of these quantities occurs in separate steps beginning

with the 2-D Fourier transform of each image frame. The image spectrum for a frame

n = 1,2..N in the ensemble In(�f ), can be considered the product of a deterministic object

spectrum, O(�f ), OTF, Hatm,n(�f ), which accounts for both the diffraction-limiting effects of
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the imaging system and the random distortion caused by the atmosphere, or

In(�f ) = Hatm,n(�f )O(�f ) (4.1)

The object amplitude, O(�f ), is recovered from the expected value of the Power Spectral

Density (PSD) of the ensemble

〈|In(�f )|
2〉= 〈|Hatm,n(�f )|

2〉|O(�f )|2. (4.2)

using a pseudo-Weiner inverse filter

|Ô(�f )|2 =
〈|I(�f )|2〉n

〈|Hatm,n(�f )|2〉n +α
(4.3)

In Eq. 4.3, α is a noise regularization parameter and 〈|Hatm,n(�f )|〉 is the ensemble average

atmospheric OTF, including diffraction effects of the imaging system, over n image frames.

The ensemble average, or Long Exposure, atmospheric OTF is often obtained by observing

a point-source, such as a star in the case of astronomical imaging over many multiples of

the characteristics time scale of the turbulence; theoretical models are also used. After

filtering in Eq. 4.3 the object amplitude is recovered from the PSD by taking the root of

|Ô(�f )|2.

Phase recovery in speckle imaging systems is accomplished using either the cross-spectrum

or the bispectrum of the ensemble image spectrum to estimate the object phase. The
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bispectrum, being the more commonly used, is utilized for phase recovery in this work.

The image bispectrum is a complex, four dimensional data object defined as B(�f ,Δ�f ) =

I(�f )I(Δ�f )I∗(�f +Δ�f ) where Δ f indicates the offset or plane of the bispectrum. The object

phase may be recovered from the bispectrum by first considering that the ensemble average

atmospheric bispectrum transfer function is real valued [18, p.153]. Accordingly, the

expected value of the bispectrum phase is identical to the object bispectrum. The object

phase is then recovered from the ensemble average bispectrum phase of the input image

frames by recursion. Considering only the complex object phase, the phase at an unknown

frequency, φo(�f ′) is recovered using previously recovered phase information at φo(�f ) and

φo(Δ f ) and the average bispectrum phase,

φo(�f
′) = φo(�f )+φo(Δ f )−〈φB(�f ,Δ f )〉n (4.4)

Recursion begins at the origin, �f = 0, where owing to the real nature of each image as a

signal, the phase must be zero. Another phase value is necessary to begin the recursion.

Therefore, it is also necessary to set the values of the object phase adjacent to the origin

to zero. Due to this last constraint, the reconstructed object image is centered about the

centroid of the intensity distribution in the image and may be improperly registered within

the image frame. Fortunately, this defect is easily dealt with as a post-processing step.

Further, as the recursion moves out from the origin, multiple combinations of �f and Δ f

satisfy the relation in Eq. 4.4, �f ′ = �f +Δ f . It is common here to use multiple recursion

paths in order to improve the estimate of the object phase. In this work, up to 5 recursion
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paths are averaged to estimate the object phase at each spatial frequency. Other, more

optimal methods of phase recovery [10], [11] are available but their examination is not

pertinent to the work presented here. Once the object amplitude and phase have been

estimated the combination of the two quantities is combined. The inverse Fourier transform

of the combination

î(x,y) = F
−1{|O(�f |exp{ jφo(�f )}} (4.5)

provides and estimate of the object image.

While phase recovery using speckle imaging requires no knowledge of the turbulence

conditions, recovery of amplitude information in Eq. 4.3, requires an estimate of the

atmospheric OTF. In most cases relevant to horizontal imaging, exact knowledge of the

atmospheric OTF is unlikely unless a natural or artificial point source is present in the

image frame. Instead, it is common to use an estimate of the atmospheric OTF based on

theoretical models. Assuming the uniform turbulence strength along the imaging path,

the ensemble average atmospheric OTF 〈|Ĥn(�f )|2〉n, in Eq. 4.3 may be replaced with the

theoretical long exposure atmospheric OTF [18, pg.87]

HLE(�f ) = exp

⎧⎨
⎩−

1
2

6.88

(
λD|�f |

r0

) 5
3

⎫⎬
⎭ (4.6)

in terms of the imaging system aperture size, D, wave number, k. In Eq. 4.6, r0 =
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(0.16C2
nk2L)−

3
5 is the atmospheric spatial coherence radius, or Fried parameter with

imaging path length L and wavenumber k. The theoretical model in Eq. 4.6 provides

an excellent match to experimental data [33], and assuming C2
n and L are known the object

amplitude may be recovered via Eq. 4.3. In practice, while the path length, L, may be

known, the same is not true for C2
n . One way of dealing with this dilema is to vary C2

n

parametrically in Eq. 4.6 about an esitmate and use a quality metric, such as the MSE to

choose the highest quality image. Unfortunately, the MSE and most other proven image

quality metrics require prior knowledge of the uncorrupted scene. An alternative is the

use of certain blind or no-reference image quality metrics to perform the same tasks. A

summary of the measures considered in this work is provided in the next section.

4.2.2 Measures of Image Quality

The quality of speckle image reconstructions in this work is assessed using three image

quality metrics. One of these metrics, the MSE, is non-blind or full reference and is used

as a reference to compare the performance of the other metric. Here, the MSE is defined in

terms of the normalized intensity value per pixel relative to a diffraction limited reference

image, o(x,y). For a reconstruction î(x,y) of size x = {1,2, ..M} by y = {1,2, ..N} pixels

MSE =
1

MN

M

∑
m=1

N

∑
n=1

|î(x,y)−o(x,y)|2 (4.7)
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For the purposes of this paper the optimal reconstruction is defined, somewhat arbitrarily,

as the image among a set of candidates with the MMSE. The goal then, in using blind

measures of image quality, is to identify the MMSE image among a set without the need

for a reference. These other metrics, based on image sharpness and image anisotropy are

blind, or no reference, measures.

In other areas involving the image recovery in the presence of atmospheric turbulence

image sharpness is used as a metric to determine reconstruction quality. In adaptive optics

applications, for example, image sharpness metrics may be used to optimize the commands

sent to a deformable mirror in order to compensate for turbulence effects. In a survey of

the metrics, Muller [34], identified a number of metrics suitable for this purpose. One such

image sharpness metric is defined as

S4 =
∫ ∣∣∣∂ (a+b)i(x,y)

∂xa∂yb

∣∣∣2 (4.8)

where a,b are the order of the partial derivatives in spatial coordinates x,y of object

intensity distribution i. In this same work, Muller and Buffington also show that this

metric is maximized when atmospheric effects have been counteracted, though noise effects

are not considered in their analysis. Also, when a,b = 1, Eq. 4.8 is equivalent to the

integral over the Laplacian operator commonly used for edge detection in image processing

applications. Using familiar notation, this metric may be expressed discretely for an image
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of dimensions M,N, as

∑
M

∑
N

∣∣∇2i(x,y)
∣∣2 (4.9)

To avoid the noise sensitivity resulting from the derivative in Eq. 4.9 it is common convolve

the image with a Gaussian filter

hg(x,y) = exp

{
−(x2 + y2)

2σ2

}
(4.10)

prior to computing the Laplacian. This combination of Gaussian filter and edge detection

using the Laplacian is commonly referred to as the Laplacian of Gausssian (LoG) filter.

In this work, the summation over a LoG spatial filter of size 10 and σ = 0.5 applied to a

candidate image is used as a method to determine image quality. Due to its similarity to

various edge-detection methods, this metric is referred to simply as the “Edge” BIQ metric.

A recognized shortcoming of the MSE as an image quality metric is that it consistently

fails to correlate with the MOS [38] indicated by human test subjects. This deficiency

has motivated in research into quality metrics which are modeled on the response of the

HVS[37]. As mentioned in Section 4.1, a good number of these metrics are focused on

evaluating the quality compressed images. The anisotropic blind image quality measure

(referred to in this work as ABIQ) proposed by Gabarda and Cristobol [39] is also inspired

by the HVS response and is based on the assumption that framed, natural scenes are
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composed of regions of texture which are bounded by edges. The non-uniform orientation

of these texture region leads to an anisotropy in the directional entropy in a scene. To

assess anisotropy in entropy, the pixel-wise local 1-D entropy of an image is first evaluated

by finding the normalized Pseudo-Wigner distribution for each pixel n = 1,2, ..NM in the

image

W [n,k] = 2
T/2−1

∑
t=−T/2

z[n+ t]z∗[n− t]exp{−2 j(2πt/T )k} (4.11)

along an orientation, θs, over a window of size T . The distribution is then normalized to

unit energy over spatial frequency variable k,

W̌ [n,k] =
W [n,k]

T
∑

k=1
W [n,k]

(4.12)

and the Renyi entropy for a pixel, n along a direction θS found as

R3[n,θs] =−
1
2

log2

(
N

∑
k=1

W̌ [n,k]

)
(4.13)

This process is repeated for each pixel and along each desired direction resulting in a map

of the distribution of directional entropy in the image.

Image anisotropy is calculated from the average Renyi entropy of the image for each angle,
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θs

R̄[n,θs] =
1
M ∑

n
R3[n,θs] (4.14)

which is averaged over all angles

μ =
1
S

S

∑
s=1

R̄(θs) (4.15)

and the image anisotropy found as the standard deviation of the mean direction entropy

over each direction S.

ABIQ =

[
1
S

S

∑
s=1

(μ − R̄(θs))

]−1/2

(4.16)

In this work, the MATLAB function made available by Gabarda and Cristobol is used

to evaluate anisotropy [39]. This function has two input parameters: the window size,

T , and the number of directions, S. The default values of T = 8 and S = 6, or θs =

{0◦,30◦,60◦,90◦,120◦,150◦}, were found to provide the best results relevant to this work.

4.3 Methods

In a general sense, the problem outlined in this work is an optimization problem where

C2
n in Eq. 4.6 is varied while the phase estimate, PSD estimate and other speckle imaging
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parameters are held constant. The reconstructed image is then evaluated using one of the

quality functions and the best image chosen such that

argmax
C2

n

{J(I(x,y;C2
n))} (4.17)

where J is one of the quality metrics described above and I(x,y;C2
n) is the candidate image.

According to the aims of this dissertation, a BIQ metric should reliably provide the same

estimate of C2
n as the MMSE but without needing a reference image. It is also desirable for

the quality functions to have a single, well defined maximum in the neighborhood of the

rough estimate, (i.e. near C2
n = 10−14m−2/3). Evaluation of the two quality metrics against

this criteria is accomplished using two data sets taken from previous works [1], [19]. The

first data set is simulated, allowing for comparison of the BIQ metrics to the MSE. The

second set is made up of imagery collected as part of field experiments and verifies the

performance of the blind metrics, qualitatively, under real world conditions.

The horizontal imaging data set, described in Chapter 2, is composed of 3000 image frames

representing 3 turbulence conditions, summarized in Table 4.1 in the range of C2
n = 10−14

for a 1000 m simulated imaging path. Images are derived from the “LenaŤ” test image

which is modeled as a 0.75m object located distant from an imaging system with a 0.1 m

aperture. The simulation technique uses a distributed phase screen approach incorporating

a simplification of the Fourier split-step propagation model to generate blurring functions

which vary as a function of angular separation in the object. The variation in the
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Table 4.1
Turbulence parameters for the three simulated data sets. Parameters of

λ = 700 nm L = 1000m were used in the simulation and to calculate the
value of r0 in the table under spheric wave propagation conditions.

Label C2
n r0

(m− 2
3 ) (cm)

Low 2.25×10−14 3.33
Moderate 3.75×10−14 2.45

Severe 5.25×10−14 2.01

atmospheric distortion in the object results in anisoplanatic image distortions and are

present in most imagery acquired over long horizontal paths. Example image frames from

the simulation model are provided in Fig. 4.1.

The BIQ measures are also evaluated against field data gathered during a recent Laser

Communications System (LCS) Experiment [19].The transmitter side of the experiment

featured a pinwheel target and a 808 nm laser transmitter. The transmitter station was

observed by a 0.3 m aperture telescope over a 3046 m path which extended over both land

and water at an elevation of 250 m above mean sea level. A beam-splitter was attached

to the back of the receiving telescope which allowed for simultaneous measurement

turbulence strength via a Shack-Hartmann Wave Front Sensor (WFS) and imagery via a

Point Grey 13S2 CCD camera. Turbulence degraded imagery of the pinwheel target was

recorded periodically as part of this experiment during the summer of 2009 under a variety

of lighting conditions and turbulence strengths. Unfortunately, the LCS imaging path was

oriented approximately along an East-West direction resulting in saturation of the imaging

camera during the early morning and late evening when the sun was directly opposed
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Figure 4.1: Example frames from the simulated data set. Image frames
in the panel are for (a) Diffraction-limited, (b) Low, (c) Moderate, and (d)
Severe Conditions

to or behind the experiment. Consequently, the only practical imagery acquisition times

occurred during the late morning and early afternoon except on cloudy days. During these

times the turbulence strength over the imaging path does not vary significantly during with

the WFS indicating r0 values generally between about 2 and 3 cm. In addition, imagery

acquired concurrent with WFS measurements could not be used. The presence of the

laser transmitter signal in the image frame during these times saturates portions of the
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Table 4.2
Date, time and day, and range of WFS measurement near the time of

collection for the three data sets considered.

Date Time Range of values in r0

(cm)
Field 1 2009, July 1 14:00 EDT 4.6 to 5.2
Field 2 2009, July 14 14:00 EDT 2.3 to 2.4
Field 3 2009, July 24 19:00 EDT 1.78 to 2.8

imaging sensor. These saturated areas introduce severe artifacts in the speckle processed

images. Background image frames taken immediately before or after WFS measurement

are used instead with the understanding that WFS measurements are indicative of the

general turbulence conditions and do not represent actual turbulence strength measurements

obtained during image acquisition. Three data sets were selected from data collected during

the experiment. The date, time and labels applied to the three data sets are provided in Table

4.2 along with the range of average r0 values over 3, 27 second intervals.

The evaluation of both metrics is carried out using each data set following a common

procedure. Amplitude and phase estimates are obtained using speckle imaging techniques

as described in Eq. 4.2 and Eq. 4.4. Candidate images are then generated by first inverse

filtering the PSD estimate using the pseduo-Weiner filter described by Eq. 4.3 incorporating

the estimate of the atmospheric OTF taken as Eq. 4.6 with free parameter C2
n . The value

of C2
n in Eq. 4.6 is varied over a range of values and an image generated for each value.

Candidate images are then evaluated by the two BIQ metrics. In the case of simulated

imagery, the MSE is also evaluated relative to a diffraction-limited reference. The value
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indicated by each metric is recorded, normalized and then averaged over each image set.

Unconstrained non-linear optimization according to Eq. 4.17 is also performed using the

fminbnd function in MATLAB [41] to determine an optimum value for each metric. The

mean and standard deviation in the predicted optimum value of C2
n is recorded and used

to evaluate relative performance. In the case of simulated imagery, the difference between

the MMSE and the MSE of images indicated to be optimum by the BIQ measures is also

recorded.

4.4 Results

The performance of the BIQ measures is first compared to the MMSE using the simulated

data set as outlined above. For each turbulence case, N = 20 reconstructions were generated

from Nf = 50 simulation frames. The two blind metrics and the MSE were evaluated as

the estimate of C2
n used in the inverse filter was varied within an order of magnitude of an

estimate, taken to be C2
n,est = 10−14 m−2/3. The normalized average of each metric as C2

n

is varied from 10−15 to 10−13 m−2/3 is shown in Fig. 4.2 for the three simulated data sets.

As required, the two blind metrics are continuous and have local maximums near to the

MMSE.

The true local optimums indicated by each metric were found using unconstrained

nonlinear optimization in MATLAB [41] and are summarized in Table 4.3. Values of C2
n
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Figure 4.2: Normalized image quality as evaluated by the MSE, Edge,
and ABIQ metrics as the estimate of C2

n is varied from 10−15m−2/3 to
10−13m−2/3. The values indicated by each metric are normalized and then
averaged over N = 20 evaluations derived from reconstructions based on
simulated turbulence degraded imagery in (a) “Low”, (b) “Moderate”, and
(c) “Severe” turbulence conditions in the region of C2

n = 10−14 m−2/3 for a
path length of L = 1000 m

as predicted by the Edge metric differed by 0.13, 0.60, and 1.03× 10−14 m−2/3 for the

“Low”, “Moderate” and “Severe” turbulence cases relative to the MMSE value. Optimum

values for the ABIQ metric differed from the MMSE by 0.45, 0.47, and 0.29−14 m−2/3

over the same data sets. Over the data sets evaluated, the accuracy of the Edge metric

relative to the MMSE decreased as turbulence strength increased while the ABIQ metric

proved more accurate for the same images. Across all turbulence strengths, estimates

provided by the Edge metric were more precise with deviations about the mean value of

σ

μ
= 0.06,0.12,0.15 for the “Low”, “Moderate” and “Severe” simulation cases. Though

this deviation also increases with turbulence strength, variability in the estimates provided

by the ABIQ metric did not show a dependence varying by
σ

μ
= 0.16,0.28,0.29 over the

same inputs.

Of course, the optimum value of C2
n is secondary to the quality of the image reconstructions

95



Table 4.3
Mean estimates of C2

n , for N = 20 optimizations, which provide the
optimum quality image reconstruction as measured using the MSE, Edge,

and ABIQ metrics.

MMSE Edge ABIQ
10−14 m−2/3 10−14 m−2/3 10−14 m−2/3

Low 1.490 1.618 1.941
Moderate 2.813 2.215 2.342

Severe 4.913 3.881 4.624

relative to the MMSE. In Table 4.4 the mean and standard deviation in the MSE of the

optimum reconstruction indicated by the two blind metrics are compared to the MMSE

value. Mean values vary by about 1.1% for optimum reconstruction as indicated by the

Edge metric and 2.5% for the ABIQ metric. Similar to estimates of C2
n , the deviation

from the MMSE decreases using the ABIQ metric as relative turbulence strength increases.

Though, in all cases, the Edge metric provided estimates closer to the MMSE with less

variability. Examples of the optimum image reconstruction as predicted by each metric

are shown in Fig. 4.3. While only minor differences exist between the images in each

group, reconstruction artifacts, manifested as ringing around sharp edges, are observed to

be more pronounced in the optimum reconstructions chosen by the Edge metric relative to

the MMSE.
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Table 4.4
Mean and standard deviation in the MSE of the optimum reconstruction

predicted using the Edge and ABIQ metrics compared the MMSE

MSE Edge ABIQ
μ σ μ σ μ σ

Low 317.49 10.45 319.61 12.07 327.75 17.52
Moderate 482.45 13.46 490.77 11.91 496.25 17.25

Severe 653.39 14.33 659.28 13.94 662.61 14.34

Figure 4.3: Example images frames and reconstructions indicated to be the
optimum by each metric for Low, Moderate, and Severe turbulence cases
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4.4.1 Field Data

Empirically, the proposed blind measures are similarly capable to the MSE in evaluating

image quality in reconstructions based on simulated turbulence degraded imagery. An

exercise, similar to the one described above using simulated imagery, was carried out using

the field collected data described in Section 4.3. Each 800 frame data set, representing

approximately 27 seconds, was divided into, N = 16 image sets containing 50 image

frames. As with the simulated data set, C2
n was varied as a parameter in the atmospheric

OTF to estimate the object amplitude and the resulting image quality evaluated using the

two BIQ measures. The value of C2
n was varied over a range between 10−15 to 10−13 m−2/3

with the path length was fixed at L = 3046 m. Results are found in Fig. 4.4. As mentioned

previously, a small subset of the field data collected during the LCS experiment was suitable

for speckle image processing, and turbulence conditions over the remaining sets were all

near r0 = 2 cm. These conditions are most similar to those in the “Severe” simulated set.

It is also important to point out that the distribution of turbulence along the image path in

the experiment is unknown and not likely to be constant. As a result, by varying C2
n the

total integrated turbulence is estimated and not C2
n . Still, there are similarities between the

simulated and experimental data. In both cases, the performance of the ABIQ improves at

higher turbulence strengths. Also, both the “Severe” case in Fig. 4.1(c) and the three field

cases in Fig. 4.4 have relatively flat responses compared to the weaker turbulence cases in

Fig. 4.1(a),(b).
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Figure 4.4: Normalized quality metric, averaged over N = 20 speckle
image reconstructions when the value of C2

n in Eq. 4.6 is varied in the range
of 10−14 m−2/3 using LCS field data. Results are for LCS data sets (a) Field
1, (b) Field 2, (c) Field 3

The optimum value of C2
n according to the BIQ metric for each data set was also

found via the nonlinear optimization procedure described previously. Example optimal

reconstructions and corresponding image frames from the source data sets are found in

Fig. 4.5. The mean, μ , and standard deviation, σ , in the estimates for each field condition

are recorded in Table 4.5. Considering that turbulence condition are not controlled under

field conditions, it is reasonable to expect a greater variation in the optimum estimates of C2
n

compared to those derived from the simulation sets. However, from Table 4.5 the deviation

about the mean value for the field data are
σ

μ
= 0.07,0.07, and 0.15 for the Field 1, 2, and 3

sets respectively using the Edge metric. Values of
σ

μ
= 0.09,0.10,and 0.02 were recorded

using the ABIQ metrics over the same data. By comparison, for the “Severe” simulation

data set estimates of C2
n varied by 0.15 as a fraction of the mean using the Edge metric

and 0.29 using the ABIQ metric. Also consistent with results using simulated imagery, the

Edge metric provided estimates with less variability than the ABIQ in most cases, with the

exception of the Field 3 data set. In all cases, the values of C2
n indicated correspond to values
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Table 4.5
Mean and standard deviation in the optimum value of C2

n as indicated by
the BIQ metrics applied to the three field collected data sets

Edge ABIQ
(10−14 m−2/3) (10−14 m−2/3)

μ σ μ σ

Field 1 3.75 0.26 6.06 0.56
Field 2 4.52 0.30 7.74 0.78
Field 3 5.88 0.90 6.89 0.16

of r0 near 1cm when constant turbulence strength is assumed. Again, this assumption is

not likely to apply in this experiment, so values or r0 are provided only as an indicator of

integrated turbulence strength.

4.5 Conclusions

In this chapter, I have shown it is possible to achieve nearly optimal reconstruction quality

from speckle imagers applied to horizontal imaging scenarios using blind image quality

metrics to assess image quality. Optimal images were chosen by varying turbulence

strength in the theoretical model for atmospheric blurring used to recover object amplitude

information. When applied to an extensive data set of simulated imagery degraded by the

anisoplanatic turbulence, both metrics were able choose images as optimal within 5.5%

of the MMSE reconstruction on average. Though both metrics were found to be capable,

the Edge-based BIQ metric resulted in images nearer in quality to the MMSE with less

variation. The Edge metric also provided more consistent estimates when applied to field
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Figure 4.5: Example image frames indicated to be the optimum by each
metric for the Field 1, Field 2 and Field 3 data sets

collected data. The Edge metric is also less computationally intensive relative to the ABIQ

metric, a significant benefit considering the SWaP restrictions attached to most horizontal

imagers.

Although the Edge metric out-performs the ABIQ metric in most measures, Edge metric

performance decreased with increasing turbulence strength. Under more severe seeing

conditions, not explored here, the ABIQ metric may provide better results. Seeing
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conditions present in field-collected data were often severe, but the high contrast,

edge-oriented, pinwheel object may have provided an advantage to the Edge metric that

would not be present in texture-rich natural scenes. To that point, evaluation of these

metrics over a greater variety of target object and seeing conditions, both simulated and

experimental would provide additional evidence of their capability. Finally, blind image

quality assessment is an area of active research, and while the two metrics evaluated here

are representative, many other metrics are available. It is also possible that BIQ measures

that are ideally suited for optimal scene reconstruction using speckle imagers over long

horizontal paths
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Chapter 5

Conclusions

In this dissertation, it was shown that speckle imaging methods are able to reliably provide

high-quality reconstructions of images corrupted by turbulence over long horizontal paths.

Using a novel simulation model described in chapter 2 a large data set of turbulence

corrupted imagery was developed. In chapter 3 this data set was used to select a set

of design parameters for speckle imaging systems that provides the highest possible

reconstruction quality while minimizing variation in performance and the computation

time required to produce recovered imagery. The use of certain BIQ measures was

proposed in chapter 4 as a method further reduce design risk and minimize variation in

performance due to operator error. Chapter 4 also demonstrated the efficacy of speckle

imaging systems applied to field collected data, as opposed to the simulated imagery used

in previous chapters. The design recommendations outlined in this dissertation may be
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used by engineering teams to develop robust horizontal imagers based on speckle imaging

methods.

5.1 Summary of Key Results

The work presented in this dissertation makes a number of important contributions to

the field of atmospheric optics. First, a novel method for simulating anisoplanatic

image formation over long horizontal paths was developed based on the split-step wave

propagation method. Using this simulation model, two extensive data sets of 6000 images

were developed based on the “Lena” and “Boats” test images. The distribution of errors,

in terms of the MSE in normalized intensity per pixel was shown to follow a log-normal

distribution with a mean value that increased linearly with turbulence strength in C2
n . Using

these data sets, it was demonstrated that speckle imaging methods produce images that

reduce error, in terms of MSE, by 55% and reduce deviation in image quality by 68%

on average across three turbulence conditions. This level of performance is available using

only 15 image frames and 4 estimates of the object phase to generate image reconstructions.

In addition, it was shown that the bispectrum and KT phase recovery methods produce

reconstructions of identical quality in daylight horizontal imaging scenarios and, because

it is computationally less expensive, the KT method should be considered for use in

embedded implementations. Finally, it was shown that certain BIQ measures may be used

in place of the MSE to autonomously optimize the inverse filter used in amplitude recovery.
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Specifically, using a simple measure based on image sharpness it was possible to produce

imagery within 1% of the MMSE.

5.2 Suggestions for Future Work

As with any good research, there are remain unanswered questions relative to this work that

fall outside of the scope of this dissertation but may be of interest to other researchers. Most

obviously, it would be worthwhile to compare the performance of speckle imaging systems

to other reconstructions methods. Using the simulated image set developed in chapter 2

such a comparison would be both straightforward and informative. To that point, it may

be possible to further improve image quality by using the reconstructions from speckle

imaging methods as a starting point for iterative multi-frame blind deconvolution methods.

These methods are thought to produce higher quality reconstructions, but are also known

to have higher computational requirements.

Other ideas for future work in this area involve expansion or improvement of the simulation

model. Currently, the image frames generated by the model are independent. Given

enough workstation memory, it may be possible to introduce a time correlation between

image frames. The correlation time of atmospheric turbulence is on the order of a

few millisecond effectively limiting the input frame-rate to less than 100 frames per

second under isoplanatic conditions. Creating sets of image frames with time-evolving
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turbulence would allow for this limit to be explored under anisoplanatic conditions.

Another weakness in the the simulation model is the use of uniformly spaced phase

screens. Modifying the model to allow for arbitrary spacings would allow for simulation

of differing path-dependent turbulence distributions, including severe slant paths. Other

obvious improvements here would involve the creation data sets based on other source

images and adapting the simulation code for use on massively parallel systems.

Questions also remain relative to the practical implementation of speckle imaging method

in embedded imaging systems. Current embedded systems based on these methods [31]

rely on block processing of imagery acquired at high frame rates. My own preliminary work

in this area indicates that reconstructions using this method are of lower quality (in terms

of MSE) compared to the full-frame methods explored here. The use of block-processing

introduces new variables, such as block size and scene recovery, not covered in this work,

but are likely to significantly impact image quality. Finally, the additional overhead related

using BIQ measures to tune the inverse filter was not explored. As mentioned in section

4.5 there may other BIQ measures which are both more accurate and more efficient that the

two measures evaluated.
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Appendix A

The “Boats” Data set

In Chapter 2 I developed a technique for simulating image formation over long horizontal

paths. I also described the development of a 3000 frame horizontal imaging data set based

on the “Lena” test image. Subsequently, that data set was used in Chapter 3 to evaluate the

robustness of speckle imaging techniques applied to horizontal imaging scenarios. Since

that works was originally completed a second data set based on the “Boats” [32] test image

has been developed. All simulation parameters, including turbulence strength, imaging

wavelength, aperture size, etc., were identical to those used to develop the “Lena” set

as described in Chapter 2. Similarly, the data set features 1000 image frames for each

turbulence condition totaling 3000 image frames. Example output frames from this data

set and the diffraction-limited reference image are found in Fig.A.1. The MSE statistics

for each turbulence condition over 1000 image frames are summarized in Table A.1. The
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Table A.1
MSE statistics associated with the “Boats” data set.

Condition MSE σMSE

“Low” 440 80
“Moderate” 668 108

“Severe” 836 124

distribution of MSE counts across image frames was found to be distributed log-normally

similar to the “Lena” data set. Comparing Table 3.1 and Table A.1 significant differences

the mean values, μMSE , are noted, between the data sets, but the deviations, σMSE are very

similar. In the case of the “Moderate” and “Severe” cases the deviations, σMSE , differed

by only two counts. I suspect that the lower MSE counts in this second data set may be

attributed to a relative lack of energy at higher spatial frequencies in the “Boats” image

compared to the “Lena” image.
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Figure A.1: Example frames from the “Boats” simulated data set.
Image frames in the panel are for (a) diffraction-limited, (b)“Low”, (c)
“Moderate”, and (d) “Severe” conditions.
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Appendix B

Supplementary Analysis of “Boats” data

set

The analysis in section 3.5 was repeated using the “Boats” derived data set in place of the

“Lena” set. The sensitivity of residual MSE to variations in the parameters, α , C2
n , Nf , and

Np was evaluated using the methods described in section 3.5 but excluded additive noise as

a parameter for brevity. The results of this supplemental analysis are presented in Fig.B.1,

Fig. B.2, Fig.B.3, and Fig.B.4. Example output frames following the recommendations

presented in section 3.6 are found in Fig.B.5.

Comparing these results to their counterparts in section 3.5 only a few differences are worth

noting. First, the optimum value of α was found to be α = 0.36 using the “Boats” data set
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Table B.1
Values of C2

n producing the minimum mean MSE in residual
reconstruction MSE and the recorded deviation at that value.

Min. MSE C2
n at Min. MSE Min. σMMSE

Condition 10−14m−2/3

“Low” 133 1.3 6.4
“Moderate” 270 2.3 11.9

“Severe” 390 3.5 13.6

differing slightly from the α = 0.4 found for the “Lena” data set. This optimum value for

α was used in the evaluation of the remaining parameters. Next, referring to Table B.1, the

values of C2
n that resulted in the minimum MSE are lower than theoretical values used by the

simulation model by about 30 to 40% and are comparable to those found to be optimum for

the original image set. In this case, MSE was reduced in the reconstruction frames by 53%

on average compared to the inputs compared to the 48% observed for the same analysis in

the using the “Lena” data set. The reductions in σMSE at the optimum value of C2
n were 89%

on average over all turbulence conditions for both data sets. Also, as turbulence strength

increased a similar reduction in sensitivity to variations in C2
n is observed. Comparing

Fig.B.3 to Fig 3.6 and Fig. B.4 to Fig. 3.9 a nearly identical dependence of residual

MSE to variations in parameters Nf and Np is observed between data sets. Finally, as with

the “Lena” data set the bispectrum and KT phase estimation methods provided equivalent

results.
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Figure B.1: Evaluation of the effect on the post-reconstruction residual
MSE observed by varying α for the (a) “Low”, (b) “Moderate”, and (c)
“Severe” turbulence conditions using the “Boats” data set as an input.
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Figure B.2: Evaluation of the effect on the post-reconstruction residual
MSE observed by varying C2

n for the (a)“Low”, (b)“Moderate”, and
(c)“Severe” turbulence conditions using the “Boats” data set as an input.
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Figure B.3: Evaluation of the effect on post-reconstruction residual
MSE observed by varying the number of input frames for the (a)“Low”,
(b)“Moderate”, and (c)“Severe” turbulence conditions using the “Boats”
data set as an input.
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Figure B.4: Residual MSE as a function of the number of estimates, used
to inform the estimated phase at each spatial frequency for the (a)“Low”,
(b)“Moderate”, and (c)“Severe” turbulence cases using the “Boats” data set
as an input.
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Figure B.5: Example input frames for the (a)“Low”, (d)“Moderate”, and
(g)“Severe” turbulence cases from the “Boats” data set. Reconstructions
using Nf = 15,Np = 4,α = 0.4, and the optimum values of C2

n listed in
TableB.1 are presented for the bispectrum (b),(e),(h) and KT (c),(f),(i).
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Appendix C

Letters of Permission

The content in Chapters 2, 3, and 4 have been published or are awaiting publication in SPIE

Optical Engineering. Optical Engineering has the following policy regarding republication

of this material:

As stated in the SPIE Transfer of Copyright agreement, authors, or their

employers in the case of works made for hire, retain the following rights: All

proprietary rights other than copyright, including patent rights.

• The right to make and distribute copies of the Paper for internal purposes.

• The right to use the material for lecture or classroom purposes.

• The right to prepare derivative publications based on the Paper, including

books or book chapters, journal papers, and magazine articles, provided
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that publication of a derivative work occurs subsequent to the official date

of publication by SPIE.

Thus, authors may reproduce figures and text in new publications. The SPIE

source publication should be referenced.
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