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CHAPTER 1

Introduction

1.1 Astronomical observations

Dating back to antiquity, astronomy is possibly the oldest of the natural sciences. Orig-

inally, astronomy consisted of observing and predicting the position of visible celestial

objects. The Greek philosophers invented several models to explain the motions of

stars, planets, the moon and the sun. The renaissance of astronomy occurred in 1543

when Nicolaus Copernicus proposed a heliocentric model for celestial objects. In the

17th century, Galileo was among the first to use a telescope to observe the sky. It is in

1610 that he discovered the four moons of Jupiter.

Over time, astronomical telescopes evolved considerably. At first telescopes were

small (of the order of few centimeters) and gradually grew toward very large telescopes:

up to 10 meters diameter. Different projects of very large telescopes are on their way

like the Giant Magellan Telescope with an aperture of 21.4 meters. The underlying

motivation for building larger telescopes is the quest for image quality. The size of

the aperture of the telescope affects the observation results in two different manners.

First, a large aperture allows collection of more light, and therefore detection of fainter

and more distant objects. Second, the limiting angular resolution of the telescope

increases with its aperture size, providing sharper images. If telescopes are used in a

perfect vacuum, the resolution is directly proportional to the inverse of the telescope
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diameter. The angular resolution is then only limited by the diffraction of light, a

phenomenon also known as the diffraction limit. However, in the case of ground-based

telescopes, the light coming from a star or another celestial object goes through the

Earth’s atmosphere. The atmosphere causes random spatial and temporal wavefront

perturbations of the light, and blurs images produced by ground-based telescopes. This

explains, in part, why we launch telescopes into space, like the Hubble Space Telescope.

As an example, for very large ground-based telescopes (more than 8 meters diameter)

the resolution is reduced by a factor of 50 to 100 [1]. Many techniques had been

developed over time to improve the resolution of ground-based telescopes [2]. The next

section presents a relatively new technique, known as adaptive optics [3].

1.2 Adaptive optics

Adaptive optics (AO) is a technology used in large ground-based telescopes to reduce

the effect of atmospheric turbulence [2, 4, 5, 6, 7, 8]. Adaptive optics works by measur-

ing the distortion of light and compensating for it in real-time. The wavefront distortion

is corrected using deformable mirrors. The turbulence-induced distortion varies on the

timescale of milliseconds. Therefore a fast computer is used to reshape the surface of

the deformable mirror accordingly. The incoming light falls on the deformable mirror

and bounces back with its atmospheric-induced distortion removed, or at least partially

removed. As a consequence, the image formed appears sharper.

The atmospheric distortion is measured by a wavefront sensor. The most used one

is the Shack-Hartmann wavefront sensor. Because objects of interest are often too faint

to be used as the reference for the Shack-Hartmann wavefront sensor, a nearby bright

star is necessary. This brighter star is called the guide star. The need for a reference

guide star means that adaptive optics system cannot be used in every direction of
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observation, but only where there is a guide star with sufficient luminosity nearby the

object. Usually, a guide star must be brighter than magnitude of 11 or 12. In the 1980’s

a solution was proposed to overcome this limitation: the laser guide star (LGS) [9].

The idea is to shoot a laser beam into the atmosphere in the direction of interest. The

light scattering from atmospheric constituents forms a spot of light. This spot of light

can be used as a reference for the adaptive optics system. Since the object and the

reference guide star are nearby (in term of angular separation), the light of the object

passes through approximately the same atmospheric turbulence than the light of the

reference star. Therefore, its image is also corrected, but less accurately.

1.3 Anisoplanatism

Anisoplanatism results from the fact that the light coming from different directions in

the scene does not go through the same atmospheric turbulence [10]. Therefore, the

turbulence-induced aberration is different for different directions. The isoplanatic angle

is defined as the maximum angular separation between the object we look at and the

guide star for which the turbulence-induced aberration is approximately constant.

Anisoplanatism affects the performance of adaptive optics systems [11, 12]. The

larger the angular separation between the object and the reference beacon, the more

blurred the image is. Adaptive optics systems are considered to achieve diffraction-

limited correction of the wavefront in the isoplanatic angle only. The isoplanatic angle,

which depends on the turbulence profile is denoted θ0 and is typically of the order of

10 µrad and is centered on the reference guide star.
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1.4 Problem

Due to anisoplanatism, the correctable field of view (FOV) of adaptive systems is

limited in size to approximately the isoplanatic angle θ0, which fundamentally limits

the AO performance since many astronomical objects, as well as satellites, exceed the

dimension of the isoplanatic patch. Additionally, AO systems can only compensate

in one direction. In this dissertation we seek a post-processing approach to overcome

these problems.

1.5 Approach

In this dissertation, I propose an image post-processing technique to overcome some of

the effects of anisoplanatism in large FOV adaptive optics images. The reconstruction

method is organized in two steps:

1. The first step of the technique consists of predicting the space-varying point

spread function (PSF) as a function of the field angle. A wave optics simulation

is used to compute the PSF at certain field angles, denoted θsim. Those simulated

PSF’s are fit with a parameterized model for the PSF. Finally, by interpolating

the coefficients of the model, we predict the PSF for all angles between the θsim’s.

The knowledge of the PSF is essential in image restoration.

2. The second step consists of reconstructing large FOV images using the PSF pre-

dicted in Step 1. A block-processing method is used: the image is split into

approximately θ0-sized patches over which the PSF is approximately constant.

Each block is then deconvolved with widely used methods for image recovery:

matrix inversion with Tikhonov regularization, and the expectation maximiza-

tion (EM) algorithm. The deconvolved blocks are then reassembled to form the
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restored image. An error metric is then defined in order to quantify the improve-

ment from the original image to the reconstructed image.

1.6 Summary of key results

In this dissertation, a model for the long exposure (LE) AO-corrected PSF is intro-

duced, and a method for the prediction of the PSF as a function of the field angle is

presented. The method is based on the interpolation of the parameters of the model

of the PSF. The mean square (MS) error between the predicted PSF and the simu-

lated PSF varies between 0.9% and 2.7% depending on the field angle and the seeing

conditions.

In order to validate the PSF prediction method, we reconstruct anisoplanatic adap-

tive optics images using the predicted off-axis PSF. The MS error between the recon-

structed image and the object varies from 4% to 45% depending on the seeing condi-

tions and the signal-to-noise ratio (SNR). The reconstructed images are compared to

the reconstructed images using the on-axis PSF. The reconstruction method using the

predicted PSF shows an improvement of the MS error of 7.2% to 84.8%.

1.7 Organization of this dissertation

This dissertation is organized as follows. Chapter 2 is a background chapter and intro-

duces the reader to the theoretical basis of wave optics. Chapter 3 presents the problem

of imaging through turbulence. In chapter 4, adaptive optics systems are studied in

detail. Chapter 5 describes the wave propagation simulations performed for the pre-

diction of the PSF. In chapter 6, the method for prediction of the PSF as a function of

the field angle is introduced, and results are given. In chapter 7, the knowledge of the
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PSF as a function of the field angle is used to reconstruct anisoplanatic AO-corrected

images. The performance of the image restoration method is estimated. Chapter 8

summarizes the experiment, and gives the results obtained. Finally, chapter 9 is a

conclusion.
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CHAPTER 2

Background

2.1 Introduction

In this chapter, we present the theoretical basis of wave optics. In section 2.2, after a

qualitative introduction to the field of Fourier optics, we present the phenomenon of

diffraction. Different diffraction formulas are established. The first formula is called

the Rayleigh-Sommerfeld formulation and is the most general form. Then, some ap-

proximations are used to give the Fresnel and the Fraunhofer diffraction formulas. In

section 2.4 an overview of statistical optics is given to introduce the statistical tools

used in atmospheric optics. Finally, photon noise and readout noise are discussed in

detail, and the concept of the signal-to-noise ratio is presented.

2.2 Fourier Optics

Diffraction can be defined [13] as any deviation of light rays from rectilinear path that

cannot be interpreted as reflection or refraction. Fourier optics is used to explain the

physical effects arising from the wave nature of light. In chapter 3, we discuss limitations

of imaging systems when propagating light through a turbulent media like atmosphere.

However, other non-turbulent-induced limitations also occur. For example, diffraction

is a limiting factor for imaging systems even when the light propagates in free space.
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Diffraction can easily be demonstrated with simple experiments. For example, if we

examine the intensity image of a point source through a circular aperture of diameter D

when propagating into free space over a distance Z. While geometrical optics predicts

the image of a point source to be a point, the diffraction-limited image (see Figure 2.1)

is a blurry disk. This pattern is explained by diffraction theory and is referred to

as the Airy disk. We can notice the side lobes in the intensity pattern, which is a

characteristic feature of the Airy disk. Since the Airy disk is broader than a focused

point, diffraction limits the resolution of imaging systems. To improve the resolution

of imaging systems, the size of the Airy disk should be reduced. This can be done

either by decreasing the wavelength λ, either by increasing the size of the aperture D.

This last point explains why larger and larger telescopes are always being designed.

The minimum resolvable angle of an imaging system is on the order of λ/D. After

describing diffraction qualitatively, we give mathematical expressions of diffraction in

the next sections.
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Figure 2.1: (a) Circular aperture of diameter D = 0.85mm. (b) Intensity image of
a point source through the circular aperture of size D when propagating in free space.
The propagation distance is Z = 10 m, and the wavelength is λ = 850 nm.
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2.2.1 Scalar diffraction theory

2.2.1.1 Vector theory to scalar theory

The foundation of the diffraction theory lies in Maxwell’s equations for a source-free

region [14]:

∇× ~E = −µ
∂ ~H

∂t
, (2.1)

∇× ~H = −ε
∂ ~E

∂t
, (2.2)

∇ · ε ~E = 0, (2.3)

∇ · µ ~H = 0, (2.4)

where ~E is the electric field and its orthogonal components are (Ex, Ey, Ez). The

orthogonal components of the magnetic field ~H are (Hx,Hy,Hz). The wave propagates

in a medium of permeability µ and permittivity ε. ∇ denotes the Laplacian operator.

Applying the Laplacian operator to both sides of Maxwell’s equation 2.2 yields

∇×
(
∇× ~E

)
= ∇

(
∇ · ~E

)
−∇2 ~E. (2.5)

Furthermore, we assume that the medium is linear, isotropic, homogeneous, non-

dispersive, and non-magnetic (µ = µ0). Substituting Maxwell’s equations 2.2 and 2.4

into Eq. 2.5, we obtain the wave equation for ~E:

∇2 ~E − εµ0
∂2 ~E

∂t2
= 0. (2.6)

We now define the index of refraction n by

n =
√

ε

ε0
, (2.7)

and the velocity of propagation in vacuum c by

c =
1

√
µ0ε0

, (2.8)
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which leads us to a more common expression of the wave equation:

∇2 ~E − n2

c2

∂2 ~E

∂t2
= 0. (2.9)

Similar calculations prove that the magnetic field also respects Eq. 2.9:

∇2 ~H − n2

c2

∂2 ~H

∂t2
= 0. (2.10)

Therefore, for both fields ~E and ~H, each of their orthogonal component obeys

∇2uk −
n2

c2

∂2uk

∂t2
= 0, (2.11)

where uk corresponds to any of the components of ~E or ~H. It should be noted that

Eq. 2.11 is a scalar equation. However, this is true only because we made assumptions

earlier in this section. We can note that we also assume all propagation distances to

be much larger than λ, and all apertures to have dimensions much larger than λ.

2.2.2 Helmoltz equation

In the previous section, we introduced the time and space dependent variable uk, which

can be expressed, in the case of a monochromatic wave, by:

uk(x, y, z, t) = A(x, y, z) cos (2πνt + φ(x, y, z)) , (2.12)

where ν is the optical frequency, A(x, y, z) is the amplitude of the wave, and φ(x, y, z) is

the phase at the spatial position (x, y, z). Denoting the real part of a complex number

by <{·}, Eq. 2.12 can be written:

uk(x, y, z, t) = <{Uk(x, y, z) exp (−2πνt)} , (2.13)

where

Uk(x, y, z) = A(x, y, z) exp {−jφ(x, y, z)} . (2.14)
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By multiplying both sides of the wave equation (Eq. 2.11) by exp (+2πνt), the time

dependence disappears and we obtain the following equation for Uk(x, y, z):

(∇2 + k2)Uk = 0, (2.15)

where k is the wave number defined by

k = 2πn
ν

c
=

2π

λ
. (2.16)

Eq. 2.15 is called the Helmoltz equation.

2.2.3 The Rayleigh-Sommerfeld formulation of diffraction

The Rayleigh-Sommerfeld formulation of diffraction is the most general expression of

diffraction. The diffraction formula is derived from the Helmoltz equation (Eq. 2.15),

and physically and mathematically reasonable boundary conditions imply that we are

working in the conditions above:

1. The aperture and the objects we consider are large compared to the optical wave-

length λ.

2. The distance z between the aperture plan and the observation plane is much

larger than λ.

Figure 2.2 shows the geometry. The field in the observation plane Σ1 is to be calculated

from the knowledge of the field incident onto the aperture plane Σ0. The Rayleigh-

Sommerfeld formulation of diffraction is [14]:

u1(P1) =
1
jλ

∫
Σ0

uo(P0)
exp(jkr01)

r01
cos(θ)dP0, (2.17)

where P0 is point in the aperture plane, P1 is a point in the observation plane, r01 is

defined by r01 = |~r01|, λ is the wavelength, k is the wave number defined in Eq. 2.16, and
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P0
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aperture plane, Σ0

observation plane, Σ1

z

x1
x0

y1y0

θ

Figure 2.2: Diffraction geometry.

the term cos(θ) is called the obliquity factor. The integral is over the entire aperture

plane Σ0 defined by

Σ0 =


1 inside the aperture

0 outside the aperture.
(2.18)

Linear system approach

We can look at the propagation of light in free space from a linear system point of

view. The field in the aperture plan can be regarded as the input of the system and

the field in the observation plan as the output. In this interpretation the field u1(P1)

is given by

u1(P1) =
∫
Σ0

uo(P0)h(P1, P0)dP0, (2.19)

where h(P1, P0) is the impulse response of the system expressed by

h(P1, P0) =
1
jλ

exp(jkr01)
r01

cos(θ). (2.20)

The impulse response h(P1, P0) is shift invariant:

h(P1, P0) = h(P1 − P0), (2.21)

= h( ~x1 − ~x0), (2.22)
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where ~x0 and ~x1 are the position vectors of P0 and P1. Therefore, the field in the

image plane u1( ~x1) can be written as the convolution of the input field u0( ~x0) and the

impulse response h( ~x1 − ~x0):

u1( ~x1) =
∫
Σ0

uo( ~x0)h( ~x1 − ~x0)d ~x0, (2.23)

= uo ∗ h, (2.24)

where ∗ denotes the convolution operation. Fourier transforming both sides of Eq. 2.24

yields

U1(~f) = U0(~f)H(~f), (2.25)

where U1(~f), U0(~f), and H(~f) are the two dimensional Fourier transforms of u1( ~x1),

u0( ~x0), and h( ~x1 − ~x0), respectively. H(~f) is the transfer function of the system and

is defined by [14]

H
(

~f
)

=


exp

{
j2π

√
1
λ2 −

∣∣∣~f ∣∣∣2} for
∣∣∣~f ∣∣∣ < 1

λ

0 elsewhere.

(2.26)

In the next two section, we study two special cases of the Rayleigh-Sommerfeld dif-

fraction formula: the Fresnel diffraction formula (section 2.2.4) and the Fraunhofer

diffraction formula (section 2.2.5).

2.2.4 The Fresnel diffraction

The Fresnel diffraction formula is an approximation of the Rayleigh-Sommerfeld dif-

fraction formula and gives accurate results for points near the optical axis.
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2.2.4.1 Fresnel approximation

In the Rayleigh-Sommerfeld formulation of diffraction (Eq. 2.17), the term r01 appears

and can be written exactly as

r01 =
√

(x1 − x0)
2 + (y1 − y0)

2 + z2, (2.27)

where ~x0 = (x0, y0) and ~x1 = (x1, y1). In addition to the assumptions previously

made (section 2.2.3), we assume that the propagation distance z is much larger than

the transverse coordinates
√

(x1 − x0)2 + (y1 − y0)2. The Fresnel approximation is

therefore:

1. The distance r01 between P0 and P1 is approximately equal to z, the distance

between the aperture plane and the observation plane. Thus, the obliquity factor

cos(θ) equals one. This is called the paraxial condition.

2. Using a binomial expansion (first order only) of r01 given by Eq. 2.27, r01 is

approximated by

r01 ≈ z +
(x1 − x0)2 + (y1 − y0)2

2z
. (2.28)

2.2.4.2 Fresnel diffraction formula

Substituting Eq. 2.28 in Eq. 2.20, the free space propagation impulse response becomes

hFresnel( ~x1) =
1
jλ

exp(jkz)
z

exp
{

j
k

2z

{
(x1 − x0)

2 + (y1 − y0)
2
}}

. (2.29)

The Fresnel diffraction formula is then [14]:

u1( ~x1) =
1
jλ

exp
{

j
k

2z
| ~x1|2

}
×
∫
Σ0

uo( ~x0) exp
{

j
k

2z
| ~x0|2

}
exp

{
j
2π

λz
~x0 · ~x1

}
d ~x0. (2.30)
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In Eq. 2.30, the integral can be recognized as a Fourier transform. The formula is then

simplified to

u1( ~x1) =
1
jλ

exp
{

j
k

2z
| ~x1|2

}
F
{

uo( ~x0) exp
{

j
k

2z
| ~x0|2

}}
~f= ~x1/λz

, (2.31)

where F {·} denotes the Fourier transform operation, and ~f = ~x1/λz means that the

Fourier transform is evaluated for this frequency value. From Eq. 2.29, we obtain the

transfer function of the system for the Fresnel approximation [15]:

HFresnel

(
~f
)

=


exp {jkz} exp

{
−jπλz

∣∣∣~f ∣∣∣2} for
∣∣∣~f ∣∣∣ < 1

λ

0 elsewhere
. (2.32)

2.2.5 The Fraunhofer diffraction

2.2.5.1 Fraunhofer approximation

The Fraunhofer approximation consists of considering the distance of propagation z

much larger than the quadratic term k
2 | ~x0|2 in Eq. 2.31:

z � k

2
| ~x0|2 . (2.33)

This approximation is more restrictive than the Fresnel approximation and is called

the far field approximation.

2.2.5.2 Fraunhofer diffraction formula

Assuming the Fraunhofer approximation is true, the term exp
{
j k

2z | ~x0|2
}

in Eq. 2.31

can be neglected and the diffraction formula becomes

u1( ~x1) =
1
jλ

exp
{

j
k

2z
| ~x1|2

}
F {uo( ~x1)}~f= ~x1/λz

. (2.34)

We can notice the simplicity of the Eq. 2.34. The field in the observation plane is

obtained by multiplying the Fourier transform of the incident field by a quadratic term

depending on z.
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2.2.6 Lenses

The transmittance function of a lens is given by [15]

tlens (~x) = exp
{
−j

k

2f
|~x|2

}
, (2.35)

where k is the wave number and f the focal length of the lens. The relation between

the transmitted field utrans (~x) and the incident field uincid (~x) is then:

utrans (~x) = uincid (~x) tlens (~x) . (2.36)

2.3 Angular spectrum propagator

2.3.1 Definition

The key idea of the angular spectrum propagator is to decompose the field to propagate

in a sum of plane waves using Fourier transforms (FT) [14]. Every wave plane prop-

agates in a different direction, and has a unique amplitude and phase. The resulting

field in the target plane is the superposition of the propagated plane waves, each of

which is affected by a different phase shift.

Lets consider the incident wave u(x, y, 0) in the aperture plane z = 0. The complex

field propagates along the z-axis. We want to calculate the field u(x, y, z) for z > 0.

First, the two dimensional Fourier transform of u(x, y, 0) is given by

A (fx, fy, 0) =
∫ ∫ ∞

−∞
u (x, y, 0) exp {−j2π(fxx + fyy)} dxdy, (2.37)

where fx and fy are the spatial frequencies. If we write u(x, y, 0) as the inverse FT

of A(fx, fy, 0), we can look at u(x, y, 0) as a weighted sum of complex exponential

function:

u (x, y, 0) =
∫ ∫ ∞

−∞
A(fx, fy, 0) exp {j2π(fxx + fyy)} dfxdfy. (2.38)
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The kernel of this inverse Fourier transform, exp{j2π(fxx + fyy)}, can be interpreted

as the complex representation of a plane wave. This one can be denoted P (x, y, z) with

P (x, y, z) = exp
{
j~k · ~r

}
, (2.39)

= exp
{

j
2π

λ
(αx + βy + γz)

}
, (2.40)

where ~r = x~a + y~b + z~c is the position vector, and ~k is the wave vector defined by

~k = 2π/λ(α~a + β~b + γ~c). The wave vector gives the direction of propagation. The

vectors ~a, ~b, and ~c are unit vectors. Since α2 + β2 + γ2 = 1, we can regard P (x, y, z)

as a plane wave traveling in the direction (See Figure 2.3):

θα = cos−1(α) = cos−1 (λfx) ,

θβ = cos−1(β) = cos−1 (λfy) ,

θγ = cos−1(γ) = cos−1
(√

1− (λfx)2 + (λfy)2
)

.

(2.41)

Using this notation, the angular spectrum of u(x, y, 0) is defined by

A

(
α

λ
,
β

λ
, 0
)

=
∫ ∫ ∞

−∞
u(x, y, 0) exp

{
−j2π(

α

λ
x +

β

λ
y)
}

dxdy. (2.42)

θ  = cos   (α)-1
α

θ  = cos   (γ)-1
γ

θ  = cos   (β)-1
β

y

z

x

k

Figure 2.3: Wave vector ~k.
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2.3.2 Angular spectrum propagation

We now want to know the relation between A(fx, fy, 0) and the angular spectrum of

u(x, y, z) for z > 0. The angular spectrum of u(x, y, z), A(fx, fy, z), is defined by

A

(
α

λ
,
β

λ
, z

)
=
∫ ∫ ∞

−∞
u (x, y, z) exp

{
−j2π(

α

λ
x +

β

λ
y)
}

dxdy. (2.43)

We can easily reverse Eq. 2.43 to obtain u(x, y, z):

u (x, y, z) =
∫ ∫ ∞

−∞
A

(
α

λ
,
β

λ
, z

)
exp

{
j2π(

α

λ
x +

β

λ
y)
}

d
α

λ
d
β

λ
. (2.44)

The wave that we consider is monochromatic and thus must satisfy the Heltmoltz

equation established in Eq. 2.15:

∇2u(x, y, z) + k2u(x, y, z) = 0. (2.45)

Substituting Eq. 2.44 in Eq. 2.45, we obtain the following differential equation:

d2

dz2
A

(
α

λ
,
β

λ
, z

)
+
(

2π

λ

)2 (
1− α2 − β2

)
A

(
α

λ
,
β

λ
, z

)
= 0. (2.46)

A solution of Eq. 2.46 is given by [14]

A

(
α

λ
,
β

λ
, z

)
= A

(
α

λ
,
β

λ
, 0
)

exp
{

j
2π

λ

√
1− α2 − β2z

}
, (2.47)

where α2 + β2 < 1. From Eq. 2.47 we can see that the propagation of a wave corre-

sponds to a phase change of the angular spectrum. The delay introduced for the plane

wave component traveling in the direction (θα, θβ , θγ) is ∆ϕ = 2π
λ

√
1− α2 − β2z. By

inverting Eq. 2.47, we finally obtain the expression of u (x, y, z):

u (x, y, z) =
∫∫∞
−∞

(
α
λ , β

λ , 0
)

exp
{
j 2π

λ

√
1− α2 − β2z

}
× exp

{
j2π

(
α
λx + β

λy
)}

dα
λdβ

λ ,
(2.48)

for α2 + β2 < 1.
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2.4 Statistical Optics

2.4.1 Introduction

The atmosphere is a random medium, therefore a statistical description of the key

atmospheric parameters is necessary. When imaging through turbulence, a complete

model of optical imaging system should take into account the random noise associated

with the light detection process. There are two sources of measurement noise [15]. The

first source of noise is due to the random times and locations of photons falling on the

light detector. This noise originates from the quantum nature of light and is referred

to as photon noise, Poisson noise, or shot noise. The second type of noise originates

from the readout electronics of charge-coupled device-based detectors, and is referred

to as readout noise.

In this section we give a review of useful statistical tools, and we present into details

the photon noise, as well as the readout noise.

2.4.2 Statistical tools

Lets consider the random process X(~x, t), where t is the time and ~x the vector position

in space. The statistical average of the random process is defined by

E {X(~x, t)} =
∫ ∞

−∞
X(~x, t)fX(x)dx, (2.49)

where fX is the probability density function of X(~x, t). The space-time covariance of

X is given by

CovX( ~x1, ~x2, t1, t2) = E {[X( ~x1, t1)− E {X( ~x1, t2)}] [X( ~x2, t2)− E {X( ~x2, t2)}]∗} .

(2.50)
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The correlation function is defined by

ΓX( ~x1, t1, ~x2, t2) = E {X( ~x1, t1)X∗( ~x2, t2)} . (2.51)

When a random process is stationary in the wide-sense, its statistics respect certain

conditions:

• The expected value E {X(~x, t)} is time-independent: E {X(~x, t)} = µ(~x),

• The second order moments depend only on the time difference τ = t1 − t2:

ΓX,t( ~x1, ~x2, τ) = E {X( ~x1, t)X∗( ~x2, t− τ)}.

When a random process is homogeneous:

• The expected value E {X(~x, t)} is translation invariant: E {X(~x, t)} = µ(t),

• The second order moments depend only on the translation ~ρ = ~x1 − ~x2:

ΓX,s(~ρ, t1, t2) = E {X(~x, t1)X∗(~x− ~ρ, t1, t2)}.

If a random process is ergodic, the expected value equals the time average:

〈X(~x, t)〉 =
1
T

∫
T

X(~x, t)dt, (2.52)

where T is a time interval. The temporal power spectral density (PSD) given by

Φt(ν) =
∫ ∞

−∞
ΓX,t( ~x1, ~x2, τ) exp {−j2πντ} dτ, (2.53)

and the spatial power spectral density is given by

Φs(~κ) =
(

1
2π

)3 ∫ ∫
ΓX,s(~ρ, t1, t2) exp {−j~κ · ~ρ} d~ρ, (2.54)

where ν is the temporal frequency and ~κ is the spatial frequency. The temporal and

spatial correlation functions are then given by

ΓX,t( ~x1, ~x2, τ) =
∫ ∞

−∞
Φt(ν) exp {j2πντ} dτ, (2.55)
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and

ΓX,s(~ρ, t1, t2) =
∫ ∫

Φs(~κ) exp {j~κ · ~ρ} d~κ, (2.56)

respectively. If a random process is homogeneous and also isotropic, then:

ΓX,s(~ρ, t1, t2) = ΓX,s(ρ, t1, t2), (2.57)

where ρ = |~ρ|. In the isotropic case, the spatial power spectrum (Eq. 2.54) becomes

Φs(κ) =
(

1
2π2κ

)∫ ∞

0
ρΓX,s(ρ, t1, t2) sin {κρ} dρ, (2.58)

where κ = |~κ|. The correlation function becomes

ΓX,s(ρ, t1, t2) =
4π

ρ

∫ ∞

0
κΦs(κ) sin {κρ} dκ. (2.59)

2.4.3 Noise

The model for a detected image d(~x) is given by

d(~x) =
M∑
i=1

δ(~x− ~xi) +
P∑

p=1

npδ(~x− ~xp), (2.60)

where ~xi is the location of the ith photonevent on the light detector and M the total

number of photonevents forming the image. The image is composed of P pixels and

np denotes the random variable corresponding to the readout noise at the pth pixel. In

section 2.4.4 and section 2.4.5, the photon noise and the readout noise are respectively

studied.

2.4.4 Photon noise

The first source of noise that we study is the photon noise. The physical origin of the

photon noise is attributed to the quantum nature of light. The photon noise is due

to the random arrival times and locations of photoevents on the light detector. It is
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also referred to as shot noise, and Poisson noise. Let us consider the random variable

K, corresponding to the number of photonevents falling on the light detector. In the

literature, the random variable K is often assumed to obey the Poisson distribution [14]:

fK(k, λ) =
e−λλk

k!
, (2.61)

where λ is a parameter called the rate function. Photon noise is therefore signal-

dependent.

2.4.5 Readout noise

The second source of noise we consider is the readout noise. Readout noise originates

from the readout electronics of light detectors and detector material [16, 17]. The

readout noise differs from the photon noise in the sense that it is signal-independent.

It is an additive noise. A commonly used model for the distribution of the readout

noise is a zero-mean Gaussian distribution.

2.4.6 Signal-to-noise ratio

When imaging through turbulence, we need a statistical tool to measure the effect of

noise on detected images. A commonly used metric is the signal-to-noise ratio (SNR),

which evaluates the effect of noise on the image. Several definition of the SNR of an

image exist. However, the SNR is often defined as

SNR =
σs

σn
, (2.62)

where σs and σn denote respectively the standard deviation of the detected image d(~x)

and the noise.
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2.5 Conclusion

In the first part of this chapter, the basis of wave optics had been given into details.

The field of Fourier optics had been presented, and the phenomenon of diffraction

introduced. Diffraction formulas are given for the general case, as well as for some

approximations: the Fresnel approximation for points near the optical axis, and the

Fraunhofer approximation for far field propagation. The second part of the chapter

deals with statistical optics. Statistical tools, necessary to provide key parameters of

the atmosphere and describe the propagation of light through a random medium, are

given into details. Models were given for the two sources of noise interfering the light

detection process: the photon noise and the readout noise. The concept of signal-to-

noise ratio was finally presented.
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CHAPTER 3

Imaging Through Turbulence

3.1 Introduction

Atmospheric turbulence has an effect on every imaging system which must form im-

ages through the atmosphere [15]. The properties of the light going through a long

atmospheric path are affected in both time and space. A consequence of this is that

the atmosphere limits the average resolution of ground-based telescopes. In ground-

based imaging, the challenge consists of compensating the effect of the atmosphere on

images. We begin this chapter by giving a historical background on imaging through

turbulence. Then, we explain how the index of refraction plays an important role in

wave propagation through the atmosphere. A model for the atmosphere is introduced,

as well as a wave propagation model. Finally the effects of turbulence on imaging

systems are described.

3.2 Historical background

The effects of turbulence on imaging systems were recognized by Isaac Newton. New-

ton noticed that ground-based telescopes were unable to reach diffraction limited per-

formance. He noticed that the point spread function of a telescope looking through

turbulence was broader than the one expected if looking through a vacuum. This
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phenomenon was identified as a consequence of atmospheric turbulence. Easily ob-

servable, the twinkling of stars was well known too. Newton also understood that

placing observatories atop of high mountain would decrease the effects of atmospheric

turbulence [15]:

“The only Remedy is a most serene and quiet Air, such as may perhaps be

found on the top of the highest Moutains above the grosser Clouds.”

However, it is interesting to note that Isaac Newton wrote in 1730 in Opticks that he

saw no solution to the problem of atmospheric turbulence limiting the performance of

telescopes [18]. In Newton’s days, the effect of turbulence could be partially understood,

but not corrected. Babcock was a precursor in the field and presented in 1953 one of the

first use of adaptive optics [19]. He proposed to compensate for atmospheric distortions

that affected telescope images by using a deformable optical element. He also proposed

the use of a wavefront sensor. The concept of adaptive optics is studied in chapter 4.

3.3 The index of refraction

Inhomogeneities of air density in the atmosphere cause the index of refraction to fluc-

tuate. The mechanism behind it can be explained with fluid dynamics concepts and

the Kolmogorov theory of turbulence [15, 20, 21, 22]. The unpredictable nature of air

motion makes the index of refraction random.

We can model the index of refraction n(~r, t) as the sum of its mean, n0, and its

fluctuation, n1(~r, t):

n(~r, t) = n0 + n1(~r, t), (3.1)

where ~r is the three dimensional vector position, and t the time. For air, the mean

25



index of refraction is n0 = 1. The fluctuation term n1(~r, t) can be expressed [23]:

n1 = n− 1 =
77.6P

T
× 10−6, (3.2)

where T is the air temperature (in Kelvins), and P the air pressure (in millibars).

We consider locally homogeneous and isotropic pockets of air, also called turbulent

eddies [15]. Let Φn(~κ) denote the spatial power spectral density (PSD) of n1(~r). The

variable ~κ is called the spatial wavenumber vector and its components are (κx, κy, κz).

Φn(~κ) is a measurement of the density of turbulent eddies of size lx, ly, and lz, with

lx = 2π/κx, ly = 2π/κy, and lz = 2π/κz. We now want to have an expression for

Φn(~κ). It is assumed homogeneity and isotropy properties to apply. Φn(~κ) is then a

function of the scalar wavenumber:

κ =
√

κ2 + κ2 + κ2. (3.3)

The Kolmogorov theory [23] gives an expression of Φn(κ) for κ ∈ [2π/L0, 2π/l0]. Lo

and l0 are parameters of the atmosphere referred to as the outer scale and the inner

scale, respectively. They represent the characteristic dimension of the largest and the

smallest turbulent eddies for which the spatial PSD is predicted by the Kolmogorov

theory, referred to as the inertial subrange [15]. Within the inertial subrange the

Kolmogorov spectrum is given by

ΦK
n (~κ) = 0.033C2

n(z)κ−11/3, (3.4)

where C2
n(z) is called the structure constant of the index of refraction fluctuations and

has units of m−2/3. The parameter z is the distance to the aperture. Since ΦK
n (~κ) is not

defined for κ = 0, an alternate spectrum expression, called the von Karman spectrum,

is sometimes used. The von Karman spectrum is given by

ΦV
n (~κ) =

0.033C2
n(z)

(κ2 + κ2
0)11/6

exp

{
− κ2

κ2
m

}
, (3.5)

where κ0 = 2π/L0, and κm = 5.92/l0. With this expression of the spectrum, ΦV
n (~κ)

has a finite value for ~κ = 0.
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3.4 The turbulence profile

The term C2
n(z) characterizes the turbulence strength. The distance to the aperture

z depends on the angle of observation with the zenith, denoted θz. The distance z is

related to the altitude h by [15]

z =
h

cos(θz)
. (3.6)

Thus we can express C2
n as a function of h. Numerous models have been developed for

C2
n. In this section, we provide a few of the commonly used ones. The Hufnagel-Valley

turbulence profile is given by [9, 24]

C2
n(h) = 5.94× 10−53(υ/27)2h10 exp {−h/1000}

+ 2.7× 10−16 exp {−h/1500}+ A exp {−h/100} , (3.7)

where A characterizes the turbulence strength near ground level. Typically, we take

A = 1.7 × 10−14 m−2/3. The parameter υ represents the high altitude wind speed,

and a commonly used value for υ is υ = 21 m/s. Another daytime C2
n(h) profile is the

Submarine Laser Communication (SLC) profile [9]:

C2
n(h) =



0 0 m < h < 19 m

4.008× 10−13h−1.054 19 m < h < 230 m

1.300× 10−15 230 m < h < 850 m

6.352× 10−7h−2.966 850 m < h < 7000 m

6.209× 10−16h−0.6229 7000 m < h < 20, 000 m

(3.8)

The most two commonly used nighttime profiles are the modified Hufnagel-Valley pro-

file, given by [9]

C2
n(h) = 8.16× 10−54h10 exp {−h/1000}

+ 3.02× 10−17 exp {−h/1500}+ 1.90× 10−15 exp {−h/100} , (3.9)
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and the Greenwood profile given by [25]

C2
n(h) =

[
2.2× 10−13(h + 10)−1.3 + 4.3× 10−17

]
× exp{−h/4000}. (3.10)

In this dissertation, we use a turbulence profile corresponding to the island of Maui,

HI. The profile is called Maui3 and is defined by

C2
n(h) =


10−9.401−1.5913h/1000−0.0606(h/1000)2 0 m < h < 4, 200 m

10−17.1273−0.0332h/1000−0.0015(h/1000)2 + 0.9061

× exp
{
−0.5× (15.0866−h/1000

5.2977 )2)
}

4, 200 m < h < 30, 000 m
(3.11)

Figure 3.1 is plot of the different turbulence profiles C2
n(h) as a function of the altitude h.
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Figure 3.1: Turbulence profiles.
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3.5 The Fried parameter

The Fried parameter r0 for plane wave propagation through a turbulent region is given

by [26]

r0 = 0.185

[
4π2

k2
∫ L
0 C2

n(z)

]3/5

, (3.12)

where L is the propagation distance through the turbulence region and C2
n is the con-

tinuous profile of the structure constant. The Fried parameter can be interpreted as

the aperture size of the imaging system beyond which an increase of the diameter does

not result in an increase of the resolution.

3.6 Wave propagation in the atmosphere

Maxwell’s equations govern wave propagation phenomenon [27]. Electric fields have

been showed to have an important role in the propagation of light. Assuming that the

propagation medium is linear, isotropic, homogeneous, and non-dispersive, Maxwell’s

equations yield the wave equation for the electric field ~E given by

∇2 ~E − n2

c2

∂2 ~E

∂t2
= 0, (3.13)

where ∇2 is the Laplacian operator, c is the velocity of light in free space (or vacuum),

and n is the index of refraction defined by

n =
√

ε

ε0
, (3.14)

where ε0 is the vacuum permittivity. We saw in section 3.3 that the index of refrac-

tion n fluctuates randomly in time and space. Therefore, Eq. 3.13 can not be solved

exactly. However, some solutions based on the Huygens-Fresnel principle had been

proposed [28]. Consider the propagation of the field u0(~r0) through a random media.

The field in the observation plane is denoted u1(~r1). The vectors ~r0 and ~r1 correspond
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to coordinates respectively in the aperture and the observation plane. The field u1(~r1)

is given by

u1(~r1) =
∫

uo(~r0)h(~r1, ~r0)d~r0, (3.15)

where h(~r1, ~r0) is the impulse response in the case of a random media, and is given

by [14]

h(~r1, ~r0) =
1
jλ

exp {jk |~r1 − ~r0|}
|~r1 − ~r0|

exp {ϕ(~r1, ~r0)} , (3.16)

where λ is the wavelength, and ϕ(~r1, ~r0) is a fluctuation term due to the random media.

ϕ(~r1, ~r0) is written

ϕ(~r1, ~r0) = exp {χ(~r1, ~r0) + jφ(~r1, ~r0)} . (3.17)

The term χ(~r1, ~r0) is the logarithm of the amplitude fluctuations, and φ(~r1, ~r0) is the

phase fluctuation. φ(~r1, ~r0) accounts for the global phase change between the aperture

plane and the target plane. For propagation through a thin layer of atmosphere, the

phase change is expressed by

φ(~r, h) = kn1(~r, h)δh, (3.18)

where k = 2π/λ is the wave number, n1 the fluctuation of the index of refraction, and δh

the thickness of the layer of atmosphere. Propagation through the atmosphere causes

phase aberration, however, over long distances, it also causes amplitude aberrations [29,

30].

3.6.1 Atmospheric model

Since analytical solutions to some atmospheric optics problems are either hard, or in

some cases impossible to find, numerical simulations are widely accepted means of mod-

eling performance. Numerical methods require a model for the atmospheric turbulence.

A layered model for atmospheric turbulence is described in Ref. [15]. This method is

commonly used because it greatly simplifies the calculations, and is easily adapted to
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computer simulations. This model is presented in this section. The main idea is that

the atmosphere is seen as pile of horizontal layers. By splitting the atmosphere into

Nlayers layers, the turbulence profile C2
n(z) can be considered to be reasonably constant

within each layer. We denote zi the altitude of the ith layer and ∆zi its thickness. The

corresponding structure constant is designated by C2
ni

. The propagation through each

layer is computed separately and then recombined to obtain the global effect of turbu-

lence. We can associate a weight Wi to each layer such that
∑Nlayers

i Wi = 1. For each

layer, the weight Wi, the altitude zi and C2
ni

are computed to respect the following

moment equation:
Nlayers∑

i=1

zm
i C2

ni
∆zi =

∫ L

0
zmC2

n(z)dz, (3.19)

where 0 ≤ m ≤ 7 and L is the propagation distance through the turbulence. The

weights Wi’s are given by

Wi =
C2

ni
∆zi∫∞

0 C2
n(z)dz

. (3.20)

In Ref. [31], Troxel et. al. describe a four layer model for turbulence. However,

more accurate wave propagation modelling requires more screens. Troxel et. al. also

compute the weights Wi’s and altitudes zi’s for different turbulent profiles C2
ni

(z) (See

Table 3.1). We can notice in Table 3.1 that different turbulence profiles can lead to

very different weights. Also, the weight W1 is always that largest, which means that

the lowest layers of the atmosphere are always the most turbulent. Turbulence layers

could be chosen to have uniform thickness ∆zi = L/Nlayers for i = 1 to Nlayers. If the

first layer is assumed to be in pupil plane of the imaging system, the altitude zi of each

layer is given by

zi = (i− 1)
L

Nlayers
, (3.21)

= (i− 1)∆zi. (3.22)
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C2
ni

(z) W1 W2 W3 W4

(200 m) (2,000 m) (10,000 m) (18,000 m)

Hufnagel-Valley 21 0.8902 0.0443 0.0591 0.0064

Nighttime SLD 0.4965 0.4623 0.0299 0.0113

Daytime SLD 0.7397 0.2513 0.0048 0.0042

Greenwood 0.8615 0.0980 0.0394 0.0011

Table 3.1: Weights Wi’s and altitudes zi’s of each layer for different turbulent profiles
C2

ni
(z).

Thus, the integrated structure constant C2
ni

(z) for each layer is computed by

C2
ni

=
∫ zi+∆zi

zi

C2
n(z)dz. (3.23)

Finally, the weights are given by Eq. 3.20. Table 3.2 shows the weights of each layer for

a model with four layers of uniform thickness. The propagation distance through the

turbulence is L = 20, 000 m. In this dissertation, we use layers of uniform thickness.

C2
ni

(z) W1 W2 W3 W4

(0 m) (5,000 m) (10,000 m) (15,000 m)

Hufnagel-Valley 21 0.9364 0.0299 0.0274 0.0063

Nighttime SLD 0.8843 0.0512 0.0524 0.0121

Daytime SLD 0.9858 0.0069 0.0040 0.0033

Greenwood 0.8894 0.0815 0.0227 0.0064

Table 3.2: Weights Wi’s and altitudes zi’s of each layer for different turbulent profiles
C2

ni
(z) in the case of uniform thickness layers.

3.6.2 Propagation model

For each layer of the atmosphere, the propagation method follows those steps [32]:
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1. The incoming wave u( ~x0) falls on a phase screen. This phase screen accounts for

the phase aberration occurring during the propagation through the next layer.

The method for computing the phase screens is explained in section 5.2.3. The

layers are assumed to be thin enough to affect only the phase and not the ampli-

tude of the field. The field resulting field u′( ~x0) after the phase screen is given

by

u′( ~x0) = u( ~x0) exp{jΦ( ~x0)}, (3.24)

where ~x0 is the vector position in the phase screen plane, and Φ( ~x0) the random

phase aberration.

2. The field u′(~x) is now propagated through free space or vacuum using the angular

spectrum method studied in section 2.3. The angular spectrum propagation is

performed using fast Fourier transforms (FFT). The propagated field u′′( ~x1) is

then given by

u′′( ~x1) = F−1{F{u′( ~x0)}H( ~fx)}, (3.25)

where H( ~fx) is the free space transfer function, and ~x1 the vector position in the

target plane.

3. If the propagation through the considered volume of turbulence is not finished,

go to step 1 for propagation through the next layer.

3.7 Simulating turbulence effects on imaging sys-

tems

In this section we deal with the effects of turbulence on imaging systems. Every ground-

based imaging system is affected by the atmosphere. For example, the smallest re-

solvable angle for a ground-based astronomical telescope is significantly larger (up to
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50−100 times for large telescope) than the angle predicted by the theory of diffraction.

To illustrate the effect of the atmosphere, we propagate the light coming from a point

source through the atmosphere using a simulation and observe the image formed. The

propagation distance is 15 km, and the Fried parameter r0 is 15 cm. The pupil of the

imaging system has a diameter of D = 3.67 m, and the wavelength used is λ = 850 nm.

According to the Sparrow resolution criterion (See chapter 2), the minimum resolvable

angle is λ/D ≈ 0.23 µrad. Figure 3.2 shows the short exposure and long exposure

image of the point source. We can notice in Figure 3.2 (a) that instead of being a

focused point of width approximately λ/D, the turbulence causes the long exposure

image of the point source to be spread out and blurry spot. The width of the spot is

around 0.7 µrad, which is the much larger than the diffraction limit case.

Short exposure images (of the order of few milliseconds) present different charac-

teristics than the long exposure images. First, short exposure images have a broader

extent than the diffraction limited image. Second, short exposure images are speckled

in appearance [33]. They have a high spatial frequency component not present in long

exposure images. We can observe this property in Figure 3.2 (b).

3.8 Conclusion

In this chapter, we saw how the fluctuations of the index of refraction affect wave prop-

agation in the atmosphere. Two models for the spatial PSD of the index of refraction

had been introduced: the Kolmogorov and the von Karman spectrum. Then, several

turbulence profiles, characterizing the turbulence strength as a function of the propa-

gation distance, had been presented. A layered model for the atmosphere was given as

well as the formulas for computing the weights and altitudes of each layer. The method

for propagation from one layer to the next was then explained. Finally, we illustrated
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Figure 3.2: Image of a point source through turbulence. (a) Long exposure image. (b)
Short exposure image. Negative image is displayed for clarity.

the effect of turbulence by observing the image of a point source through turbulence.
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CHAPTER 4

Adaptive Optics

4.1 Introduction

The goal of adaptive optics (AO) is to compensate turbulence-induced phase aberra-

tions when propagating a light wave through the atmosphere. The idea consists of two

steps: first, sense the phase aberrations, second, use this information to compensate for

the phase deformation in real-time. In astronomical applications, an image is formed

with the AO-corrected light waves. The image appears sharper thanks to adaptive op-

tics. In communication or defense applications, laser beams are usually used. Adaptive

optics allows to obtain more focused laser beams and therefore more power falling on

the target. In this chapter, we will see the approach used in adaptive optics systems,

as well as the actual components used in those systems. The performance and the

limitations of adaptive optics will then be studied.

4.2 Approach

The principle of AO is the following: First, we get optical information from the incoming

light. For example, we estimate the phase of the incoming field with a wavefront

sensor. Second, we use an optical component, called deformable mirror (DM), to apply

a correction to the beam. Sometimes, several DM’s can be used [34, 35], but we
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only consider the case of a single DM. The DM is controlled in real-time by a computer

processing the data from the wavefront sensor. To do so, closed-loop control is involved.

The system adapts in real-time the DM to the optical distortion. The resulting light

wave is then corrected. That is why the system is called adaptive optics.

4.3 Adaptive optics components

In this section, we present the structure of an adaptive optical imaging system. This

kind of system is used in large ground-based telescopes. Figure 4.1 presents the organi-

zation of a typical adaptive optics system. In the next subsections, these components

are described in detail.

4.3.1 Wavefront sensor

Model

The wavefront sensor (WFS) gives an estimate of the phase of the incoming optical

field. This information is then used to control the wavefront compensation device, typ-

ically a deformable mirror (DM). Deformable mirrors will be studied in section 4.3.2.

The difficulty of estimating the phase φ (~x, t) lies in the fact that it cannot be measured

directly. Only the spatial gradient ∇φ (~x, t) can be estimated. A phase reconstruction

algorithm is used to obtain an estimate of φ (~x, t), called φ̂ (~x, t). The phase recon-

struction issue will be presented in section 4.3.3.

There are different types of wavefront sensors. The most commonly used is the Hart-

mann WFS. Figure 4.2 presents the optical configuration of the Hartmann wavefront

sensor.

The Hartmann WFS works as follows. The incident light falls on the lenslet array
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Figure 4.1: Organization of an adaptive optics system.

and each lenslet makes the light focus in the lenslet focal plane. An array of detec-

tors is placed in the focal plane of the lenslet array to measure the position of the

focusing spots. Each lenslet is also called subaperture. For each subaperture i, the

wavefront slope ~si is proportional to the position of the spot ~xspot,i in the focal plane.

The relationship is given by

~si = k
|~xspot,i|

f
, (4.1)

where k is the wave number defined by k = 2π/λ, and f the focal length of the lenslet.

The location of the spot is estimated by calculating the centroid of the spot falling
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Figure 4.2: Hartmann wavefront sensor.

on the detector array. The relationship between the wavefront slope and the phase

gradient over the ith subaperture is [15]

~si =
∫

Wpupil,i (~x)∇φ (~x, t) d~x∫
Wpupil,i (~x) d~x

+ ~snoise, (4.2)

where Wpupil,i (~x) is the weighting function of the ith subaperture and ∇ the notation

for the gradient operator. The measurement noise is denoted ~snoise. Integrating by

parts the numerator, we obtain

~si = −
∫
∇Wpupil,i (~x) φ (~x, t) d~x∫

Wpupil,i (~x) d~x
+ ~snoise. (4.3)

Measurement errors

We now focus our attention on quantifying the measurement errors when estimating

the slope. The noise term ~snoise in Eq. 4.2 has two components:

~snoise = ~sns + ~snr, (4.4)
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where ~sns is the shot noise , and ~snr is the read noise. The variances of ~sns and ~snr are

designated σ2
ns and σ2

nr. Thus, the variance of ~snoise is defined by:

σ2
noise = σ2

ns + σ2
nr. (4.5)

The expressions of both the shot noise [36, 37] and the read noise can be found in the

literature. In the case of the Hartmann WFS, the contribution to σnoise due to shot

noise is written [15] (in radians/m)

σns = k

(
σspot

f

)
(4.6)

=
√

2π

d
√

K̄
∫ 1
−1 Ib(fx, 0)Htr(fx, 0)dfx

, (4.7)

where σspot is the standard deviation of the measurement of the spot location,

k is the wave number,

f is the focal length of the lenslet,

d is the subaperture diameter,

K̄ is the total average detected photon count per subaperture,

Ib(fx, fy) is the Fourier transform of the light intensity distribution into

the subaperture focal plane. Ib(fx, fy) is normalized such that

Ib(0, 0) = 1.

Htr(fx, fy) is the tilt removed optical transfer function (OTF) of the

subaperture,

finally fx and fy are the spatial frequency variables, which are normalized by

the diffraction limit of the subaperture, d/λf . This way, fx ∈ [−1; 1]

and fy ∈ [−1; 1].

In Eq. 4.7, we can see that the variance σns is inversely proportional to the factor K̄.

This shows how the finite light level, represented by the variable K̄, affects the accuracy

of the slope measurements. Also, the influence of
∫ 1
−1 Ib(fx, 0)Htr(fx, 0)dfx on σns can
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be interpreted as follows: when the tilt-removed OTF if the subaperture, Htr(fx, 0),

gets closer to the diffraction limited OTF, the integral
∫ 1
−1 Ib(fx, 0)Htr(fx, 0)dfx tends

to its maximum value of unity, and therefore, σns decreases. A lower bound for the

measurement error due to shot or photon noise can then be defined (in radians/m):

σns =
√

2π

d
√

K̄
, (4.8)

The second source of noise on the measurement of ~s is the light detector reading error.

This additive noise is called the read noise. In the case of a quad cell, the contribution

σnr of the read noise to σnoise can be expressed (in radians/m) by [9]

σnr =
√

2π

d
√

K̄2

4σ2
e

, (4.9)

where σ2
e is the variance of the read noise for each pixel in the detector array.

4.3.2 Wavefront compensation

Wavefront aberrations φ (~x, t) can be represented as a linear combination of the influ-

ence functions of the DM:

φ (~x, t) =
Nact∑
k=1

ak(t)rk(~x), (4.10)

where rk(~x) is the influence function of the kth actuator, t denotes the time, and ~x the

position on the DM. The coefficient ak(t) is the weight of the kth influence function in

the decomposition of φ (~x, t). Nact is the number of actuators of the DM. The weights

ak(t) are given by

ak(t) =
∫

Wpupil(~x)φ(~x)rk(~x)d~x, (4.11)

where Wpupil(~x) is a weight function corresponding to the pupil extent. Wpupil(~x) is

defined by

Wpupil(~x) =


1 inside the pupil

0 outside the pupil.
(4.12)

41



A set of functions used to represent fixed wavefront aberrations is the Zernike polyno-

mials. Using Zernike polynomials, the distorted phase, φ (~x), can be expressed in polar

coordinates as

φ (Rρ, θ) =
N∑

n=1

anZn (ρ, θ) , (4.13)

where R is the radius of the telescope aperture, ρ and θ are the polar coordinates,

Zn (ρ, θ) is the nth Zernike polynomial, and an’s are given by

an =
∫

Wpupil (ρ) φ (Rρ, θ) Zn (ρ, θ) d~ρ. (4.14)

Table 4.1 shows the first Zernike polynomials from n = 1 to 10. The first term, for

n = 1, is called piston, which is not been compensated in adaptive optics systems be-

cause it has not effect on the performances of imaging systems. The terms 2 and 3

are referred to as tilt. These are compensated by the use a tilt mirror, described in

section 4.3.2.1. Higher order aberrations are compensated by the deformable mirror,

which is discussed in section 4.3.2.2. DM’s with localized actuators have localized influ-

n Zernike polynomial Zn (ρ, θ)

1 1

2 2ρ cos θ

3 2ρ sin θ

4 3.464ρ2 − 1.732

5 2.449ρ2 sin 2θ

6 2.449ρ2 cos 2θ

7 (8.485ρ3 − 5.657ρ) sin θ

8 (8.485ρ3 − 5.657ρ) cos θ

9 2.828ρ3 sin 3θ

10 2.828ρ3 cos 3θ

Table 4.1: Zernike polynomials.
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ence functions. Therefore, localized modes are an efficient representation, as opposed

to Zernike polynomials, which are global. For that reason, despite its convenience to

represent optical phase distortions, we prefer not to use Zernike polynomials in the rest

of this thesis. Additionally, representing fine spatial features generally requires a huge

number of Zernike polynomials.

4.3.2.1 Tilt mirror

Most of the power of the wavefront phase distortion is in the lower dynamic range (n

= 2 and n = 3) [15]. The tilt aberration does not cause an image defect. Rather, it

causes the image location to shift. If multiple realizations of tilt are integrated in an

image exposure time, a blur results. For this reason, we use a tilt mirror (also called

tip-tilt mirror) to compensate for the tilt aberrations of the wavefront [38, 39]. The

incoming light bounces first on the tilt mirror, and then on the deformable mirror.

A tilt mirror is simply a flat mirror with two degrees of freedom on axis x and y.

Figure 4.3 presents the aspect of a tip-tilt mirror. The effect of a wavefront tilt is to

x

y

Figure 4.3: Tip-tilt mirror.

keep the image centered in the focal plane of the imaging system. The tilt is estimated

by computing the centroid of the image. The centroid of the intensity distribution

I(x, y) is calculated by:

x̄ =
∫ ∫

I(x, y)xdxdy, (4.15)

ȳ =
∫ ∫

I(x, y)ydxdy. (4.16)
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The tilt compensation is controlled by a closed-loop system. The command signals

sent to the two orthogonal axis x and y of the tip-tilt mirror are computed from the

centroid position and updated in real-time. Tyler [40] defined the minimum temporal

frequency fT required for tilt compensation in the case of a circular aperture. fT is

also called the Greenwood frequency and is defined by

fT = 0.368D−1/6λ−1
[∫

C2
n(z)v2(z)dz

]2
, (4.17)

where D is the diameter of the pupil, λ the wavelength, C2
n(z) the turbulence profile,

and v(z) the turbulence velocity profile. Tyler also found the expression of the variance

of the residual angular tilt after compensation. This variance is called σ2
θ and is written

σ2
θ = (

fT

f3dB
)2(

λ

D
)2, (4.18)

where f3dB is the temporal frequency such that the system response is 3dB down from

its maximum value.

4.3.2.2 Deformable mirror

The deformable mirror (DM) corrects for the higher spatial orders of the wavefront

aberrations. The aberrated incident wavefront falls on the mirror and is reflected

such that the wavefront phase is, at least partially, cancelled. There are two types of

deformable mirror: segmented and continuous. More details about both types of DM

can be found in [15, 41, 42, 43, 44]. A continuous DM has a single, thin, continuous

mirror surface that can be shaped to the desired pattern. The shape of the mirror is

adjusted by a array of discrete electronically controled actuators that push and pull

the face sheet (See Figure 4.4). In Eq. 4.10 we modeled the surface of the DM. The

influence functions rk (~x) had been modeled using different functions: polynomials,

trigonometric and Gaussian functions [45, 46, 47, 48, 49]. In the following section, we

explain how the control signal ck (t) is calculated. It should be noted that due to the
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nature of the surface, the actuators are mechanically coupled by the face sheet, and the

influence functions associated with different actuators are usually not independent.

Actuator Mirror surface

Figure 4.4: Cross-section of a deformable mirror.

4.3.3 Control

We already established the relationship between the actuator commands and the DM

surface in Eq. 4.10. We now want to compute the DM command ak(t) for each actuator

indexed by k. The WFS slope measurements ~smeas,i(t) for each subaperture i are used

to compute the DM commands. This is called mapping the slope measurements to the

DM commands. The goal is to build a mapping that minimizes the squared residual

phase averaged over the aperture, εres, defined by

ε2res =
∫

Wpupil(~x)
(
φ̂ (~x, t)− φ (~x, t)

)2
d~x. (4.19)

Let’s call c and s the vector columns built respectively from the ck(t)’s and the

~smeas,i(t)’s. For a linear mapping between the WFS measurements and the DM com-

mands, Roggemann and Welsh [15] gave the following expression:

c = Ms, (4.20)

where M is a Nact × 2Nsubap matrix called the control matrix, where Nact and Nsubap

are respectively the number of actuators and subapertures. The matrix M is derived by

minimizing the slope measurement error. Assuming that the measurement error follows
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a Gaussian distribution, the matrix M can be calculated using different estimators. The

most commonly used estimators are: the maximum a posteriori (MAP) estimator, the

minimum variance estimator, the maximum likelihood estimator, and the least squares

(LS) estimator. In this section, we give details about the MAP estimator as well as the

LS estimator, which is the type of estimator we use later on.

Maximum a posteriori (MAP) estimator

The following model is used for the slope measurements:

smeas = sdm + snoise, (4.21)

where sdm is the column vector containing the slopes of the DM surface, and snoise

the column vector containing the noise measurements (due to both shot noise and read

noise). From Eq. 4.3, we can write:

sdm,j = −
∫
(∇Wpupil,j(~x) · ~uj)φ̂(~x, t)d~x∫

Wpupil,j(~x)d~x
, (4.22)

where sdm,j is the jth element of the vector sdm and ~uj is a unit direction vector. We

now look only at an instant of time, so we dismiss the time variable t. Substituting

Eq. 4.13 in Eq. 4.22 we have:

sdm,j = −
Nact∑

k

ck

∫
(∇Wpupil,j(~x) · ~uj)rk(~x)d~x∫

Wpupil,j(~x)d~x
. (4.23)

Let now define the element (m,n) of the Jacobian matrix H as

Hij = −
∫
(∇Wpupil,j(~x) · ~uj)rk(~x)d~x∫

Wpupil,j(~x)d~x
. (4.24)

This allows us to write

sdm = Hc, (4.25)

where c is the DM commands column vector. Substituting Eq. 4.21 in Eq. 4.25 gives:

smeas = Hc + snoise. (4.26)
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Assuming that the noise snoise has a Gaussian distribution and a zero-mean, we can

establish (see Eq. 4.20) that c also has a zero-mean Gaussian distribution [26, 50]. Let

define the covariance matrices of c and snoise

Cc = E{ccT }, (4.27)

Cnoise = E{snoisesT
noise}. (4.28)

If the influence functions ri(~x) are orthonormal, and if the input phase φ(~x) is zero-

mean, the coefficients of the control signal covariance matrix Cc are given by

c̄i = E

{∫
W (~x)φ(~x)ri(~x)d~x

}
,

=
∫

W (~x)E{φ(~x)}ri(~x)d~x,

= 0, (4.29)

and

¯cicj = E

{∫
W (~x)φ(~x)ri(~x)d~x

∫
W (~x′)φ(~x′)rj(~x′)d~x′

}
,

=
∫ ∫

W (~x)W (~x′)ri(~x)rj(~x′)E{φ(~x)φ(~x′)}d~xd~x′. (4.30)

The atmosphere statistics enter in Eq. 4.30 by means of the correlation function

Γφ(~x, ~x′) = E{φ(~x)φ(~x′)}. The MAP estimate minimizes the term ‖sdm − smeas‖2.

Reference [51] gives the result of this minimization:

cMAP = (HT C−1
noiseH + C−1

c )−1HT C−1
noisesmeas. (4.31)

Comparing Eq. 4.20 and Eq. 4.31, we recognize the expression of the control matrix M

in the case of the MAP estimation:

MMAP = (HT C−1
noiseH + C−1

c )−1HT C−1
noise. (4.32)
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Least squares (LS) estimator

As the measurement noise variance decreases to zero, Eq. 4.32 reduces to the LS control

matrix. In the LS estimate, the quantity ‖smeas −Hc‖2 is being minimized. The

solution to this is given by [52]:

cLS = (HTH)−1HT smeas. (4.33)

In which we recognize the expression of the control matrix M in the case of the LS

estimate:

MLS = (HTH)−1HT . (4.34)

The error between the DM phase and the desired phase is never zero. This error depends

on several factors: the noise in the WFS measurements (see Eq. 4.7 and Eq. 4.9), the

finite number of DM actuators and the spacing between them, the size and the sampling

of the WFS subapertures and the anisoplanatism effect. We can notice that the LS

estimator technique does not need any atmosphere statistics, which are required by the

MAP estimator. Thus, for this reason, as well as for its simplicity, the LS estimator is

the most widely used in practice at this time.

4.4 Performance measures

The degree of success of AO systems in compensating the wave front phase aberration

depends on:

1. The components of the system (See section 4.3),

2. The atmospheric conditions,

3. The light levels (See section 4.5).
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There are many ways to measure AO systems performances [5, 47, 48, 53, 54]. The

Strehl ratio (SR) is simple and commonly used metric. It is defined by

SR =
h(~0)

hdl(~0)
, (4.35)

where h(~x) is the point spread function (PSF) and hdl(~x) the diffraction limited PSF.

It also can be expressed as the ratio of the integrals of the optical function transfer

(OTF), H(~f), and Hdl(~f):

SR =
∫

H(~f)d~f∫
Hdl(~f)d~f

. (4.36)

If the aperture averaged residual wavefront phase ε2res, as defined in Eq. 4.19, is less

than (2π/10)2 rad2, an approximation of the Strehl ratio, known as the Marechal

approximation [55], is given by

SR ≈ exp{−ε2res}. (4.37)

4.5 Factors limiting performance

4.5.1 WFS light level

The finite amount of light falling onto the WFS is a limiting factor for AO systems. The

influence of this parameter on the WFS measurements accuracy had been quantified in

4.3.1. In astronomy, most of the time the science object is not bright enough to be used

a reference beacon for the AO system. To remedy this problem, a bright star should

be found nearby the object. However, the bright star should not have a large angular

separation with the object, which leads me to the next section on anisoplanatism.
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Figure 4.5: Anisoplanatism.

4.5.2 Anisoplanatism

Anisoplanatism arises from the fact that the light coming from different directions does

not go through the same volume of turbulence, and thus does not experience the same

phase aberration. Figure 4.5 illustrates this idea. To quantify this phenomenon, the

isoplanatic angle had been defined. The isoplanatic angle is the maximum angular

separation between the object we look at and the reference beacon for which the phase

aberration remains approximately constant. Fried [10] defined the isoplanatic angle as

the angle between the beacon and object paths for which the average far field transmit
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power will be reduced from its maximum value by a factor of 1/e. It is written by

θ0 = 58.1× 10−3λ6/5

[∫ L

0
C2

n(z)z5/3dz

]−3/5

, (4.38)

where C2
n(z) is the turbulence profile, λ the wavelength, and L the path length through

turbulence. We can notice that θ0 depends only on C2
n(z) and λ, and not at all on

the AO system itself. The isoplanatic angle θ0 can also be defined as a function of the

Fried parameter r0:

θ0 = 0.314
r0

h̄
, (4.39)

where r0 was defined in Eq. 3.12 and h̄ is defined by

h̄ =

[∫ L
0 C2

n(z)z5/3dz∫ L
0 C2

n(z)dz

]3/5

. (4.40)

The parameter k is the wave number defined by k = 2π/λ. In Eq. 4.38, we can see

the dependency on the wavelength λ. In the visible band, a typical value for θ0 would

be 5-10 µradians, but it would be much larger in the infrared (IR) wavelengths. In

Eq. 4.39, we note that θ0 is proportional to r0. The parameter r0 is measurement of

the strength of the turbulence. The stronger the turbulence is, the smaller r0 becomes,

and so θ0.

Thus, the performance of AO systems depends on the direction of the object of interest.

When the angular separation between the object and the reference beacon increases,

the performance of the AO system degrades [12]. In the 90’s, the problem of finding a

bright enough natural star to use as a reference beacon was solved by the creation of an

artificial guide star [9, 11]. By forming a laser beam in the upper atmosphere, a spot is

created and can be used as reference beacon for the AO system. This way, the problem

of the low light level in the WFS is eliminated. However, artificial beacons do not

provide any tilt information. By pointing the laser beam within the isoplanatic angle

of the object to observe, we avoid the disadvantage due to anisoplanatism. However,
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the problem remains when considering wide field of view images. This point will be

treated in the next chapter.

4.5.3 Technical limitations

The other limitations of the AO systems are due to technical constrains:

• First, there can be only a finite number of actuators deforming the DM. This

results in a finite degrees-of-freedom of the DM, which limits the range of spatial

frequencies that the mirror can compensate.

• Second, the finite sample spacing in the WFS limits the ability to sense high

spatial frequencies in the wavefront phase. The finite number of DM actuators

and the finite sample spacing in the WFS both act as a spatial filter on the phase

reconstructed by the DM surface.

• Finally, AO system performance is limited from the fact that wavefront aberration

evolves in time. The sensing of the wavefront aberration, as well as the DM

deformation takes a time delay. This time delay limits the temporal response of

the system, as well as its performances.

4.6 Conclusion

In this chapter, we introduced the approach used in AO systems to compensate turbulence-

induced phase aberration. We described each component of the system, and gave its

model. Tools used to measure performance of AO systems were presented. Finally, we

studied how anisoplanatism, as well as the light level in the WFS, limit the performance

of AO systems.
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CHAPTER 5

Simulations

5.1 Introduction

In this chapter, we explain why wave optics computer simulations are used and we give

the details of the simulation used here.

Stochastic processes lead the atmospheric turbulence phenomenon. Therefore, when

considering the problem of propagating light through the atmosphere, analytic solutions

are either impossible, or very hard to calculate. For this reason, we use Monte Carlo

simulations [56]. Numerical simulations are used to first propagate the optical field

through the atmosphere, and then to form the image, accounting for the action of the

adaptive optical system [54].

The Fourier optics concepts presented in chapter 2 as well as the models of the

components of the AO imaging system introduced in chapter 4 are implemented in the

simulation.

This chapter is organized as follows. First, we present Monte Carlo simulations in

general. Second, we describe the sampling requirements needed when implementing

wave propagation simulations. Third, the parameters of the wave optics simulation are

listed. The last section of this chapter is a conclusion.
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5.2 Simulations

5.2.1 Monte Carlo simulations

Since atmospheric turbulence is a stochastic process, we use Monte Carlo simula-

tions [56]. The wave propagation simulation is run several times, each time with a

different random realization of the phase screens. This way, we generate random re-

alizations of the wave front phase falling onto the pupil of the imaging system. The

image is then formed with the AO imaging system. The resulting images are averaged

over all the iterations. Typically, the simulation is run a few hundred times in order to

obtain long exposure images.

Different software packages offer toolboxes for optics wave propagation simula-

tions [57]. I decided to use the computing software Matlab [58] and the toolbox

AOTools [59] to perform the simulations. Matlab offers a very flexible environment

and the simulation program can easily be modified. The AOTools toolbox provides

very convenient tools to:

• Model adaptive optics systems,

• Propagate the optical wave through random media,

• Simulate imaging systems,

• Analyze the propagated optical field.

5.2.2 Array size

The discretized values of the optical field are stored in two-dimensional complex ma-

trices. Each matrix corresponds to the field in a plane denoted (x, y)|z=Z , where Z is
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the propagation distance. The plane (x, y)|z=Z is normal to the optical axis of the sys-

tem. The size for the matrices depends on the sampling, which is driven by either the

propagator, or the WFS sampling. A commonly used size for the matrices is 512×512,

which is the size I used. For sizes larger than 1024×1024, simulations become slow due

to the limited computational power of computers. The size of matrices is usually taken

as a power of two (128, 256, 512, etc) since algorithms like the fast Fourier transform

(FFT) or the Inverse Fast Fourier transform (IFFT) run much faster with powers of

two.

5.2.3 Phase screen generation

Approach

In this section, we describe the method used to generate random realizations of the

wavefront phase [15]. A realization of the wavefront phase at time t can be writen as

ϕ̃(~x, t) =
N∑

i=1

ai(t)fi(~x), (5.1)

where ϕ̃(~x, t) is a single realization of the random phase screen, ~x is the vector position

in the pupil plane, ai(t) is the ith weight at time instant t, and fi(~x) is the ith element of

a set of orthonormal basis functions. A widely used set of orthonormal basis functions

is the Zernike polynomials set. Another one is fi(~x) = δ(~x − ~xi), which is the one

used in the AOTools. In the latter case, the basis function corresponds to the value

of the random phase at position ~xi. The generation of random phase screens consists

in finding random set of weights ai(t), for i = 1, ..., P , respecting approximately the

desired statistical properties of the phase [15]. The spatial and temporal correlation

property should be respected:

Γϕ̃(~x, t; ~x′, t′) ≈ Γϕ(~x, t; ~x′, t′), (5.2)
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where

Γϕ̃(~x, t; ~x′, t′) = E{ϕ̃(~x, t)ϕ̃(~x′, t′)}, (5.3)

Γϕ(~x, t; ~x′, t′) = E{ϕ(~x, t)ϕ(~x′, t′)}, (5.4)

and ϕ(~x, t) denotes the random phase we are simulating. First, let us consider the

covariance matrix for the weights ai(t). We denote this matrix Γa. If we consider M

different instants of time tk and N vectors position ~xi, Γa has (N × M)2 elements.

Each element is given by

E{ai(tk)ai′(tk′)} for {i, i′} ∈ [1, . . . , N ]2, and {k, k′} ∈ [1, . . . ,M ]2 . (5.5)

Since the matrix Γa is real, symmetric and positive definite [60], the Choleski factor-

ization allows us to write Γa as the product of two square matrices [61]:

Γa = RRT , (5.6)

where T denotes the transpose operator. Numerical methods [61, 62] exist to compute

this factorization.

We now consider a vector uncorrelated, zero mean, unit variance, and Gaussian

random variables. This column vector is denoted ~b and had M ×N elements. Random

number generators [58] provide such random variable realizations. The covariance of

the vector ~b is given by

E{~b ~bT } = IM , (5.7)

where IM is the identity matrix of size M ×M . Let us now form the vector ~a from the

matrix R and the vector ~b this way:

~a = R~b, (5.8)

where the elements of the vector ~a correspond to the weights ai(tk). Then, we compute

the statistics of the vector ~a [15]:

E{~a ~aT } = E{R~b(R~b)T } (5.9)
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= E{R ~b ~bT RT }. (5.10)

Since R is a constant matrix, we can write

E{~a ~aT } = RE{~b~bT }RT . (5.11)

By substituting Eq. 5.7 into Eq. 5.11, we obtain

E{~a ~aT } = RIMRT (5.12)

= RRT (5.13)

= Γa. (5.14)

Through these steps, we proved that the random vector ~a has the desired covariance

matrix Γa.

Covariance matrix Γa

Now that we showed that we can obtain draws of the random vector ~a having the

desired covariance Γa, we explain in this section how to compute the elements of the

matrix Γa. Assuming that we take as a basis function set, fi(~x) = δ(~x − ~xi), Eq. 5.5

gives

E{ai(tk)ai′(tk′)} = E{ϕ(~xi, tk)ϕ( ~xi′ , tk′)}, (5.15)

= Γϕ(~xi, tk; ~xi′ , tk′). (5.16)

We can notice that the covariance matrix Γa corresponds to the covariance expression

for the phase, Γϕ. The covariance matrix Γϕ depends on the turbulence model chosen.

Ref. [15] gives the expression of Γϕ for different turbulence models. Let us first define

the piston-removed phase φ(~x, t). Its expression is given by

φ(~x, t) = ϕ(~x, t)−
∫

W (~x′)ϕ(~x′, t)d~x′, (5.17)
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where W (~x′) is the weighting function defining the physical extent of the phase screen.

In the case of the von Karman turbulence model, Ref. [15] gives the following

expression for the covariance of the piston-removed phase φ(~x, t):

Γφ(~xi, tk; ~xi′ , tk′) = 3.089

(
N∑

n=1

r
−5/3
0n

∫ ∞

0
κJ0 (κ |~xi − ~xi′ − ~v(zn)(tk − tk′)|) ΦV

0 (κ)dκ

)
,

(5.18)

where κ denotes the scalar wavenumber, J0(.) denotes the zeroth order Bessel function

of the first kind, ~v(z) is the velocity profile, ΦV
0 (κ) is the von Karman spectrum, r0n is

the Fried parameter for the nth layer and is defined by

r0n = 0.185

[
4π2

k2C2
nn

∆zn

]3/5

, (5.19)

where k is the optical wavenumber, ∆zn the thickness of the nth layer, and C2
nn

is the

structure constant for this layer. We can note that the Bessel function, J0(.), can be

evaluated using already existing software toolboxes.

In the case of the piston-removed von Kolmogorov turbulence model, the covariance

of the piston-removed phase φ(~x, t) is [15]

Γφ(~xi, tk; ~xi′ , tk′) = 6.88
N∑

n=1

r
−5/3
0n

(
−1

2
|~xi − ~xi′ − ~v(zn)(tk − tk′)|5/3

+
1
2

∫
W (~x′)

∣∣∣~x′ − ~xi′ − ~v(zn)(tk − tk′)
∣∣∣5/3

d~x′

+
1
2

∫
W ( ~x′′)

∣∣∣~xi − ~x′′ − ~v(zn)(tk − tk′)
∣∣∣5/3

d ~x′′

+
1
2

∫∫
W (~x′)W ( ~x′′)

∣∣∣~x′ − ~x′′ − ~v(zn)(tk − tk′)
∣∣∣5/3

d~x′d ~x′′
)

. (5.20)

In this section, we showed how to generate random phase screens. Figure 5.1 shows

a realization of a 512× 512 pixels phase screen computed with the Kolmogorov spatial

power spectrum, for D/r0 = 25. Eight turbulence layers are used as well as a zero

velocity profile.
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Figure 5.1: Example of a phase screen computed with the Kolmogorov spatial power
spectrum. Black pixels correspond to −π and white to π radians.

5.3 Simulation parameters

5.3.1 Propagation parameters

The parameters of the simulation concerning the propagation through the atmosphere

are presented in Table 5.1.

5.3.2 Telescope

The parameters of the simulation concerning the telescope are presented in Table 5.2.

Figure 5.2 shows an example of simulated intensity image in the pupil plane of the

telescope. The primary and the secondary apertures can be seen, as well as the “spider”

of the telescope.
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Type of simulation Vertical imaging simulation

Optical wavelength (λ) 850 nm

Altitude of the imaging system (z0) 3050 m

Prop. dist. through the atmosph. (z) 15 km

Turbulence model used Kolmogorov model

C2
n(z) turbulence profile Hufnagel-Valley (HV)

Number of random phase screens 8 spaced equidistant along the opt. path

Number of phase screen iterations 100− 200 iterations

Fried parameter (r0) 10− 25 cm

Space sampling in the object plane 0.75 cm

Space sampling in the pupil plane 0.33 cm

Table 5.1: Propagation parameters.

5.3.3 AO system

The parameters of the simulation concerning the AO system are presented in Table 5.3.

Figure 5.3 gives a block-diagram of the simulation.

5.4 Sampling requirements

In computer simulations, it is essential to respect sampling requirements [63, 64, 65].

The sampling requirements are different whether we consider the case of an optical field

going through the pupil of a lens, or propagating in the atmosphere using the angular

spectrum propagator.
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Primary diameter 3.67 m

Secondary diameter 0.25 m

Spider type quadrilateral, orthogonal

Width of the spider 2 cm

Focal length (f) 726 m

Array size 512× 512 pixels

Field of view (FOV) 256 µrad (0.5 µrad/pixel)

Table 5.2: Telescope parameters.

Wavefront sensor (WFS) type Shack-Hartmann

Array size 32× 32 lenslet

WFS detector size 512× 512 pixels

WFS detector wavelength (λWFS) 650 nm

Subaperture size 400 microns

Number pixels across each subaperture 16 pixels

Focal length of lenslet 35 mm

Number of deformable mirror actuators 784 actuators

Average number of photon events (K) 10− 104 photons/subaperture

Table 5.3: AO system parameters.

5.4.1 Resolution limit

A classical resolution limit criterion in optical systems is expressed in term of angle by

αlimit =
λ

D
, (5.21)

where D is the aperture size of the imaging system, and λ the optical wavelength. The

spatial resolution criterion is the projection of this angle over the propagation distance

z and is written

∆x ≤ λz

D
. (5.22)
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Figure 5.2: Intensity image in the telescope pupil plane.

In our simulation, we have z = 15 km, D = 3.67 m, and λ = 0.85 × 10−9 m. The

sampling requirement in the pupil plane is then

∆x ≤ 0.3474 cm , (5.23)

and

αlimit = 0.2316 µrad. (5.24)

5.4.2 Angular spectrum propagator

Wave propagation using an angular spectrum propagator (See section 2.3) imposes the

following space sampling criterion to be respected:

N ≥ 2λz

∆x2
, (5.25)

where ∆x denotes respectively the sample spacing. N is the array size, z is the prop-

agation distance through the volume of turbulence, and λ is the optical wavelength.

The reason for this requirement is to avoid the wraparound effect. The wraparound

effect is an artifact of computer simulations due to the limited size N of the grid used.
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Setup:	 . Read in paramters
	 . Create WFS model
	 . Create DM model
	 . Compute reconstruction matrix, M
	 . Create object, o(x)

Free space propagation (FT)

Create randon phase screen, φ(x)

Propagation through layer

Impose pupil, W(x)

Remove tilt

WFS, s(x)

Actuator commands, c(x)

DM, Φ(x)

Form image, i(x)

Average image over all iterations

For each turbulence layer

For each iteration

Figure 5.3: Block-diagram of the simulation.
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5.5 Conclusion

In this chapter, we described the wave optics simulation that we use. The details of

the implementation are provided, in particular, the generation of the random phase

screens. The values of the different parameters of the simulation are given, as well as

the sampling requirements.
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CHAPTER 6

Prediction of the off-axis point spread function

6.1 Introduction

Adaptive optics systems allow the effects of turbulence-induced aberrations to be re-

duced for a narrow field of view corresponding approximately to the isoplanatic angle

θ0 [66]. For field angles larger than θ0, the PSF degrades as the field angle increases [67].

Knowledge of the space-varying PSF is essential for the reconstruction of anisoplanatic

AO images. In this chapter, we present a technique to predict the long exposure (LE)

AO-corrected PSF as a function of the field angle.

This chapter is organized as followed. First, we describe the approach used in the

technique for prediction of the PSF. Second, by means of a wave optics simulation, we

compute the LE AO-corrected PSF for different field angle values and different values

of the Fried parameter r0. The influence of the field angle θ and the Fried parameter

r0 on the PSF is discussed. In section 6.4, we study the geometrical properties of the

PSF. In section 6.5, a parameterized model for the LE-PSF is presented. In section 6.6,

the model of the PSF is fit to the simulated PSF. The influence of θ and r0 on the

parameters of the model is studied. In section 6.7, the PSF prediction method by

interpolation is presented. section 6.8 gives the results obtained. Conclusions are

drown in the last section of this chapter.
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6.2 Approach

The approach used to predict the average PSF as a function of the field angle is as

follows. The technique assumes that we know the PSF for at least two different field

angle values θknown. The set composed of those field angles is denoted Θknown. The

known PSF’s are obtained by computing the image of point sources by means of an

imaging simulation, as described in chapter 5. The technique allows prediction of the

PSF for any field angle value θpredict inside the interval Θpredict defined by Θpredict =

[min {Θknown} ;max {Θknown}]. Figure 6.1 presents a block-diagram of the method,

which consists of 3 steps:

• Step 1: The known PSF’s are fit with a parameterized model of the PSF. The

parameters of the model are the coefficients ai’s and bi’s. An initial guess for the

coefficients ai and bi is given. Then, an optimization loop finds the coefficients

ai and bi minimizing the mean square error between the known PSF and the

parameterized model of the PSF. This way, we obtain a set of coefficients ai and

bi for each field angle θknown ∈ Θknown.

• Step 2: By means of an interpolation method, we predict the coefficients ai and

bi for the desired θpredict ∈ Θpredict.

• Step 3: Using the parameterized model, the PSF is predicted from the ai’s and

bi’s for each θpredict ∈ Θpredict.
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Simulated PSF
at θ ∈ Θknown

PSF Model
Initial guess
ai's and bi's
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εFITTING
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at θ ∈ Θpredict

Interpolation

PSF Model

Predicted PSF
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MS error
εPREDICT

optimization loop

Prediction error

Simulated PSF
at θ ∈ Θpredict

Figure 6.1: Block-diagram of the PSF prediction method.
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6.3 Simulation of the off-axis PSF

6.3.1 Introduction

The PSF is computed at field angles θknown ∈ Θknown by mean of a wave optics sim-

ulation as described in chapter 5. We obtain the PSF for different field angle values

by computing the image through turbulence for an array of point sources. The PSF is

also computed for different values of the Fried parameter r0. In this section we observe

the influence of those two parameters on the PSF.

6.3.2 Influence of the field angle on the PSF

In this chapter, the cartesian coordinates in the image plane are denoted (θx, θy) (angles

expressed in µradians), and the origin of the reference corresponds with the position

of the reference beacon of the AO system. We compute the LE AO-corrected image of

points sources distributed equidistant along the θx-axis (θy = 0), with θx going from

0 to 64 µradians, every 8 µradians. A total of nine PSF’s is computed: one on-axis

(θx, θy) = (0, 0) and eight off-axis. Figure 6.2 (a) shows a negative image of the PSF’s,

(b) is a log-scale representation of (a), and (c) is a cross-section of (a) along the θx-axis.

We can first notice that the shape of the PSF varies with the field angle. When

the field angle increases, the amplitude of the PSF decreases and the PSF becomes

broader. This is a consequence of anisoplanatism on AO systems.

The field angle affects the PSF in a second manner. When the field angle gets

larger, the PSF takes an elongated shape along the θx-axis. This elongation is another

effect of anisoplanatism on AO systems. The reason for the direction of the elongation

is given by the fact that AO systems need a reference beacon. Since in our case the

reference beacon is located at (θx, θy) = (0, 0), the PSF is elongated in the direction of

68



the origin of the referential (θx, θy).

6.3.3 Influence of the Fried parameter r0 on the PSF

We now want to observe the influence of the Fried parameter on the PSF. The wave

optics simulation is run for different r0: 10, 15, 20, and 25 cm. The intensity image

obtained is averaged over 100 realizations of the phase screens. Figure 6.3 presents the

PSF computed at field angle values θx = 0, 8, 16, 24, 32, 40, 48, 56 and 64 µradians,

for each r0.

We can notice that the PSF at a fixed field angle varies with the Fried parameter.

When r0 decreases, the PSF gets broader and its amplitude decreases. This is due to

the fact that the performance of the AO system decreases as the turbulence strength

increases (smaller r0). Furthermore, the amplitude of the PSF does not decrease at the

same rate for different field angle values. The amplitude of the PSF decreases faster

as the field angle increases. For example, the peak value of the on-axis (θx = 0 µrad)

PSF goes from 0.55 to 0.46 when r0 goes from 25 to 15 cm. This represents a decrease

of 16%. If we consider the PSF at field angle θx = 40 µrad, the peak value goes from

0.124 to 0.02, which represents a decrease of 84%.

6.4 Geometrical properties of the PSF

6.4.1 Introduction

In order to establish a simple model for the LE-PSF, we assume the PSF to respect

some geometrical properties. The PSF is assumed to have rotation and symmetry

properties.
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Figure 6.2: (a) LE AO-corrected PSF’s computed for nine values of the field angle.
(b) Log-scale representation of (b). (c) Cross-section of (a). The isoplanatic angle,
which depends on the turbulence profile, is in this case θ0 = 16.59 µradians. The Fried
parameter, r0, is 20 cm and the number of realizations of the phase screens is 100.
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Figure 6.3: Cross-sections of the LE AO-corrected PSF computed every 8 µradians from
0 to 64 µradians for different r0: (a) r0 = 25 cm (θ0 = 20.48 µradians), (b) r0 = 20
cm (θ0 = 16.59 µradians), (c) r0 = 15 cm (θ0 = 12.42 µradians), and (d) r0 = 10 cm
(θ0 = 8.3 µradians).
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Figure 6.4: Rotation property of the PSF.

6.4.2 Rotation property

We assume the propagation media to be isotropic. Thus, the LE non-AO-corrected

PSF has rotational symmetry property. The LE AO-corrected PSF is not rotationally

symmetric, as a consequence of anisoplanatism. However, the LE PSF respect a prop-

erty of rotation as showed in Figure 6.4. In Figure 6.4, the position of the center of

the PSF is given by the polar coordinates (θ, α). The radial component θ is defined

by θ =
√

θ2
x + θ2

y (in µradians) and corresponds to the angular separation between the

reference beacon and the center of the PSF (also known as field angle). The variable α

is the angular component of the polar coordinates and corresponds to the orientation

of the PSF in the image plane. The angle α is expressed in degrees.

We introduce a new reference (u, u⊥), as showed in Figure 6.4. The reference (u, u⊥)

is defined such that its origin corresponds to the center of the PSF. The PSF can be now

expressed in term of the spatial variables u and u⊥. Since the PSF is space-varying, its

expression depends also on the field angle θ and the orientation α. Thus, in its most
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general form, the PSF is denoted hθ,α(u, u⊥).

The first geometrical approximation for the model of the PSF is a rotation property.

As a consequence, the PSF does not depend on the orientation of the PSF α, but only

on the field angle value θ. For example, the PSF at θ = 10 µrad and α = 0 degree

is the same than the PSF at θ = 10 µrad and α = 90 degrees, rotated of 90 degrees.

Only the orientation of the PSF in the reference (θx, θy) changes. Therefore, the PSF

can be denoted hθ(u, u⊥).

The rotation property of the PSF around the origin of the reference is due to the

fact that the reference beacon of the AO system is positioned at the origin.

Note: The rotation property approximation presents a very convenient aspect: from

the knowledge of the PSF along the θx-axis, we can deduce the PSF in the entire image

plane by rotation α around the origin.

6.4.3 Symmetry property

We assume the PSF to be symmetrical with respect to the u-axis and the u⊥-axis,

as showed by Figure 6.5. Lets now consider the cross-sections of the PSF hθ(u, u⊥)

through the u-axis and the u⊥-axis. Those cross-sections are denoted hθ;u(u) and

hθ;u⊥(u⊥). As an example, Figure 6.6 represents the cross-sections of the PSF at θ =

24 µradians, and for r0 = 15 cm.

u

u T

β
ρ

Figure 6.5: Symmetry property of the PSF.
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Figure 6.6: Cross-sections of the simulated PSF at θ = 24 µradians and for r0 = 15
cm: (a) hθ;u(u) and (b) hθ;u⊥(u⊥).

6.5 Parameterized model of the PSF

6.5.1 Model

The two-dimensional PSF hθ(u, u⊥) is now parameterized as a function of its two

one-dimensional cross-section functions hθ;u(u) and hθ;u⊥(u⊥). Expressed in polar co-

ordinates, the parameterized model is

hθ(ρ, β) = (1− γ(β))hθ;u(ρ) + γ(β)hθ;u⊥(ρ), (6.1)

where (ρ, β) are the polar coordinates as defined in Figure 6.5. The function γ(β) is

given by

γ(β) =

∣∣∣∣∣1−
∣∣∣∣∣βπ

2

∣∣∣∣∣
∣∣∣∣∣ , (6.2)

for −π < β < π.

The function γ(β) is chosen such that for a fixed ρ (radial component), hθ(ρ, β)

follows a linear progression between the cross-sections hθ;u(u) and hθ;u⊥(u⊥) inside each

quadrant of the reference (u, u⊥). For example, in the first quadrant (0 < β < π/2),
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the function γ(β) becomes

γ(β) = 1− β
π
2

. (6.3)

Thus, γ(β) varies linearly from 1 to 0, allowing hθ(ρ, β) to vary linearly from hθ;u(u)

to hθ;u⊥(u⊥), for a fixed ρ. Figure 6.7 (a) is a plot of γ(β) for −π < β < π and (b)

is a 3-D plot of γ(β) in the referential (θx, θy). Now that we established a relationship
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Figure 6.7: (a) Plot of the function γ(β). (b) 3-D plot of γ(β) in cartesian coordinates.

between the PSF ant its cross-sections, we want to find a model for the cross-section

in order to complete our model of the PSF.
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6.5.2 Model for the PSF cross-section

We want to fit a mathematical function to the simulated cross-sections hθ;u(u) and

hθ;u⊥(u⊥). We consider only the case of the cross-section along the u-axis, hθ;u(u),

since hθ;u⊥(u⊥) is fit using the same method. Due to the symmetry properties of the

PSF (See section 6.4), the cross-section hθ;u(u) is also symmetrical. For this reason,

we only consider hθ;u(u) for u ≥ 0.

Several mathematical functions hθ;u MODEL(u) were considered: Gaussian, super-

Gaussian, polynomial, and Chebyshev polynomial functions. We test their ability to fit

the cross-section data in term of the mean square (MS) error metric, εMODEL, defined

by

ε2MODEL (θ) = 100×
∑

u ‖hθ;u MODEL(u)− hθ;u(u)‖2∑
u ‖hθ;u(u)‖2 . (6.4)

It is interesting to note that εMODEL is a function of the field angle θ. The choice

of the fitting function is empirical. The mathematical function providing the smallest

εMODEL will be used.

6.5.3 Mathematical functions

• Gaussian function

The first mathematical function considered is the Gaussian function, defined by

hG(u) = A exp

{
−u2

σ2

}
, (6.5)

where A characterizes the amplitude of the Gaussian and σ its e−1 radius. The

Gaussian function is convenient because it has only two parameters.

• Super-Gaussian function

The second mathematical function considered is a modified version of the zero-

mean Gaussian, called super-Gaussian. The zero-mean super-Gaussian is defined
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by

hSG(u) = exp

{
−

N∑
i=0

aiu
2i

}
, (6.6)

where N denotes the order of the super-Gaussian.

• Polynomial function

We also consider the polynomial function defined by

hPOLY (u) =
N∑

i=0

aiu
i, (6.7)

where N is the order of the polynomial.

• Chebyshev polynomial function

The Chebyshev polynomial of the first kind, Tn(u), is defined by

Tn(u) = cos(n arccos(u)), (6.8)

where n is the order of the polynomial. The Chebyshev polynomials are con-

sidered because they present the interesting property of being orthogonal on the

interval [−1; 1]. The advantage of orthogonal functions is that a signal has a

unique decomposition as a serie of those functions. Chebyshev polynomials can

be recursively calculated using the following relationship:

Tn(u) = 2T 2
n−1(u)− Tn−2(u), (6.9)

with

T0(u) = 1, (6.10)

and

T1(u) = u. (6.11)

Table 6.1 shows the first seven Chebyshev polynomials. Using the Chebyshev

polynomials, we define the following fitting function:

hCHEBY (u) =
N∑

i=0

aiTi(u). (6.12)
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The parameter N is the order of the Chebyshev polynomial function.

Order Chebyshev polynomial

0 1

1 u

2 2u− 1

3 4u3 − 3u

4 8u4 − 8u2 + 1

5 16u5 − 20u3 + 5u

6 32u6 − 48u4 + 18u2 − 1

Table 6.1: First seven Chebyshev polynomials of the first kind.

6.5.4 Comparison of the models for the cross-sections

We consider the fitting of hθ;u MODEL(u) to the data hθ;u(u) for different field angle

values: θ = 0 µrad (on-axis) and θ = 32 µrad (off-axis). Each set of data is fit with the

four mathematical functions previously introduced. For the super-Gaussian function,

the polynomial function and the Chebyshev polynomial function, we consider different

orders. Figure 6.8 is a plot of the relative MS error as a function of the order of the

fitting function; expect the Gaussian function, which has only two parameters.

From Figure 6.8, we can notice different properties of the fitting functions. First,

the polynomial function is not appropriate for the fitting of the PSF since the error

is always greater than 20% and the error increases when the order of the polynomial

is greater than 5. Second, we can notice that the super-Gaussian fit converges very

fast. However, even for high order, the fitting error does not decrease. The Chebyshev

polynomial is a more stable solution for high orders than the polynomial function.

Figure 6.9 shows the cross-section of the PSF and the fitting functions.
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Figure 6.8: Relative MS error εMODEL vs. order N of the fitting function. The PSF
is computed for a Fried parameter is r0 = 20 cm and a field angle of (a) θ = 0 µrad
and (b) θ = 32 µrad.
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Tables 6.2 and 6.3 give the smallest relative error obtained for each fitting function

and for different orders.

Fitting function 30th Order 60th Order

Gaussian 0.63

Super-Gaussian 0.22 0.22

Polynomial 22.3 22.3

Chebyshev 0.33 0.17

Table 6.2: Relative MS error (%) for fitting the on-axis PSF (θ = 0 µrad).

Fitting function 30th Order 60th Order

Gaussian 2.68

Super-Gaussian 0.58 0.58

Polynomial 16.7 16.7

Chebyshev 0.19 0.012

Table 6.3: Relative MS error (%) for fitting an off-axis PSF, at θ = 32 µrad.

In Tables 6.2 and 6.3, we can notice that the fit does not improve with the order

in the case of a polynomial or super-Gaussian function. However, in the case of the

Chebyshev polynomial, the error gets smaller when the order becomes greater. For this

reason, we choose the Chebyshev polynomial function as a model for the cross-sections.

Thus, the PSF given by Eq. 6.1 is modelized by hθ MODEL(ρ, β), which can be written

hθ MODEL(ρ, β) = γ(β)hθ;u⊥ MODEL(ρ) + (1− γ(β))hθ;u MODEL(ρ), (6.13)

with

hθ,u⊥ MODEL(u⊥) =
N∑

i=0

ai(θ)Ti(u⊥), (6.14)

and

hθ,u MODEL(u) =
N∑

i=0

bi(θ)Ti(u), (6.15)
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Figure 6.9: Fitting of the cross-section hθ;u(u) for u ≥ 0 with different fitting functions
of 30th order. The PSF is computed for a Fried parameter is r0 = 20 cm and a field
angle of (a) θ = 0 µrad and (b) θ = 32 µrad.
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where N is the order of the Chebyshev polynomial function. Thus, we have established

a parameterized model for the PSF. The parameters of the model are the ai’s and bi’s

for i ∈ [0, N ].

6.6 Fitting the model of the PSF to the simulated

PSF

6.6.1 Fitting error

In this section, we fit the model for the PSF established in section 6.5 to the PSF we

simulated for θ ∈ Θknown. This way, we get the coefficients ai and bi for θ ∈ Θknown.

The fit minimizes the MS error metric εFITTING defined by

ε2FITTING = 100×
∑

u

∑
u⊥
‖hθ MODEL(u, u⊥)− hθ(u, u⊥)‖2∑

u

∑
u⊥
‖hθ(u, u⊥)‖2 , (6.16)

for θ ∈ Θknown. It is important to understand that εFITTING gives a measurement of a

two-dimensional fit of the entire PSF, as opposed to εMODEL (see Eq. 6.5) which gives

a measurement of a one-dimensional fit of the cross-section. The optimization of the

ai’s and the bi’s to minimize εFITTING is implemented in MATLAB with the function

fminunc.

Note: As we saw in section 6.5.4, the error εFITTING generally decreases as N becomes

greater. Thus, to obtain a desired fitting error, we simply need to increase the order

N . In our simulations, we choose N arbitrarily such that

εFITTING ≤ 1%. (6.17)

Results concerning the fit of the model of the PSF to the simulated PSF are pre-

sented in Appendix A. Figure 1.1 is a plot of the fitting errors as a function of the field

angle for different r0.
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First, we can notice that the fitting error εFITTING is field angle dependent. The

error εFITTING gets smaller when the field angle increases. This can be explained by

the fact that the PSF gets broader and smoother as the field angle increases. Therefore,

the PSF contains less high spatial frequencies, which is easier to fit with Chebyshev

polynomials.

Second, we can note that if we the order N equals 50, εFITTING is always smaller

than 1%.

Figures 1.2 to 1.5 (Appendix A) present the two-dimensional plots of the simulated

and parameterized PSF’s for θ = 0, 16, and 32 µradians, and for different r0. First we

notice that the parameterized PSF has the same general shape than the simulated PSF.

Second, we also notice a ringing effect in some parameterized PSF’s. For example, it

is the case in Figure 1.4, for the parameterized PSF at θ = 32 µradians. This effect

is due to the oscillating nature of the Chebyshev polynomials. This is explained when

looking at the definition of the Chebyshev polynomials in term of the cosine functions,

as expressed in Eq. 6.8.

6.6.2 Influence of the field angle on the parameters of the

PSF model

Figures 1.6 to 1.9 (Appendix A) present the first seven coefficients ai’s and bi’s of the

PSF model as a function of the field angle θ, for different r0. Each coefficient ai or bi

tends to zero when the field angle increases. This can be explained by the fact that

the amplitude of the PSF decreases when the field angle increases.

The on-axis PSF (θ = 0) follows the rotational symmetry property. Thus, the two

cross-sections of the PSF are identical and ai(θ = 0) = bi(θ = 0), for i ∈ [0;N ]. For

θ > 0, the coefficients ai and bi are not identical, but they present similar features. We
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saw in section 6.3.2 that the PSF has a more elongated appearance along the u-axis

than the u⊥-axis. As a consequence, the cross-sections hθ;u⊥(u⊥) and hθ;u(u) have

similarities, but for θ > 0 hθ;u(u) has is more elongated than hθ;u⊥(u⊥). This explains

the fact that the ai’s and bi’s have the same features, with different amplitudes. Since

the coefficients ai and bi correspond respectively to the cross-sections hθ;u⊥(u⊥) and

hθ;u(u), the ai’s present smaller amplitudes than the bi’s.

We want to quantify the elongation of the PSF. Since the coefficients bi present the

same features than the ai’s with smaller amplitudes, we define the elongation factor χ

as the average of the ratio bi/ai. The elongation factor is field angle dependent and is

given by

χ(θ) =
1

N + 1

∑
i

bi

ai
. (6.18)

Figure 1.10 (Appendix A) is a plot of the elongation factor as a function of the field

angle. We can note that overall χ decreases with the field angle. However, for large

θ and small r0, the elongation factor does not decrease anymore and even increases to

values larger than 1. This can be explained by the fact that for large θ and small r0

the amplitude of the PSF becomes very small and noisy. Therefore, the fit with model

of the PSF is less accurate and so are the coefficients ai and bi.

6.6.3 Influence of r0 on the parameters of the PSF model

Figure 6.10, and Figures 1.11 and 1.12 in Appendix A, present the first coefficients ai’s

and bi’s of the PSF model as a function of r0, for different θ.

The first property to notice is that for a fixed field angle θ, the plots of ai(r0) and

bi(r0) have the same general features. As the turbulence strength decreases (larger r0),

the coefficients increase. This is explained by the fact that the PSF amplitude becomes

larger for a less turbulent atmosphere.
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However, the coefficients do not increase at the same rate for different field angles.

For the on-axis PSF, Figure 6.10 shows that for r0 larger than 15 cm, the coefficients

ai and bi are almost constant. This means that the on-axis PSF is almost invariant

with strength of the turbulence, which demonstrates that AO systems give their best

results around the reference beacon. On the other hand, for larger field angles (see

Figure 1.12 in Appendix A) the coefficients grow with r0.

6.6.4 Influence of the wavefront sensor noise on the para-

meters of the PSF model

In chapter 4, we established that the measurement error in a Shack-Hartman wavefront

sensor (WFS) depends on several parameters. In particular it depends on the total

average detected photon count per subaperture of the WFS, denoted K̄. We now

study the influence of K̄ on the coefficients of the model ai and bi. Figure 6.11, and

Figures 1.13 and 1.14 in Appendix A, give plots of the ai’s and bi’s as a functions of

K̄, for different field angles. For each figure, the Fried parameter is r0 = 20 cm.

In those figures, we can notice the coefficients ai and bi increase with K̄. As the

number of photon events per subaperture in the WFS increases, the WFS gets smaller

and the PSF becomes more narrow and its amplitude increases. This explains the

increase of the amplitude of the coefficients.

We can see that all the coefficients increase with a similar rate, except for coefficients

bi’s at θ = 32 µrad (Figure 1.14 in Appendix A). The unexpected growth rate of the

bi’s compared to other cases can be interpreted by a bad fit of the model of the PSF

to the data. The bad fit of the model can be caused by photon noise in the PSF, but

also by the finite number of iterations used in the Monte Carlo simulation (in our case

100 iterations are used), which makes the simulated data more noisy. Ideally, we could
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Figure 6.10: Coefficients ai’s and bi’s vs. r0 for θ = 0 µrad.
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reduce this source of noise by running the simulation for many more realizations of the

random phase screens, but we are limited by the computational power of computers.

6.7 PSF prediction by interpolation

6.7.1 Interpolation in term of the field angle

Now that we know the coefficients ai and bi for each θknown ∈ Θknown, we interpolate

them to predict the coefficients for θpredict ∈ Θpredict. In our simulations, we Θknown =

[0, 8, 16, 24, 32] µradians and Θpredict = [4, 12, 20, 28] µradians. Several interpolation

methods had been tested. The linear interpolation gave the best results. After we

obtain the ai and bi by interpolation, we can predict the PSF for θpredict ∈ Θpredict.

Figures 1.15 to 1.18 (Appendix A) show the predicted and the simulated PSF for

θpredict ∈ Θpredict, for different r0. Figures 1.19 and 1.20 are cross-sections of the

predicted PSF.

The simulated and predicted PSF’s have the same general shapes. The cross-

sections show that each predicted PSF has the same aspect than the simulated PSF

within a smaller angular separation. This is expected, since it is reasonable to anticipate

that the PSF is a continuous function of the field angle.

6.8 Results

To measure the quality of the predicted PSF at a field angles θpredict ∈ Θpredict, we

define the prediction error metric ε2PREDICT by

ε2PREDICT =
∑

u

∑
u⊥
‖hθ PREDICT (u, u⊥)− hθ(u, u⊥)‖2∑

u

∑
u⊥
‖hθ(u, u⊥)‖2 , (6.19)
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Figure 6.11: Coefficients ai’s and bi’s vs. K̄ for θ = 0 µrad.
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for θpredict ∈ Θpredict. Figure 6.12 presents the prediction error as a function of the field

angle, for each r0. First, we can notice that the prediction error never exceeds 2.7%,

for any field angle or r0. Although εPREDICT for r0 = 25 and 20 cm slightly decreases

with the field angle, the prediction error increases rapidly for r0 = 15 cm and to a

larger extent for r0 = 10 cm. This can be explained by the fact that for smaller r0, the

shape of the PSF (amplitude and width) changes at a faster rate (see section 6.3.3).

Thus, the coefficients ai and bi are harder to predict for smaller r0. To remedy this

problem, a solution is to add information to the system by knowing more stars (and so

PSF’s) when r0 is small.
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6.9 Conclusion

First, we introduced a model for the PSF based on the decomposition of its cross-

sections in a series of Chebyshev polynomials. The polynomials coefficients are the

parameters of the PSF model.

Second, we presented a technique that allows us to predict the long-exposure AO-

corrected PSF as a function of the field angle. The technique is based on the interpola-

tion of the parameters of the model. The predicted PSF is compared to the simulated

for different field angles and the relative MS error never exceeds 2.7%.
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CHAPTER 7

Reconstruction of anisoplanatic adaptive optics

images

7.1 Introduction

In this chapter, simulated anisoplanatic adaptive optics images are reconstructed using

the knowledge of the predicted space-varying PSF as described in chapter 6. This chap-

ter does not intend to give an extensive description of image restoration techniques, but

it aims to validate our PSF prediction technique. Two widely used image restoration

techniques are investigated: the Tikhonov regularization method and the expectation

maximization algorithm. The deconvolution results using the space-varying predicted

off-axis PSF are compared to deconvolution results using the space-invariant on-axis

PSF.

This chapter is organized as follows. First, the approach used to deconvolve aniso-

planatic images, based on block-processing, is presented. Second, the imaging model

for each block, as well as the details of the block-processing technique are given. Two

image restoration techniques are introduced and their reconstruction results are pre-

sented. The last section presents conclusions.
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7.2 Approach

The reconstruction method for anisoplanatic adaptive optics images consists of 4 steps:

• Step 1: Split the large field of view (FOV) image into small blocks in which

turbulence-induced distortion is approximately constant. (Typically, the blocks

are θ0 × θ0-sized),

• Step 2: Predict the local PSF (using the technique describe in chapter 6),

• Step 3: Deconvolve each block sequentially,

• Step 4: Reassemble the blocks to form the reconstructed image.

Steps 2 and 3 are repeated for each θ0-sized block of the image. Figure 7.1 gives a

block diagram of the reconstruction method.

7.3 Imaging model

7.3.1 Anisoplanatic conditions

In the case of incoherent light, the model for the noise free intensity of an image

i(xi, yi) [14] is:

i(xi, yi) =
∫ ∫

h(xo, yo;xi, yi)o(xo, yo)dxodyo, (7.1)

where (xo, yo) and (xi, yi) are the coordinates respectively in the object plane and the

image plane. The object and image intensity distributions are respectively denoted

o(xo, yo) and i(xi, yi), and h(xo, yo;xi, yi) is the space-varying PSF of the imaging

system.
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Figure 7.1: Block diagram of the block-processing method.
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7.3.2 Isoplanatic conditions

Under isoplanatic conditions, the turbulence-induced wavefront distortion is approxi-

mately constant over the entire image plane. The PSF is then space-invariant and can

be denoted h(x, y, xo, yo) = h(xo − x; yo − y). The imaging model then becomes:

i(x, y) = h(x, y) ∗ o(x, y), (7.2)

where ∗ is the notation for the convolution operator. In the case of large FOV AO-

corrected images, we are under anisoplanatic conditions. However, if we consider a small

block of the image (typically of size θ0 × θ0), the turbulence-induced phase distortion

is approximately constant and the imaging model given by Eq. 7.2 can be used.

7.3.3 Noise

Measured data are noisy. In addition to the photon noise (see section 2.4.4), we include

additive noise to our model. A realistic imaging model [68] for a small block θ0-sized is

i(x, y) = h(x, y) ∗ o(x, y) + n(x, y) + nb(x, y), (7.3)

where n(x, y) denotes the light detector readout noise (see section 2.4.5), and nb(x, y)

denotes the background noise. The readout noise is a Gaussian-distributed random

variable accounting for the noise that is present in the readout electronic of light detec-

tors [16, 17]. The background noise is Poisson-distributed random variable accounting

for the light arising from the background of the object of interest. The knowledge of

n(x, y) and nb(x, y) is limited to information of statistical nature: mean and variance.

In this chapter, we simulate anisoplanatic images with no background noise.
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7.3.4 Imaging model for a θ0-sized block

The imaging model given by Eq. 7.3 can be written in discrete form:

i = Ho + n, (7.4)

where i, o, and n represent N2-dimensional column vectors formed by staking the rows

of the N ×N discretized functions i(x, y), o(x, y), and n(x, y). N is defined such that

N ≥ θ0

θDAS
, (7.5)

where θDAS is the detector angular subtense. In our simulation, N = 64 pixels. The

matrix H is of dimension N2×N2 and is called the impulse response matrix. It consists

of N2 partitions, each partition being of size N ×N and ordered according to [69]

H =



H0 HN−1 HN−2 · · · H1

H1 H0 HN−1 · · · H2

H2 H1 H0 · · · H3

...
...

...
. . .

...

HN−1 HN−2 HN−3 · · · H0


. (7.6)

Each partition Hj is constructed from the jth row of the PSF h(x, y), as follows [69]

Hj =



h(j, 0) h(j,N − 1) h(j, N − 2) · · · h(j, 1)

h(j, 1) h(j, 0) h(j,N − 1) · · · h(j, 2)

h(j, 2) h(j, 1) h(j, 0) · · · h(j, 3)
...

...
...

. . .
...

h(j,N − 1) h(j, N − 2) h(j,N − 3) · · · h(j, 0)


. (7.7)

Each partition Hj is a circulant matrix. The blocks Hj of H are subscripted in a

circular manner. For this reason, the matrix H is called a block-circulant matrix.
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7.4 Block-processing

The first step of the block processing method is to split the image in small blocks, of

size approximately θ0×θ0. The reason for splitting the image in small blocks is because

in each block the PSF is approximately space-invariant and therefore, we can use the

imaging model of section 7.3.4, which simplifies the deconvolution process.

In the solving of inverse problems, some undesired artifacts usually appear [70].

One of them is the boundary effect [71], which gives bad reconstruction results at

the borders of the image. To avoid this problem, we consider an image block of size

N ×N pixels, reconstruct it, and then keep only the central N/2 ×N/2 pixels block,

using a rectangular window. This way, the boundary effect does not interfere with

deconvolution results. Thus, when block-deconvolving an image, we have to consider

overlapping blocks. Figure 7.2 shows how overlapping blocks are extracted from the

image to reconstruct.
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7.5 Image reconstruction

7.5.1 Introduction

We now consider the problem of reconstructing each θ0-sized image block (Step 1 of

the image restoration method described in section 7.4) using the predicted local PSF

as detailed in chapter 6. The image is reconstructed by blocks using two widely used

methods for image restoration.

7.5.2 Inverse problem

Our inverse problem was stated in section 7.3.4, where o is the unknown. Inverse

problems are typically ill posed [70, 72, 73, 74, 75], which means that small changes

in the input can cause large changes in the output. As a consequence, the solution

obtained is often unstable, due to noise amplification. To avoid this inconvenience

during the inverse process, we need to regularize the problem. The Tikhonov regular-

ization method (also known as Wiener filtering) is commonly used to solve ill-posed

inverse problems. The approach used in Tikhonov regularization is to introduce some

additional information by enforcing a smoothness criterion about the solution. The

Tikhonov regularization is studied into details in section 7.5.3. Another commonly

used method to solve inverse problems is the expectation maximization (EM) algo-

rithm [76, 77]. The EM algorithm is a statistical method and is presented into details

in section 7.5.4.

7.5.3 Method 1: Tikhonov regularization

The Tikhonov regularization minimizes the quantity ‖i−Hõ‖2, in the presence of a

smoothness constraint on the estimate of the object o, denoted õ. This constraint is
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controlled through the parameter α. The goal of the Tikhonov regularization is to

minimize the quantity

J(õ) = ‖i−Hõ‖2 + α ‖Mõ‖2 , (7.8)

where γ = 1/α is called the Lagrange multiplier, which controls the smothness of õ.

Different choices of the matrix M yield different solutions for õ [69]. The matrix M

can chosen as the matrix taking the gradient or the Laplacian of the solution [78]. In

the Tikhonov approach, M is chosen as the identity matrix. The parameter α is to be

chosen. For a small α, the reconstructed image õ is sharper. However, for the limit

case α = 0, we have a direct inverse problem, in which the noise amplification problem

arises. For large values of α, the reconstructed image is less noisy but smoother and

less accurate. A tradeoff has to be found between an accurate and a noisy result.

Minimizing Eq. 7.8 is equivalent to solve the following linear system

(HTH + αMTM)õ = HT i. (7.9)

Thus, using the Tikhonov regularization (M = I), the estimate of o for a fixed α is

given by

õ = (HTH + αI)−1HT i. (7.10)

7.5.4 Method 2: Expectation maximization (EM) algorithm

The EM technique has been widely used in the literature [76, 77, 79, 80, 81, 82, 83]. In

this method, the PSF is assumed to be perfectly known. The PSF is normalized such

that
N2∑
i=1

hi = 1, (7.11)

where hi is the ith element of the N2-dimensional column vector h formed by staking

the rows of the N × N PSF h(x, y). Thus, the normalized PSF can be regarded as

a probability density function (PDF). In the case of a Poisson noise distribution, the
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EM algorithm can be shown as a maximum-likelihood (ML) solution. However, in

the case of non-Poisson noise, the EM algorithm does not give a ML solution, but is

still useful for image reconstruction. If o and i denote respectively the object and the

image intensity, and H the impulse response matrix, the EM algorithm is given by the

recursive formula

õk
n = õk−1

n

(
1∑

m Hmn

)∑
m

(
Hmn.

im∑
l Hmlõk−1

l

)
, (7.12)

for i ∈
[
1;N2

]
, and where Hij is the ith element of jth column of the matrix H. The

element (i, j) of the matrix H can be interpreted as the probability that a photon

arising from the ith pixel location in the object plane falls onto the thj pixel location

in the image plane.

For the first iterations of the algorithm, only the low spatial frequencies of the

object are reconstructed. The higher spatial frequencies are reconstructed for a larger

number of iterations. If we compute too many iterations of the algorithm, the restored

image can sometimes have a speckled appearance. These speckles do not represent any

real structure in the image, but are artifacts due to the noise amplification problem.

Therefore, we have to find a tradeoff between the accuracy of the reconstructed object

and the noise amplification problem [84].

7.6 Results

7.6.1 Introduction

The two restoration methods were applied to a simulated anisoplanatic image. The

image considered is a simulated stellar field formed by computing the image of point

sources of different amplitudes (between 0.5 and 1) randomly distributed in the object

plane. Figure 7.3 shows the simulated star field image with no photon noise or additive
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Figure 7.3: Simulated images for different r0’s.

noise for different r0. In the figure, we can clearly notice the effect of anisoplanatism

in the case r0 = 10 and 15 cm: the stars with the largest angular separation from the

reference beacon become very hard to distinguish.

The images are deconvolved using the predicted local PSF, and, for comparison,

with the space invariant PSF (on-axis PSF). The results using both variant and invari-

ant PSF’s are compared to the original object using a MS error metric. Finally, the

influence of the signal-to-noise ratio (SNR) on the results is studied.
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7.6.2 Error metric

The quality of the reconstructed image is measured by computing the relative MS error

between the reconstructed object and the object. The error metric is defined by

ε2RECONS =
∑

x

∑
y ‖õ(x, y)− o(x, y)‖2∑
x

∑
y ‖o(x, y)‖2 . (7.13)

This quantity gives a measurement of the quality of the results averaged over the entire

reconstructed image.

7.6.3 Results for the Tikhonov regularization

Figure 2.1 and Figure 2.2 (Appendix B) give the reconstruction error εRECONS as

a function of the Tikhonov regularization parameter α for different r0. From those

figures, we can make different remarks.

• The first thing to notice is that the reconstruction error using the predicted local

PSF is overall smaller than the reconstruction error using the space-invariant

on-axis PSF, whatever the value of the Fried parameter r0.

• The best results in term of MS error are obtained for larger r0. For large r0,

the isoplanatic angle is larger and the PSF varies more slowly as the field angle

increases. This makes the prediction of the PSF by interpolation more accurate

and therefore gives better reconstruction results.

• We define αmin such that

ε2RECONS(αmin) = min
{
ε2RECONS

}
. (7.14)

For αmin = 0, the deconvolution is equivalent to direct inversion. From Figure 2.1

and Figure 2.2, we can see that for large r0, we have αmin = 0. For smaller r0, we

have αmin > 0. We saw in section 6.3.3 that the amplitude of the PSF decreases.
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As a consequence, the additive noise component of the signal is relatively larger

amplitude compared to the data component of the image (see definition of the

SNR in Eq. 2.62). Therefore, the inverse problem is not as well-posed as for large

r0 and the problem needs to be regularized. For this reason, we have αmin > 0.

Figure 7.4 gives the reconstruction result for SNR = 10000 and r0 = 15 cm. In Appendix

B, reconstructed images for different SNR and different r0 are given by Figures 2.7

to 2.18. In each case, the images are deconvolved for a smoothness coefficent α = αmin.

7.6.4 Results for the EM algorithm

Figure 7.5 gives the reconstruction result for SNR = 10000 and r0 = 15 cm. In Appendix

B, reconstructed images for different SNR and different r0 are given Figures 2.19 to 2.30.

In each case, the algorithm is iterated until ε2RECONS reaches its minimum.

Figure 2.3 and Figure 2.4 (Appendix B) give the reconstruction error εRECONS as

a function of the number of iterations of the EM algorithm for different r0. Several

aspects are to be noticed.

• The first thing to notice is that, like for the Tikhonov regularization, the recon-

struction error is smaller when using the space-varying predicted PSF than the

on-axis PSF.

• As the seing conditions degrade (small r0), the reconstruction error increases, for

the same reasons than explained in section 7.6.3.

• The reconstruction error usually reaches its minimum after few iterations. For

example, for r0 = 25 cm, ε2RECONS is minimized for 12 to 18 iterations. However,

for smaller r0, ε2RECONS takes more iterations to reach its minimum.
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Figure 7.4: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 10000 and r0 = 15 cm.
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Figure 7.5: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 10000 and r0 = 15 cm.
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7.6.5 Influence of the SNR

The SNR gives a measure of the relative strength of the image and the random com-

ponent of an image. It is a way to quantify the effect of noise on an image. Figure 2.5

and Figure 2.6 (Appendix B) give respectively the reconstruction error as a function

of the SNR in the case of the Tikhonov regularization method and the EM algorithm

method. Whatever the reconstruction method, the quality of the reconstruction in-

creases as the SNR increases. However, for a SNR greater than 100 the results do

not improve. The reconstruction error does not decreases at the same rate for both

methods: at low SNR, εRECONS decreases faster when using the EM algorithm. For

example, for a SNR of 10, the EM algorithm gives a reconstruction error of 39% in the

worst case, as opposed to 83% when using the Tikhonov regularization. For high SNR,

the Tikhonov regularization gives better results though, as low as εRECONS = 4%.

7.6.6 Comparison space-invariant/space-varying PSF decon-

volution

When reconstructing isoplanatic images, the PSF used is space-invariant. Typically,

the PSF consider will be the on-axis PSF. We now want to compare the deconvolution

results when using the on-axis PSF with the deconvolution results when using the space-

varying predicted PSF. We define the improvement factor ξ which gives a measurement

of the gain from the first technique to the second one, in term of the MS reconstruction

error. The improvement factor ξ is defined by

ξ =
ε2on−axis − ε2off−axis

ε2on−axis

, (7.15)

where ε2RECONS

∣∣
On−axisPSF and ε2RECONS

∣∣
PredictedPSF denote the reconstruction error

εRECONS when deconvolving respectively with the on-axis and the predicted off-axis

PSF.
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Tables 7.1 to 7.3 give the improvement factor ξ for different SNR. Several remarks

are to be made.

• We can first notice that in all tables, the improvement factor ξ is positive, which

means that the reconstruction results were effectively improved, in term of MS

error.

• The best improvement factor is obtained with the Tikhonov regularization for

high SNR (SNR = 104). In this case, the improvement factor is greater than

80%. However, for lower SNR, the EM algorithm gives better results.

7.7 Conclusion

We presented a block-processing method for deconvolution of large FOV AO-corrected

images, based on the knowledge of the PSF as a function of the field angle. Two

reconstruction techniques had been studied: the Tikhonov regularization and the EM

algorithm. The performance of both reconstruction methods had been estimated in

term of MS error between the reconstructed image and the object. The reconstruction

results were presented and the both techniques were showed an improvement of the

original image.

Furthermore, in both cases, the predicted space-varying PSF gave better recon-

struction error than the on-axis PSF (as much as 84.8%), which validates the method

for prediction of the PSF as a function of the field angle, presented in chapter 6.

The influence of the Fried parameter as well as the SNR on results had been studied

in both reconstruction techniques.

In both cases, the performance decreases as the Fried parameter gets smaller. How-

ever, we obtained better results with the EM algorithm for bad seeing conditions (small
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r0).

In both cases, the performance decreases as the SNR gets smaller. The Tikhonov

regularization gave the best reconstruction results for high SNR. However, when the

SNR is low (smaller than 10), the EM algorithm gave much smaller reconstruction

errors.
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Method

r0 (cm) Tikhonov Regularization EM algorithm

25 82.9% 71.4%

20 84.8% 78.3%

15 83.1% 80.5%

10 34.6% 73.8%

Table 7.1: Improvement factor ξ for SNR = 104.

Method

r0 (cm) Tikhonov Regularization EM algorithm

25 45.9% 67.0%

20 49.2% 74.3%

15 46.0% 73.0%

10 17.3% 66.0%

Table 7.2: Improvement factor ξ for SNR = 1.

Method

r0 (cm) Tikhonov Regularization EM algorithm

25 25.1% 65.4%

20 31.8% 70.1%

15 28.9% 72.0%

10 7.2% 64.2%

Table 7.3: Improvement factor ξ for SNR = 0.5.
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CHAPTER 8

Experiment

8.1 Introduction

In this chapter, we describe the results of an experiment designed to validate the results

obtained through simulations in chapter 7. The experiment was designed to measure

anisoplanatic adaptive optics images, using the US Air Force Advanced Electro-Optical

System (AEOS), atop Mt. Haleakala on the island of Maui, HI. The images obtained

were reconstructed using the technique introduced in chapter 7.

In section 8.2, the experimental setup is described as well as the data obtained.

In section 8.3, the data pre-processing method is given. In section 8.4, the data are

reconstructed using the image restoration technique presented in the previous chapter,

and the results are presented in section 8.5. Section 8.6 is the conclusion.

8.2 Data

The data were measured at the Maui Space Surveillance System (MSSS) using the

3.67-meter AEOS telescope [85]. AO-corrected images of binary stars with different

angular separations and magnitudes had been measured. Two series of measurements

had been organized. The first one occurred from October 24th to October 28th, 2004.
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The second one occurred from February 14th to February 17th, 2005. A total of 28

binary stars were observed. For each binary star, we denote star A the brightest star,

and star B the dimmest one. Star A is always used as the reference beacon for the

AO system. Table 8.1 gives their name, angular separation, magnitudes (mA and mB),

exposure time and Fried parameter during measurements. The field of view for all

images is 51.2× 51.2 µradians. We denote Nf the number of frames taken for a binary

star. For each binary star, we have Nf = 100 frames. Figure 8.1 gives examples of raw

data.

8.3 Data pre-processing

For each binary star, we have Nf frames. We pre-process these frames in order to

obtain a single image for each binary star. The first step is to shift spatially in order

to have the peak value of the brightest star at the center of the image plane. This step

will simplify later on the deconvolution process. Each pre-processed frame ikpre(x, y) is

given by

ikpre(x, y) = ik(x− xmax, y − ymax), (8.1)

where ik(x, y) denotes the kth measured frame, and (xmax, ymax) denotes the spatial

coordinates of the peak value in the image. The second step of the pre-processing is to

average all the frames and to subtract the background noise. For each binary star, the

pre-processed image ipre(x, y) is given by

ipre(x, y) =
1

Nf

Nf∑
k=1

ikpre(x, y)

− nback(x, y), (8.2)

where Nf denotes the number of frames, and nback(x, y) denotes the background noise.

To obtain the background noise, we measure a dark section of the sky and compute

the average over the entire image, and over each frame. Figure 8.2 gives examples of

pre-processed images of the binary stars.

110



A 2512

(a)

fie
ld

 a
n

g
le

 in
 µ

ra
d

20 10 0 10 20

25

20

15

10

5

0

5

10

15

20

25

A 2512 (Log-scale)

(b)

fie
ld

 a
n

g
le

 in
 µ

ra
d

� 20 � 10 0 10 20

� 25

� 20

� 15

� 10

� 5

0

5

10

15

20

25

S T F  738 AB

(a)

fie
ld

 a
n

g
le

 in
 µ

ra
d

20 10 0 10 20

25

20

15

10

5

0

5

10

15

20

25

S T F  738 AB  (Log-scale)

(b)

fie
ld

 a
n

g
le

 in
 µ

ra
d

� 20 � 10 0 10 20

� 25

� 20

� 15

� 10

� 5

0

5

10

15

20

25

S T T  20 AB

(a)

fie
ld

 a
n

g
le

 in
 µ

ra
d

20 10 0 10 20

25

20

15

10

5

0

5

10

15

20

25

S T T  20 AB  (Log-scale)

(b)

fie
ld

 a
n

g
le

 in
 µ

ra
d

� 20 � 10 0 10 20

� 25

� 20

� 15

� 10

� 5

0

5

10

15

20

25

WNC  2 A-B C

(a)

fie
ld

 a
n

g
le

 in
 µ

ra
d

� 20 � 10 0 10 20

� 25

� 20

� 15

� 10

� 5

0

5

10

15

20

25

WNC  2 A-B C  (Log-scale)

(b)

fie
ld

 a
n

g
le

 in
 µ

ra
d

� 20 � 10 0 10 20

� 25

� 20

� 15

� 10

� 5

0

5

10

15

20

25

Figure 8.1: Examples of raw data.
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Star name Sep. (µrad) mA mB Exp. (ms) r0 (cm)

A 2512 5.1 7.3 9.5 1000 8.1
A 3010 4.8 5.8 5.8 250 6.0
BU 311 2.2 6.7 7.1 1500 8.0
BU 396 7.3 6.1 8.6 100 31.0
BU 535 4.8 3.9 6.7 120 22.4
BU 1052 2.7 6.7 8.2 2000 8.5

DA 3 4.2 7.3 8.5 100 10
DA 4 5.9 4.6 7.5 100 5.5

DA 5 Aa-B 8.3 3.6 4.9 100 8.7
HDS 509Aa 3.5 5.8 7.9 150 9.6

HJ 3375 21.8 6.6 8.5 2000 19.7
HJ 3589 24.2 6.6 9.3 250 19.6

HJ 3752 AB 16.3 5.4 6.6 2000 4.1
STF 268 14.5 6.7 8.5 1000 23.0

STF 311 AB 17.0 5.3 7.9 250 15.4
STF 535 5.3 6.9 8.3 1000 22.4
STF 636 17.4 7.1 8.5 100 3.5
STF 661 10.1 4.4 6.8 100 7.9
STF 708 13.0 7.7 8.9 3000 12.1

STF 712 AB 15.1 6.7 8.6 600 10.3
STF 716 AB 22.4 5.8 6.7 3000 4.7
STF 734 AB 7.5 6.7 8.2 300 9.9
STF 738 AB 20.5 3.5 5.5 300 9.5

STF 742 19.4 7.1 7.5 5000 18.9
STF 736 12.1 7.5 8.6 1000 21.0

STT 09 AB 9.7 6.9 9.7 175 21.3
STT 515 AB 2.4 4.6 5.6 250 23.8
WNC 2A-BC 14.5 6.9 10.0 300 9.9

Table 8.1: Binary stars measured at the AEOS.
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Figure 8.2: Pre-processed images of binary stars.
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8.4 Observation of anisoplanatic effects on images

8.4.1 Width of the PSF

We now want to observe the effects of anisoplanatism on AO-corrected images, as

discussed in chapter 6. Each star (the object and not the image of the star) has an

angular size much smaller than the angular resolution of the imaging system, therefore

each star can be considered as a point source. Thus, the image of a star can be

considered as a non-normalized PSF.

In section 6.3.2, we saw that anisoplanatism affects AO-corrected images by making

the PSF broader, as the field angle with the reference beacon increases. Figure 8.3 shows

the measured cross-sections of the on-axis PSF (reference beacon) and the off-axis PSF

for four different stars. The PSF’s are normalized such that the peak value equals to

one. For each binary star, the angular separation θ between the two stars and the Fried

parameter r0 are different: (a) STF 738 AB: θ = 20.5 µrad (r0 = 9.5 cm), (b) HJ 3752

AB: θ = 16.3 µrad (r0 = 4.1cm), (c) A 2512: θ = 5.1 µrad (r0 = 8.1 cm), and (d) BU
311: θ = 2.2 µrad (r0 = 8 cm).

We can notice that for each binary star, as expected, the off-axis PSF is broader than

the on-axis PSF. The larger the angular separation θ is, the broader the PSF becomes.

Also, the Fried parameter is different for each binary star image (See Table 8.1). As r0

gets smaller, the PSF becomes broader.

8.4.2 Encircled energy

The difference of magnitude between the two binary stars is related to their intensity

by

IB = 2.512(mA−mB)IA, (8.3)
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Figure 8.3: Cross-sections of different binary stars.
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where mA and mB denote the magnitudes of the stars, and IA and IB denote their

intensities, or apparent brightness. Table 8.2 gives the normalized intensity for each

star computed from Eq. 8.3, as well as the intensity measured from the data. Each

intensity is normalized with respect to the intensity IA. The intensity of each star is

measured by computing the encircled energy in a disk of a given diameter, centered on

the star. The diameter of the circle varies between 2 µrad and 10 µrad depending on

the extent of the image of each star. In the case of the binary star HJ 3752 AB, the

Fried parameter is small (r0 = 4.1 cm). As a consequence, the PSF is very broad (See

Figure 8.3 (b)) and therefore the intensity distributions of both stars are overlaping.

Thus the encircled energy for each star can not be measured.

Star Computed intensity Measured intensity

IA IB IA meas. IB meas.

STF 738 AB 1 0.1675 1 0.1643

HJ 3752 AB 1 0.3499 1 PSF too broad to measure

A 2512 1 0.1355 1 0.1353

BU 311 1 0.6792 1 0.7425

Table 8.2: Computed and measured intensities for four binary stars.

We can notice that the measured intensity and the computed intensity are very

similar. Anisoplanatism has the following effect on the AO-corrected PSF: it broadens

the PSF and decreases its peak value as the field angle increases. However, it does not

change the total energy coming from each star.

8.4.3 Peak value of the PSF

For different binary stars, we look at the peak value of the PSF at various field angles.

We assume the peak values of two stars A and B, denoted KA and KB, to be related
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by Eq. 8.3. Table 8.3 gives the normalized peak values of the PSF measured from the

data, and computed from Eq. 8.3. Each peak value is normalized by the peak value of

the on-axis PSF.

Star KA KB Difference Angular sep.

th. meas. th. / meas.

STF 738 AB 1 0.1675 0.070 58.2% 20.5 µrad

HJ 3752 AB 1 0.3499 0.123 64.8% 16.3 µrad

A 2512 1 0.1355 0.112 17.3% 5.1 µrad

BU 311 1 0.6792 0.775 12.4% 2.2 µrad

Table 8.3: Computed and measured normalized peak values of binary stars.

We can notice that for every star the measured peak of the PSF is smaller than the

peak expected through Eq. 8.3 (with the exception of the star BU 311). The amplitude

of the PSF decreasing as the field angle increases can be explained by anisoplanatism.

8.4.4 Problem

In section 8.4, we saw that the effect of anisoplanatism can be observed on some of the

AO-corrected images. However, the effect could not be observed on all the binary stars

measured. This can be explained by the following reasons:

1. The isoplanatic angle is larger than the angular separation between the two binary

stars. For example, this is the case of the binary star BU 1052. The two stars

are separated by an angle of 2.7 µrad and the isoplanatic angle computed from

Eq. 4.38 is approximately 16 µrad.

2. Ideally, the wavefront sensor should have a very narrow FOV in order to receive

light only from the reference star. However, in practice the FOV of the wavefront
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sensor is large enough to detect light coming from both binary stars, which affects

the centroid location estimate. Therefore, both stars are used as a reference

beacon and the AO system does not provide an optimal correction for either of

them.

3. The difference in brightness between the two stars plays an important role in

the performance of the WFS. If both stars have similar magnitudes, the WFS

receives the same amount of light from each star, and not only one of them is

used for reference. On the other hand, if star A is much brighter than star B,

the WFS receives most of the light from one star, which can be considered of the

reference star. In this case, the image of the dimmest star, star B, is affected by

anisoplanatism.

8.5 Deconvolution results

The images of binary stars are recontructed using the technique presented in chapter 7

and the model for the off-axis PSF presented in chapter 6. The quality of the recon-

structed images is measured by computing the MS error between the reconstructed

image and the object. The MS error metric was defined in section 7.6.2. Each star is

modeled in the object plane as a point source with an amplitude equal to the intensity

of the star. The reconstruction error for different stars is given in Table 8.4. First,

we can notice that the MS error gets smaller when we reconstruct the image, whether

we reconstruct using the model for the off-axis PSF or the on-axis PSF. Second, the

reconstruction using the space-varying PSF gives better results than the deconvolution

using the on-axis PSF. For example, in the case of the binary star STF 738 AB, we

obtain a reconstruction error of 39.3% using the predicted PSF, as opposed to a 87.8%

using the on-axis PSF. However, for binary stars with a small angular separation, aniso-
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planatism does not have a significant effect. Therefore, the reconstruction results using

the predicted PSF or the on-axis PSF are very similar. It is the case of the binary stars

BU 311 for which we obtain a εrecons of 91.2% compared to a εrecons on−axis of 91.5%.

Star εimg εrecons εrecons on−axis

STF 738 AB 97.2% 39.3% 87.8%

STF 611 96.3% 75.2% 83.4%

A 2512 96.0% 81.9% 83.9%

BU 311 97.8% 91.2% 91.5%

HJ 3752 AB 99.0% 96.1% 97.5%

Table 8.4: Reconstruction errors.

Figures 8.4 and 8.5 show the original image and the reconstructed image for binary

stars STF 378 AB and STF 611. Figure 8.6 shows the cross-sections of the star and

the reconstructed star through the off-axis star.

8.6 Conclusion

The binary stars measured at the AEOS facilities had been pre-processed and the effect

of anisoplanatism had been observed on some of the data. However, some of the binary

stars have an angular separation too small for anisoplanatism to be observed. Also,

even though some of the binary stars have an angular separation much larger than the

isoplanatic angle, anisoplanatism still could not be observed. This is can be explained

by the fact that the wavefront sensor has a FOV larger than the angular separation

between the two stars. Therefore, the wavefront sensor receives light from both stars,

instead of one reference star.

In conclusion, the effect of anisoplanatism on measured data can be observed the

best on binary stars that respect the following conditions: first, the angular separation
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Figure 8.4: Measured and reconstructed image for binary star STF 738 AB.
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Figure 8.5: Measured and reconstructed image for binary star STF 611.
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needs to be larger than the isoplanatic angle approximately. Second, the star used as

a reference needs to be much brighter than the secondary one.

The measured images had been reconstructed with the technique described in chap-

ter 7. The deconvolution results show an improvement of the MS error between the

reconstructed image and the model for the star. Also, the deconvolution using the

predicted PSF gives better results than the deconvolution using the on-axis PSF.
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CHAPTER 9

Conclusion

9.1 Summary of results

In this dissertation, we presented a method to reconstruct anisoplanatic adaptive optics

images. We now summarize the results of the dissertation.

After posing the problem of imaging using adaptive optics under anisoplanatic con-

ditions, we gave a background on wave optics. The science of imaging through turbu-

lence was then presented, as well as models for atmospheric turbulence. AO systems

were described in detail, and models for each of their components were given. My

research begins in chapter 5 where I described the wave propagation simulation I used.

The simulation included a model for the atmosphere as well as for the AO imaging

system. The simulation allowed us to obtain long exposure PSF as well as LE intensity

images of a stellar field through the atmosphere. The effect of anisoplanatism could be

observed on the simulated images. To reconstruct those LE AO-corrected images, the

knowledge of the space-varying PSF is essential.

Prediction of the off-axis point spread function

In chapter 6, a method for prediction of the LE AO-corrected off-axis PSF as a contin-

uous function of the field angle was presented. A model for the PSF was introduced,
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allowing to parameterize the PSF with a small number of coefficients. The methods

shows a prediction error varying from 0.9% to 2.7% depending on the field angle con-

sidered and the seeing conditions.

Reconstruction of anisoplanatic adaptive optics images

The method for prediction of the off-axis PSF presented in chapter 6 is validated in

chapter 7. In chapter 7, the predicted PSF was used for the deconvolution of anisopla-

natic images. The reconstruction technique is applied to simulated images, as well as

experimental data. The deconvolution results using the predicted off-axis PSF are com-

pared to the deconvolution results using the on-axis PSF, which would be the type of

deconvolution used under isoplanatic conditions. The reconstruction results were pre-

sented and the technique showed an improvement of the original image, for simulated

and experimental data.

Results for simulated images

In the case of simulated anisoplanatic star field images, two commonly used image

restoration techniques were considered: the Tikhonov regularization and the EM algo-

rithm. The predicted PSF was showed to give MS errors between the reconstructed

image and the object 7.2% to 84.8% smaller than the on-axis PSF.

The influence of the SNR was also studied. Our study shows that a SNR larger than

100 and good seeing conditions (r0 larger 20 cm), the inverse problem does not need

regularization (Tikhonov coefficient α = 0). However, under different conditions, a

regularization of the inverse problem is necessary.

The performance of the reconstruction decreases as the seeing conditions degrade or as

the SNR gets smaller. Both reconstruction techniques behave differently depending on
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the seeing conditions and the SNR. The best result (84.8% of improvement from the

on-axis PSF deconvolution) is obtained using the Tikhonov regularization, with a SNR

of 104 and a Fried parameter of 25 cm. The EM algorithm gives better results than the

Tikohonov regularization for a low SNR (smaller than 100). For example, for a SNR of

0.1 and a Fried parameter of 10 cm, we obtain an improvement factor of 64.2% using

the EM algorithm, as opposed to 7.2% using the Tikhonov regularization.

Results for experimental data

Binary stars were measured at the AEOS facilities. In some case, anisoplanatism could

not be observed in the images. It was explained by the fact that the wavefront sensor

has a FOV larger than the angular separation between the two stars. Therefore, the

wavefront sensor receives light from both stars, instead of one reference star. The

effect of anisoplanatism on measured data can be observed the best on binary stars

that respect the following conditions: first, the angular separation needs to be larger

than the isoplanatic angle approximately. Second, the star used as a reference needs

to be much brighter than the secondary one.

The images obtained were reconstructed using the technique presented in chapter 6.

The reconstruction results using the predicted PSF technique shows an improvement

of the MS error between the reconstructed image and the object up to 55.2%.

9.2 Future work

Extension of the method: interpolation in term of r0

We saw in chapter 6 that the PSF depends on the field angle θ, but it also depends

on the Fried parameter r0. Therefore the coefficients ai’s and bi’s of the parameterized
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model for the PSF depend on θ and r0 as well. For a fixed θ, the ai’s and bi’s are

functions of r0 and can be denoted respectively ai(r0) and bi(r0). The previous method

of interpolation of the ai(θ) and bi(θ) in term of the field angle θ can then be extended

to the interpolation of the ai(r0) and bi(r0) in term of r0.

Our goal in this dissertation is to restore anisoplanatic AO-corrected images. There-

fore, the knowledge of the PSF as a function of the field angle represents an interest.

However, the prediction of the PSF as a function of the Fried parameter r0 seems

interesting and could be the object of further research.
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APPENDIX A

Results: Prediction of the PSF
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r0 = 25 cm.
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Figure 1.4: Parameterized and simulated PSF’s for θ = 0, 16, and 32 µradians, and
r0 = 15 cm.
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Figure 1.5: Parameterized and simulated PSF’s for θ = 0, 16, and 32 µradians, and
r0 = 10 cm.
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Figure 1.6: Coefficients ai’s and bi’s vs. field angle for r0 = 25 cm.
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Figure 1.7: Coefficients ai’s and bi’s vs. field angle for r0 = 20 cm.
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Figure 1.8: Coefficients ai’s and bi’s vs. field angle for r0 = 15 cm.
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Figure 1.9: Coefficients ai’s and bi’s vs. field angle for r0 = 10 cm.
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Figure 1.11: Coefficients ai’s and bi’s vs. r0 for θ = 16 µrad.

139



5 10 15 20 25 30

0.02

0.01

0

0.01

0.02

0.03

r
0

 in cm

a
i
 vs . r

0
 for θ = 32 µrad

a
1

a
2

a
3

a
4

a
5

a
6

a
7

5 10 15 20 25 30

0.04

0.03

0.02

0.01

0

0.01

0.02

0.03

0.04

r
0

 in cm

b
i
 vs . r

0
 for θ = 32 µrad

b
1

b
2

b
3

b
4

b
5

b
6

b
7

Figure 1.12: Coefficients ai’s and bi’s vs. r0 for θ = 32 µrad.
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Figure 1.13: Coefficients ai’s and bi’s vs. K̄ for θ = 16 µrad.
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Figure 1.14: Coefficients ai’s and bi’s vs. K̄ for θ = 32 µrad.
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Figure 1.15: Predicted and simulated PSF’s for θ = 4, 20, and 28 µradians, and r0 =
25 cm.
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Figure 1.16: Predicted and simulated PSF’s for θ = 4, 20, and 28 µradians, and r0 =
20 cm.
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Figure 1.17: Predicted and simulated PSF’s for θ = 4, 20, and 28 µradians, and r0 =
15 cm.
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Figure 1.18: Predicted and simulated PSF’s for θ = 4, 20, and 28 µradians, and r0 =
10 cm.
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Figure 1.19: Cross-section of the simulated PSF at θknown = 0, 8, 16, 24 and 32 µrad
and the predicted PSF at θpredict = 4, 12, 20 and 28 µrad, for (a) r0 = 25 and (b) r0

= 20 cm.
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Figure 1.20: Cross-section of the simulated PSF at θknown = 0, 8, 16, 24 and 32 µrad
and the predicted PSF at θpredict = 4, 12, 20 and 28 µrad, for (a) r0 = 15 and (b) r0

= 10 cm.
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APPENDIX B

Results: Reconstruction of anisoplanatic

adaptive optics images
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Figure 2.1: Reconstruction error εRECONS vs. coefficient α for (a) r0 = 25 cm and (b)
r0 = 20 cm.
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Figure 2.2: Reconstruction error εRECONS vs. coefficient α for (a) r0 = 15 cm and (b)
r0 = 10 cm.
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Figure 2.3: Reconstruction error εRECONS vs. iterations for (a) r0 = 25 cm and (b)
r0 = 20 cm.
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Figure 2.4: Reconstruction error εRECONS vs. iterations for (a) r0 = 15 cm and (b)
r0 = 10 cm.
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Figure 2.5: Reconstruction error εRECONS vs. SNR for the Tikhonov regularization
and for different r0.
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Figure 2.6: Reconstruction error εRECONS vs. SNR for the EM algorithm and for
different r0.
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Figure 2.7: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 10000 and r0 = 25 cm.
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Figure 2.8: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 1 and r0 = 25 cm.
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Figure 2.9: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 0.5 and r0 = 25 cm.
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Figure 2.10: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 10000 and r0 = 20 cm.
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Figure 2.11: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 1 and r0 = 20 cm.
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Figure 2.12: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 0.5 and r0 = 20 cm.
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Figure 2.13: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 10000 and r0 = 15 cm.
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Figure 2.14: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 1 and r0 = 15 cm.
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Figure 2.15: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 0.5 and r0 = 15 cm.
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Figure 2.16: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 10000 and r0 = 10 cm.
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Figure 2.17: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 1 and r0 = 10 cm.
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Figure 2.18: Reconstructed images using the Tikhonov regularization with the predicted
PSF and the on-axis PSF for SNR = 0.5 and r0 = 10 cm.
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Figure 2.19: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 10000 and r0 = 25 cm.
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Figure 2.20: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 1 and r0 = 25 cm.
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Figure 2.21: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 0.5 and r0 = 25 cm.
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Figure 2.22: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 10000 and r0 = 20 cm.
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Figure 2.23: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 1 and r0 = 20 cm.

172



R econs . with predicted P S F  (S NR  = 0.5)

field angle in µrad

fie
ld

 a
n

g
le

 in
 µ

ra
d

30 20 10 0 10 20 30

30

20

10

0

10

20

30

R econs . with onaxis  P S F  (S NR  = 0.5)

field angle in µrad

fie
ld

 a
n

g
le

 in
 µ

ra
d

� 30 � 20 � 10 0 10 20 30

� 30

� 20

� 10

0

10

20

30

Figure 2.24: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 0.5 and r0 = 20 cm.
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Figure 2.25: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 10000 and r0 = 15 cm.
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Figure 2.26: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 1 and r0 = 15 cm.
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Figure 2.27: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 0.5 and r0 = 15 cm.
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Figure 2.28: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 10000 and r0 = 10 cm.
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R econs . with predicted P S F  (S NR  = 1)
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Figure 2.29: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 1 and r0 = 10 cm.
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R econs . with predicted P S F  (S NR  = 0.5)
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Figure 2.30: Reconstructed images using the EM algorithm with the predicted PSF and
the on-axis PSF for SNR = 0.5 and r0 = 10 cm.
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