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ABSTRACT  

Large Power transformers, an aging and vulnerable part of our energy infrastructure, 

are at choke points in the grid and are key to reliability and security. Damage or destruction 

due to vandalism, misoperation, or other unexpected events is of great concern, given 

replacement costs upward of $2M and lead time of 12 months. Transient overvoltages can 

cause great damage and there is much interest in improving computer simulation models to 

correctly predict and avoid the consequences. 

EMTP (the Electromagnetic Transients Program) has been developed for computer 

simulation of power system transients.  Component models for most equipment have been 

developed and benchmarked. Power transformers would appear to be simple. However, due 

to their nonlinear and frequency-dependent behaviors, they can be one of the most complex 

system components to model. It is imperative that the applied models be appropriate for the 

range of frequencies and excitation levels that the system experiences. Thus, transformer 

modeling is not a mature field and newer improved models must be made available.  

In this work, improved topologically-correct duality-based models are developed for  

three-phase autotransformers having five-legged, three-legged, and shell-form cores. The 

main problem in the implementation of detailed models is the lack of complete and reliable 

data, as no international standard suggests how to measure and calculate parameters. 

Therefore, parameter estimation methods are developed here to determine the parameters of a 
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given model in cases where available information is incomplete.  The transformer nameplate 

data is required and relative physical dimensions of the core are estimated. The models 

include a separate representation of each segment of the core, including hysteresis of the 

core, λ-i saturation characteristic, capacitive effects, and frequency dependency of winding 

resistance and core loss. 

Steady-state excitation, and de-energization and re-energization transients are 

simulated and compared with an earlier-developed BCTRAN-based model. Black start 

energization cases are also simulated as a means of model evaluation and compared with 

actual event records. The simulated results using the model developed here are reasonable 

and more correct than those of the BCTRAN-based model. Simulation accuracy is dependent 

on the accuracy of the equipment model and its parameters. This work is significant in that it 

advances existing parameter estimation methods in cases where the available data and 

measurements are incomplete. The accuracy of EMTP simulation for power systems 

including three-phase autotransformers is thus enhanced. 

Theoretical results obtained from this work provide a sound foundation for 

development of transformer parameter estimation methods using engineering optimization. In 

addition, it should be possible to refine which information and measurement data are 

necessary for complete duality-based transformer models. To further refine and develop the 

models and transformer parameter estimation methods developed here, iterative full-scale 

laboratory tests using high-voltage and high-power three-phase transformer would be helpful. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

ATP (Alternative Transient Program, the royalty-free version of the EMTP – the 

Electromagnetic Transients Program) was developed for computer simulation of power 

system transients.  Component models for power system equipment have also been 

developed and benchmarked. Power transformers would appear to be simple. However, 

due to their nonlinear and frequency-dependent behaviors, they can be one of the most 

complex system components to model. It is imperative that the applied models be 

appropriate for the range of frequencies and excitation levels that the system experiences. 

Transformer modeling is not a mature field and newer improved models must be made 

available in ATP packages. Further, there is a lack of published guidance on 

recommended modeling approaches. And there is typically not enough detailed design or 

test information available to determine the parameters for a given model.  

The purpose of this dissertation project is to develop improved transformer models 

and parameter estimation methods that can efficiently utilize the limited available 

information such as factory test reports, core type and core dimension.  

Chapter 2 gives the results of a literature search, provides an overview of 

transformers, and presents some of the more commonly-used models presently being 

used in transient simulation. 
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Chapter 3 describes and gives insights on the parameters and advanced equivalent 

circuit models that can be applied to three-phase transformers. The pros and cons of some 

existing models are briefly discussed and some examples presented. The main problem 

with these representations is the lack of reliable implementation data, as no international 

standard suggests how to measure and calculate the needed parameters. 

Chapter 4 refines the existing approaches for parameters and characteristics used by 

the equivalent circuits presented in Chapter 3. To improve our understanding of the 

details of transformer modeling, the nonlinear and frequency-dependent characteristics 

are studied. Parameter estimation methods are developed to determine the parameters of a 

given model in cases where incomplete information is available. This parameter 

estimation problem inherently transforms to a constrained optimization problem in 

engineering, because the model parameters must be selected so that the model fits all the 

available data and measurements as closely as possible.  

Duality-based transformer models are topologically correct and can be used to 

accurately represent each segment of the magnetic core. Chapter 5 develops the duality-

based equivalent circuit models for three-phase five-legged, three-phase three-legged, 

and three-phase shell-form autotransformers for ATP implementation. However, 

available information is typically not enough to determine the parameters for these 

duality-based transformer models.  

Chapter 6 develops the parameter estimation methods for the duality-based models 

of Chapter 5. Physical dimension and the nonlinear and frequency-dependent 

characteristics are implemented in the parameter estimation. Mathematical description of 
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parameters and their interrelationships are refined. The models include a separate 

representation of each segment of the core, including hysteresis of the core, λ-i saturation 

characteristic, capacitive effects, and frequency-dependency of winding resistance and 

core loss. 

Chapter 7 presents the results of ATP simulations used in benchmarking. Models 

developed in Chapter 6 are used to compare simulation results to actual event records. 

Steady-state excitation and de-energization and re-energization transients are simulated 

and compared with the results of an earlier BCTRAN-based model. The performance of 

the equivalent circuit and observations on parameters are summarized. 

Chapter 8 contains the conclusions and summary of this work. Based on the results, 

some recommendations and suggestions for future research work are provided. These 

suggestions are intended to further improve the performance of the models and clearly set 

a starting point for researchers who wish to continue the work in this area. 
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CHAPTER 2 
 

INTRODUCTION TO TRANSFORMER MODELS 
 
 
2.1 Basic Transformer Structure  

A transformer consists of core, coil, tank, insulation and other accessories. The iron 

core is made of laminations to reduce eddy current losses and the material is silicon alloy 

to reduce hysteresis losses and to improve magnetization characteristics. Reducing the 

thickness of laminations reduces the eddy current losses in the core. There are two classes 

of coils - concentric (cylindrical) windings and interleaved (pancake) windings. For 

concentric windings, the high-voltage coil is typically wound over the low-voltage coil to 

obtain good coupling between windings. For interleaved windings, the high-voltage and 

the low-voltage windings are stacked in alternating pancake-shaped coils. In actual 

design, many modifications are used by the various manufactures. Paper, pressboard, 

mineral oil, and epoxy resin are used for insulation [22]. 

Examples of windings and core structures for single-phase and three-phase 

transformers are shown in Figures 2.1 and 2.2.  The quantitative expressions for a coil-

wound magnetic circuit are given in Equations (2.1) through (2.7) [7]. 
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Figure 2.1  Core Structure of Single-phase Transformer (Shell-form) 

   
     (a) Three-legged Core             (b) Five-legged Core        

 
            (c) Shell-form  

Figure 2.2  Core Structures of Three-phase transformers 

 
 

   
 

 
 

 
 

Where, ℜ : Reluctance,  i: current, µ: permeability, A: area of core, Φ: flux, 
MMF: magnetomotive force, N: number of turns, H: magnetic field intensity, 

B: flux density, l: length of core, L: inductance, λ: flux linkage 
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2.2 STC (Saturable Transformer Component) Model  

ATP is a digital simulation program for transient phenomena of an electromagnetic 

system. It has been continuously developed through international contributions.  

Interfacing capability to the program modules TACS (Transient Analysis of Control 

Systems) and MODELS (a simulation language) enables modelling of control systems 

and components with nonlinear characteristics.  

ATP offers two different transformer models. These two components are referred 

to as STC and BCTRAN models. STC is a built-in model that can be implemented with 

and without saturable core representation. It is limited to single-phase or three-phase 

banks made up of single-phase units. No mutual coupling between the phases can be 

taken into account. In addition, it is not possible to represent the differences between the 

positive and the zero sequence paths. Therefore, unequal phase reluctances and the 

nonlinear interactions between limbs of the core cannot be taken into account [6,17]. 

Figure 2.3  STC Model for Single-phase Two-winding Transformer [18] 

Figure 2.3 gives STC model for single-phase transformer of Figure 2.1. This model 

has a built-in core representation (RC and LC), which is connected at the ideal coupling 

transformer. A piecewise linear λ-i (flux linked vs. current) curve is defined point-by-

point, with a linear resistance connected in parallel. As an approximation, the 
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manufacturer’s RMS saturation curve of voltage vs. current may be input and converted  

to peak flux linkages and peak current using the supporting routine SATURATION [18]. 

Required input parameters are: leakage impedance, winding resistance and turns 

ratio. This model is simple to use, but is limited to single–phase or three-phase banks of 

single-phase units and may be numerically unstable because of negative inductance in the 

equivalent circuit of the three-winding transformer [8,39]. 

 

2.3 BCTRAN Model 

BCTRAN is the supporting routine of the EMTP program which creates an 

impedance or admittance matrix representation of the transformer, without taking into 

account the saturable core effects, from transformer ratings and factory test data. From 

Brandwajn and Dommel [4], single-phase and three-phase N-winding transformers can 

be represented in the form of a branch impedance or admittance matrix, derived from 

short-circuit and open-circuit nameplate data.  

Figure 2.4 Terminal Representation for BCTRAN Model  

For P-phase M-winding Transformer,
the number of total buses  is N=MxP.
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The BCTRAN routine can create an AR model of the leakage impedances of the 

transformer to avoid the problem of inverting a singular [L], where [A] is the inverse of 

[L], as in the Equation (2.9). Where [L] is the inductance matrix, [R] is the resistance 

matrix, [v] is a vector of terminal voltages, and [i] is the current vector. As in other three-

phase network components, the positive and zero sequence values from test data 

(excitation and short-circuit data) are used. Therefore, the representation of unbalance 

between phases is possible [17]. 

The elements of the [L] matrix are self inductances and mutual inductances. The 

copper-loss resistances form a N x N diagonal matrix [R], each element of which 

corresponds to its respective winding [8,17]. 

 

 
(2.8) 

 

 
                  (2.9) 

 

The iron-loss resistances are placed in parallel with each winding. Exciting current 

effects can be linearized and left in the matrix description, which can lead to the 

simulation errors when the core saturates. Alternately, excitation may be omitted from the 

matrix description and attached externally at the model’s terminals in the form of 

nonlinear core elements. Such an externally attached core equivalent must have the same 

topology as the duality transformation for the complete transformer, however, so 

attaching this core equivalent to the external terminals is not topologically correct.  

v
v

v

R
R

R

i
i

i

L L L
L L L

L L L

d
dt

i
i

iN NN N

N

N

N N NN N

1

2

11

22

1

2

11 12 1

12 22 2

1 2

1

2

0 0
0 0

0 0
M

L

L

M M O M

L

M

L

L

M M O M

L

M



















=





































+





































[ ] [ ] [ ] [ ] [ ] [ ]i
dt
diRLvL 11 ⋅+⋅⋅=⋅ −−



 

  - 9 - 

In this model, it is possible to represent the differences between the positive and the 

zero sequence paths. However, unequal phase reluctances and nonlinear interactions  

between limbs of the core cannot be taken into account. As input data, manufacturer data  

including zero and positive sequence impedances from the binary short-circuit tests is  

necessary [17]. 

2.4 Duality Transformation   

Based on work by Slemon [46], topologically-correct equivalent circuit models can 

be derived from magnetic circuit models using the principle of duality, with the duality 

transformation being directly performed as a topological exercise. This type of model 

includes the effects of saturation in each individual leg of the core as well as leakage 

effects.  

Table 2.1 lists the duality pairs for the transformation. A duality transformation 

example for the single-phase shell-form transformer with concentric windings of Figure 

2.1 is given in Figures 2.5 and 2.6 [7,13,46]. 

Table 2.1    Duality Transformation 

Magnetic Circuit Electric Circuit Remark 

Meshes Nodes  

Nodes Meshes  

MMF i (current) MMF=N* i 

dλ/dt v (voltage) v = dλ/dt 

ℜ  (reluctance) L (inductance) L = N2/ℜ  

Series Parallel  

Parallel Series  
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Figure 2.5   Equivalent Magnetic Circuit and Topological Development 

 

Figure 2.6   Equivalent Electrical Circuit Derived from Duality Transformation 

Core sections are labeled as C for center leg, O for outer legs, and Y for yokes. ΦHL 

is the leakage flux that is assumed to flow between the high and the low voltage coils, 

and ΦLC is the leakage flux between the low voltage coil and the core. The next step is to 

convert the distributed magnetic circuit into a lumped parameter equivalent, as shown 
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with solid lines in Figure 2.5. The electrical dual, shown with dashed lines, is then 

developed. An electrical node is placed in the center of each magnetic circuit mesh, as 

well as outside the circuit. Then, as shown in Table 2.1, each MMF source and reluctance 

is replaced by its electrical dual and connected between the neighboring nodes. To 

maintain mathematical duality, the polarity of the current source must be consistent with 

the MMF sources. The last step is to replace the current sources with ideal coupling 

transformers. In Figure 2.6, the core and leakage behaviors are electrically isolated from 

the external winding connections, which is an advantage for grounded or interconnected 

windings. Winding resistances are added to the high- and low-voltage windings. The five 

core sections in Figure 2.6 can be simplified in this case by combing them into one 

equivalent magnetizing inductance.  

The equivalent circuits resulting from duality transformations are topologically 

correct lumped-parameter representations. Duality-derived models can be implemented 

with standard EMTP elements such as an ideal transformer, lumped RLC, or saturable 

inductor. 

However, practical application of this model for a three-phase transformer has been 

hampered by a difficulty in obtaining the required model parameters. Factory test data 

provided by transformer manufacturers is not enough for this model. One particularly 

troublesome problem is that exciting currents are stated in RMS amperes and calculated 

as an average of the three phase currents. This is not enough to allow core parameters to 

be properly calculated, since the currents are not sinusoidal and not the same in every 

phase. 
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2.5 Coil/Winding Capacitance with Damping Resistance  

For transient studies that involve frequencies up to a few kHz, stray capacitance of 

transformer coils must be added to the transformer model as shown Figure 2.7. 

Capacitances are actually distributed, but lumped parameters at the winding terminals for 

the total capacitance can be used with reasonable accuracy in this case. The capacitances 

represent the electric coupling between two windings of the same phase or between each 

winding and the earthed fittings of the transformer, i.e. the tank and the core [1,26,50]. 

The effective terminal capacitance can be determined based on the frequency of 

oscillation of each winding by using Equations (2.10) through (2.13) [50]. 

Effective capacitance Ceff =1/[(2π f)2⋅ L]                (2.10) 

where f: TRV  frequency of each winding in Hz,  
L: transformer leakage inductance in H, C: effective capacitance in F   

Effective capacitance for the high-voltage winding  Ceff=CH+CHL    (2.11) 

Effective capacitance for the low-voltage winding  Ceff=CL+CHL    (2.12) 

High-frequency capacitive coupling ratio   CHL/(CHL+CL)  (2.13) 

Representative frequencies for power transformers are reported by Harner and 

Rodriguez and the high-frequency capacitive coupling ratio is generally lower than 0.4 

[50]. 

Due to high-frequency winding resistance and eddy current losses, the oscillations 

are damped. This damping is represented by the resistance to ground in the equivalent 

circuit shown in Figure 2.8. For most transformers, the damping is usually such that the 
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damping factor, DF, (i.e., the ratio of successive peaks of opposite polarity in the 

oscillation) is on the order of 0.6 to 0.8. Thus, the high-frequency damping resistance, 

RD, can be calculated using the equation given in Figure 2.7 [50]. 

)DFln(
C
L

RD
π−

=  

Figure 2.7 Equivalent Circuit for Capacitance with Damping Resistance 

 

2.6 Parameter Estimation using Engineering Optimization  

When developing a duality model for the equivalent circuit of a three-phase 

transformer in the EMTP, the main problem is the lack of reliable data from which to 

obtain the parameters of the equivalent circuit, i.e. leakage inductance, nonlinear 

magnetizing inductance for core saturation and nonlinear resistance for core loss. Thus, 

some parameter estimation methods might be used to build a topological model based on 

normally available test data. This parameter estimation problem is a nonlinear multi-

variable problem with equality and inequality constraints. Therefore, a nonlinear 

optimization strategy must be implemented for this case.  
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2.6.1 Engineering Optimization 

The application of optimization techniques in engineering can be found in many 

analysis problems arising in engineering model development. This parameter estimation 

problem inherently transforms to an optimization problem to determine the parameters of 

some semi-theoretical model given a set of test data, because the model parameters must 

be selected so that the model fits the data as closely as possible. A general formulation of 

nonlinear constrained optimization problem is given by [40]: 

 
Minimize  F(x)     for  x = (x1, x2,…, xN)       (2.14) 

        subject to  gj(x) ≥  0  for j=1,2,…,J   and  hk(x) = 0   for k=1,2,…K 

                      where,  x  variables (a set of design parameters) 

                                  F(x): objective functions to be  minimized 

                                  gj(x): inequality constraints  

                                  hk(x): equality constraints 

The determination of the parameters might be carried out applying the strategy of 

minimizing the sum of quadratic errors of the approximate values with respect to the 

exact values.  

[ ]
2N

1i
ii ),x(fy)x(F ∑

=
−= θ         (2.15) 

                     Where, yi : test data at the test condition θ i 

                                 f(x, θi ):  predicted value at the test condition θ i 

 

The difference yi - f(x,θi ) between the test data yi and the predicted value f(x, θi ) 

measures how close the prediction is to the test data and is called the residual. The sum of 

the squares of the residuals at all the test points gives an indication of goodness of the fit. 
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This data-fitting problem can thus be viewed as optimization problem in which F(x) is 

minimized by appropriate choice of x. 

The challenges in the unconstrained optimization approach of the Equation (2.15) 

are spurious solutions like “local optima” that merely satisfy the requirements on the 

derivatives of the functions without constraints. Therefore, a constrained optimization 

approach may be appropriate for parameter estimation of transformer model. 

As the necessary conditions of optimality for equality-constrained problems are 

Lagrange multipliers, the necessary conditions of optimization problems with equality 

and inequality constraints are Kuhn-Tucker conditions: 

                      

     (2.16) 

 

gj(x) ≥ 0 for j=1,2,…,J   and  hk(x)=0  for k=1,2,…K 

                        ujgj(x)=0     and  uj ≥ 0   for j=1,2,…,J 

Where, ∇ F(x) : N-component column vector of first derivatives of F(x)  

∇ gj (x): J-component column vector of first derivatives of gj(x) 

∇ hK (x): K-component column vector of first derivatives of hk(x) 

  uj :   Lagrange multiplier corresponding to contraint gj(x) 

  vk :  Lagrange multiplier corresponding to contraint hk(x) 

 

The solutions of Kuhn-Tucker conditions form the basis of many nonlinear 

programming algorithms, which attempt to directly compute the Lagrange multiplier.  

There are many strategies for engineering optimization. For unconstrained 

optimization, methods can be broadly categorized in terms of the derivative information. 
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Search methods that do not require gradients or other derivative information and use only 

function evaluations are most suitable for the problems that are nonlinear or have a 

number of discontinuities. One typical numerical search method is simplex search 

method. 

Gradient methods are generally efficient when the function to be minimized is 

continuous in its first derivative. Gradient methods use information about the slope of the 

function ∇ F(x) to dictate a direction of search where the minimum is thought to lie. Of 

the methods that use gradient information, there are the quasi-Newton methods or the 

Conjugate Gradient methods. Quasi-Newton methods only require differences of 

gradients of the Lagrangian function. The gradient information is either supplied through 

analytically calculated gradients, or derived by a numerical differentiation method.  

Higher order methods, such as Newton’s methods, are only really suitable when the 

second order information is readily and easily calculated since calculation of the second 

order information, using numerical differentiation, is computationally expensive. 

There are strategies for exploiting linear approximations to nonlinear problems like 

feasible direction methods, successive linear approximation methods, quadratic 

approximation methods or constrained variable metric methods.  

There are a number of different optimization strategies. An efficient and accurate 

solution to a given optimization problem is not only dependent on the size of the problem 

in terms of the number of constraints and design variables but also on characteristics of 

the objective function and constraints. 
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2.6.2 Applicable Methods in MATLAB   

MATLAB  Optimization tool box a collection of functions for many types of 

optimization such as nonlinear minimization, quadratic and linear programming, 

nonlinear least squares and curve-fitting, and nonlinear system of equation solving, and 

etc.. 

For the paramter estimation in this work, the constrained nonlinear minimization,  

nonlinear least squares, and curve-fitting techiques are necessary.   

 One of constrained nonlinear minimization functions in the MATLAB  

Optimization tool box is “fmincon”. This function solves a constrained nonlinear 

multivariable problem.  

x = fmincon(fun,X0, A,b,Aeq,beq,lb,ub,nonlcon)   (2.17) 

“fmincon” finds the constrained minimum of a scalar function of several variables 

starting at an initial estimate X0. This is referred to as constrained nonlinear optimization 

or nonlinear programming. It finds x to minimizes “fun” subject to the linear equalities 

Aeq*X = beq as well as the linear inequalities A*X <= b. It subjects the minimization to 

the nonlinear inequalities c(X) <= 0 or nonlinear equalities ceq(X) = 0. fmincon uses a 

Sequential Quadratic Programming (SQP) method. In Sequential Quadratic Programming 

(SQP) method, a Quadratic Programming (QP)  subproblem is solved at each iteration. 

An estimate of the Hessian of the Lagrangian is updated at each iteration.  A line search 

is performed using a merit function [53]. 
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One of the nonlinear least squares functions in MATLAB  Optimization tool box is 

“lsqnonlin”.  

x = lsqnonlin(fun,x0)        (2.18) 

x = lsqnonlin(fun,x0) starts at the point x0 and finds a minimum to the sum of 

squares of the functions described in fun. fun should return a vector of values and not the 

sum-of-squares of the values. By default, lsqnonlin chooses the large-scale algorithm. 

This algorithm is a subspace trust region method and is based on the interior-reflective 

Newton method. lsqnonlin with options. LargeScale set to 'off' uses the Levenberg-

Marquardt method with line-search. Alternatively, a Gauss-Newton method with line-

search may be selected. lsqnonlin does not handle equality constraints. The function to be 

minimized must be continuous. lsqnonlin only handles real variables. When x has 

complex variables, the variables must be split into real and imaginary parts [53]. 

One of the nonlinear curve-fitting (data-fitting) functions in MATLAB  

Optimization tool box is “lsqcurvefit”. This function solves nonlinear curve-fitting (data-

fitting) problems in the least squares sense. 

x = lsqcurvefit(fun,x0,xdata,ydata)      (2.19)  

With given input data xdata and observed output ydata, x = lsqnonlin(fun,x0) starts 

at the point x0 and finds coefficients x that "best-fit" the equation F(x, xdata) where xdata 

and ydata are vectors and F(x, xdata) is a vector valued function. The function lsqcurvefit 

uses the same algorithm as lsqnonlin. Its purpose is to provide an interface designed 

specifically for data-fitting problems. The function to be fit, fun is a function that takes a 
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vector x and returns a vector F, the objective functions evaluated at x. The sum of squares 

should not be formed explicitly. Instead, the function returns a vector of function values.  

The default line search algorithm is a mixed quadratic and cubic polynomial 

interpolation and extrapolation method. The function to be minimized must be 

continuous. lsqcurvefit may only give local solutions. When x has complex variables, the 

variables must be split into real and imaginary parts [53].  
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CHAPTER 3 

 
THREE-PHASE TRANSFORMER MODEL 

 

This Chapter describes important parameters and the implementation of existing 

models, in order to gain insights on parameters. The pros and cons of the existing models 

are briefly discussed, along with some examples. 

Detailed representation of a power transformer can be very complex due to the 

many variations in core and coil design and their complex behaviors during transient 

phenomena. The most suitable representation depends on several factors: the behavior 

being simulated, available data, and core design. One of several models valid for a 

specific frequency range may be used. According to CIGRE WG 33-02 [52], frequency 

ranges can be classified as four groups with some overlapping between them (Table 3.1). 

In this work, transformer modeling for low-frequency and slow-front transients is 

considered. This is suitable for simulation of power system transients such as excitation 

inrush currents, ferroresonance, short circuits, abnormalities including transformer faults, 

and switching overvoltages.  

An autotransformer is a transformer configuration that has part of its winding 

common to both the input and output, i.e. there is no electrical isolation. If the voltage 

ratio is favorable (in practice, typically ≤ 3:1), an autotransformer is advantageous from 

the point of view of the equivalent volt-amp rating. The effective increase in equivalent 
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rating reduces the weight, the size, no-load loss, load losses and the short circuit 

impedance. The use of an autotransformer makes it possible for a high power rating to be 

constructed as a single unit three-phase transformer. In this work, the model for a three-

winding autotransformer is considered. 

To develop a model for a three-phase transformer, transformer physical design 

information and characteristic data are needed. However, it is most unusual to have a case 

where complete physical design information and dimensions are available. Utilities 

typically can't afford to take transformers out of service, don't have the equipment for 

taking field measurements, or can't afford the field crew to perform them.  Often, all the 

information we will have is what is on the nameplate, or maybe the basic factory tests. 

Utilities have typically not had the foresight to request detailed tests, and the state of the 

art has not been advanced enough to know what tests or parameters to request as part of 

their purchase specification. Typically, factories have done only the minimum required 

compliance testing.  

Typical transformer factory test reports available from manufacturers consist of 

data like Table 3.2, which summarizes the report given in Appendix C. The available data 

are no-load kW losses and true RMS exciting current at 100% and 110% of rated voltage. 

However, there is no information on transformer core type, core material, etc. It should 

be noted that the “RMS exciting current” taken from factory tests is actually the average 

of the three measured true RMS phase currents. Usually, zero sequence short-circuit tests 

are not performed, so that information is not available either. 
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Table 3.1  CIGRE Modeling Recommendation for Power Transformer [52] 

Parameter 
/Effect 

Low Frequency 
Transients 

Slow Front 
Transients 

Fast Front 
Transients 

Very Fast 
Front 

Transients 
Short-circuit 
impedance Very important Very important Important Negligible 

Saturation Very important Very important(1) Negligible Negligible 

Iron losses Important(2) Important Negligible Negligible 

Eddy currents Very important Important Negligible Negligible 

Capacitive 
coupling Negligible Important Very 

important 
Very 

important 
1) Only for transformer energization phenomena, otherwise important 
2) Only for resonance phenomena 

Table 3.2  Transformer Factory Test Data 

345000 Grd.Y/118000 Grd.Y/13800 Delta,  
3-phase auto-transformer @OA/FOA/FOA 

H- 296/394/490MVA, X-296/394/490MVA, Y-77/103/128MVA  
Exciting Current No Load Loss 

0.76%@100%Voltage 297.6kW@100%Voltage 
Open-Circuit Test 

1.71%@110%Voltage 402.24kW@110%Voltage 
Short-Circuit Test Impedance Load Loss 

H-X 6.21% @296MVA 378.94kW @296MVA 
H-Y 55.9% @296MVA 258.76kW @77MVA 
X-Y 42.1% @296MVA 237.68kW @77MVA 

 

 
3.1 STC Model  

A more correct model of a three-phase autotransformer can be obtained by 

representing high  (H) and low (X) voltage terminals with the actual series winding (S) 

and common winding (C) as shown in Figure 3.1. This requires a re-definition of the 

short-circuit data in terms of windings S and C. Since most autotransformers have a 

tertiary winding, this winding T is included in the re-definition. The autotransformer can 
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therefore be represented as a transformer with the 3 windings S, C, and T. The voltage 

ratings are VS=VH-VX, VC=VX, VT=VY. This modification can be explained in terms of 

the equivalent star-circuit of Figure 3.1, with the impedances ZS, ZC, ZT based on VS, VC, 

VT.  

To learn the details of the Saturable Transformer model, one was implemented and 

benchmarked against factory test reports using the data of Table 3.2. The comparison is 

shown in Table 3.3. Equivalent Impedances modified for this model are N=2.924, 

ZSC=14.344%, ZCT=42.1%, ZTS=67.98%, ZS=20.112% (11.67 Ω), ZC=-5.768% (-0.9044 

Ω), ZT=47.868% (0.9239 Ω) at 296-MVA using each winding’s voltage base.  

 

Figure 3.1    STC Model for Three-phase Three-winding Autotransformer [6] 
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This model is limited to three-winding three-phase banks of single-phase units and 

may be numerically unstable because of negative short-circuit inductance in the 

equivalent circuit [6,40]. Also the attachment point of core equivalent is not topologically 

correct. 

Table 3.3  Comparisons of STC Model with Test Report 

Model: 345000 Grd.Y/ 118000 Grd.Y/ 13800 Delta – 296MVA @OA 
 Test Report STC Model  

Exciting Current @345kV Side 
3.76Amp.RMS@100%Voltage 3.77Amp.RMS, 5.33Amp.peak,  

8.47Amp.RMS@110%Voltage 6.92Amp.RMS, 11.98Amp.peak 
@110%Voltage   

No Load Loss per Phase 
99.20kW@100%Voltage 99.82kW@100%Voltage 

Open-
Circuit 

Test 

134.08kW@110%Voltage 120.78kW@110%Voltage 
Short-Circuit Current 

700.53Amp.peak 700.55Amp.peak 
182.23Amp.peak 182.53Amp.peak 
532.80Amp.peak 532.91Amp.peak 

Load Loss per Phase 
P-S  126.31kW @296MVA 126.61kW 
P-T   86.25kW @77MVA 86.29kW 

Short-
Circuit 

Test 

S-T  79.227kW @77MVA 79.21kW 
 

 

3.2 BCTRAN Model  

BCTRAN models were next investigated. This model is a more stable model for 

multi-winding transformers than the STC model, but permits only linear magnetizing 

branches to be incorporated in the matrix. Note that this model is of particular interest 

since it was implemented in a transient investigation study [14], where deficiencies in 

transformer representation were one of the motivations for this work. The overall model 
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implanted in that case used BCTRAN for short-circuit representation, with an externally-

attached simplistic core model, as shown in Figure 3.2. 

 

Figure 3.2    BCTRAN Model with External Core Elements  
                      for Three-phase Three-winding Autotransformer 

Core and load losses from the test data in Table 3.2 are employed to calculate the 

model parameters. To verify the transformer model developed using BCTRAN, results 

from simulated open and short circuit tests were compared to the transformer test report. 

The comparison is shown in Table 3.4. To model the magnetic core saturation and losses 

of the transformer, core effects are omitted in the BCTRAN model and replaced by 

external nonlinear elements. Core magnetization and losses are attached on the tertiary 

terminals as a nonlinear inductance in parallel with a linear resistor, as shown in Figure 

3.2. Using the 100% and 110% excitation data from the factory test report, the RMS 

magnetizing current is obtained by removing the core loss component from the exciting 

current as Equation (3.1).  

2
core

2
excrms III −=        (3.1) 
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Table 3.4  Comparisons of BCTRAN Model with Test Report 

Model: 345000 Grd.Y/ 118000 Grd.Y/ 13800 Delta – 296MVA @OA 
 Test Report BCTRAN Model  

Exciting Current @345kV Side 
3.76Amp.RMS@100%Voltage 3.75Amp.RMS, 5.30Amp.peak,  

8.47Amp.RMS@110%Voltage 7.37Amp.RMS, 13.65Amp.peak 
@110%Voltage   

No Load Loss per Phase 
99.20kW@100%Voltage 98.44kW@100%Voltage 

Open-
Circuit 

Test 

134.08kW@110%Voltage 119.11kW@110%Voltage 
Short-Circuit Current 

700.53Amp.peak 700.65Amp.peak 
182.23Amp.peak 182.23Amp.peak 
532.80Amp.peak 532.81Amp.peak 

Load Loss per Phase 
P-S  126.31kW @296MVA 126.51kW 
P-T   86.25kW @77MVA 86.25kW 

Short-
Circuit 

Test 

S-T  79.227kW @77MVA 79.230kW 
 
 
 

The resulting model represents all phase-to-phase coupling. However, it is valid 

only for the frequency at which the nameplate data was obtained. It models the terminal 

characteristics and does not consider differences in core or winding topology. Three-

legged cores, five-legged cores, wye windings, delta windings, or autotransformer 

connections all get the same mathematical treatment.  
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3.3 Duality-Based Model  

Detailed models incorporating core nonlinearities can be derived by applying the 

principle of duality on topology-based magnetic models. This approach is very useful for 

creating models accurate enough for low-frequency transients. If capacitive effects are 

added, slow front transients can be adequately modeled.  

The mesh and node equations of the magnetic circuit are the duals of the electrical 

equivalent’s node and mesh equations respectively. The duality transformation can be 

directly performed as a topological exercise. The duality transformation for the three-

phase three-winding transformer in Table 3.4 is given in Figures 3.3 through 3.5. Details 

follow. 

A three-winding three-leg core-type transformer is considered. Core sections are 

labeled as L for each leg, Y for each yoke. ΦSC is the leakage flux that is assumed to flow 

between the series and common windings, and ΦCT is the leakage flux between the 

common winding and the tertiary winding, ΦTL is the leakage flux between the tertiary 

winding and the core. The next step is to convert the distributed magnetic circuit into a 

lumped parameter equivalent, shown in solid lines in the center of Figure 3.4. The 

electrical dual, shown in dashed lines, is then developed. As shown in Figure 3.5, each 

MMF source and reluctance is replaced by its electrical dual and connected between the 

neighboring nodes.  
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Table 3.4 Comparisons of Electrical and Magnetic Quantities 

Magnetic Circuit Electric Circuit Remark 

mmf (ℑ , A-t) v (voltage, V) mmf =N*i =H*l 

Flux (φ, Wb) i (current, A) φ,=B*A 

ℜ  (reluctance, H-1) R (Resistance, Ω) L = N2/ℜ  
Magnetic field intensity  

(H, A-t/m) 
Electric field intensity  

(E, V/m)  

Flux density (B,T) Current density (J,A/m2)  

Permeability (µ, H/m) Conductivity (σ, S/m) µ =B / H  

ℑ  =φ ℜ  V =iR  

B=µH J= σE  
Flux linkage  

(λ, Wb-t) =Nφ N i (A turn)  

ℜ  =l /(µA) =1/P=1/L R=l /(σA)=1/G L (inductance) 
 
 

 Figure 3.3  Three-phase Three-leg Core-type Transformer Structure 
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Figure 3.4   Duality Transformation 

 

Figure 3.5    Equivalent Electric Circuit Derived from Duality Transformation 
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CHAPTER 4 
 

PARAMETERS FOR TRANSFORMER MODEL 
 

4.1 Frequency-Dependency of Coil Resistance 

Coil resistances vary widely depending on the frequency of the current flowing. The 

variation is due to skin effect and proximity effect. Skin effect is caused by the nonuniform 

distribution of current in the conductor. As the frequency of the current is increased, more 

current flows near the surface of the conductor. Thus, the effective resistance increases. The 

effective resistance typically varies as the square root of frequency [7,22].   

 
k

60ac 60
fR)f(R 



⋅=    where, k: about 0.5,  R60: 60 Hz resistance  (4.1) 

       However, a higher number of layers in the coil lead to a great resistance variation 

due to proximity effect. From reference [44], the frequency dependency of coil resistance is:  
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 ⋅⋅+⋅−⋅⋅=

  (4.2) 

where a= coil diameter(m), δ=skin depth(m), µo=permeability of Cu (4π×10-7),  

σ=conductance of Cu (0.5×108), nl = the number of layers 

 The effective resistance or the ratio of R(f)/RDC for the case of a = 3 mm is given in 

Figure 4.1. In the case of one layer, the ratio of R(f)/RDC is almost the same as the square 
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root of f/60Hz by the skin effect. In case of a multi-layer coil, the slope of R(f)/Rdc is almost 

the same as that of the skin effect in the range of 3 kHz to 10 kHz. However, due to the 

proximity effect, the variation of R(f)/RDC is significantly greater in the range of 100 Hz to 3 

kHz. Figure 4.1 shows that the effective resistance of a winding with ten layers is almost the 

same as those of typical transformers in [17]. 
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Figure 4.1    Effective Resistance at a = 3 mm  

In case detailed data for the number of layers or winding size is not available, the L/R 

ratio of the short-circuit impedance of typical transformers can be used to estimate the 

frequency-dependency of coil resistance. From Chapter 2 of the EMTP Theory Book [17], 

L/R ratios of the short-circuit impedance of typical transformers are given for ratings of 20 

MVA ~ 500 MVA and frequency range of 50 Hz ~ 6000 Hz. This is presented in Figures 4.2 

and 4.3. Figure 4.3 shows that K in Equation (4.1) is about 1.5 for the given frequency range. 
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Figure 4.2  Typical L/R for Large Power Transformer [18] 
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Figure 4.3  Typical Slope of Effective Resistance for Large Power Transformer [17] 
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Table 4.1 Typical Effective Resistances for Large Power Transformer [17] 

f (Hz) 0 50 60 100 500 1000 2000 4000 6000 

f/50 0 1 1.2 2 10 20 40 80 120 

L / Reff .106 .1 .091 .0667 .01 0.004 .0015 .0005 .00026

L (H) 1 1 1 1 1 1 1 1 1 

Reff (Ω) 9.4 10 11 15 100 250 670 2000 3900 

Reff 
(pu @ 50 Hz) .94 1 1.1 1.5 10 25 67 200 390 

Reff 
(pu @ 60 Hz) 0.83 .88 1.0 1.364 9.091 22.73 60.91 181.8 354.5 

 

It is possible to represent the frequency-dependency of R using a Foster circuit as 

shown in Figure 4.4. If L (leakage inductance) is given as 1 H, Rp is about 158 kΩ (from 

L/Reff ratio=0.004 at 1,000 Hz) and RS is about 9.4 Ω (from L/Reff ratio=0.1 at 50 Hz) by:  

))L*(R/()L*(*R)(RR
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22
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⋅⋅=
          

If RS (DC resistance) is given as 9.4 Ω, RP is about 164 kΩ from L/Reff ratio=0.004 

and Reff=250 Ω at 1,000 Hz by below equation. However, this method produces correct 

value only at 50 Hz and at 1,000 Hz as shown in Figure 4.5. 
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Figure 4.4 Foster Circuit with One Cell 
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Figure 4.5   Effective R and L by Equation (4.3) with Foster Circuit with One Cell  

From least square curve fitting, RP and L (part of the leakage inductance) can be 

obtained as RP = 15,031 Ω and L =0.2731 H. In Figure 4.6, the Foster circuit with one cell 

gives more correct R(f) in the given frequency range. However, The effective L is not 

constant in the given frequency range. Therefore, this method is not as robust of a 

frequency-dependent representation as desired.  

Rs
Rp

L
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Figure 4.6  Effective R and L by Curve Fitting with Foster Circuit with One Cell  

A series Foster circuit with two cells, as in Figure 4.7, is necessary for more accurate 

representation. From the least square curve fitting using Equations (4.4) and (4.5), R1, L1, R2 

and L2 can be obtained as 153.7637 Ω, 0.0424 H, 104580 Ω, and 0.5682 H respectively. 

Figure 4.8 shows that the effective resistance is well-matched and the equivalent L is more 

constant through the given frequency range. The equivalent L in Figure 4.8 should be part of 

the leakage inductance.  
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Figure 4.7 Series Foster Circuit with Two Cells 
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Figure 4.8  Effective R and L by Foster Circuit with Two Cells  
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Effective Resistance for Three-Phase Transformer 

From the test report of the example transformer, RS,DC= 0.6766 Ω , RC,DC=0.1635 Ω, 

turns ratio=(345-118)/118=1.9237, and rated current is 495.35 amps at 345-kV base.  

Thus,  RDC (DC, H-L at 3phase, 75°C) = 0.6766+1.92372 x 0.1635 = 1.282 Ω  

R60 (60 Hz, H-L at 3phase) = P/ I2= 378.940 kW / 495.352=1.54435 Ω 

 Therefore, Ratio of R60 / RDC is 1.54435 / 1.282=1.205.  

RHX, RHX, and RXY at 60 Hz for an autotransformer can be calculated from copper 

losses. RC, RS, and RT at 60 Hz are calculated using Equation (4.6). However, the resistances 

of the common winding and the series winding did not match well with the DC resistance 

value stated on the factory test report, so the validation of the recorded data was questioned. 

If the current density is assumed to be the same for the two windings, the DC resistance 

should be correct. Thus  RC, RS,  RT at 60 Hz were estimated by 1.25 times DC resistances in 

order to match coil losses in Table 4.2. The recalculated losses differ from test data, but % 

differences are less than 10%.   
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Table 4.2   RDC and R60 for Example Transformer 

 Winding-T Winding-C Winding-S Loss (W)  
Turns(Voltage Ratio) 13.8 68.127 131.059   

Current and Loss 
@ H-X, 296MVA - 953.1 495.35 378,940  

Current and Loss 
@ H-Y, 77MVA 1860 128.8 128.8 258,760  

Current and Loss 
@ H-X, 77MVA 1860 376.7 - 237,680  

      
By  RDC (Ω) 0.0175 0.0545 0.2098 Loss (W) % 

Loss (296MVA,H-X) - 148,523 154,437 302,960 80 
Loss (77MVA, H-Y) 181,629 2,712 10,441 194,783 75 
Loss (77MVA, X-Y) 181,629 23,201 - 204,830 86 

      
R60 (Ω) From Loss 0.0226 0.0082 0.4847 Loss (W) % 

Loss (296MVA,H-X) - 22,347 356,795 379,142 100 
Loss (77MVA, H-Y) 234,561 408 24,123 259,092 100 
Loss (77MVA, X-Y) 234,561 3,491 - 238,052 100 

      
Adjusted R60 (Ω) 0.0219 0.0681 0.2623 Loss (W) % 

Loss (296MVA,H-X) - 185,654 193,046 378,700 100 
Loss (77MVA, H-Y) 227,036 3,390 13,052 243,478 94 
Loss (77MVA, X-Y) 227,036 29,001 - 256,038 108 

 

There is no test data for frequency higher than 60 Hz. Using Table 4.1, the effective 

resistance for the given frequencies can be assumed as in Table 4.3. From least square curve 

fitting [54], parameters in Figure 4.7 can be obtained as Table 4.4. From Figure 4.9, the 

effective resistance is well-matched and the effective inductance is constant in the given 

frequency range. The frequency-dependency of coil resistance for the example transformer 

is given in Table 4.3. R’s and L’s for the Foster equivalent circuit are given in Table 4.4. 
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Table 4.3   Effective Resistance for Example Transformer 

Frequency 0 Hz 60 Hz .1 kHz 0.5 kHz 1 kHz 2 kHz 4 kHz 6 kHz 

Typical 
Ratio 0.8301 1.0 1.3636 9.0909 22.727 60.909 181.82 354.54 

RHL (Ω)  1.2820 1.5444 2.1060 14.040 35.100 94.068 280.80 547.56 

RS (Ω)  0.2098 0.2623 0.3577 2.3845 5.9614 15.977 47.691 92.997 

RC (Ω)  0.0545 0.0681 0.0929 0.6191 1.5477 4.1478 12.382 24.145 

RT (Ω)  0.0175 0.0219 0.0299 0.1991 0.4977 1.334 3.982 7.765 

Table 4.4   Parameters for Equivalent Circuit for Example Transformer  

 RS (Ω)  R1 (Ω) L1 (Ω)  R2 (Ω)  L2 (Ω)  

RHL  1.2820 24.8081 2.2620 40,364 49.0477 

RS (series) 0.2098 3.8782 0.3841 11,202 10.7159 
RC (common) 0.0545 0.9874 0.0993 11,439 5.5231 

RT (tertiary) 0.0175 0.3158 0.0319 11,581 3.1521 
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Figure 4.9    Effective RHL and LHL for Example Transformer   

 by Foster Circuit with Two Cells 

4.2 Winding Capacitance  

Capacitance considerations were introduced in Section 2.5. Some test reports give the 

capacitance values shown in Figure 4.10. However, most test reports do not give these 

capacitance values.  

 

Figure 4.10  Equivalent Circuit for Capacitance 

If design information is given, the calculation of various capacitances is possible. In a 

transformer, the inner and outer sides of the windings are like parallel plates of a capacitor 

with oil and paper as the dielectric. The equation for parallel plate capacitance is generally 

valid for calculating the various capacitances. 

d
AC r0 εε ⋅⋅=   (Farads)       (4.7) 

where, 
A = Area of one of the plates forming the capacitance in m2 
d = Distance between the two parallel plates in m 
εo = permittivity of free space 
εr = relative permittivity of the dielectric. For oil impregnated paper,  typically 4.2  
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Substituting the values of winding surface areas and gaps between windings in 

Equation (4.7), the winding capacitance can be calculated. For core-type transformers, the 

winding capacitances can in this way be approximated by parallel plate capacitance formulas 

in which the capacitance is proportional to the area of the plates and inversely proportional 

to the separation between the plates. The size of the plates can be approximated as being 

proportional to the square root of the MVA, while their separation can be approximated as 

being proportional to the BIL level for the higher of the two windings involved. For a two-

winding transformer, the capacitance of the HV winding to ground is generally less than the 

capacitance of the LV winding to ground because of the increased clearance needed for the 

HV winding. 

For a shell-type transformer, the parallel plate model for the transformer winding to 

ground capacitance calculations is not as accurate or as applicable. For the HV to LV 

capacitance, the parallel plate representation is quite reasonable and accurate. The HV to LV 

capacitance is proportional to the number of HV to LV gaps. The presence of a tertiary 

winding can affect the capacitances considerably [24]. 

However, the calculation of winding capacitance is not possible in cases where the 

detailed design information is not available. Instead the effective terminal capacitance can be 

determined based on the frequency of oscillation of each winding by using Equations (2.10) 

through (2.13). 

If TRV frequency values are known, effective capacitance values can be calculated by 

Equation (4.8) using the apparent TRV frequency values and transformer leakage reactance.  

From reference [26],  
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    where, k= constant related to system frequency (k=9.55 at 60Hz) 
fTRV= apparent TRV frequency (kHz) 
L =transformer leakage inductance  (henries) 
XL= transformer leakage reactance (ohms) 
Ceff= effective capacitance (µF),  
KV= Line to Line Voltage (kV) 
MVA= Transformer rating (MVA),  
X= reactance based on MVA (pu)  
 

TRV frequency is inversely proportional to the square root of the nominal voltage and 

proportional to the square root of the fault current. It also tends to decrease as MVA size 

increases, since capacitance apparently is a function of transformer construction including 

physical size related to the MVA size. Figure B.2 of ANSI/IEEE C37.011-1994 [1] shows 

well that TRV frequency decreases as MVA size increases. Thus, TRV frequency is: 

fTRV 
)sizeMVA(fvoltage

currentfault
⋅

=    

The capacitive coupling ratio was defined as CHL/(CHL+CL) in Section 2.5.   

From the effective capacitance at the high-voltage side, the effective capacitance at the 

low-voltage side and the capacitive coupling ratio, the capacitance for each winding and 

coupling are: 

CHL= Capacitive coupling ratio ×  Ceff at the low-voltage winding  (4.9) 

CL=  Ceff at the low-voltage winding - CHL     (4.10) 

CH=  Ceff at the high-voltage winding - CHL     (4.11) 
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Capacitive Coupling for Three-Phase Transformer 

Capacitive effects may be significant and need to be included in the model. The major 

coupling capacitances between transformer core and between windings are shown in Figures 

4.11 and 4.12. Three such capacitances (CSg,  CCg, CTg) for each phase need to be added. The 

windings are separated by insulating material (oil and paper) forming parallel plate 

capacitances. There are two such capacitances in the transformer (CCT and CST). These 

capacitances are connected from the outside of the tertiary or common windings to the insides 

of the common or series windings. Also, two adjacent high-voltage windings are separated by 

insulation forming a capacitance (CSS). These couple the outer side of one winding to the outer 

side of the other. The capacitance between H1 and H3 is negligible due to the large distance 

between the two and the presence of winding H2. After addition of these capacitances in 

Figures 4.11 and 4.12, the result is shown in Figure 4.13.  

The effective capacitances for the example transformer are shown in Table 4.5. 

Table 4.5 Effective Capacitances for the Example Transformer 

Source 
Side 

Fault 
Side 

Rating 
 (MVA) Z (%) 

Fault  
Current 

(kA) 

TRV  
Frequency  

(kHz) 
from Figure 
B.2 of  [1] 

Effective 
Capacitance 
(pF) From 
Equation 

(4.8) 
345 kV 118 kV 296 6.21 8.0 8.5 5,293 
118 kV 345 kV 296 6.21 23.3 18.0 10,090 
345 kV 13.8 kV 296 55.9 0.9 3.8 2,942 
13.8 kV 345 kV 296 55.9 22.2 68.0 5,743 
118 kV 13.8 kV 296 42.1 3.4 12.0 3,349 
13.8 kV 118 kV 296 42.1 29.4 72.0 6,801 
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Figure 4.11  Capacitances of Concentric Winding 

 

Figure 4.12  Capacitances of Pancake Winding 
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Figure 4.13  Capacitances for Three-winding Three-phase Autotransformer 
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High voltage (345 kV) to Low Voltage (118 kV) 

The capacitive coupling ratio is generally lower than 0.4 [50]. If the capacitive coupling 

ratio for low voltage (118 kV) winding is assumed as 0.3, CHL= 3,027 pF, CL= 7,063 pF, 

CH= 2,266 pF are obtained from Equations (4.9) through (4.11) 

 
High voltage (345-kV) to Tertiary voltage (13.8 kV) 

Lower voltage windings have larger capacitances [24]. Here, the capacitive coupling ratios 

for lower voltage windings are assumed smaller than those of higher voltage windings. If the 

capacitive coupling ratio for the tertiary voltage (13.8 kV) winding is assumed as 0.1, CHT= 

574 pF, CT= 10,336 pF, CH= 2,368 pF are obtained from Equations (4.9) through (4.11). 

The tertiary-voltage windings are delta-connected. Therefore, for the tertiary-voltage 

windings, two times the value from Equation (4.10), 5,168 pF, was assumed. This is 

explained in Section 13.2.2 of [24]. 

 
Low voltage (118-kV) to Tertiary voltage (13.8 kV) 

If the capacitive coupling ratio for the tertiary voltage (13.8 kV) winding is assumed as 0.1, 

CLT= 680 pF, CT= 12,242 pF, CL= 2,669 pF are obtained from Equations (4.9) through 

(4.11). The tertiary-voltage windings are delta-connected. Therefore, for the tertiary-voltage 

windings, two times the value from Equation (4.10), 6,121 pF, again, based on Section 

13.2.2 of [24]. 

Two capacitance values were calculated for the CH, CL and CT. In this work, the 

capacitance values calculated from the higher source voltage were chosen. The selected 

winding capacitances for the example transformer are shown in Table 4.6.  
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Table 4.6  Selected Winding Capacitances for the Example Transformer 

CHL CL CH CHT CT CLT 
3,027 pF 7,063 pF 2,266 pF 574 pF 10,336 pF 681 pF 

 

The effective capacitances are in the range of Table B.9 of [1] (see Table 4.7) and the 

capacitance for each winding is also in the range of Figure 13.8 of [24]. 

Table 4.7 Typical Effective Capacitance Range from Table B.9 of [1] 
 

Transformer Size (MVA) Voltage (kV) Effective Capacitance (pF) 
1~ 10 15 kV ~121 kV 900~10,000 

15 kV ~121 kV 2000~12,000 10~100 121 kV ~550 kV 2000~6500 
100~1000 121 kV ~550 kV 3500~16,000 

 

Couplings between windings in the same phase are considered. There are possible 

couplings between HV of phase-A and HV of phase-B and between HV of phase-B and HV 

of phase-C. These capacitances are assumed smaller than CHL, since the insulation thickness 

should be bigger. In this work, it is assumed as one third of CHL.  When the example 

transformer is energized with rated voltage, the capacitance currents can be calculated as 

given in Table 4.8. 

When the example transformer is energized at rated voltage from the tertiary (13.8 kV) 

with no load, the resulting open-circuit test currents are presented in Table 4.9. The 

magnetizing current is about 60.63 A from Table 4.9. However, the apparent magnetizing 

current is about 53.86 A, if the winding capacitance is neglected. The difference is about 

11%. Therefore, the magnetizing circuit parameter may have a large percentage error if the 

winding capacitance is neglected, especially at and below the knee of the magnetization 

curve. 
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Table 4.8  Capacitance Current for Example Transformer  

 C (nF) Voltage 
(kV) IC (A) 

IC (A)  
@ 13.8-kV 
Winding 

IC (A)  
@ 13.8-kV 

Line 
Tertiary-g 10.3 7.967 0.031 0.031 0.054 

Common-g 7.0 68.127 0.180 0.888 1.537 
Series-g 2.3 199.186 0.173 2.493 4.318 

C-T 0.7 60.160 0.015 0.076 0.132 
H-L 3.0 131.059 0.148 1.408 2.438 
H-H  1.0 345.000 0.130 1.877 3.252 
Total    6.773 11.730 

 
      

 Table 4.9  Breakdown of Open Circuit Current for Example Transformer 
 

 

Description 100%Voltage 110%Voltage 

IEX (%) No load current (%) 0.76 1.71 
IEX (Arms) No load current (Arms) 54.338 122.261 
VOC (Vrms) Open Circuit Test Voltage  13800 15180 

POC (W) Core loss   297600 402240 
IC (Arms) Core loss current  7.188 8.833 

I_reactive (Arms) Reactive component  
of no-load current  53.861 121.941 

I_capacitive (Arms) Capacitive current  
by winding capacitance  6.773 7.450 

IM (Arms) Magnetizing Current  
at Winding  60.633 129.391 

IM (Arms) at Line Magnetizing Current at Line 105.020 224.112 

 

IM
IEX

IC

ICAP
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4.3 Magnetic Core Saturation  

One of the traditionally used representations for the core saturation curve is the Frolich 

equation, Equation (4.12). This equation gives a smooth single-valued anhysteretic curve 

relating the flux density B to the magnetizing force H. Only two data points on the curve are 

needed to fit this equation [51]. 

                             
Hba

HB
⋅+

=         (4.12) 

                                                          

Other equations can be applied, but those involve too many variables and it is not 

possible to fit using typical transformer test reports where only two points on the 

magnetization curve are given.  

Returning our attention to the Frolich equation (4.12),   

                       
bB1

BaH
⋅−

⋅=   and   
a

)Bb1(
H
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==µ      (4.13) 

                           where  a=1/µ =1/ (µi⋅µo) and  b=
Bsat

11
iµ

−
 

                                µi: initial relative permeability(15,000~ 50000) 
                                µo: free space permeability (4π x10-7) 
 

Saturation data for Armco M4 Steel is given in Table 4.10. For example, if two points, 

H=[14.4, 55] and B=[1.2, 1.6], are chosen, then a fit of “a” = 4.0640 and “b”= 0.5511 for 

Equations (4.12) and (4.13) can be obtained. Comparatively, if all data points are used, then 

“a”=4.2776 and “b”=0.5435, using the optimization technique of least square curve fitting. 

Figure 4.14 shows the B-H curves obtained from above methods and it matches well with 

the given saturation data.  
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Table 4.10  Magnetic Saturation Data for Armco M4 Steel 

B (T) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.7 1.8 

H (A/m) 0 2 4 6 8.4 11.1 14.4 23 55 130 416 
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1
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2
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B
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B-H Curve

Given data
by two-point method
by optimization method

 

Figure 4.14 Examples of Saturation Curve Fitting using Frolich Equation  

If the dimension data is not available and the B-H saturation curve of core is given, it 

is necessary to define scale factors “x” and “y” to match the two given points of λ-i data 

with the known B-H saturation curve.  In this case, “x” is for the i-scale and “y” is for the λ-

scale. 
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Thus,  
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where A= Cross-Sectional Area of core,  L= Length of core, N= Turns of Coil 
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If two points (λ1,i1) and (λ2 ,i2) are given, “x” and “y” are: 
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⋅⋅−⋅= λλ            (4.17) 

For example, if the B-H data in Figure 4.14 and the two points, i (peak-Amp) =[76.17 

278.90] and λ (Wb-t) =[51.76 56.94], are given, the two scale factors, x=1.3842 and 

y=32.1614, can be obtained from Equations (4.15) through (4.17). The obtained λ-i curve is 

given in Figure 4.15. “x” and “y” mean L and A⋅N from Equation (4.17), since λ=B⋅A⋅N and   

i = H⋅L.  

If both the B-H curve and the dimension data are unknown, a=0.1842, b=0.0169 for λ-

i curve are directly obtained from two data points using Equation (4.12). The obtained curve 

in Figure 4.16 is the same as in Figure 4.15. 
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(a=4.2776, b=0.5435 and x=1.3842 and y=32.1614) 
 

Figure 4.15  Derived Saturation Curve  
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(a=0.1842, b=0.0169) 
 

Figure 4.16  Derived Saturation Curve   
 

4.4 Nonlinear Core Loss 

For describing total average core loss of each section, some characteristic function can 

be fit to match. Core loss is nonlinear and frequency dependent, and is best considered in that 

context. However, average power for steady-state excitation at a given sinusoidal frequency 

can be useful information. The Frolich equation may also be used to fit the average power 

characteristic:  

                          
bB1

BaPC ⋅−
⋅=            (4.18) 

The core loss data at 60-Hz for Armco M4 Steel [3] is given as PC (W/lb) =[0 .1 .2 .3 .4 

.5 .6 .7 1] at B (T)=[0 .7 .99 1.22 1.4 1.54 1.64 1.71 1.86]. If two points, PC=[0.2  1.0] and 

B=[.99 1.86] are chosen, then “a” = 0.1181 and   “b” = 0.4195 from Equation (4.18). Figure 
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4.17 shows that the curve obtained using the equation matches well with the known nonlinear 

characteristic of the core. Thus, if core dimensions and flux are known for each section, the 

average core loss for each section can be calculated by Equation (4.19). For a core loss 

model represented by a separate resistance in parallel with the nonlinear inductance, I-peak 

and V-peak can be calculated from Irms-Vrms using the SATURATION subroutine of 

EMTP. 

  

)n(V
)n(P)n(I

)n(L)n(A
bB1

Ba)n(P

RMS

C
RMS

C

=

⋅⋅
⋅−

⋅=
 where “n” is core section number. (4.19) 

Average DC hysteresis loss data for Armco M4 Steel [3] is given as PH (J/m3) =[17.54 

30.03 44.70 73.21]] at B(T)=[1  1.3  1.5  1.7]. From Equation (4.18), “a” = 9.2071, “b” = 

0.4623 can be obtained using all points with least square curve fitting technique. Figure 4.18 

shows that the fitted curve using this equation matches well with the known nonlinear 

characteristic of core. 
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Figure 4.17 Examples of 60-Hz Core Loss Curve using Frolich Equation  
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Figure 4.18 Examples of DC Hysteresis Loss Curve using Frolich Equation 
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4.5 Separation of Eddy Current and Hysteresis Losses  

Core losses can be modeled in a simplistic manner as a separate linear resistance in  

parallel with the nonlinear magnetizing inductance. These losses are proportional to the core 

volume. From the dimension of the legs and yokes, the volumes can be calculated. If the 

volumes of legs and yokes are known and the magnitudes of the peak sinusoidal flux in core 

legs and yokes are known, average core losses that take place in legs and yokes for the applied 

voltage can be calculated using the relation P=V2/R, where V is the RMS applied voltage. 

However, this is only valid for steady-state sinusoidal applied voltage of a given RMS 

magnitude.  

Actually the core loss is nonlinear and frequency-dependent and the use of a linear 

resistance can result in errors for some type of simulations. Therefore, the core loss needs to be 

modeled using a more sophisticated description. Unfortunately, there is a lack of a suitable 

nonlinear resistance element in ATP to model the constricted (non-sigmoid, non-monotonic) 

flux-current loop.  

A detailed transformer core model is more complicated, since the model should take 

into account the nonlinear and the frequency-dependent effects of core loss.  The core loss 

description must be a function of frequency and voltage, and must ultimately be 

implemented in the time domain in ATP.  

The modeling of eddy currents and hysteresis has been approximate and difficult, 

because of the lack of information. In the approach developed here, parameters for the 

transformer model are estimated using basic transformer test data and optimization 

techniques.  
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To define the frequency-dependent effects of core loss, the core loss (PC) at a given 

frequency is generally given as below [17]. 

PC = PH + PE = α⋅f + β⋅ f 2  where PH is hysteresis loss and PE is eddy current loss 

If the core losses (P1 and P2) at two frequencies (f1 and f2) are given, the coefficients 

(α and β) for hysteresis loss and eddy current loss are defined as: 

)ff(ff
fPfP

1221

2
12

2
21

−⋅
⋅−⋅=

⋅
α      and      

)ff(ff
fPfP

1221

2
21

2
12

−⋅
⋅−⋅=

⋅
β  

Generally PE is proportional to λ2 and f2 in the low-frequency range. In the high-

frequency range, it changes to about f1.5 because of the skin effect in the laminations. The 

ratio of PH/PE is about 3 for silicon steel, about 2/3 for grain-oriented steel and about 1/3 for 

a modern transformer [17]. If the core loss and the ratio of PE/PC at 100%V are given, the 

nonlinear and frequency-dependent core loss at the voltage V and the frequency f are 

defined as: 

PE=(ratio of PE/PC) ⋅ P(100%V)⋅ (λ (V)/λ (100%V))2⋅ (f/60)2  

PH=(1- ratio of PE/PC) ⋅ P(100%V)⋅ (λ (V)/λ (100%V))K⋅ (f/60) 

PC (Core loss @ V and f)= PE+PH  

Thus, “k” for hysteresis loss can be calculated from the above equations. “k” is 

generally larger than 2 and close to 3 for grain-oriented steel. [17]  

Core losses (PC) at 100%V and 110%V are usually given from factory test reports as 

shown in Table 4.11. Core loss at 120 Hz and 200%V (frequency and voltage are both  
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changed in order to keep the flux magnitude constant) is assumed as 292.7 kW (99.2 kW x 

1.48 / 0.51) from Table 4.12.  

Table 4.11  Core Loss from Transformer Factory Test Report 

 100% V, 60Hz 110% V, 60Hz 
Voc(V) 13,800 15,180 
λ (Wb-t) 51.77 56.95 
Pc(W) 99,200 134,080 

Ratio of Pc @ 100%V 1.0 1.35 
Ic(rmsA)  7.188406 8.832675 

Table 4.12  Core loss for M4 (B= 1.5T) from Manufacture’s Catalog [3] 

Frequency  
(Hz) 60 Hz 120 Hz 180 Hz 300 Hz 1000 Hz 

Core loss (W/lb) 0.51 1.48 2.85 6.7 56 
Core loss 
(W/kg) 1.12 3.25 6.26 14.7 123 

Ratio @ 60-Hz  1.0 2.95 5.7 13.4 112 
 

Table 4.13  Calculated Core Loss Data from Table 4.11 and Table 4.12 

 100% V, 60Hz 110% V, 60Hz 200% V, 120Hz 
Voltage (rmsV) 13,800  15,180  27,600  

Pc (W) (pu) 99,200 (1.0) 134,080 (1.35) 292,700 (2.95) 
Rc (Ohm)  1919.8 1718.6 2602.5 
Ic (rmsA)  7.1884 8.8327 10.6051 
Ic (peakA) 10.165 14.632 - 
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Im
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Figure 4.19  Equivalent Circuit for Separated Core Loss Model 
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For the model in Figure 4.19, separation of the core losses is necessary as below. 

PC (core loss) = PH (hysteresis loss) +PE (eddy current loss) 

The ratio between PE and PH is about 1 to 3, but is usually not given in a factory test 

report, since these two parts cannot be separated in the factory’s excitation tests.  

Let PH = X1⋅λX2⋅f   and PE = X3⋅λ2⋅fX4, then PC = X1⋅λX2⋅f + X3⋅λ2⋅fX4.  (4.20) 

There are four unknowns (X1, X2, X3, X4). From Table 4.13, three known conditions 

are: 

1.0  =  X1+ X3     at λ= 1 pu and f = 1pu (60 Hz)  (4.21) 

1.35 = X1⋅(1.1)X2  + (1.21)⋅X3  at λ= 1.1 pu and f = 1pu  (4.22) 

2.95 =(2)⋅ X1  + X3⋅(2) X4   at λ= 1 pu and f = 2pu  (4.23) 

 

To find the solutions for Equations (4.21) through (4.23), the optimization techniques 

can be used. One method is the successive LP method. Linearizing the objective function 

and the nonlinear equality constraint function at X = a,    

F(X)=F(a)+∇ F(a)⋅(X-a)   and  h(X)=h(a)+∇ h(a)⋅(X-a) 

Then the functions are linear and LP gives the solution at each iteration. 

Case 1: By Successive LP method and Finite Difference Approximation  

       F(X)=(X1⋅(1.1)X2 +1.21⋅X3 - 1.35)2+(2⋅X1  + X3⋅(2)X4 -2.95)2 as objective function. 

  1=  X1+ X3     as linear constraint. 

Case 2: By Successive LP method and Finite Difference Approximation  
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F(X)=(2⋅ X1  + X3⋅(2) X4 -2.95)2  as objective function. 

1=  X1+ X3    as linear constraint. 

1.35 = X1⋅(1.1)X2  +1.21⋅X3  as nonlinear constraint. 

However, using Successive LP method did not give convergence in either case as 

shown in Figure 4.20. There are many local optima for Equations (4.22) and (4.23) can be 

seen in Figure 4.21. 

left : Case 1      right : Case 2 

Figure 4.20  Function Values at Each Iteration by Successive LP method 

 

Figure 4.21  Local Optima for Equation 4.22 (left) and Equation 4.23 (right) 
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Next, applying “Fmincon” of MATLAB  Optimization tool box (Section 2.6.2) to 

find the solutions of a constrained nonlinear multivariable function, 

Case 1:  

F(X)= (X1 - X3 -1)2+( X1⋅(1.1) X2 + 1.21⋅ X3 –1.35)2+(2⋅X1
 + X3⋅2X4 –2.95)2 as objective 

function.     

The result is X =    [0.4957    2.0000    0.4939    1.9881]. From Equations (4.21) 

~(4.23), PC = [0.9896    1.1974    2.9506] and  %error=[1.0432   15.4235   -0.0001] 

Case 2:  

F(X)= ( X1⋅(1.1) X2 + 1.21⋅ X3 –1.35)2+(2⋅X1
 + X3⋅2X4 –2.95)2 as objective function 

1 =  X1+ X3 as linear constraint 

The result is X =    [0.5116     2.0000     0.4884     1.9806]. From Equations (4.21) 

~(4.23), PC = [1.0000    1.2100    2.506] and %error=[0.0000   14.1613    0.0000] 

Case 3:  

F(X)= (2⋅X1 + X3⋅2X4 –2.95)2 as objective function to minimize 

1 =  X1+ X3 as linear constraint 

1.35 = X1⋅(1.1) X2 + 1.21⋅ X3 as nonlinear constraint. 

The result is X =  [0.5245    4.1132    0.4755    1.9998 ]. From Equations (4.21) 

~(4.23), PC = [1.0000    1.3516    2.9506] and %error= [0.0000   0.0000    0.0000] 

The Case 3 gives the best result. Using the above result, separated loss functions for the 

example transformer can be obtained:  
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PH = 0.5245⋅ λ4.1132⋅ f and PE =0.4755⋅ λ2⋅ f1.9998     (pu)     (4.24) 

RE = V2 / PE = λ2⋅ f2 /  (0.4755⋅ λ2⋅ f1.9998) ≈ 2.103  (pu) = 4037.3 ohms  (4.25) 

RH =V2 / PH = λ2⋅ f2 / (0.5245⋅ λ4.1132⋅ f) = 1.9066⋅ λ  -2.1132⋅ f     (pu)   (4.26) 
 
IH= PH / V = (0.5245⋅ λ4.1132⋅ f)/ (λ⋅ f) = 0.5245⋅ λ3.1132     (pu)   (4.27) 
 
IE= V/RE =V/2.103 (pu)        (4.28) 

 

Table 4.13  Calculated Core Loss using functions 

 100% V, 60Hz 110% V, 60Hz 200% V, 120Hz 
Voltage (V,rms) 13,800  15,180  27,600  
PC (W and pu) 99,200 (1.0) 134,080 (1.35) 292,710 (2.95) 
PH (W and pu) 52,030 (.5245) 77,000 (.7763) 104,060 (1.0490) 
PE (W and pu) 47,170 (.4755) 57,080 (.5754) 188,650 (1.9017) 

IC (A,rms) 7.1884 8.8326 10.6055 
IH(A,rms) 3.7703 5.0727 3.7703 
IE(A,rms) 3.4181 3.7599 6.8352 

 
 

In the case of X4 = 2, the eddy current loss (PE) can be modeled by a resistance RE. In 

the case of  X4 ≠ 2, frequency dependency needs to be considered. Hysteresis loss PH can be 

represented by a resistance (RH) in Equation (4.26). In this case, RH for hysteresis loss is 

nonlinear and frequency dependent. Therefore, the resistance should be replaced by a 

frequency-dependent resistance RH(f).  

However, IH is nonlinear and frequency independent. If the hysteresis loss can be 

modeled by IH current injection, the frequency-dependency can be implemented as a time-

varying current injection. The enclosed area of a λ-iH plot shown in Figure 4.22 is the 

hysteresis loss per one cycle. Hysteresis loss at rated frequency might be represented by a 

two-slope v-i curve, defined by Figure 4.22. If the RMS currents of the example transformer 

are converted to the peak currents by the SATURATION routine, IH is 5.332 peak-A at 
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100%V and 9.179 peak-A at 110%V. Figure 4.23 shows the waveforms for the v-iH and λ-iH 

at 110%V and 60 Hz. However, as seen in Figure 4.24, actual hysteresis loss is dependent on 

maximum flux, not voltage. This illustrates the difficulties and errors encountered if average 

power descriptions are used to develop time-domain representations [34]. 
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Figure 4.22  v-iH and λ-iH Plot at 110%V and 60Hz  



 

  -63 - 

0 50 100 150 200 250 300 350
-10

-5

0

5

10

time (degree)

V
ol

ta
ge

 a
nd

 F
lu

x 
an

d 
C

ur
re

nt

  

Voltage (pu)
Flux (pu)
Current(amps)

 

Figure 4.23  Time vs v, λ, iH Waveforms at 110%V and 60Hz  

Figure 4.24  Typical Hysteresis Loop 
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4.6 Hysteresis Loop Model 

The λ-i hysteresis loop gives the instantaneous relationship between current and flux 

linked for near-DC periodic excitation. Recall that λ-i can be obtained by scaling the B-H 

characteristic. The spine of the λ-i hysteresis loop gives the normal magnetic saturation 

curve shown in Figure 4.25. (In various references, the normal saturation curve is also 

referred to as the “initial,” “DC,” or “virgin” saturation curve). Hysteresis loss can be 

thought of as a nonlinear frequency-dependent resistance.  Hysteresis loss is not directly a 

function of voltage, but of flux linked. Therefore, the matching of average losses for 60 Hz 

excitation does not mean that correct flux-current trajectory is being followed in the time 

domain. Residual flux of a transformer is another important aspect, critical for inrush 

simulations. Therefore, a correct hysteresis loop trajectory is a necessary part of a correct 

time domain core model. Note that (Hctop, Bctop) is defined here as the coercive force and flux 

density corresponding to the maximum known excitation level. 

Figure 4.25  Example of Hysteresis Loop [22] 
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One method of hysteretic loop representation is Equation (4.29), which uses two 

hyperbolic functions. The resulting loop is shown in Figure 4.26. However, these functions 

require Br, Bsat, and HC defined for each loop [51]. 

     B+= Bsat×
)1

B
B

(HHH

HH

r

sat
CC

C

−⋅++

+
 and  B-= Bsat×

)1
B

B
(HHH

HH

r

sat
CC

C

−⋅+−

−
     (4.29) 

 
   where Bsat:Induction at saturation (T), Br: Remanence (T), HC: Coercive force (A/m) 
 

From B+ and B-, the anhysteretic curve is defined as B(anhysteretic) = 
2

BB −+ + . 
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Figure 4.26 Examples of Hysteresis Loop Using Two Hyperbolic Functions  

In this work, the λ-i hysteretic loop is based on the saturation curve given from open 

circuit test in Section 4.3. The loop is modeled by the left and right displacement. The 

enclosed area for each cycle is the energy loss from hysteresis.  Multiplying this area by the 

frequency results in the power loss. As a check, the area of the λ-i loop for a given λmax 

should equal the average power loss at the given λmax.  
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From Section 4.3, the approximation for the saturation curve is given by Equation 

(4.30).  From the saturation data for Armco M4 Steel, “a” and “b” were obtained as 4.2776 

and 0.5435. 

                         
bB1

BaH
⋅−

⋅=             (4.30)  

As mentioned in Section 4.4, the equation for DC hysteresis loss can be given as 

Equation (4.31). From the core loss data for Armco M4 Steel, “c” and “d” were obtained as 

9.2071 and 0.4326.  

dB1
BcPH ⋅−

⋅=         (4.31) 

The right displacement (i.e. the right curve of hysteresis loop minus the core saturation 

curve at B > 0) is linear and is assumed as Equation (4.33). The left displacement (i.e. the left 

curve of hysteresis loop minus the core saturation curve at B > 0) is nonlinear and increases 

slowly for low flux, more speedy for bigger flux, and decays to zero for maximum flux Bmax 

[54]. Thus, the left displacement is assumed as Equation (4.34). At zero flux, both 

displacements must be the same. This is a coercive force (HC) and is assumed as Equation 

(4.32) because of its nonlinearity (see Figure 4.27). The coercive force for each loop should be 

determined to meet the power loss at the Bmax given for the each loop in Equation (4.35). In 

case of Figure 4.27 from ARMCO M4 [3], approximation using an exponential fit, “K” for 

Equation (4.32) is about 0.5.  

Coercive force HC= (Bmax/Btop)K × Hctop     (4.32) 

Right displacement RHD=(1-f)*HC      (4.33) 

Left displacement LHD= -HC⋅ (a+1/a) / [(1-f) / a + a / (1-f)])   (4.34) 
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Power Loss at each loop = ∫ −⋅maxB

0
dB)LHDRHD(2    (4.35) 

 
where  

Bmax = Maximum Flux density at each minor loop 
Btop = Maximum Flux density for major loop  
a = (Btop-Bmax) / Btop and f = B / Bmax 
Hctop = Maximum Coercive force for major loop  
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Figure 4.27  HC and Bmax (dotted line=linear, bold  line=square root) 

Using Equations (4.33) and (4.34), the displacements for each Bmax are shown in Figure 

4.28 and the obtained hysteresis loop for B > 0 is shown in Figure 4.29. The entire DC 

hysteresis loop is shown in Figure 4.30 and the hysteresis loop generated by decaying B with 

time is shown in Figure 4.31. 
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Figure 4.28  Left and Right Displacements of Resistive Hysteresis Current 
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Figure 4.29 DC Hysteresis Loop Generated by the Model 
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Figure 4.30  DC Hysteresis Loop Generated by the Model 
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Figure 4.31 Hysteresis Loop Generated by Decaying B with Time 
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ATP Implementation of the Model 

Finally, the complete core model implemented in ATP is shown in Figure 4.32. The 

block diagram related to TACS code is shown in Figure 4.33. “L_sat” represents the 

anhysteretic saturation curve and is modeled using a Type-93 or a Type-98 element. “I_eddy” 

and “I_hyster” are modeled using a Type-60 current source controlled by TACS.  

“I_hyster” represents the resistive hysteresis current for DC hysteresis loss. The left (or 

right) displacements of resistive hysteresis current are changed with the right (or left) 

displacements at the reversing point of flux linkages. The sign of the displacement current is 

determined by the sign of the flux.  

“I_eddy” represents the resistive current for the eddy current loss of core. This current is 

approximated by dividing a given voltage by a linear resistance using TACS. This 

implementation is more flexible for future enhancements and avoids unwanted interactions 

between components, which may occurs when a linear resistor is used.   

HYS

I_hyster

EDDY

TOPT

LAMD

L_sat

SAT

I_eddy

 

 Figure 4.32  Core Model for ATP Implementation  
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Figure 4.33  Block Diagram for DC Hysteresis Loop using TACS  

Fixed data Btop, Hctop, K, T 
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Figure 4.34 shows a DC hysteresis loop made by the core model implemented in ATP. 

Figure 4.35 shows hysteresis loops generated by decaying B with time. 

X-axis: H in A/m      Y-axis: B in T 

Figure 4.34  DC Hysteresis Loop Generated by the Model  

X-axis: H in A/m      Y-axis: B in T  

Figure 4.35 DC Hysteresis Loop Generated by Decaying B with Time 
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CHAPTER 5 
 

DUALITY- DERIVED MODEL  
FOR THREE-PHASE TRANSFORMER 

 
This chapter presents the duality-based equivalent circuit models of three-phase five-

legged, three-phase three-legged, and three-phase shell-form autotransformers for ATP 

implementation. The equivalent circuits resulting from duality transformations are a 

topologically-correct lumped-parameter representation.  

 

5.1 Five-Legged Core Transformer 

Five-legged core transformers are manufactured in cases where a lower transformer 

height is required, or where it is important to provide a flux return path for related third 

harmonics. Since the top and bottom yokes are not large enough in cross section to carry all 

the flux from one leg, the actual flux paths are uncertain and calculation of the core loss is 

complicated. The yokes saturate and force excess flux to spill over into the outer legs. 

The first step is to convert the actual core and coil structure in Figure 5.1 to an 

approximate lumped-parameter circuit, as shown in Figure 5.2. The windings are represented 

by MMF sources. The reluctances due to the flux through the iron core are saturable and are 

represented by solid rectangles, whereas the reluctances due to leakage fluxes through the 

gaps between windings are linear and are represented by outlined rectangles. The method of 

duality transformation breaks the core down into separate leg and yoke segments. Elements 

named ℜ L are the reluctances due to core legs and elements named ℜ O are the reluctances 
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due to outer legs. Between the three core legs, there are yokes shown as ℜ Y. Leakages 

between the windings are represented by linear reluctances ℜ TL, ℜ CT, ℜ SC.  

The next step is to convert the magnetic circuit into the equivalent lumped-parameter 

electrical circuit as shown in Figure 5.3. Each MMF source and reluctance is replaced by its 

electrical dual and connected between the neighboring nodes. Note that the MMFs resulting 

from the duality transformation are replaced with ideal coupling transformers and winding 

resistances have been added. More details on this will be provided in Section 6.1.5. 
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Figure 5.1 Five-legged Core Transformer Structure  

Figure 5.2  Magnetic Circuit for Five-legged Core Transformer 
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Figure 5.3 Equivalent Electric Circuit for Five-Legged Core Transformer 
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5.2 Three-Legged Core Transformer 

In three-phase three-legged core-form transformers, as shown in Figure 5.4, the 

positive-sequence flux has a zero sum at every instant and cancels out via the yoke. The zero- 

sequence flux must find a return path outside the yoke. The tank’s walls offer return paths to 

the leakage flux for zero sequence current. In Figure 5.5, “ℜ o” is called the zero sequence or 

homopolar path because this is the path through which the flux would flow if zero sequence 

voltage are applied to all three phases of the transformer. This path is basically through the 

insulating oil and tank surrounding the core and windings. Since most of this path has µr=1.0, 

the impedance of the zero sequence path is much smaller than the impedance of the core leg 

and core yoke. This lowers the magnitude of the zero-sequence impedance. 

During the zero-sequence test, the delta on the tertiary voltage side should be opened 

up. If it is closed it would allow zero sequence currents to circulate in the delta, and in effect 

short out the zero sequence impedance.  

To represent the zero-sequence flux path, a zero-sequence element may be placed in 

the middle leg’s zero-sequence path of the electrical equivalent. In [47], simulations are 

performed with and without this element with no significant difference in results. 

Figure 5.6 shows the resulting equivalent electric circuit for the three-legged core 

transformer.  
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Figure 5.6  Equivalent Electric Circuit for Three-legged Core Transformer 
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5.3 Shell-form Transformer 

The structure of a three-phase shell-form transformer is shown in Figure 5.7. The 

fluxes in the core are Φ1 = ΦA / 2, Φ2= ΦB / 2, Φ3 = ΦC / 2, Φ4= ΦA - ΦB, Φ5 = ΦB - ΦC, 

The lumped magnetic circuit representing the three-phase shell-form transformer is 

shown in Figure 5.8. The windings are represented by MMF sources. The reluctances due to 

the flux through the iron core are represented by solid rectangles, whereas the reluctances 

due to leakage fluxes through the gaps between windings are represented by outlined 

rectangles.  

Reluctances ℜ x, ℜ o, ℜ m represent the portions of the core with a cross section that is 

about 50% that of the core inside the windings.  Reluctances ℜ x, ℜ o, ℜ m represent the 

parallel combinations of two reluctances for upper and lower core sections (the core structure 

in Figure 5.7 was horizontally folded due to symmetry, simplifying the resulting lumped 

magnetic circuit). These portions of the core thus have the same conditions of saturation as 

the core inside the windings.   

A shell-form transformer is designed so that the middle limbs (“ℜ y”) can carry two 

fluxes, permitting economy in the core construction and lower losses. The mean turn length 

is usually longer than for a comparable core-form design, while the iron path is shorter. 

Figure 5.9 shows the equivalent electric circuit for the shell-form transformer. 
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Figure 5.7 Shell-form Transformer Structure  
 

 
Figure 5.8  Magnetic Circuit for Shell-form Transformer  
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Figure 5.9 Equivalent Electric Circuit for Sell-form Transformer 
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CHAPTER 6 
 

PARAMETER ESTIMATION  
FOR TRANSFORMER MODELS 

 
 

This chapter presents the parameter estimation (leakage inductances, core saturation 

components, core loss components) for the duality-based equivalent circuit models of 

three-phase five-legged, three-phase three-legged and three-phase shell-form 

autotransformers that were developed in Chapter 5.  

 

6.1 The Five-Legged Core Transformer 

 
6.1.1 Leakage Inductance Derivation 
 

 Leakage inductance is due to flux linking one winding but not another. The flux 

that “leaks” typically passes through air or other nonmagnetic materials and may also 

find low-reluctance paths through the transformer tank and other metallic fittings. 

Estimation of the reluctance of the leakage path is done by estimating the distribution of 

leakage flux and the resulting flux linkage across the involved winding(s). This 

distribution depends on the geometric configuration of the coils. A detailed derivation of 

leakage reactance between two windings of equal axial lengths is given in [42]. 

Figure 6.1 shows the MMF functions related to the “binary” short-circuit leakage 

inductances, for each pair of windings. A cylindrically-wound three-winding transformer 

is assumed. Dimensions denoted by “a” are duct or insulation thickness and “b” is coil 
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thickness. Coils labeled as T, C, and S stand for Tertiary, Common, and Series, 

respectively. L denotes the surface of the core leg. 

Leakage reactances for the three-winding transformer in Figure 6.1 are represented 

as Equations (6.1) through (6.4) [42]. This derivation assumes linear flux distribution 

across the coil thickness.  For each binary pair of coils, the MMF increases linearly across 

the inner winding, remains constant across the duct, then decreases linearly with radius 

through the outer winding.   

One leakage flux, important for detailed models but not considered (or measurable) 

in factory tests, is the flux linked by the tertiary coil but not flowing in the core. This can be 

conceptually dealt with by assuming a fictitious infinitely-thin coil at the surface of the coil 

leg, L. The related MMF function is labeled as T-L. 

 
Figure 6.1 Transformer Cross Section with Three Windings and MMF 
Distributions 
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µ0: Magnetic permeability of free space a1, a2, a3: Radial width of duct  
bT, bC, bS: Radial thickness of winding N: Number of winding turns     
h: Axial height of winding and duct   Lmt: Mean turn length or 
circumference  

The electrical equivalent circuit for the resulting duality model is given in Figure 6.2 

(adapted from [5]). The leakage inductances in Figure 6.2 are broken down into the 

components shown in Figure 6.3 to obtain implementable parameters.  Transforming the 3 

binary short-circuit reactances, in a star-equivalent representation is done by Equation 

(6.5) through (6.7). 
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Figure 6.2 Electrical Equivalent Circuits for Leakage Reactance 

The reactance labeled "X1" in Figure 6.3 is the leakage reactance associated with the 

thickness of the series winding and the duct between the series winding and the common 

winding. Reactances "X2" and “XC” are associated with common winding. Reactance “X2” 

is 1.5×XCOM and inductance "XC" is -0.5×XCOM, where XCOM is the portion of the leakage 

reactance due to the thickness of the common winding. In a similar manner, inductances 

"X4" and "XT-2" represent the leakage reactance contribution of the tertiary winding. 

Reactance "X4" is 1.5×XTER and inductance "XT-2" is -0.5× XTER, where XTER is the portion 

of the leakage reactance due to the thickness of the tertiary winding.  Finally, "X3" equals 

the leakage value calculated for the duct between the common winding and the tertiary 

winding, and "X5" equals the leakage value calculated for the duct between the tertiary 

winding and the core.  
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Reactances “XC” and “XT-2” are negative. Physically, the negative reactance terms 

are a result of coil thickness as demonstrated by both the short-circuit test equations. 

Negative reactances are inserted in series with the winding resistances of the transformer 

model to compensate for coil thickness, with one just inside the inner winding and one just 

outside the outer winding. Leakage reactance values obtained from the energized winding 

thickness are one-third the reactance value contributed by the thickness of the same 

windings when they are un-energized. 
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Figure 6.3  Electrical Equivalent Circuits with Breakdown of Leakage Effects  

Reconciling the leakage inductances of Figure 6.3 with the MMF distributions of 

Figure 6.1, it is seen that: XSC=X1+X2+XC, XCT=XC+X2+X3+X4+XT-2, XST=X1+X2+X2 

+X3+X4+XT-2 and XTL=XT-2+X4+X5. 
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6.1.2 Practical Implementation of Leakage inductance 

In the test reports, XHX, XHY, XXY are given as binary short-circuit impedances in 

per unit on the base of the terminal ratings. The autotransformer can be represented as a 

transformer with 3 windings S, C, and T . The voltage ratings are VS = VH-VX, VC = VX, 

VT = VY. Therefore, XC, XS, XT are calculated in the winding base [17] as: 

X

H

V
VN = ,  

2

HXSC 1N
NXX 








−
= , XYCT XX = , 

( ) 










−
+







−
−







−
= 2HXXYHYTS

1N
NX

1N
1X

1N
NXX        (6.15) 

    
2

XXXX SCTSCT
T

−+
= ,  

2
XXX

X TSSCCT
C

−+
= , 

2
XXXX CTSCTS

S
−+

=   (6.16) 

  

 In case of the example transformer,  

  XSC=.27686,  XCT=0.81259,  XST=1.3121 (ohms) at the 13.8-kV base 

  XS=0.38819,  XC= -.11133, XT=0.92391 (ohms) at the 13.8-kV base 

 

This is consistent with the development for leakage inductance presented in the 

previous section. The simplified short-circuit equivalent circuit is shown in Figure 6.4. XC 

for the common winding is typically a negative inductance. However, at this level of 

detail, the corresponding equivalent circuit would inadequately describe all the leakages 

related to short-circuit behaviors of the transformer (see Section 3.1).     

 

Figure 6.4  Three-winding Equivalent                          
 Circuit from Test Report 
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Table 6.1 gives an example for normalized winding thickness calculated from DC 

resistance of coils. “bT” and “a2” are smaller than “bS” and “a1”. Therefore, XCT from 

Equation (6.2) should be smaller than XSC from Equation (6.1). However, XCT is larger 

than XSC for most test data.  In this case, the common winding and series winding need to 

be separated as shown in Figure 6.5.  

 
Table 6.1   Normalized Winding Thickness Based on Coil DC Resistances  

 
 Winding-T Winding-C Winding-S 

Voltage Ratio  13.8 68.1 131.1 
Turns Ratio  (1) 1 4.93 9.5 

Normalized Air Gap Thickness * 1 (a3) 4.93 (a2) 14.43 (a1) 
RDC (ohm)  0.0175 0.0545 0.2098 

RDC (ratio) (2) 1 3.11 11.99 
Conductor Size (pu) =(1) / (2) 1 1.59 1.20 
Winding Area (pu) = (1)2 / (2)  1 7.82 7.53 

Normalized Winding Thickness 1 (bT) 7.82 (bC) 7.53 (bS) 
      *: Air gap thickness is generally proportional to winding voltage.  

Thus, normalized air gap thickness is assumed  the same as the turns ratio. 
 

Equations (6.17) through (6.19) demonstrate leakage inductances based on the 

physical dimensions of Figure 6.5. These equations have five unknowns. For the model of 

Figure 6.2, parameter estimations and some assumptions are necessary.  The summation of 

the model parameters should be identical to the given short-circuit test data.  
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From Table 6.1, the ratios for winding width or winding area can be assumed from 

RDC and the ratios between bS, bC and bT can be assumed as bS=7.53⋅ bT, and bC=7.82⋅ bT. 

From voltage ratio, ratios for air gaps a1, a2 and a3 can be assumed as a1=14.43⋅ a3, 

a2=4.93⋅ a3. Now, there are two unknowns for Equations (6.17) through (6.19).  The least 

square fitting technique gives two values which minimize the differences in the 

thicknesses of coils and air gaps, giving approximately bC=1.5653, bT=0.2002, bS=1.5073 

and a1=0.0417, a2=0.0149, a3=0.003. From these and Equation (6.8) through (6.14), the 

necessary reactance in Figures 6.2 and 6.3 can be obtained. Table 6.2 represents the 

breakdown of coil and duct components of each binary short-circuit reactance, 

corresponding to Figures 6.1 through 6.3. 
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Figure 6.5 Cross-Section with Main Leakage Paths for Concentric Windings 

 

Table 6.2 Calculated Leakage Reactance in Ohms. 

 S-C C-T S-T T-Core 

Series (S) 
Duct (a1) 0.3882 
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Test Report 0.27686 0.81259 1.3121 N/A 
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6.1.3 Core Saturation Model 

Core dimensions, if available, can be used to calculate the saturation model for 

each core section. However, the dimensions of limbs and yokes are typically unknown. 

Instead of the exact dimensions of the core, the normalized ratios of core dimensions can 

be used. If the core dimension ratios are unknown, they must be assumed. In these cases, 

typical ratios can be used without great error, since the core dimension ratios vary within 

a small range [9, 19]. 

As explained earlier, five-legged core transformers are used in applications where 

lower transformer height is required. Therefore, the area of the yoke may be smaller than 

the area of leg. In this work, the core dimensions for a five-legged transformer are 

assumed as in Figure 6.6. Areas A6 and A7 were assumed to be the same as the center 

legs’ area. In practice they can be as small as 0.5 ~ 0.7 [4]. 

Area ratio (A1=A2=A3=1) Length ratio (L1=L2=L3=1) 
Yoke A4=A5 Outer A6=A7 Yoke L4=L5 Outer L6=L7 

1.0 1.0 1.725 2.21 
     Notation:  A: Area, L: Length, 1: Leg-A, 2:Leg-B, 3: Leg-C, 4:Yoke-AB,  

5: Yoke-BC, 6: Outer-A,7: Outer-C   
 

Figure 6.6  Dimension of Five-Leg Core Type Transformer 
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The lumped parameter equivalent of Figure 6.6 is given by Figure 6.7. Note that all 

of the reluctances here are saturable. Only one set of MMFs (windings) is included, 

typical of no-load excitation. Fluxes are defined such that Φ1, Φ2, and Φ3 are the fluxes in 

the 3 center legs. Equations (6.20) through (6.23) follow, based on Ampere’s circuital 

law and a normalized number of turns. 

 Figure 6.7  Magnetic Equivalent Circuit for Five-Legged Transformer 

 

i1= φ1R1+R6 (φ1+φ2+φ3+φ4)              (6.20) 

i2= φ2R2+R4 (φ2+φ3+φ4)+R6 (φ1+φ2+φ3+φ4)        (6.21) 

i3= φ3R3+R5 (φ3+φ4)+R4 (φ2+φ3+φ4)+R6 (φ1+φ2+φ3+φ4)     (6.22) 

i4=0= φ4R7+ R5 (φ3+φ4)+R4 (φ2+φ3+φ4)+R6 (φ1+φ2+φ3+φ4)    (6.23) 

 
Where, 
R1 =L1 /(µ1A1)       µ1=φ1/(A1H1)=f(φ1/A1) 
R2 =L2 /(µ2A2)       µ2=φ2/(A2H2)=f(φ2/A2) 
R3 =L3 /(µ3A3)       µ3=φ3/(A3H3)=f(φ3/A3) 
R4 =L4 /(µ4A4)       µ4=(φ2+φ3+φ4)/(A4H4)=f((φ2+φ3+φ4)/A4) 
R5 =L5 /(µ5A5)       µ5=(φ3+φ4)/(A5H5)=f((φ3+φ4)/A5) 
R6 =L6 /(µ6A6)       µ6=(φ1+φ2+φ3+φ4)/(A6H6)=f((φ1+φ2+φ3+φ4)/A6) 
R7 =L7 /(µ7A7)       µ7=φ7/(A7H7)=f(φ4/A7) 
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In order to estimate the core dimensions, variables are classified as known and 

unknown. 

 
Known values: φ1=v1 /(ω N), φ2=v2 /(ω N), φ3=v3 /(ω N)     
               v=peak-voltage for each phase, ω=2πf, N = number of turn 
 

Magnetizing Current: IAVG,RMS =(I1,RMS+I2,RMS+I3,RMS) / 3 

                Note: Real component of IEX has been removed, as explained in Section 4.2 
Core dimensions or normalized ratios 

 

Unknown values:  φ4 , a, b for 
a

)Bb1(
H
B ⋅−==µ       

If the exact core dimensions, B-H curve, and winding turns are known, it is 

possible to calculate φ4 from Equations (6.20) through (6.23) by an iterative method. 

From the B-H curve and core dimensions, the saturation curve (λ-i) for each core section 

can be derived. In most cases, the nonlinear curve for B-H is not known. Therefore,  if 

only the core dimension ratios and average of the three RMS magnetizing currents at 

100% and 110% voltages are given, an optimization techinique should make it possible to 

estimate the “a” and “b” coeffienents for the B-H Frolich equation and φ4 from Equation 

(6.20) through (6.23).  

At this point, a MATLAB  program (Appendix B.1) was written to simulate the 

magnetizing current waveforms for a given set of paramters and to calculate the average 

RMS magnetizing current. Note that magnetic saturation is implemented in terms of a 

normalized B-H characteristic. 

An iteratve method for φ4 was added into the MATLAB  program (Appendix B.2). 

If the calculated average current does not match the known value, the iteration continues 
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to adjust the B-H curve. Optimization techniques give more accurate and faster solutions. 

For all cases, forty points per half cycle are used for the RMS current calculation, since 

the waveforms are not sinusoidal.  

The optimization performed is explained as follows: Details for waveform i1 are 

given. Waveforms for i2 and i3 are obtained in a similar fashion based on Equations 

(6.21) and (6.22).  

Minimize f(a,b)= [ ] 2
RMS,AVGRMS,AVG V%100@ICalculatedV%100@IMeasured −   

[ ] 2
RMS,AVGRMS,AVG V%110@ICalculatedV%110@IMeasured −+  (6.24) 

 
Subject to inequality constraints  0 < a and 0 < b < 1 

 
 

Where, φ1(k)=v1 /(ω N)× sin(π⋅k/40) and φ4(k) from each iteration 
After each iteration, 
φ4R7+R50 (φ3+φ4)+R4 (φ2+φ3+φ4+R6 (φ1+φ2+φ3+φ4) should be zero 
according to Equation (6.23)   
 
B1(k)= φ1(k)/A1        and   B6(k)= φ4(k)/A6 

a
)k(Bb1)k( 1

1
⋅−=µ  and  

a
)k(Bb1)k( 6

6
⋅−

=µ     

R1(k) =L1 /(µ1(k)⋅ A1)      and    R6(k)=L6 /(µ6(k) ⋅ A6)        
i1(k)= φ1(k)⋅ R1(k)+R6(k)⋅ φ4(k)       
 

40

))k(i(
I

2
1

40

1k
RMS,1

∑
==  

IRMS, AVG =(I1,RMS+I2,RMS+I3,RMS ) / 3 

If core dimension ratios are assumed, but only the average magnetizing current at 

100% voltage is known, it is necessary to know or assume the type of magnetic core 

material and then to use optimization tools to get the scaling factors described in Section 

4.3 and φ4.  
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Results of MATLAB Simulations 

Using the optimization technique Fmincon, the results are a= 8.9379 and b= 

0.5714 for the B-H equation. Figure 6.8 shows the B-H curve. The calculated RMS 

currents for three phases are [109.2177 102.3031 102.3032]A at 100% voltage. The 

calculated average rms current is 104.61 and the difference from test report is 0.412 A. 

The calculated RMS phases currents are [229.3830  221.6717  221.6718]A at 110% 

voltage. The calculated average RMS current is 224.24 A and the difference between test 

report is 0.13 A. 
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Figure 6.8  B-H Curve for Each Section 

The magnetizing curves have the magnetic induction (B in Tesla) on the vertical 

axis and magnetizing force (H in A/m) on the horizonal axis. However, in the electrical 

equivalent circuit model, the magnetization inductance is represented by a piecewise 

linear λ-i curve. As explained in Section 4.3, it is possible to convert magnetic induction 
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to flux linked (λ in Wb-turn) and magnetizing force to current (i in A). The scaling 

factors are given as: 

λ = B × A × N        (6.25) 
 

Where, B = the magnetic induction in Tesla,  A = the core cross section in m2 
            N = the number of winding turns of the winding the induction is referred 
to. 

 The relation between magnetizing force and current is given as: 

  i=H× L        (6.26) 
 

where, H = Magnetizing force in A/m, i = current in ameperes  
            L = the length of the flux path through the core in meters. 

Figure 6.9 shows the λ-i curve for each core section of the example transformer. 

Figure 6.10 shows the current waveforms of core sections at 100% voltage simulated 

using MATLAB. Figure 6.11 shows the current waveforms of lines at 100% voltage 

simulated using MATLAB.  
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Figure 6.9  λ-i  Curve for Each Section  
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Figure 6.10  Current Waveforms for Each Section at 100%v V  
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Figure 6.11  Current Waveforms for Each Line at 100% Voltage 
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6.1.4 Core Loss Model 

From the dimensions of the legs and yokes, core volumes can be calculated. If the 

normalized volumes of legs and yokes are known and the normalized magnitudes of flux 

in core legs and yokes are known, the characteristic of the average core loss represented 

by the Frolich equation can be obtained. The equations for core loss curve are: 

                         
bB1

BaPc
⋅−

⋅=        (6.27) 

From the example transformer test data, core losses at 100% voltage and 110% 

voltage are given as [297600, 402240] (W) at λ = [51.77, 56.95] (Wb-t). 

Therefore, the calculated core loss should be: 

 nn
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n
nn
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BaLA)B(P ⋅⋅
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⋅=⋅⋅ ∑∑
==

  n: core section number (6.28) 

Minimize  f(a,b)          (6.29) 
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Subject to inequality constraints 0 < a  and 0 < b <1 

The normalized flux density B and normalized dimensions are given in the 

previous section, but are repeated here for convenience.  

 Leg-1 Leg-2 Leg-3 Yoke-12 Yoke-23 Outer-1 Outer-2 
Core No 1 2 3 4 5 6 7 

Area 1 1 1 1 1 1 1 
Length 1 1 1 1.725 1.725 2.21 2.21 

B @100%V 1.523 1.523 1.523 0.951 0.951 0.608 0.608 
B @110%V 1.675 1.675 1.675 1.031 1.031 0.673 0.673 
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Thus, values of a=11567 and b =0.4694 are calculated for core loss P vs. flux 

density B curve using the optimization technique (Appendix B.3) from Equation (6.29).  

In this case, there is only a minor difference  [0.0684 0.0422] W between the given loss 

and the calculated loss, verfying the correctness of this method for this case. Figure 6.12  

shows the core loss curve for the five-legged core transformer. 
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Figure 6.12 Core Loss Curve for Five-legged Core Transformer 

To define the frequency-dependent effects of core loss, the core loss PC at any 

given frequency is generally given as below. If the ratios of hysteresis loss to total core 

loss (α) and eddy current loss to total core loss (β) are given, the nonlinear and 

frequency-dependent core loss at voltage V and frequency f were defined in Section 4.5 

and repeated here for convenience: 
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PC = PH + PE = α⋅ f + β⋅ f 2   

PH= α⋅ P(100%V)⋅ (λ (V)/λ (100%V))K⋅ (f/60) 

PE= β⋅ P(100%V)⋅ (λ (V)/λ (100%V))2⋅ (f/60)2  

where PH  is hysteresis loss and PE is eddy current loss 

If the core losses (P1 and P2) at two frequencies (f1 and f2) are given instead, the 

ratios “α” for hysteresis loss and “β” for eddy current loss are defined as α= 0.5245, β= 

0.4755 for the example transformer:  

)ff(ff
fPfP

1221

2
12

2
21

−⋅
⋅−⋅=

⋅
α     and 

)ff(ff
fPfP

1221

2
21

2
12

−⋅
⋅−⋅=

⋅
β     (6.30) 

Using the above result, the terms for separated core loss are represented as:  

RE = V2 / (PE⋅A⋅L) = (V @ B=1.523)2 / [β⋅(PC @ B=1.523)⋅ (A⋅L)]  

      =  (13800)2 /  (0.4755⋅ 61790) / (A⋅L)  

     = (6482) / (A⋅L)  (ohms)        

The equation for DC hysteresis loss from Section 4.5, is repeated here as Equation 

(6.31). From the core loss separation and Equation (6.31), “aa” and “bb” are obtained as 

aa=6045 and bb=0.4964 for the example transformer.  The right displacement in the 

hysteresis loop is linear and assumed as in Equation (6.32). The left displacement is 

nonlinear and assumed as in Equation (6.33). At zero flux, both displacements must be the 

same. This is a coercive force (HC) and is assumed as in Equation (6.35). The coercive 

force at each loop should be determined to meet the power loss PH at the Bmax for the each 

loop. In case of Figure 6.13, “k” for Equation (6.35) is about 0.5 and Hctop is about 2.7 A. 
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The displacements at each Bmax are shown in Figure 6.14. The entire DC hysteresis loop 

is shown in Figure 6.15.  

MAX

MAX
MAXEMAXCMAXH Bbb1

Baa)B(P)B(P)B(P
⋅−

⋅=−=     (6.31) 

Right displacement RHD=(1-f)⋅ HC      (6.32) 

Left displacement LHD= -HC⋅ (a+1/a) / [(1-f) / a + a / (1-f)])   (6.33) 

Power Loss at each loop (J) = ∫ ⋅−⋅⋅⋅⋅ maxB

0
dB)LHDRHD(2NLA  (6.34) 

Power Loss at each loop (W) =60⋅ ∫ ⋅−⋅⋅⋅⋅ maxB

0
dB)LHDRHD(2NLA   

Coercive force Hc= (Bmax/Btop)K × Hctop     (6.35) 

where  
Bmax = Maximum Flux density at each minor loop 
Btop = Maximum Flux density for major loop (Given) 
a = (Btop-Bmax) / Btop and f = B / Bmax 
Hctop = Maximum Coercive force for major loop 
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Figure 6.13  HC and Bmax (dotted line=linear, bold line=square root) 
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Figure 6.14  Left and Right Displacements of Resistive Hysteresis Current 
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Figure 6.15  DC Hysteresis Loop Generated by the Model 
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6.1.5 ATP Implementation of Overall Transformer Model 

The overall transformer model for ATP implementation is shown in Figure 6.17. The 

core model, frequency-dependent coil resistance and winding capacitances developed in 

Chapter 4 are included in ATP format.  

Ideal Transformer Coupling 

The coupling between windings is provided by using “Type-18” ideal transformer 

elements or saturable transformer elements. There are nine of these elements in the three-

winding three-phase transformer model in Figure 6.17. Since the parameters of the core 

equivalent are referred to the tertiary, the tertiary coupling transformers have a turn ratio of 

unity. The ideal transformers coupling the primary and medium-voltage coils to the core 

have a turns ratio equal to their actual turns ratio with respect to the tertiary.  

Core Model   

The core model is of most interest in this work and includes the saturable 

magnetizing inductances, hysteresis losses, and eddy current losses of core legs and 

yokes. The core model implemented in ATP was shown in Figure 4.32. 

There are three nonlinear inductances available in ATP. The “Type-93” was chosen 

for this work as it is a true nonliear inductance [30]. Operation is always on the proper λ-i 

segment of the charateristic and hence may allow much better results [17]. The Type-96 

hysteretic inductance and the Type-98 pseudo-nonlinear inductances are not as robust, 

due to different implementation methods. 
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The hysteresis losses and eddy current losses of core legs and yokes are modeled 

using a Type-60 current source controlled by TACS. The block diagram related for TACS 

code was shown in Figure 4.33. 

Coil Resistance Model, R(f) 

A Foster equivalent, as developed in Section 4.1, is used to represent frequency-

dependency resistance. Figure 6.16 shows the actual frequency-dependency resistance 

model implemented inside R(f). In this model, three resisters and three inductors are used 

for the Foster equivalent circuit with two cells. The third inductance, L3 is a negative 

inductance for removing effective inductance given by L1 and L2.  The negative inductance 

may in some cases give a numerical stability problem in ATP simulations. Therefore, 

incorporating circuit components based on Foster equivalents into the leakage inductance 

matrix should be further studied to improve numerical stability. 

Figure 6.16  Frequency-Dependency Resistance Model R(f) Implementation in ATP 

Dummy Resistance and Inductance 

A large resistance “Rd” was added to avoid floating subnetwork problems, as 

shown in Figure 6.17. Two nonlinear inductances connected in series at a node may cause 

ATP to report an error. Hence, small linear inductances “Xd” are added to separate two 

nonlinear inductances.
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Figure 6.17 Equivalent Circuit for Five-Legged Core Transformer, implemented in ATP  
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Figure 6.18 shows the DC hysteresis loop modeled using a Type-60 current source 

controlled by TACS. Figure 6.19 shows the current of the eddy current loss and the 

resistive hysteresis current. Figure 6.20 shows the magnetizing current modeled with a 

Type-93 nonlinear inductance. Figures 6.21 and 6.22 show the line-current and winding-

current waveforms. 

After all models were implemented and run with ATP, the results of open-circuit 

and short-circuit simulations shown in Table 6.3 are close to the test report. 

Table 6.3  Comparisons with Test Report 

Test Report Simulated Results  
Excitation Current @ 13.8kV Line 

94.12 ARMS @100%Voltage 100.53 ARMS@100%Voltage 
211.76 ARMS @110%Voltage 208.1 ARMS@110%Voltage 

No Load Loss  
297.6 kW @100%Voltage 306.7 kW @100%Voltage 
402.24 kW @110%Voltage 383.5 kW @110%Voltage 

Short-Circuit Current  
495.3 ARMS @ P-S 495.3 ARMS @ P-S 
128.9 ARMS @ P-T 128.9 ARMS @ P-T 
367.7 ARMS @  S-T 367.7 ARMS @  S-T 
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(f ile TESTTR5L.pl4; x-v ar t: LEG1)  t: B1     
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Figure 6.18  DC Hysteresis Loop Generated by ATP  
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Figure 6.19 Eddy Current (IE) and Hysteresis Current (IH) Waveforms at 100%V  
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       o: Leg-1   ∆: Yoke-AB /: Outer Limb  at 100%V 

Figure 6.20  Mangnetizing Current Waveforms of Leg- 1, Yoke-AB and Outer Limb 
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Figure 6.21  Line Current Waveforms for Tertiary at 100% Voltage  
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Figure 6.22  Phase Current Waveforms for Tertiary at 100% Voltage  
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6.2 Three-Legged Core Transformer 

 
6.2.1 Leakage Inductance 
 

Leakage paths and inductances for three-phase three-legged core-form transformers 

are the same as those of three-phase five-legged core-form transformers except for the 

zero sequence flux. The zero sequence impedance comes from the zero sequence test. It 

is difficult to calculate the zero sequence parameters without finite element analysis 

because the zero sequence flux path is through the transformer tank. Hence, values 

obtained from measurements should be used if available.  

An autotransformer usually has a closed-delta tertiary and this tertiary gives a path 

for zero sequence current. Therefore, the model for zero sequence flux path through the 

tank is not required for an autotransformer with a closed delta tertiary. 

 
6.2.2 Core Saturation Model 
 

For the three-legged transformer, core area is assumed to be the same as those of 

the legs in a five-legged transformer and the core length is assumed as in Figure 6.23. 

The magnetic equivalent circuit is given in Figure 6.24.  All reluctances here are 

saturable. Only one set of MMFs (windings) is included, typical of no-load excitation. 

Fluxes are defined such that Φ1, Φ2, and Φ3 are the fluxes in the 3 legs. The procedure for 

core saturation model derivation is the same as the procedure in Section 6.1.3. 
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Area ratio Length ratio 
A1=A2=A3=1 L1=L2=L3=1 

Yoke A4=A5=1 Yoke L4=L5 =1.725 

   Notation:  A: Area, L: Length, 1: Leg-A, 2:Leg-B, 3: Leg-C, 4:Yoke-AB, 5: Yoke-BC 

Figure 6.23  Dimension of Three-Legged Core Type Transformer  
 
 

Figure 6.24  Magnetic Equivalent Circuit for Three-Legged Transformer 
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i1= φ1 (R1 +R4)              (6.36)  

i2= φ2R2         (6.37) 

i3= φ3 (R3+R5)         (6.38) 

 
Where, 
R1 =L1 /(µ1A1)       µ1=φ1/(A1H1)=f(φ1/A1) 
R2 =L2 /(µ2A2)       µ2=φ2/(A2H2)=f(φ2/A2) 
R3 =L3 /(µ3A3)       µ3=φ3/(A3H3)=f(φ3/A3) 
R4 =L4 /(µ4A4)       µ4=(φ1)/(A4H4)=f(φ1/A4) 
R5 =L5 /(µ5A5)       µ5=(φ3)/(A5H5)=f(φ3/A5) 

 
Known values:  

φ1=v1/(ω N), φ2=v2/(ω N), φ3=v3/(ω N), V=peak-voltage for each phase, ω=2πf,  
N = number of turn (In this work, 34 was assumed. This means the units of B,H 
are per unit.)  
Magnetizing Current: Irms,AVG =(I1,rrms+I2,rrms+I3,rrms) / 3 

         Note: Real component of IEX has been removed, as explained in Section 4.2 
 
Core dimensions or normalized ratios 
 

Unknown values:  a, b for 
a

)Bb1(
H
B ⋅−==µ     

If the core dimension ratios and average RMS magnetizing currents at 100% and 

110% voltages are given, optimization techiniques can be used to estimate the a and b 

coefficients for the B-H Frolich equation from Equations (6.36) through (6.38).  

The optimization performed is as follows: Details for waveform i1 are given. 

Waveforms for i2 and i3 are obtained in a similar fashion based on Equations (6.37) and 

(6.38).  

Minimize f(a,b)= [ ] 2
RMS,AVGRMS,AVG V%100@ICalculatedV%100@IMeasured −  

 [ ] 2
RMS,AVGRMS,AVG V%110@ICalculatedV%110@IMeasured −+   (6.39) 

Subject to inequality constraints 0 < a and 0 < b < 1 
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Where, φ1(k)=v1 /(ω N)× sin(π⋅k/40)  
 
B1(k)= φ1(k)/A1        and   B4(k)= φ1(k)/A4 

a
)k(Bb1)k( 1

1
⋅−=µ  and  

a
)k(Bb1)k( 4

4
⋅−

=µ     

R1(k) =L1 /(µ1(k)⋅ A1)      and    R4(k)=L4 /(µ4(k) ⋅ A4)        
i1(k)= φ1(k)⋅ R1(k)+R4(k)⋅ φ1(k) 

40

))k(i(
I

2
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40

1k
RMS,1

∑
==  

IRMS, AVG =(I1,RMS+I2,RMS+I3,RMS ) / 3 

From the optimization technique (Appendix B.1) using Fmincon, the results are a = 

5.9265, b =0.5879. Figure 6.25 shows the resulting B-H curve. The calculated RMS 

currents for the three phases are  [129.0866   92.9868   92.9868]A at 100% voltage. The 

calculated average RMS current is 105.02 A and the difference between test report is 

only 3.1336x10-5A. The calculated RMS currents for phases are [272.7272  199.8044  

199.8043]A at 110% voltage. The calculated average RMS current is 224.11 and the 

difference between test report is only 1.8260x10-5 A. 
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Figure 6.25  B-H Curve for Each Section  
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Figure 6.26 shows the λ-i curve for each core section of the example transformer. 

Figure 6.27 shows the current waveforms of core sections at 100% voltage simulated 

using MATLAB. Figure 6.28 shows the current waveforms of lines at 100% voltage 

simulated using MATLAB.  

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

i (Ampere)

La
m

bd
a 

(W
b-

t)

Leg
Yoke

 
Figure 6.26  λ-i Curves  for Each Section  
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Figure 6.27  Current Waveforms for Each Section at 100% Voltage 
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Figure 6.28  Line Current Waveforms for Tertiary at 100% Voltage  
 

 
6.2.3 Core Loss Model 

From test data, core losses at 100% voltage and 110% voltage are known to be 

[297600 402240] (W) at λ = [51.77, 56.95] (Wb-t). 

Therefore, the calculated average core loss should be: 
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    (6.40) 

 
The optimization (Appendix B.10) performed is as follows: 
 
Minimize f(a,b) 
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Subject to inequality constraints 0 < a < 50000 and 0 < b < 1 
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The flux density B and normalized dimensions are also given from the previous 

section. 

 Leg-1 Leg-2 Leg-3 Yoke-12 Yoke-23 
Core No 1 2 3 4 5 

Area 1 1 1 1 1 
Length 1 1 1 1.725 1.725 

Bmax @100%V 1.5226 1.5226 1.5226 1.5226 1.5226 
Bmax @110%V 1.6749 1.6749 1.6749 1.6749 1.6749 

Thus, a=10592 and b=0.4272 for the core loss curve equation are calculated using 

optimization technique Fimincon from Equation (6.41).  In this case, there is no 

difference between the given PC and the calculated PC. Figure 6.29 shows the core loss 

curve for the three-legged core transformer. 
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Figure 6.29 Core Loss Curve for Three-Legged Core Transformer   
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The ratios of core loss “α” and “β” were given in Section 6.1.3 and are repeated 

here for convinience:  α= 0.5245, β= 0.4755  

Using the above results, the terms for separated core loss are represented:  

RE = V2 / (PE⋅A⋅L) = (V @ B=1.523)2 / [β⋅(PC @ B=1.523)⋅ (A⋅L)]  

      = (13800)2 /  (0.4755⋅ 46138) / (A⋅L)  

     = (8681) / (A⋅L)  (ohms)       (6.42) 

 

In Section 6.1.4, Equation (6.31) gives the DC hysteresis loss. From this core loss 

data, “aa” and “bb” are obtained as aa = 5165.7, bb = 0.4596.  

The coercive force at each loop should be determined to meet the power loss PH at 

the BMAX given at the each loop. In case of Figure 6.30, “K” for Equation (6.35) is about 

0.5 and HCTOP is about 2.2 A. The displacements at each BMAX are shown in Figure 6.31. 

The entire DC hysteresis loop is shown in Figure 6.32.  
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Figure 6.30  HC and Bmax (dotted line=linear, bold line=square root) 
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Figure 6.31  Left and Right Displacements of Resistive Hysteresis Current 

 

Figure 6.32  DC Hysteresis Loop Generated by the Model  
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6.2.4 ATP Implementation of Overall Transformer Model 

The overall transformer model for ATP implementation is shown in Figure 6.33. The 

core model, frequency-dependent coil resistance, and winding capacitances developed in 

Chapter 4 are included in ATP format.  

Figure 6.34 shows the DC hysteresis loop modeled using a Type-60 current source 

controlled by TACS. Figure 6.35 shows the current of the eddy current loss and the 

resistive hysteresis current. Figure 6.36 shows the magnetizing current modeled with a 

Type-93 nonlinear inductance. Figures 6.37 and 6.38 show the line-current and winding-

current waveforms.  

After all models were implemented and run with ATP, the results of open-circuit 

and short-circuit simulations shown in Table 6.4 are very close to the test report. 

Table 6.4  Comparisons with Test Report 

Test Report Simulated Results  
Excitation Current @ 13.8kV Line 

94.12 ARMS @100%Voltage 96.7 ARMS@100%Voltage 
211.76 ARMS @110%Voltage 208.9 ARMS@110%Voltage 

No Load Loss  
297.6 kW @100%Voltage 309.7 kW @100%Voltage 
402.24 kW @110%Voltage 359.6 kW @110%Voltage 

Short-Circuit Current  
495.3 ARMS @ P-S 495.3 ARMS @ P-S 
128.9 ARMS @ P-T 128.9 ARMS @ P-T 
367.7 ARMS @  S-T 367.7 ARMS @  S-T 
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Figure 6.33  Equivalent Circuit for Three-legged Core Transformer, Implemented in 
ATP 
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Figure 6.34 DC Hysteresis Loop Generated by ATP  
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Figure 6.35  Eddy Current (iE) and Hysteresis Current (iH) Waveforms at 100%V 
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Figure 6.36    Mangnetizing Current Waveforms of Leg 1 and Yoke A-B at100%V  
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Figure 6.37  Line Current Waveforms for Tertiary at 100% Voltage  
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Figure 6.38  Winding Current Waveforms for Tertiary at 100% Voltage  
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6.3 Shell-form Transformer 

 
6.3.1 Leakage Inductance 
 

Shell-type transformers generally use pancake type windings. Upon closer 

examination of the magnetic model in Figure 6.39, leakage reluctance paths are almost the 

same as those of concentric winding transformer. Thus, the duality-based electrical 

equivalent circuit is the same as in Figure 6.2. The original leakage inductances need to be 

broken down into parts as was done in Figure 6.3.  

Figure 6.39 Cross-Section with Main Leakage Paths for Pancake type Winding 

Equations (6.43) through (6.45) give leakage reactances based on physical 

dimensions [43]. Table 6.1 gives an example for winding width calculated based on DC 

resistance of coil. From Table 6.1, “bT” and “a2” in Equation (6.44) are generally smaller 

than “bS” and “a1” in Equation (6.43). Therefore, XCT from Equation (6.44) is expected to 
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be smaller than XSC from Equation (6.43). However, XCT is larger than XSC on the test data.  

In this case, the common winding or series winding need to be separated as shown in 

Figure 6.40.  
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Figure 6.40 Cross-Section with Main Leakage Paths for Pancake type Winding 
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Equations (6.46) through (6.48) give leakage reactances based on the physical 

dimensions in Figure 6.40. These equations have five unknowns. For the duality-based 

model shown in Figure 6.2, parameter estimations or some assumptions are necessary.  

The summation of the model parameters should be identical to the given short-circuit test 

data.  

From Table 6.1, the ratios for winding width or winding area can be assumed from 

RDC and the ratios between bS, bC and bT can be obtained as bS=7.53⋅ bT, bC=7.82⋅ bT. 

From voltage ratio, ratios for air gaps a1, a2 and a3 can be assumed as a1=14.43⋅ a3, 

a2=4.93⋅ a3. Now, there are two unknowns for Equations (6.46) through (6.48). The least 

square fitting technique gives two values minimizing the differences and the thickness of 

coil and air gap. The values are approximately bC=1.332, bT=0.171, bS=1.286, a1=0.117, 

a2=0.042, and a3=0.008 from Equations (6.46) through (6.48). From these and Equation 

(6.49) through (6.54), the necessary reactance in Figures 6.2 and 6.3 can be obtained. 

Table 6.5 gives each reactance value. 
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Table 6.5  Calculated Leakage Reactance in Ω. 

 S-C C-T S-T T-Core 

Series (S) 
Duct (a1) 0.3882 

(XS)  0.3882 
(XS) 

-0.1113 
(XC) 

-0.1113  
(XC)  Common (C) 

 
Duct (a2)  0.9519 

(XT-1) 
0.9519 
(XT-1) 

 

-0.0285  
(XT-2) 

-0.0285  
(XT-2) 

-0.0285  
(XT-2) Tertiary (T)  

  0.0854 
(X4) 

Duct (a3)    0.0008 
(X5) 

0.0862
(XL) 

Total 0.2769 
(XSC) 

0.8126 
(XCT) 

1.3121 
(XST) 

0.0577 
(XTL) 

Test Report 0.27686 0.81259 1.3121 N/A 
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6.3.2 Core Saturation 

For a shell-form transformer, cross-sectional area ratios in Figure 6.41 were 

assumed on the basis that the flux density is the same for all paths. The portions of the 

core thus have the same conditions of saturation as the core inside the windings. Lengths 

were chosen on the basis that since most coil types are pancake type and then legs and 

yokes are longer than the limbs.  Reluctances ℜ 4 ~ ℜ o10 in Figure 6.42 represent the 

parallel combinations of two reluctances for upper and lower core sections. 

 

L1   A1 L2      A2 L3    A3

L4     A4 L5    A5 L6      A6

L9
A9

L10
A10

L7
A7

L8
A8

 

Area ratio  Length ratio 

A1=A2=A3=1 L1 ~ L6=1 

Yoke A4=A5=A6=0.5 Middle Limb 
A7=A8=0.87 

Outer Limb 
A9=A10=0.5 

Limb 
L7 ~ L10=0.67 

       Notation:  A: Area, L: Length, 
1: Leg-A, 2:Leg-B, 3: Leg-C, 4:Outer Yoke, 5: Middle, 6: Outer-Yoke, 
7: Middle Limb, 8: Middle Limb, 9:Outer Limb, 10:Outer Limb 

 
Figure 6.41 Dimension of Shell-form Transformer  
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Figure 6.42   Magnetic Equivalent Circuit for Shell-form Transformer 

 

i1= φ1(R1+R4+R9)+R7 (φ1-φ2)            (6.55) 

i2= φ2(R2+R5)+R7 (φ2-φ1)+ R8 (φ2-φ3)      (6.56) 

i3= φ3(R3+R6+R10)+R8 (φ3-φ2)      (6.57) 

 
where,  R1=L1 /(µ1A1),µ1=f(φ1/A1),R2=L2 /(µ2A2),µ2=f(φ2/A2), 
R3 =L3 /(µ3A3), µ3=f(φ3/A3), R4=L4 /(2µ4A4),  µ4=f(φ1/2/A4)  R5=L5 /(2µ5A5), 
µ5=f(φ2/2/A5), R6 =L6 /(2µ6A6), µ6=f(φ3/2/A6), R7 =L7 /(2µ7A7),    
µ7=f((φ1 -φ2)/2/A7), R8 =L8 /(2µ8A8), µ8=f((φ2 -φ3)/2/A8), R9 =L9 /(2µ9A9), 
µ9=f(φ1/2/A9), R10=L10 /(2µ10A10), µ10=f(φ3/2/A10) 

 

In order to estimate the core dimensions, variables are classified as known and 

unknown. 

 
Known values: φ1=v1 /(ω N), φ2=v2 /(ω N), φ3=v3 /(ω N)     
               v=peak-voltage for each phase, ω=2πf, N = number of turn 
 

Magnetizing Current: Irms,AVG =(I1,rrms+I2,rrms+I3,rrms) / 3 

         Note: Real component of IEX has been removed, as explained in Section 4.2 
                  
Core dimenstions or ratios 

Unknown values:  a, b for 
a

)Bb1(
H
B ⋅−==µ     

R1 R2 R3
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R4 R5

i1 i3i2

1φ
2φ 3φ
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If the core dimension ratios and average RMS magnetizing currents at 100% and 

110% voltages are given, some optimization techinique can be used to estimate the a and 

b coefficients for the B-H Frolich equation from Equations (6.55) through (6.57).  

The optimization performed is as follows: Details for waveform i1 are given. 

Waveforms for i2 and i3 are obtained in a similar fashion based on Equations (6.56) and 

(6.57).  

Minimize f(a,b)= [ ] 2
RMS,AVGRMS,AVG V%100@ICalculatedV%100@IMeasured −  

 [ ] 2
RMS,AVGRMS,AVG V%110@ICalculatedV%110@IMeasured −+  (6.58) 

 
Subject to inequality constraints 0 < a and 0 < b < 1 

 
Where, φ1(k)=v1 /(ω N)× sin(π⋅k/40) and φ2(k)=v2 /(ω N)×sin(π⋅k/40-2π/3) 
     B1(k)=B4(k)=B9(k)= φ1(k)/A1        and   B7(k)= (φ1(k)-φ2(k))/2/A7) 

a
)k(Bb1)k( 1

1
⋅−=µ  and  

a
)k(Bb1)k( 7

7
⋅−

=µ     

R1(k) =L1 /(µ1(k)⋅ A1)      and    R7(k)=L7 /(µ7(k) ⋅ A7)        
i1(k)= φ1(k)⋅ (R1(k)+R4(k)+R9(k))+R7(k)⋅ (φ1(k)-φ2(k))            

40

))k(i(
I

2
1

40

1k
RMS,1

∑
==  

IRMS, AVG =(I1,RMS+I2,RMS+I3,RMS ) / 3 

From optimization technique (Appendix B.17) using Fmincon, the results are 

a=3.7651, b=0.5651. Figure 6.43 shows the obtained B-H curve. The calculated RMS 

currents for the three phases are  [99.9829  107.5387  107.5386] A at 100% voltage. The 

calculated average RMS current is 105.02 A and the difference from the test report is 

only 7.9357×10-5A. The calculated RMS currents for the three phases are [215.8171  

228.2594  228.2594] A at 110% voltage. The calculated average RMS current is   224.11 

A and the difference from the test report is 3.7518×10-5A. 
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Figure 6.44 shows the λ-i curve for each core section of the example transformer. 

Figure 6.45 shows the current waveforms of lines at 100% voltage simulated using 

MATLAB.  
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Figure 6.43  B-H for Each Section  
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Figure 6.44  λ-i Magnetization Curves for Each Section 
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Figure 6.45  Current Waveforms for Each Line at 100% Voltage 
  
 
 
6.3.3 Core Loss Model 
 

From test data, average core losses at 100% voltage and 110% voltage are given as 

[297600, 402240] (W) at λ = [51.77, 56.95] (Wb-t). 

The calculated average core loss should be: 
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The optimization (Appendix B.19) performed is as follows:  

Minimize f(a,b) 
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Subject to inequality constraints 0 < a and 0 < b < 1 
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The flux density B and normalized dimensions are also given as below from the 

previous section, but are repeated here for convinience. 

 Leg-
1 

Leg-
2 

Leg-
3 

Yoke
-1 

Yoke
-2 

Yoke
-3 

Mid 
Limb 

Mid 
Limb 

Outer
-1 

Outer
-2 

Core No 1 2 3 4 5 6 7 8 9 10 
Area 1 1 1 1 1 1 1.732 1.732 1 1 

Length 1 1 1 1 1 1 .67 .67 .67 .67 
B 

@100%V 1.523 1.523 1.523 1.523 1.523 1.523 1.523 1.523 1.523 1.523

B 
@110%V 1.675 1.675 1.675 1.675 1.675 1.675 1.675 1.675 1.675 1.675

 

Thus, a= 7071.8 and b =0.4272 are calculated for the core saturation curve by using 

optimization technique Fmincon and Equation (6.60). In this case, there is only a minor 

difference [0.0152 0.0112] W between the given core loss and the calculated closs. 

Figure 6.46  shows the core loss curve for the shell-form transformer. 

The core loss ratios “α” and “β” were given in Section 6.1.3 and are repeated here 

for convinience: α= 0.5245, β= 0.4755  

Using the above result, the terms for separated core loss are represented:  

RE = V2 / (PE⋅A⋅L) = (V @ B=1.523)2 / [b⋅(PC @ B=1.523)⋅ (A⋅L)]  

      = (13800)2 /  (0.4755⋅30828) / (A⋅L)  

     = (12992) / (A⋅L)  (Ω)        (6.61) 

 

In Section 6.1.4, the equation for DC hysteresis loss was given as Equation (6.31). 

From the core loss separation and Equation (6.31), “aa” and “bb” are obtained as aa = 

3448.9, bb =0.4596. 
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Figure 6.46 Core Loss Curve using Frolich Equation for Shell-form Transformer 

 

The coercive force at each loop should be determined to meet the power loss PH at 

the Bmax given for each loop. In case of Figure 6.47, “K” for Equation (6.35) is about 0.5 

and Hctop is about 1.4 A. The displacements at each Bmax are shown in Figure 6.48. The 

entire DC hysteresis loop is shown in Figure 6.49.  
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Figure 6.47  HC and Bmax (dotted line=linear, bold line=square root) 
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Figure 6.48  Left and Right Displacements of Resistive Hysteresis Current 
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Figure 6.49  DC Hysteresis Loop Generated by the Model 

 
6.3.4 ATP Implementation of Overall Transformer Model 

The overall transformer model for ATP implementation is shown in Figure 6.50. The 

core model, frequency-dependent coil resistance and winding capacitances developed in 

Chapter 4 are included in ATP format.  

Figure 6.51 shows the DC hysteresis loop modeled using a Type-60 current source 

controlled by TACS. Figure 6.52 shows the current of the eddy current loss and the 

resistive hysteresis current. Figure 6.53 shows the magnetizing current modeled with a 

Type-93 nonlinear inductance. Figures 6.54 and 6.55 show the line-current and winding-

current waveforms.  
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Figure 6.50 Equivalent Circuit for Sell-form Transformer, Implemented in ATP 
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Figure 6.51  DC Hysteresis Loop Generated by ATP 
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Figure 6.52    Eddy Current (iE) and Hysteresis Current (iH) Waveforms at 100%V  
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Figure 6.53  Mangnetizing Current Waveforms of Leg 2 and Mid Limb A-B (Leg-7)  
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Figure 6.54  Line Current Waveforms for Tertiary at 100% Voltage 
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Figure 6.55  Winding Current Waveforms for Tertiary at 100% Voltage  

After all models were implemented and run with ATP, the results of open-circuit 

and short-circuit simulations shown in Table 6.6 are very close to the test report. 

Table 6.6   Comparisons with Test Report 

Test Report Simulated Results  
Excitation Current @ 13.8kV Line 

94.12 ARMS @100%Voltage 101.9 ARMS@100%Voltage 
211.76 ARMS @110%Voltage 223.4 ARMS@110%Voltage 

No Load Loss  
297.6 kW @100%Voltage 283.4 kW @100%Voltage 
402.24 kW @110%Voltage 373.1 kW @110%Voltage 

Short-Circuit Current  
495.3 ARMS @ P-S 495.3 ARMS @ P-S 
128.9 ARMS @ P-T 128.9 ARMS @ P-T 
367.7 ARMS @  S-T 367.7 ARMS @  S-T 
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CHAPTER 7 
 

SIMULATIONS FOR MODEL EVALUATION 
 

This chapter presents the results of the ATP simulations for benchmarking the 

developed models. Steady-state excitation, de-energization, and re-energization transients 

are simulated and compared to a BCTRAN-based model used in an earlier investigation 

[14]. The performance of the equivalent circuit and parameters are summarized. In 

addition, simulation results using models developed in Chapters 5 and 6 are compared to 

actual transients event records [14]. 

In this chapter, the core type of the example transformer is assumed as shell-form, 

since the manufacturer of the example transformer typically made shell-from 

transformers. The required data for transformer modeling are the basic factory test data 

and the estimated relative physical dimensions of the core. 

 

7.1 Comparison with BCTRAN Model 
 

Comparisons with the earlier BCTRAN Model are steady-state excitation, de-

energization, and re-energization transients. The transformer of Table 3.2 is used for the 

comparison. 
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In the case of the earlier BCTRAN model, core magnetization and losses were 

attached externally on the tertiary.  The core was modeled as three sets of type-98 

inductances in parallel with linear resistors connected in delta.  Using the 100% and 

110% excitation data from the factory test report, the RMS magnetizing current was 

obtained by removing the core loss component from the exciting current. This model 

ignores core structure and represents the transformer as essentially three single-phase 

transformers. 

In the case of the duality model, core magnetization and losses are attached at the 

legs and yokes respectively.  Each core section is modeled as a type-93 inductance in 

parallel with a type-60 TACS current source for hysteresis loss and eddy current loss. 

Here the shell-form autotransformer model first introduced in Section 6.3 is used. 

Although the factory test report gives only 100% and 110% excitation data, more λ-i 

points can be obtained for the type-93 inductances from the core saturation function.  All 

parameters were obtained by the procedures described in Chapters 4 and Section 6.3. 

First, no-load steady-state excitation at 110% of the nominal voltage of 118-kV is 

simulated. The core flux and current waveforms are presented in Figures 7.1 through 7.6. 

 In the case of the earlier BCTRAN-based model, only the 100% and 110% factory 

excitation data were used. Therefore, the shape of the λ-i curve is a simpler 2-segment 

piecewise linear curve, as can be seen in Figure 7.2. The core-loss current waveforms in 

Figure 7.3 are sinusoidal and the shape of λ vs. core-loss current curve in Figure 7.4 is a 

circle, since it is modeled as a linear resistance. As seen in Figure 7.5, the hysteresis loss 
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is actually dependent on flux linked, so this simplistic representation may give incorrect 

simulation results.  

In the case of the new duality model, more λ-i points can be obtained from the core 

saturation function and the shape of the λ-i curve is smooth (Figure 7.2). Thus, the results 

can be more accurate. The hysteresis loss is also dependent on flux as seen in Figure 7.5. 

For steady-state excitation, excitation currents are identical in each phase in the 

case of the BCTRAN model (Figure 7.6). However, line currents differ from phase to 

phase with the new duality model. The phase current waveforms for the outer legs are 

quite similar but differ from that of the center leg. This is due to consideration of the 

actual core structure.  

At 30 ms, the switches de-energize the transformer, with each phase being 

electrically interrupted when the current passes through zero. In this way, the residual 

fluxes are determined. No arc phenomena in the switch are considered.  Results are 

shown in Figure 7.6.  Phase “b” clears first after the mechanical disconnection. The two 

remaining phases are next interrupted. Residual flux remains in the core of the new 

duality model, as shown in Figures 7.7 and 7.8. The BCTRAN model has no residual 

flux, since the energy stored in its core is dissipated in its core loss resistance. 

When the transformer with the residual flux is reconnected to the network (inrush), 

the residual flux at the instant acts as a DC offset to the sinusoidal flux linkage 

waveforms in Figure 7.9. This DC component may drive the core deep into the saturation 

region depending on the conditions. Hence the inrush currents are considerably increased 
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in Figure 7.10. The inrush currents of the duality model are larger than those of 

BCTRAN model, since, the slope of saturation curve is low in the saturation region. 

 Although there was no benchmarking data available for these, they exhibit much 

more reasonable behaviors than those provided by the earlier BCTRAN-based model. 
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Figure 7.1   Transformer Magnetizing Current for Three Legs 
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Figure 7.2   Transformer Core Flux – Magnetizing Current Plot at Leg-1 
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Figure 7.3  Transformer Core Loss Currents for Three Legs 
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Figure 7.4 Transformer Core Flux - Core Loss Current Plot for Leg-1 
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Figure 7.5 Transformer Core Flux – No-Load Current Plot for Leg-1 
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Figure 7.6   Transformer No-Load Currents for 115-kV Line Terminals 
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Figure 7.7   Transformer Core Fluxes for Legs after De-Energizing  
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BCTRAN Model (Top) and Duality Model (Bottom) 

Figure 7.8  Transformer Core Flux vs. Core Loss Current Plot After De-Energizing  
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Figure 7.9  Transformer Core Fluxes after Re-Energizing  
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BCTRAN Model (Top) and Duality Model (Bottom) 

Figure 7.10   Transformer 115-kV Line Currents after Re-Energizing  
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7.2 Black Start Energization Cases at IVH Substation 
 

In this section, black start energization cases from a previous study [14] are 

simulated by ATP for model evaluation. The main event in a black start is the step-by-

step energization of high voltage transmission lines through the low-voltage side of large 

transformers.  As such, transformers simultaneously experience low-side inrush and a 

through-current due to line energization on the high side.  Since high inrush currents are 

possible, transformer core saturation can be a key aspect of the observed transient 

behaviors.  Inrush currents are of relatively low frequency, but line energization currents 

can have high-frequency components. Transient overvoltages can also result, posing a 

threat to the equipment involved in the black start.  

Black start test energization of a 345-kV line and transformers from the gas turbine 

generators on the low-voltage side of the transformer was done during a black start test. 

This event, plus a general desire to be able to predict the transient voltage and current 

waveforms, resulted in the development of an ATP model. Three event records were 

available for benchmarking. They were taken at the substation that the transformer is 

located in. Comparisons of fault recorder waveforms with ATP simulation for two cases 

are provided here.   The cases are: 

1) 115-kV CB 5P147 energization at IVH (Event Record: IVH55): 

As initial conditions, gas turbine units 1 and 3 are running.  IVH transformers 
Nos. 1 and 2 are energized in steady state.  The IVH 115-kV bus is energized and 
in steady state. The first event is triggered by closing the CB 5P147, which 
energizes the IVH transformer No.9 and the 345-kV line to BLL. 

2) Energization of 345-kV Transformer No.9 at BLL (Event Record: IVH57): 

As initial conditions, the 345-kV lines up to BLL and PKL are energized. 
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The second event is triggered by closing the CB, which energizes the BLL 
transformer No. 9. 

 
 
7.2.1 System Description  

The single-line diagram of Figure 7.11 provides a depiction of the power system 

and black start switching sequences. The model developed includes transformers Nos. 2, 

3 and 9 at IVH, transformer No. 9 at BLL, the 345-kV line from IVH to BLL, the 345-kV 

line from BLL to PKL, and gas turbine generators Nos. 3 and 6. 

Figure 7.11   A Single Line Diagram for Black Start Study [14] 
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7.2.2 Transformer Model 

For the first simulation, IVH transformers 1, 2, and 9 and BLL transformer 9 are 

modeled using the BCTRAN-based model. The test data for the transformers are given in 

Tables 7.2 through 7.4. Core magnetization and losses are attached external to BCTRAN 

model, on the tertiary.  Recall that the core is modeled with a type-98 inductance in 

parallel with a linear resistor.  Using the 100% and 110% excitation data from the factory 

test report, the RMS magnetizing current is obtained by removing the core loss 

component from the exciting current.  Three of these parallel R-L combinations are 

connected in delta and attached to the 13.8-kV delta windings.  

For the new simulation, all is the same as for the first simulation except IVH 

transformer 9 and BLL transformer 9 are modeled using the duality model for a shell-

form transformer. Core magnetization and losses are attached at the legs and yokes 

respectively.  The core is modeled with a type-93 inductance in parallel with a type-60 

TACS current source for hysteresis loss and eddy current loss. Although the factory test 

report gives 100% and 110% excitation data, more λ-i points are obtained from the core 

saturation function for the type-93 inductances.   

Residual magnetism was not considered in this study. Since IVH transformer 9 is in 

place during line de-energization, it is expected that the line charging capacitance will 

“ring-down” together with the transformer, resulting in a near-zero residual magnetism.  

However, complete ringdown is usually not achieved, and a residual flux of as much as 

30% of the peak steady-state flux might be expected. In the case of the BLL transformer 

No.9, a non-zero residual magnetism is expected, since it is separately de-energized.  
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Table 7.2 Factory Test Data for Transformer No.9 at BLL 

345000 Grd.Y/118000 Grd.Y/13800 Delta,  
3-phase auto-transformer @OA/FOA/FOA 

H- 180MVA, X-180MVA, Y-47.4MVA@OA 
Exciting Current No Load Loss 

0.87%@100%Voltage 191.48kW @100%Voltage 
Open-Circuit Test 

2.36% @110%Voltage 268.844kW @110%Voltage 
Short-Circuit Test Impedance Load Loss 

H-X 6.77%@180MVA 275.871kW@180MVA 
H-Y 51.7%, @180MVA 75.997kW@47.4MVA 
X-Y 37.3% @180MVA 78.856kW@47.4MVA 

 

Table 7.3 Factory Test Data for Transformers 1 at IVH 

125/62.5/62.5MVA  124/14.4/14.4kV Y-D-D 
Exciting Current No Load Loss 

0.21% @100%Voltage 92-kW @100%Voltage 
Open-Circuit Test 

0.52% @110%Voltage 131.84-kW @110%Voltage 
Short-Circuit Test Impedance Load Loss 

H-X 9.9% @125-MVA 227.2-kW @ 62.5-MVA 
H-Y 9.99% @125-MVA 231.4-kW @ 62.5-MVA 
X-Y 18.61% @125-MVA 419.8-kW @ 62.5-MVA 

 

Table 7.4 Factory Test Data for Transformers 2 at IVH 

125/62.5/62.5MVA  124/14.4/14.4kV Y-D-D 
Exciting Current No Load Loss 

0.29% @100%Voltage 97.9-kW @100%Voltage 
Open-Circuit Test 

0.65% @110%Voltage 134.4-kW @110%Voltage 
Short-Circuit Test Impedance Load Loss 

H-X 9.87% @125-MVA 219.7-kW @ 62.5-MVA 
H-Y 10.0% @125-MVA 222.6-kW @ 62.5-MVA 
X-Y 18.28% @125-MVA 395.0-kW @ 62.5-MVA 

 
 
 
7.2.3 Transmission Line Models  
 

The line sections for the IVH to BLL line and the BLL to PKL line are modeled 

with JMARTI in ATP. The IVH to BLL line is mutually coupled with a parallel line for 
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18.23 miles of its 22.59 miles. The BLL to PKL line is mutually coupled with a parallel 

line for all of its 14.86 miles. Verification for input data involves positive and zero 

sequence impedances, zero sequence coupling, and line charging MVAR. 

 
 
7.2.4 Synchronous Generator Model  

These generators are represented as a detailed synchronous generator. The IEEE 

Type 3 excitation system shown in Figure 7.12 was used to represent the exciter/voltage 

regulator dynamics [14]. Note that the excitation system has a very large time constant. 

Regulator time constant TA is 0.15 s and the exciter time constant TE is 0.5 s. Governor 

models were not added.  Maximum generator reactive capability is about 27 MVar at 

100% leading power factor. Maximum generator reactive capability limits were not 

added to the model. 

IEEE Type 3 excitation system 
Regulator time constant Ta  0.15s, Gain Ka  120, Regulator Input Filter Time constant Tr  0s, 

Exciter time constant Te  0.5s, Constant related to self-excited field Ke  1.0, Regulator Stabilizing 
Circuit time constant Tf  0.461s,   Gain Kf  0.2, Vrmax 1.2,  Vrmin –1.2 

Two Gas Turbine Generators: 
55 MVA, 13.8 kV X”dv=0.138pu, X”di=0.138pu, R1=0.003pu, X0=0.059, X2=0.097pu 

Figure 7.12  Block Diagram for Generator Excitation System 
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7.2.5 Case Study Results 

The voltages and currents at IVH are shown in the attached plots. To simulate 

initial conditions similar to the fault recorder, the following switching sequences were 

assumed: 

Fault Recorder Case: IVH55 
 

Time (sec) Case Description 

0 At IVH, with both generators running, both 13.8/115-kV generator 
step-up transformers are energized.  

0.096 115-kV CB 5P147 energization at IVH 
 

Fault Recorder Case: IVH57 
  

Time (sec) Case Description 

0 
At IVH, with both generators running, both 13.8/115-kV generator 
step-up transformers and 115-kV CB 5P147 are energized. 345-kV 
CB 8M27 at BLL are energized. 

0.099 Energization of 345-kVTransformer No.9 at BLL 

 

Figures 7.13 through 7.18 compare the fault recorder waveforms to ATP 

simulations for case IVH55 and IVH57. The behaviors of simulation using duality model 

match better with the event record than those of simulation using the previous BCTRAN 

model.  

The low-frequency oscillations in black start are strongly related to transformer 

core saturation effects. Note that The 100% and 110% factory excitation data were used 

for the model parameters. However, the 110% excitation level was being exceeded in 

many cases.  
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 In the case of the BCTRAN model, the 100% and 110% excitation data from the 

factory test report were used for the nonlinear inductances. However, in case of the 

duality model, fourteen λ-i points from the core saturation function were used as 

piecewise linear (See Appendices A.2 ~ A.11) and the results obtained are more accurate.   

In the case of 115-kV CB 5P147 energization at IVH, the voltages of the duality-

based model simulation better match those of the fault recorder. Before and after the line 

energization, the line-charging currents of the ATP simulations are larger than those of 

the fault recorder.  This might be caused by inaccurate line configuration data. 

In the case of energization of 345-kV transformer No.9 at BLL, the voltages of the 

duality model simulations better match those of the fault recorder. The currents (the 

inrush currents) of the ATP simulations have less 5th harmonic component than those of 

fault recorder.  

The discrepancies of the current waveforms are caused by different initial 

conditions given at the beginning of the simulations. Initial conditions could not be 

accurately estimated because of the lack of line configuration data. 
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Figure 7.13  115-kV CB 5P147 B-phaseVoltage (Top) and Current (Bottom)  

 Just after 115-kV CB 5P147 Energization
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Figure 7.14  115-kV CB 5P147 B-phase Voltage (Top) and Current (Bottom)  
 1.5 seconds after 115-kV CB 5P147 Energization 
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Figure 7.15 115-kV CB 5P147 B-phase Voltage (Top) and Current (Bottom)  

 3 seconds after 115-kV CB 5P147 Energization 
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X-axis: Time in Secs,  Y-axis: Voltage in Volt (Top),  Current in Amperes (Bottom)  

 
Figure 7.16  115-kV CB 5P147 C-phase Voltage (Top) and Current (Bottom)  
  Just after Energization of 345-kV Transformer No.9 at BLL  
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X-axis: Time in Secs,  Y-axis: Voltage in Volt (Top),  Current in Amperes (Bottom)  

 
Figure 7.17  115-kV CB 5P147 C-phase Voltage (Top) and Current (Bottom)  

   1.5 seconds after Energization of 345-kV Transformer No.9 at BLL 
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X-axis: Time in Secs,  Y-axis: Voltage in Volt (Top),  Current in Amperes (Bottom) 

 
Figure 7.18  115-kV CB 5P147 C-phase Voltage (Top) and Current (Bottom)   

  3 seconds after Energization of 345-kV Transformer No.9 at BLL  
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CHAPTER 8 
 
 

CONCLUSIONS AND  
RECOMMENDATIONS FOR FUTURE WORK  

 

The goal of this work was the development of duality-based transformer models 

and parameter estimation that can efficiently utilize available data and measurements that 

may be incomplete. Therefore, necessary parameters for duality based models, their 

interrelationships, and parameter estimation methods using optimization theory were 

studied to obtain proper model parameters. 

This work extends the state of the art of topologically-correct three-phase 

autotransformer models and parameter estimation methods. Modeling results obtained 

from this work refine the nonlinear and frequency-dependent elements in the three-phase 

autotransformer equivalent circuit. Theoretical results obtained from this work provide a 

sound foundation for development of transformer parameter estimation methods using 

engineering optimization. In addition, it should be possible to refine which information 

and measurement data are necessary for complete duality-based transformer models. 

Simulation accuracy is dependent on the accuracy of the equipment model and its 

parameters. This work is significant in that it advances existing parameter estimation 

methods in cases where available data and measurements are incomplete. The accuracy 

of EMTP simulations for power systems including three-phase autotransformers is thus 

enhanced. 
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Conclusions 

In Chapter 4, parameters and characteristics of major components in equivalent 

circuits were refined. In order to improve the detailed representations used in transformer 

modeling, nonlinear and frequency-dependent characteristics were studied. Parameter 

estimation methods were developed to determine the parameters of a given model in 

cases where incomplete information is available.  

1) Series Foster equivalent circuits with one cell give generally correct frequency-
dependent R in the given frequency range. However, a series Foster circuit with 
two cells was necessary for sufficiently accurate representation. Least square 
curve fitting methods gave proper parameters for the equivalent circuit.  

2) Effective terminal capacitances determined by the frequency of TRV 
oscillations of each winding were within the reasonable ranges. 

3) The Frolich equation used to model the core saturation curve gave a smooth 
single-valued anhysteretic curve and the obtained curves matched well with the 
nonlinear characteristic of the core.  

4) Parameters for the transformer core loss model could be estimated using basic 
factory test data and optimization techniques. The eddy current loss could be 
modeled by a constant resistance. However, the current injection method should 
be used for modeling hysteresis loss because of its frequency-dependency.  

5) The assumptions that the right displacement for each hysteresis loop is linear 
and the left displacement is nonlinear and increases slowly for low flux and 
more quickly for bigger flux, then decays to zero for maximum flux, were very 
effective and the obtained curves matched well with actual hysteresis loops.  

 

In Chapter 5, duality-based equivalent circuit models for three-phase five-legged, 

three-legged, and shell-form autotransformers were developed for the EMTP 

implementation.  

In Chapter 6, necessary parameters such as coil resistance, leakage inductance, core 

saturation component and core loss components were developed for the duality-based 



 

- 167 -   

models in Chapter 5. Mathematical description of parameters and their interrelationships 

were refined. 

1) When leakage inductances were derived from the basic physical structure and 
magnetic make-up of a three-winding transformer having cylindrical coils or 
pancake coils, there were many unknowns. Therefore, the ratios for winding 
width or winding area estimated from RDC and the ratios for air-gap width 
estimated from voltage ratio were very useful.   

2) The optimization technique was very effective in finding core saturation 
parameters. Forty points during each half cycle were necessary for the accuracy 
of RMS current calculation, since the current waveforms are not sinusoidal. 
More than forty points gave essentially the same results.  

3) The DC hysteresis loop and eddy current loss of the core could be modeled using 
a Type-60 current source controlled by TACS in ATP. TACS was effective to 
incorporate the hysteresis loop model.  

 

In Chapter 7, Steady-state excitation, de-energization, and re-energization 

transients were simulated and compared with the existing BCTRAN model. Black start 

energization cases were also simulated as a means of model evaluation and compared 

with actual event records. The simulated results using the model developed here were 

reasonable and more correct than those of the BCTRAN model. 

Suggestions for Further Study 

This work should be extended in the following ways: 

• To further refine and develop the models and transformer parameter estimation 

methods developed here, iterative full-scale laboratory tests using high-voltage 

and high-power three-phase transformers would be helpful. 

• The hysteresis loop model should be further studied for transients in case where 

the sign of the flux is changed before the reversing point of flux linkages.   
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• The reactances for inner windings are negative. Physically, the negative reactance 

terms are a result of coil thickness and sometimes caused numerical instability. 

Therefore, newer short-circuit models without the negative reactance should be 

studied to enhance in the stability of simulation. 

• The Frolich equation for core saturation modeling has limitations in flux 

density. Thus, newer equations for core saturation modeling might be 

developed.   

• The parameter estimation techniques for frequency-dependent coil resistance 

and winding capacitances should be further refined, improving on the approach 

of using typical values. 

•  The third inductance, L3 in the frequency-dependent coil resistance model is a 

negative inductance. This negative inductance may give a numerical stability 

problem in ATP simulation. Therefore, incorporating all circuit components for 

Foster equivalent circuit into the leakage inductance matrix may yield a net 

positive inductance. This should be further studied to improve numerical 

stability. 

• Core saturation modeling should be further studied for cases where the B-H 

curve of the core material is known or more excitation data than two points are 

available from the factory test report. 
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APPENDIX A: SAMPLE ATP DATA FILE 

 
Appendix A.1: CSLBS.ATP  
The steady-state simulation for duality model of shell-form transformer 
 
 
BEGIN NEW DATA CASE 
C -------------------------------------------------------- 
C CSLBS.ATP :Sehll-form transformer  
C -------------------------------------------------------- 
C FFHFHF 
C  
C  
$DUMMY, XYZ000 
C  dT  >< Tmax >< Xopt >< Copt > 
   1.E-5      .2     60.         
    3465      25       1       1       0      -1       0       1       0 
       0       0       0       0       0       0       0       0 
TACS HYBRID 
/TACS 
90S118TA                                                                      1. 
98IRMS    = 0.3333 * XX0151 
88XX0155  =S118B 
98BRMS  66                +XX0155                    60. 
88XX0163  =S118C 
98XX0166  = BRMS   + CRMS   
98CRMS  66                +XX0163                    60. 
88XX0173  =S118A 
98XX0151  = ARMS   + XX0166 
98ARMS  66                +XX0173                    60. 
91S118C                                                                       1. 
91S118A                                                                       1. 
91S118B                                                                       1. 
90S118FA                                                                      1. 
90S118FC                                                                      1. 
90S118FB                                                                      1. 
33ARMS   
33CRMS   
33IRMS   
33BRMS   
33XX0192 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
/BRANCH 
C < n 1>< n 2><ref1><ref2>< R  >< L  >< C  > 
C < n 1>< n 2><ref1><ref2>< R  >< A  >< B  ><Leng><><>0 
  XX0043XX0066                   .5656                                         0 
  XX0051XX0236                   .3115                                         1 
  XX0055XX0047                   1.E-6                                         0 
  XX0236XX0055                   1.E-6                                         0 
  XX0059XX0230                   .3115                                         1 
  XX0232                      .1                                               1 
  XX0065XX0066                   1.E-6                                         0 
  XX0067XX0230                   1.E-6                                         0 
  XX0043XX0278                  -0.093                                         0 
  XX0051XX0244                  -0.063                                         0 
  XX0059XX0302                  -0.063                                         0 
  TRANSFORMER                         TX0001                                   0 
            9999 
 1XX0089                         1.E-668127. 
 2XX0340XX0232                   1.E-613800. 
  TRANSFORMER                         TX0002                                   0 
            9999 
 1XX0097XX0101                   1.E-61.31E5 
 2XX0398XX0232                   1.E-613800. 
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  TRANSFORMER                         TX0003                                   0 
            9999 
 1XX0101                         1.E-668127. 
 2XX0372XX0232                   1.E-613800. 
  TRANSFORMER                         TX0004                                   0 
            9999 
 1XX0109XX0113                   1.E-61.31E5 
 2XX0396XX0232                   1.E-613800. 
  TRANSFORMER                         TX0005                                   0 
            9999 
 1XX0113                         1.E-668127. 
 2XX0374XX0232                   1.E-613800. 
  TRANSFORMER                         TX0006                                   0 
            9999 
 1XX0096XX0089                   1.E-61.31E5 
 2XX0394XX0232                   1.E-613800. 
  XX0340XX0126                  -0.111                                         0 
  XX0372XX0128                  -0.111                                         0 
  XX0374XX0130                  -0.111                                         0 
  XX0126XX0394                  .38819                                         0 
  XX0128XX0398                  .38819                                         0 
  XX0130XX0396                  .38819                                         0 
  XX0043XX0126                  1.0174                                         0 
  XX0051XX0128                  1.0174                                         0 
  XX0059XX0130                  1.0174                                         0 
        X0001A              1.E5                                               0 
        X0001B              1.E5                                               0 
        X0001C              1.E5                                               0 
$INCLUDE, H:\work\IVH9\atp\TCS4B.pch, XX0066, XX0232 
$INCLUDE, H:\work\IVH9\atp\RTA.pch, XX0025, X0001A 
$INCLUDE, H:\work\IVH9\atp\RTB.pch, XX0039, X0001B 
$INCLUDE, H:\work\IVH9\atp\RTC.pch, XX0033, X0001C 
$INCLUDE, H:\work\IVH9\atp\TCS2B.pch, XX0047, XX0232 
$INCLUDE, H:\work\IVH9\atp\TCS10B.pch, XX0230, XX0232 
$INCLUDE, H:\work\IVH9\atp\TCS6B.pch, XX0230, XX0232 
$INCLUDE, H:\work\IVH9\atp\TCS3B.pch, XX0230, XX0232 
$INCLUDE, H:\work\IVH9\atp\TCS7B.pch, XX0236, XX0065 
$INCLUDE, H:\work\IVH9\atp\TCS9B.pch, XX0066, XX0232 
$INCLUDE, H:\work\IVH9\atp\TCS8B.pch, XX0067, XX0055 
$INCLUDE, H:\work\IVH9\atp\TCS5B.pch, XX0047, XX0232 
$INCLUDE, H:\work\IVH9\atp\TCS1B.pch, XX0066, XX0232 
$INCLUDE, H:\work\IVH9\atp\RCA.pch, S118TA, XX0089 
$INCLUDE, H:\work\IVH9\atp\RSA.pch, S345TA, XX0096 
$INCLUDE, H:\work\IVH9\atp\RSB.pch, S345TB, XX0097 
$INCLUDE, H:\work\IVH9\atp\RCB.pch, S118TB, XX0101 
$INCLUDE, H:\work\IVH9\atp\RSC.pch, S345TC, XX0109 
$INCLUDE, H:\work\IVH9\atp\RCC.pch, S118TC, XX0113 
/SWITCH 
C < n 1>< n 2>< Tclose ><Top/Tde ><   Ie   ><Vf/CLOP ><  type  > 
  S118FAS118TA       -1.       .03                                             1 
  S118FBS118TB       -1.       .03                                             1 
  S118FCS118TC       -1.       .03                                             1 
  S118FAS118TA       .05        1.                                             1 
  S118FBS118TB       .05        1.                                             1 
  S118FCS118TC       .05        1.                                             1 
  S345FAS345TA        1.        1.                                             0 
  S345FBS345TB        1.        1.                                             0 
  S345FCS345TC        1.        1.                                             0 
  S118A S118FA       -1.        1.                                             1 
  S118B S118FB       -1.        1.                                             1 
  S118C S118FC       -1.        1.                                             1 
/SOURCE 
C < n 1><>< Ampl.  >< Freq.  ><Phase/T0><   A1   ><   T1   >< TSTART >< TSTOP  > 
14S118A  0   105981.       60.                                     -1.        1. 
14S118B  0   105981.       60.     -120.                           -1.        1. 
14S118C  0   105981.       60.      120.                           -1.        1. 
14XX0278       1E-10       60.                                     -1.       10. 
18XX0232          1.XX0025X0001B 
14XX0302       1E-10       60.                                     -1.       10. 
18XX0232          1.XX0033X0001A 
14XX0244       1E-10       60.                                     -1.       10. 
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18XX0232          1.XX0039X0001C 
14S345FA 0   281691.       60.                                     -1.        1. 
14S345FB 0   281691.       60.     -120.                           -1.        1. 
14S345FC 0   281691.       60.      120.                           -1.        1. 
/INITIAL 
/OUTPUT 
  S345TAS118TAS118TBS118TC 
BLANK TACS 
BLANK BRANCH 
BLANK SWITCH 
BLANK SOURCE 
BLANK INITIAL 
BLANK OUTPUT 
BLANK PLOT 
BEGIN NEW DATA CASE 
BLANK 
 
 

Appendix A.2: TCS1B.PCH 
TACS model for core section No.1 of shell-form transformer 
 
/TACS 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
90NODLAT                                                                     99. 
90NODLAF                                                                     99. 
98DV1     =NODLAF-NODLAT 
 1LAMD1   +DV1                                        1. 
        1. 
                  1. 
98B1      =LAMD1/34 /1 
77LAMD1       0. 
98BOLDX153        +BOLD1                                1.E-5 
98BOLD1 53                        +B1                   1.E-5 
98DBOLD1  =BOLD1  -BOLDX1 
98DB1     =B1     -BOLD1 
98BMAXA153        +BMAX1 
98XX1961  =DBOLD1/ABS(DBOLD1)  *DB1 /ABS(DB1) 
98ABSB1   =ABS(B1) 
98BMAXB163+ABSB1  +BMAXA1                               +1 
98ZEROX1  = 0 
98BOLDM1  =ABS(BOLD1) 
98BMAX1 60+BOLDM1 +BMAXB1 +BMAXB1                                   XX1961 
98A1      =(1.9-BMAX1  )/1.9 
98HC1     =1.4*SQRT(BMAX1/1.9) 
98F1      =abs(B1   )/(BMAX1 +0.0001) 
98XX1081  = B1  * DB1/ABS(B1)/ABS(DB1) 
98RHD1    =(1-F1  )*HC1  *B1   /ABS(B1   ) 
98LHD1    =-(HC1*(A1+1/A1))/((1-F1)/A1+A1/(1-F1))*B1/ABS(B1) 
98H1    60+LHD1   +ZEROX1 +RHD1                                     XX1081 
98HYSC1   =H1*1. 
98EDDY1   =DV1/12992. 
98LEG1    =HYSC1+EDDY1 
33B1 
33DV1 
33EDDY1 
33HYSC1 
33LAMD1 
33LEG1 
33H1 
77BMAX1       1.64 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
C NODLA1NODLAT                     1E-6                                        0 
C  NODLV1NODLAF                     1E-6 
C  LEG1  NODLAT                     12992. 
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C LEG1  LAMD1                     100000. 
C LAMD1 NODLAT                                                        10.      2 
$VINTAGE, 0, 
C BUS-->BUS-->BUS-->BUS-->Is--->PHIs->                                         O 
93LEG1  NODLAT             50.   51.8                                          1 
C <------------><--------------> 
        0.000000      0.000000 
       10.000000     35.803418 
       20.000000     44.910279 
       30.000000     49.070782 
       40.000000     51.454147 
       50.000000     52.998631 
      100.000000     56.383527 
      200.000000     58.243463 
      300.000000     58.891013 
      400.000000     59.220218 
      500.000000     59.419513 
      600.000000     59.553124 
     1200.000000     59.889794 
     2400.000000     60.059561 
     4800.000000     60.144805 
            9999 
/SOURCE 
C < n 1><>< Ampl.  >< Freq.  ><Phase/T0><   A1   ><   T1   >< TSTART >< TSTOP  > 
60LEG1  -1                                                                   99. 
/SWITCH 
C < n 1>< n 2>< Tclose ><Top/Tde ><   Ie   ><Vf/CLOP ><  type  > 
  NODLAFLEG1                                          MEASURING                1 
$EOF   User-supplied header cards follow.         21-Oct-02  19.28.31 
ARG, NODLAF, NODLAT 
 

Appendix A.3: TCS2B.PCH 
TACS model for core section No.2 of shell-form transformer 
 
/TACS 
90NODLAF                                                                     99. 
98DV2     =NODLAF-NODLAT 
 1LAMD2   +DV2                                        1. 
        1. 
                  1. 
98B2      =LAMD2/34 /1 
77LAMD2       -49.3 
98BOLDX253        +BOLD2                                1.E-5 
98BOLD2 53                        +B2                   1.E-5 
98DBOLD2  =BOLD2  -BOLDX2 
98DB2     =B2     -BOLD2 
98BMAXA253        +BMAX2 
98XX1962  =DBOLD2/ABS(DBOLD2)  *DB2 /ABS(DB2) 
98ABSB2   =ABS(B2) 
98BMAXB263+ABSB2  +BMAXA2                               +1 
98ZEROX2  = 0 
98BOLDM2  =ABS(BOLD2) 
98BMAX2 60+BOLDM2 +BMAXB2 +BMAXB2                                   XX1962 
98A2      =(1.9-BMAX2  )/1.9 
98HC2     =1.4*SQRT(BMAX2/1.9) 
98F2      =abs(B2   )/(BMAX2 +0.0001) 
98XX1082  = B2  * DB2/ABS(B2)/ABS(DB2) 
98RHD2    =(1-F2  )*HC2  *B2   /ABS(B2   ) 
98LHD2    =-(HC2*(A2+1/A2))/((1-F2)/A2+A2/(1-F2))*B2/ABS(B2) 
98H2    60+LHD2   +ZEROX2 +RHD2                                     XX1082 
98HYSC2   =H2*1. 
98EDDY2   =DV2/12992. 
98LEG2    =HYSC2+EDDY2 
33B2 
33DV2 
33EDDY2 
33HYSC2 
33LAMD2 
33LEG2 
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33H2 
/BRANCH 
$VINTAGE, 1, 
$VINTAGE, 0, 
93LEG2  NODLAT             50.   51.8                                          1 
        0.000000      0.000000 
       10.000000     35.803418 
       20.000000     44.910279 
       30.000000     49.070782 
       40.000000     51.454147 
       50.000000     52.998631 
      100.000000     56.383527 
      200.000000     58.243463 
      300.000000     58.891013 
      400.000000     59.220218 
      500.000000     59.419513 
      600.000000     59.553124 
     1200.000000     59.889794 
     2400.000000     60.059561 
     4800.000000     60.144805 
            9999 
/SOURCE 
60LEG2  -1                                                                   99. 
/SWITCH 
  NODLAFLEG2                                          MEASURING                1 
$EOF   User-supplied header cards follow.         21-Oct-02  14.05.51 
ARG, NODLAF, NODLAT 

 
Appendix A.4: TCS3B.PCH 
TACS model for core section No.3 of shell-form transformer 
 
/TACS 
90NODLAF                                                                     99. 
98DV3     =NODLAF-NODLAT 
 1LAMD3   +DV3                                        1. 
        1. 
                  1. 
98B3      =LAMD3/34 /1 
77LAMD3        49.3 
98BOLDX353        +BOLD3                                1.E-5 
98BOLD3 53                        +B3                   1.E-5 
98DBOLD3  =BOLD3  -BOLDX3 
98DB3     =B3     -BOLD3 
98BMAXA353        +BMAX3 
98XX1963  =DBOLD3/ABS(DBOLD3)  *DB3 /ABS(DB3) 
98ABSB3   =ABS(B3) 
98BMAXB363+ABSB3  +BMAXA3                               +1 
98ZEROX3  = 0 
98BOLDM3  =ABS(BOLD3) 
98BMAX3 60+BOLDM3 +BMAXB3 +BMAXB3                                   XX1963 
98A3      =(1.9-BMAX3  )/1.9 
98HC3     =1.4*SQRT(BMAX3/1.9) 
98F3      =abs(B3   )/(BMAX3 +0.0001) 
98XX1083  = B3  * DB3/ABS(B3)/ABS(DB3) 
98RHD3    =(1-F3  )*HC3  *B3   /ABS(B3   ) 
98LHD3    =-(HC3*(A3+1/A3))/((1-F3)/A3+A3/(1-F3))*B3/ABS(B3) 
98H3    60+LHD3   +ZEROX3 +RHD3                                     XX1083 
98HYSC3   =H3*1. 
98EDDY3   =DV3/12992. 
98LEG3    =HYSC3+EDDY3 
33B3 
33DV3 
33EDDY3 
33HYSC3 
33LAMD3 
33LEG3 
33H3 
/BRANCH 
$VINTAGE, 1, 
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$VINTAGE, 0, 
93LEG3  NODLAT             50.   51.8                                          1 
        0.000000      0.000000 
       10.000000     35.803418 
       20.000000     44.910279 
       30.000000     49.070782 
       40.000000     51.454147 
       50.000000     52.998631 
      100.000000     56.383527 
      200.000000     58.243463 
      300.000000     58.891013 
      400.000000     59.220218 
      500.000000     59.419513 
      600.000000     59.553124 
     1200.000000     59.889794 
     2400.000000     60.059561 
     4800.000000     60.144805 
            9999 
/SOURCE 
60LEG3  -1                                                                   99. 
/SWITCH 
  NODLAFLEG3                                          MEASURING                1 
$EOF   User-supplied header cards follow.         21-Oct-02  14.05.52 
ARG, NODLAF, NODLAT 
 
 

Appendix A.5: TCS4B.PCH 
TACS model for core section No.4 of shell-form transformer 
 
/TACS 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
98DV4     =NODLAF-NODLAT 
 1LAMD4   +DV4                                        1. 
        1. 
                  1. 
98B4      =LAMD4/34 /1 
77LAMD4       0. 
98BOLDX453        +BOLD4                                1.E-5 
98BOLD4 53                        +B4                   1.E-5 
98DBOLD4  =BOLD4  -BOLDX4 
98DB4     =B4     -BOLD4 
98BMAXA453        +BMAX4 
98XX1964  =DBOLD4/ABS(DBOLD4)  *DB4 /ABS(DB4) 
98ABSB4   =ABS(B4) 
98BMAXB463+ABSB4  +BMAXA4                               +1 
98ZEROX4  = 0 
98BOLDM4  =ABS(BOLD4) 
98BMAX4 60+BOLDM4 +BMAXB4 +BMAXB4                                   XX1964 
98A4      =(1.9-BMAX4  )/1.9 
98HC4     =1.4*SQRT(BMAX4/1.9) 
98F4      =abs(B4   )/(BMAX4 +0.0001) 
98XX1084  = B4  * DB4/ABS(B4)/ABS(DB4) 
98RHD4    =(1-F4  )*HC4  *B4   /ABS(B4   ) 
98LHD4    =-(HC4*(A4+1/A4))/((1-F4)/A4+A4/(1-F4))*B4/ABS(B4) 
98H4    60+LHD4   +ZEROX4 +RHD4                                     XX1084 
98HYSC4   =H4*1. 
98EDDY4   =DV4/12992. 
98LEG4    =HYSC4+EDDY4 
33B4 
33DV4 
33EDDY4 
33HYSC4 
33LAMD4 
33LEG4 
33H4 
77BMAX4       1.64 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
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C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
C  NODLA4NODLAT                     1E-6 
C  NODLV4NODLAF                     1E-6 
C LEG4  NODLAT                     27987.                                      1 
C LEG4  LAMD4                     100000. 
C LAMD4 NODLAT                                                        10.      2 
$VINTAGE, 0, 
C BUS-->BUS-->BUS-->BUS-->Is--->PHIs->                                         O 
93LEG4  NODLAT             50.   51.8                                          1 
C <------------><--------------> 
        0.000000      0.000000 
       10.000000     35.803418 
       20.000000     44.910279 
       30.000000     49.070782 
       40.000000     51.454147 
       50.000000     52.998631 
      100.000000     56.383527 
      200.000000     58.243463 
      300.000000     58.891013 
      400.000000     59.220218 
      500.000000     59.419513 
      600.000000     59.553124 
     1200.000000     59.889794 
     2400.000000     60.059561 
     4800.000000     60.144805 
            9999 
/SOURCE 
C < n 1><>< Ampl.  >< Freq.  ><Phase/T0><   A1   ><   T1   >< TSTART >< TSTOP  > 
60LEG4  -1                                                                   99. 
/SWITCH 
C < n 1>< n 2>< Tclose ><Top/Tde ><   Ie   ><Vf/CLOP ><  type  > 
  NODLAFLEG4                                          MEASURING                1 
$EOF   User-supplied header cards follow.         21-Oct-02  19.30.24 
ARG, NODLAF, NODLAT 
 

Appendix A.6: TCS5B.PCH 
TACS model for core section No.5 of shell-form transformer 
 
/TACS 
98DV5     =NODLAF-NODLAT 
 1LAMD5   +DV5                                        1. 
        1. 
                  1. 
98B5      =LAMD5/34 /1 
77LAMD5       -49.3 
98BOLDX553        +BOLD5                                1.E-5 
98BOLD5 53                        +B5                   1.E-5 
98DBOLD5  =BOLD5  -BOLDX5 
98DB5     =B5     -BOLD5 
98BMAXA553        +BMAX5 
98XX1965  =DBOLD5/ABS(DBOLD5)  *DB5 /ABS(DB5) 
98ABSB5   =ABS(B5) 
98BMAXB563+ABSB5  +BMAXA5                               +1 
98ZEROX5  = 0 
98BOLDM5  =ABS(BOLD5) 
98BMAX5 60+BOLDM5 +BMAXB5 +BMAXB5                                   XX1965 
98A5      =(1.9-BMAX5  )/1.9 
98HC5     =1.4*SQRT(BMAX5/1.9) 
98F5      =abs(B5   )/(BMAX5 +0.0001) 
98XX1085  = B5  * DB5/ABS(B5)/ABS(DB5) 
98RHD5    =(1-F5  )*HC5  *B5   /ABS(B5   ) 
98LHD5    =-(HC5*(A5+1/A5))/((1-F5)/A5+A5/(1-F5))*B5/ABS(B5) 
98H5    60+LHD5   +ZEROX5 +RHD5                                     XX1085 
98HYSC5   =H5*1. 
98EDDY5   =DV5/12992. 
98LEG5    =HYSC5+EDDY5 
33B5 
33DV5 



 

 - 181 - 

33EDDY5 
33HYSC5 
33LAMD5 
33LEG5 
33H5 
/BRANCH 
$VINTAGE, 1, 
$VINTAGE, 0, 
93LEG5  NODLAT             50.   51.8                                          1 
        0.000000      0.000000 
       10.000000     35.803418 
       20.000000     44.910279 
       30.000000     49.070782 
       40.000000     51.454147 
       50.000000     52.998631 
      100.000000     56.383527 
      200.000000     58.243463 
      300.000000     58.891013 
      400.000000     59.220218 
      500.000000     59.419513 
      600.000000     59.553124 
     1200.000000     59.889794 
     2400.000000     60.059561 
     4800.000000     60.144805 
            9999 
/SOURCE 
60LEG5  -1                                                                   99. 
/SWITCH 
  NODLAFLEG5                                          MEASURING                1 
$EOF   User-supplied header cards follow.         21-Oct-02  14.05.55 
ARG, NODLAF, NODLAT 
 
 

Appendix A.7: TCS6B.PCH 
TACS model for core section No.6 of shell-form transformer 
 
/TACS 
98DV6     =NODLAF-NODLAT 
 1LAMD6   +DV6                                        1. 
        1. 
                  1. 
98B6      =LAMD6/34 /1 
77LAMD6       49.3 
98BOLDX653        +BOLD6                                1.E-5 
98BOLD6 53                        +B6                   1.E-5 
98DBOLD6  =BOLD6  -BOLDX6 
98DB6     =B6     -BOLD6 
98BMAXA653        +BMAX6 
98XX1966  =DBOLD6/ABS(DBOLD6)  *DB6 /ABS(DB6) 
98ABSB6   =ABS(B6) 
98BMAXB663+ABSB6  +BMAXA6                               +1 
98ZEROX6  = 0 
98BOLDM6  =ABS(BOLD6) 
98BMAX6 60+BOLDM6 +BMAXB6 +BMAXB6                                   XX1966 
98A6      =(1.9-BMAX6  )/1.9 
98HC6     =1.4*SQRT(BMAX6/1.9) 
98F6      =abs(B6   )/(BMAX6 +0.0001) 
98XX1086  = B6  * DB6/ABS(B6)/ABS(DB6) 
98RHD6    =(1-F6  )*HC6  *B6   /ABS(B6   ) 
98LHD6    =-(HC6*(A6+1/A6))/((1-F6)/A6+A6/(1-F6))*B6/ABS(B6) 
98H6    60+LHD6   +ZEROX6 +RHD6                                     XX1086 
98HYSC6   =H6*1. 
98EDDY6   =DV6/12992. 
98LEG6    =HYSC6+EDDY6 
33B6 
33DV6 
33EDDY6 
33HYSC6 
33LAMD6 
33LEG6 
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33H6 
/BRANCH 
$VINTAGE, 1, 
$VINTAGE, 0, 
93LEG6  NODLAT             50.   51.8                                          1 
        0.000000      0.000000 
       10.000000     35.803418 
       20.000000     44.910279 
       30.000000     49.070782 
       40.000000     51.454147 
       50.000000     52.998631 
      100.000000     56.383527 
      200.000000     58.243463 
      300.000000     58.891013 
      400.000000     59.220218 
      500.000000     59.419513 
      600.000000     59.553124 
     1200.000000     59.889794 
     2400.000000     60.059561 
     4800.000000     60.144805 
            9999 
/SOURCE 
60LEG6  -1                                                                   99. 
/SWITCH 
  NODLAFLEG6                                          MEASURING                1 
$EOF   User-supplied header cards follow.         21-Oct-02  14.05.56 
ARG, NODLAF, NODLAT 
 
 
 

Appendix A.8: TCS7B.PCH 
TACS model for core section No.7 of shell-form transformer 
 
/TACS 
90NODLAT                                                                     99. 
90NODLAF                                                                     99. 
98DV7     =NODLAF-NODLAT 
 1LAMD7   +DV1                                        1. 
        1. 
                  1. 
98B7      =LAMD7/34 /1.732 
77LAMD7       -49.3 
98BOLDX753        +BOLD7                                1.E-5 
98BOLD7 53                        +B7                   1.E-5 
98DBOLD7  =BOLD7  -BOLDX7 
98DB7     =B7     -BOLD7 
98BMAXA753        +BMAX7 
98XX1967  =DBOLD7/ABS(DBOLD7)  *DB7 /ABS(DB7) 
98ABSB7   =ABS(B7) 
98BMAXB763+ABSB7  +BMAXA7                               +1 
98ZEROX7  = 0 
98BOLDM7  =ABS(BOLD7) 
98BMAX7 60+BOLDM7 +BMAXB7 +BMAXB7                                   XX1967 
98A7      =(1.9-BMAX7  )/1.9 
98HC7     =1.4*SQRT(BMAX7/1.9) 
98F7      =abs(B7   )/(BMAX7 +0.0001) 
98XX1087  = B7  * DB7/ABS(B7)/ABS(DB7) 
98RHD7    =(1-F7  )*HC7  *B7   /ABS(B7   ) 
98LHD7    =-(HC7*(A7+1/A7))/((1-F7)/A7+A7/(1-F7))*B7/ABS(B7) 
98H7    60+LHD7   +ZEROX7 +RHD7                                     XX1087 
98HYSC7   =H7*.67 
98EDDY7   =DV7/11196. 
98LEG7    =HYSC7+EDDY7 
33B7 
33DV7 
33EDDY7 
33HYSC7 
33LAMD7 
33LEG7 
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33H7 
/BRANCH 
$VINTAGE, 1, 
$VINTAGE, 0, 
93LEG7  NODLAT             30.   90.0                                          1 
        0.000000      0.000000 
       10.000000     71.593123 
       20.000000     84.911932 
       30.000000     90.525566 
       40.000000     93.620241 
       50.000000     95.580735 
      100.000000     99.758817 
      200.000000    101.987895 
      300.000000    102.753224 
      400.000000    103.140213 
      500.000000    103.373808 
      600.000000    103.530127 
     1200.000000    103.923000 
     2400.000000    104.120557 
     4800.000000    104.219617 
            9999 
/SOURCE 
60LEG7  -1                                                                   99. 
/SWITCH 
  NODLAFLEG7                                          MEASURING                1 
$EOF   User-supplied header cards follow.         21-Oct-02  14.05.57 
ARG, NODLAF, NODLAT 
 
 

Appendix A.9: TCS8B.PCH 
TACS model for core section No.8 of shell-form transformer 
 
/TACS 
90NODLAT                                                                     99. 
90NODLAF                                                                     99. 
98DV8     =NODLAF-NODLAT 
 1LAMD8   +DV8                                        1. 
        1. 
                  1. 
98B8      =LAMD8/34 /1.732 
77LAMD1       97.5 
98BOLDX853        +BOLD8                                1.E-5 
98BOLD8 53                        +B8                   1.E-5 
98DBOLD8  =BOLD8  -BOLDX8 
98DB8     =B8     -BOLD8 
98BMAXA853        +BMAX8 
98XX1968  =DBOLD8/ABS(DBOLD8)  *DB8 /ABS(DB8) 
98ABSB8   =ABS(B8) 
98BMAXB863+ABSB8  +BMAXA8                               +1 
98ZEROX8  = 0 
98BOLDM8  =ABS(BOLD8) 
98BMAX8 60+BOLDM8 +BMAXB8 +BMAXB8                                   XX1968 
98A8      =(1.9-BMAX8  )/1.9 
98HC8     =1.4*SQRT(BMAX8/1.9) 
98F8      =abs(B8   )/(BMAX8 +0.0001) 
98XX1088  = B8  * DB8/ABS(B8)/ABS(DB8) 
98RHD8    =(1-F8  )*HC8  *B8   /ABS(B8   ) 
98LHD8    =-(HC8*(A8+1/A8))/((1-F8)/A8+A8/(1-F8))*B8/ABS(B8) 
98H8    60+LHD8   +ZEROX8 +RHD8                                     XX1088 
98HYSC8   =H8*.67 
98EDDY8   =DV8/11196. 
98LEG8    =HYSC8+EDDY8 
33B8 
33DV8 
33EDDY8 
33HYSC8 
33LAMD8 
33LEG8 
33H8 
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/BRANCH 
$VINTAGE, 1, 
$VINTAGE, 0, 
93LEG8  NODLAT             30.   90.0                                          1 
        0.000000      0.000000 
       10.000000     71.593123 
       20.000000     84.911932 
       30.000000     90.525566 
       40.000000     93.620241 
       50.000000     95.580735 
      100.000000     99.758817 
      200.000000    101.987895 
      300.000000    102.753224 
      400.000000    103.140213 
      500.000000    103.373808 
      600.000000    103.530127 
     1200.000000    103.923000 
     2400.000000    104.120557 
     4800.000000    104.219617 
            9999 
/SOURCE 
60LEG8  -1                                                                   99. 
/SWITCH 
  NODLAFLEG8                                          MEASURING                1 
$EOF   User-supplied header cards follow.         21-Oct-02  14.05.58 
ARG, NODLAF, NODLAT 
 
 

Appendix A.10: TCS9B.PCH 
TACS model for core section No.9 of shell-form transformer 
 
/TACS 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
98DV9     =NODLAF-NODLAT 
 1LAMD9   +DV9                                        1. 
        1. 
                  1. 
98B9      =LAMD9/34 /1 
77LAMD9       0. 
98BOLDX953        +BOLD9                                1.E-5 
98BOLD9 53                        +B9                   1.E-5 
98DBOLD9  =BOLD9  -BOLDX9 
98DB9     =B9     -BOLD9 
98BMAXA953        +BMAX9 
98XX1969  =DBOLD9/ABS(DBOLD9)  *DB9 /ABS(DB9) 
98ABSB9   =ABS(B9) 
98BMAXB963+ABSB9  +BMAXA9                               +1 
98ZEROX9  = 0 
98BOLDM9  =ABS(BOLD9) 
98BMAX9 60+BOLDM9 +BMAXB9 +BMAXB9                                   XX1969 
98A9      =(1.9-BMAX9  )/1.9 
98HC9     =1.4*SQRT(BMAX9/1.9) 
98F9      =abs(B9   )/(BMAX9 +0.0001) 
98XX1089  = B9  * DB9/ABS(B9)/ABS(DB9) 
98RHD9    =(1-F9  )*HC9  *B9   /ABS(B9   ) 
98LHD9    =-(HC9*(A9+1/A9))/((1-F9)/A9+A9/(1-F9))*B9/ABS(B9) 
98H9    60+LHD9   +ZEROX9 +RHD9                                     XX1089 
98HYSC9   =H9*.67 
98EDDY9   =DV9/19391. 
98LEG9    =HYSC9+EDDY9 
33B9 
33DV9 
33EDDY9 
33HYSC9 
33LAMD9 
33LEG9 
33H9 
77BMAX9       1.64 
/BRANCH 
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$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
C  NODLA9NODLAT                     1E-6 
C  NODLV9NODLAF                     1E-6 
C LEG9  NODLAT                     41772.                                      1 
C LEG9  LAMD9                     100000. 
C LAMD9 NODLAT                                                        10.      2 
$VINTAGE, 0, 
C BUS-->BUS-->BUS-->BUS-->Is--->PHIs->                                         O 
93LEG9  NODLAT             50.   51.8                                          1 
C <------------><--------------> 
        0.000000      0.000000 
       10.000000     41.335522 
       20.000000     49.025365 
       30.000000     52.266493 
       40.000000     54.053257 
       50.000000     55.185182 
      100.000000     57.597470 
      200.000000     58.884466 
      300.000000     59.326342 
      400.000000     59.549776 
      500.000000     59.684646 
      600.000000     59.774900 
     1200.000000     60.001732 
     2400.000000     60.115795 
     4800.000000     60.172989 
            9999 
/SOURCE 
C < n 1><>< Ampl.  >< Freq.  ><Phase/T0><   A1   ><   T1   >< TSTART >< TSTOP  > 
60LEG9  -1                                                                   99. 
/SWITCH 
C < n 1>< n 2>< Tclose ><Top/Tde ><   Ie   ><Vf/CLOP ><  type  > 
  NODLAFLEG9                                          MEASURING                1 
$EOF   User-supplied header cards follow.         21-Oct-02  19.30.22 
ARG, NODLAF, NODLAT 
 

Appendix A.11: TCSVB.PCH 
TACS model for core section No.10 of shell-form transformer 
 
/TACS 
98DVV     =NODLAF-NODLAT 
 1LAMDV   +DVV                                        1. 
        1. 
                  1. 
98BV      =LAMDV/34 /1 
77LAMDV       49.3 
98BOLDXV53        +BOLDV                                1.E-5 
98BOLDV 53                        +BV                   1.E-5 
98DBOLDV  =BOLDV  -BOLDXV 
98DBV     =BV     -BOLDV 
98BMAXAV53        +BMAXV 
98XX196V  =DBOLDV/ABS(DBOLDV)  *DBV /ABS(DBV) 
98ABSBV   =ABS(BV) 
98BMAXBV63+ABSBV  +BMAXAV                               +1 
98ZEROXV  = 0 
98BOLDMV  =ABS(BOLDV) 
98BMAXV 60+BOLDMV +BMAXBV +BMAXBV                                   XX196V 
98AV      =(1.9-BMAXV  )/1.9 
98HCV     =1.4*SQRT(BMAXV/1.9) 
98FV      =abs(BV   )/(BMAXV +0.0001) 
98XX108V  = BV  * DBV/ABS(BV)/ABS(DBV) 
98RHDV    =(1-FV  )*HCV  *BV   /ABS(BV   ) 
98LHDV    =-(HCV*(AV+1/AV))/((1-FV)/AV+AV/(1-FV))*BV/ABS(BV) 
98HV    60+LHDV   +ZEROXV +RHDV                                     XX108V 
98HYSCV   =HV*.67 
98EDDYV   =DVV/19391. 
98LEGV    =HYSCV+EDDYV 
33BV 
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33DVV 
33EDDYV 
33HYSCV 
33LAMDV 
33LEGV 
33HV 
/BRANCH 
$VINTAGE, 1, 
$VINTAGE, 0, 
93LEGV  NODLAT             50.   51.8                                          1 
        0.000000      0.000000 
       10.000000     41.335522 
       20.000000     49.025365 
       30.000000     52.266493 
       40.000000     54.053257 
       50.000000     55.185182 
      100.000000     57.597470 
      200.000000     58.884466 
      300.000000     59.326342 
      400.000000     59.549776 
      500.000000     59.684646 
      600.000000     59.774900 
     1200.000000     60.001732 
     2400.000000     60.115795 
     4800.000000     60.172989 
            9999 
/SOURCE 
60LEGV  -1                                                                   99. 
/SWITCH 
  NODLAFLEGV                                          MEASURING                1 
$EOF   User-supplied header cards follow.         21-Oct-02  14.06.01 
ARG, NODLAF, NODLAT 

 
 
Appendix A.12: RSA.PCH 
Frequency-dependent resistance model for phase-A series winding 
 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
  NODLFFRERSA1                     0.2098                                      0 
  RERSA1RERSA2                     3.8782                                      0 
  RERSA1RERSA2                                 0.3841                          0 
  RERSA2RERSA3                     11202.                                      0 
  RERSA2RERSA3                                  10.7159                        0 
  RERSA3NODLTT                                  -11.090                        0 
$VINTAGE, 0, 
$EOF   User-supplied header cards follow.         13-Oct-02  17.48.49 
ARG, NODLFF, NODLTT 
 

Appendix A.13: RSB.PCH 
Frequency-dependent resistance model for phase-B series winding 
 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
  NODLFFRERSB1                     0.2098                                      0 
  RERSB1RERSB2                     3.8782                                      0 
  RERSB1RERSB2                                 0.3841                          0 
  RERSB2RERSB3                     11202.                                      0 
  RERSB2RERSB3                                  10.7159                        0 
  RERSB3NODLTT                                  -11.090                        0 
$VINTAGE, 0, 
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$EOF   User-supplied header cards follow.         13-Oct-02  17.48.59 
ARG, NODLFF, NODLTT 
 

Appendix A.14: RSC.PCH 
Frequency-dependent resistance model for phase-C series winding 
 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
  NODLFFRERSC1                     0.2098                                      0 
  RERSC1RERSC2                     3.8782                                      0 
  RERSC1RERSC2                                 0.3841                          0 
  RERSC2RERSC3                     11202.                                      0 
  RERSC2RERSC3                                  10.7159                        0 
  RERSC3NODLTT                                  -11.090                        0 
$VINTAGE, 0, 
$EOF   User-supplied header cards follow.         13-Oct-02  17.49.14 
ARG, NODLFF, NODLTT 
 

Appendix A.15: RCA.PCH 
Frequency-dependent resistance model for phase-A common winding 
 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
  NODLFFRERCA1                     0.0545                                      0 
  RERCA1RERCA2                     0.9874                                      0 
  RERCA1RERCA2                                 0.0993                          0 
  RERCA2RERCA3                     11439.                                      0 
  RERCA2RERCA3                                 5.5231                          0 
  RERCA3NODLTT                                 -5.620                          0 
$VINTAGE, 0, 

$EOF   User-supplied header cards follow.         13-Oct-02  17.56.24 
ARG, NODLFF, NODLTT 
 

Appendix A.16: RCB.PCH 
Frequency-dependent resistance model for phase-B common winding 
 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
  NODLFFRERCB1                     0.0545                                      0 
  RERCB1RERCB2                     0.9874                                      0 
  RERCB1RERCB2                                 0.0993                          0 
  RERCB2RERCB3                     11439.                                      0 
  RERCB2RERCB3                                 5.5231                          0 
  RERCB3NODLTT                                 -5.620                          0 
$VINTAGE, 0, 
$EOF   User-supplied header cards follow.         13-Oct-02  17.56.34 
ARG, NODLFF, NODLTT 
 

Appendix A.17: RCC.PCH 
Frequency-dependent resistance model for phase-C common winding 
 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
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  NODLFFRERCC1                     0.0545                                      0 
  RERCC1RERCC2                     0.9874                                      0 
  RERCC1RERCC2                                 0.0993                          0 
  RERCC2RERTA3                     11439.                                      0 
  RERCC2RERTA3                                 5.5231                          0 
  RERCC3NODLTT                                 -5.620                          0 
$VINTAGE, 0, 
$EOF   User-supplied header cards follow.         13-Oct-02  17.48.36 
ARG, NODLFF, NODLTT 
 

Appendix A.18: RTA.PCH 
Frequency-dependent resistance model for phase-A tertiary winding 
 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
  NODLFFRERTA1                    0.0175                                       0 
  RERTA1RERTA2                    0.3158                                       0 
  RERTA1RERTA2                                 0.0319                          0 
  RERTA2RERTA3                    11581.                                       0 
  RERTA2RERTA3                                   3.1521                        0 
  RERTA3NODLTT                                  -3.183                         0 
$VINTAGE, 0, 
$EOF   User-supplied header cards follow.         13-Oct-02  17.49.25 
ARG, NODLFF, NODLTT 
 

Appendix A.19: RTB.PCH 
Frequency-dependent resistance model for phase-B tertiary winding 
 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
  NODLFFRERTB1                    0.0175                                       0 
  RERTB1RERTB2                    0.3158                                       0 
  RERTB1RERTB2                                 0.0319                          0 
  RERTB2RERTB3                    11581.                                       0 
  RERTB2RERTB3                                   3.1521                        0 
  RERTB3NODLTT                                  -3.183                         0 
$VINTAGE, 0, 
$EOF   User-supplied header cards follow.         13-Oct-02  17.49.37 
ARG, NODLFF, NODLTT 
 

Appendix A.20: RTC.PCH 
Frequency-dependent resistance model for phase-C tertiary winding 
 
/BRANCH 
$VINTAGE, 1, 
C        1         2         3         4         5         6         7         8 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C Bus-->Bus-->Bus-->Bus--><--------------R<--------------L<--------------C     O 
  NODLFFRERTC1                    0.0175                                       0 
  RERTC1RERTC2                    0.3158                                       0 
  RERTC1RERTC2                                 0.0319                          0 
  RERTC2RERTC3                    11581.                                       0 
  RERTC2RERTC3                                   3.1521                        0 
  RERTC3NODLTT                                  -3.183                         0 
$VINTAGE, 0, 
$EOF   User-supplied header cards follow.         13-Oct-02  17.49.50 
ARG, NODLFF, NODLTT 
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APPENDIX B: MATLAB CODE LISTING 
 
Appendix B.1: TRA5C5D1.m 
Parameter Estimation of B-H curve for Five-Legged Core Transformer  
 
warning off 
clear 
clc 
format compact;format short 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1;A(5)=1;A(6)=1;A(7)=1; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.725;L(5)=1.725;L(6)=2.21;L(7)=2.21; 
% peaki=76.17 and 278.90  
irms=[105.020 224.112] 
x0=[4.2 .42];   %Starting Guess 
%options=optimset('LargeScale','off','MaxIter',1000) 
options.LargeScale='off' 
options=optimset('Display','iter');   % Option to display output 
AA=[];bb=[];Aeq=[];beq=[]; 
lb=[.5 .01];ub=[20 .6]; 
[x,fval,exitflag,output]= fmincon('TRA5C5D1fun',x0,AA,bb,Aeq,beq,lb,ub)  
a=x(1) 
b=x(2) 
N=34 
V=1.0;RMSi=0;RMSlam=0;init=0;  
 
for ang=0:pi/40:pi*1-pi/40 
x0=[init ang a b V];   %Starting Guessoptions.LargeScale='off'; 
options=optimset('Display','iter');   % Option to display output 
AA=[];bb=[];Aeq=[];beq=[]; 
lb=[-55 ang a b V];ub=[55 ang a b V]; 
%[x,fval,exitflag,output]= 
fmincon('TRA5C5Ffun',x0,AA,bb,Aeq,beq,lb,ub,'TRA5C5Ftestcon')  
[y,fval]= fmincon('TRA5C5F1fun',x0,AA,bb,Aeq,beq,lb,ub)  
 
init=y(1); 
lamdax=y(1); 
 
lamda(1)=sin(ang)*51.77*V; 
lamda(2)=sin(ang-pi*2/3)*51.77*V; 
lamda(3)=sin(ang+pi*2/3)*51.77*V; 
lamda(4)=-(lamda(1)/3-lamda(2)/3-lamdax); 
lamda(5)=-(lamda(2)/3-lamda(3)/3-lamdax); 
lamda(6)=-(lamda(3)/3-lamda(1)/3-lamdax); 
lamda(7)=lamda(6); 
B(1)=lamda(1)/N/A(1); 
B(2)=lamda(2)/N/A(2); 
B(3)=lamda(3)/N/A(3); 
B(4)=lamda(4)/N/A(4); 
B(5)=lamda(5)/N/A(5); 
B(6)=lamda(6)/N/A(6); 
B(7)=B(6); 
 
i=L*a.*B./(1-abs(B).*b); 
 
ABSi(1)=i(1)+i(6)+i(7)-i(3); 
ABSi(2)=i(2)+i(4)-i(1); 
ABSi(3)=i(3)+i(5)-i(2); 
RMSi=RMSi+ABSi.^2; 
RMSlam=RMSlam+lamda(1)^2; 
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end 
 
RMSi=sqrt(RMSi./40) 
RMSlam=sqrt(RMSlam/20) 
 
AVGi=(RMSi(1)+RMSi(2)+RMSi(3))/3 
difi1=abs(irms(1)-AVGi) 
 
V=1.1;RMSi=0;RMSlam=0;init=0;  
for ang=0:pi/40:pi*1-pi/40 
 
x0=[init ang a b V];   %Starting Guessoptions.LargeScale='off'; 
options=optimset('Display','iter');   % Option to display output 
AA=[];bb=[];Aeq=[];beq=[]; 
lb=[-60 ang a b V];ub=[60 ang a b V]; 
%[x,fval,exitflag,output]= 
fmincon('TRA5C5Ffun',x0,AA,bb,Aeq,beq,lb,ub,'TRA5C5Ftestcon')  
[y,fval]= fmincon('TRA5C5F1fun',x0,AA,bb,Aeq,beq,lb,ub)  
init=y(1); 
lamdax=y(1); 
 
lamda(1)=sin(ang)*51.77*V; 
lamda(2)=sin(ang-pi*2/3)*51.77*V; 
lamda(3)=sin(ang+pi*2/3)*51.77*V; 
lamda(4)=-(lamda(1)/3-lamda(2)/3-lamdax); 
lamda(5)=-(lamda(2)/3-lamda(3)/3-lamdax); 
lamda(6)=-(lamda(3)/3-lamda(1)/3-lamdax); 
lamda(7)=lamda(6); 
B(1)=lamda(1)/N/A(1); 
B(2)=lamda(2)/N/A(2); 
B(3)=lamda(3)/N/A(3); 
B(4)=lamda(4)/N/A(4); 
B(5)=lamda(5)/N/A(5); 
B(6)=lamda(6)/N/A(6); 
B(7)=B(6); 
 
i=L*a.*B./(1-abs(B).*b); 
 
ABSi(1)=i(1)+i(6)+i(7)-i(3); 
ABSi(2)=i(2)+i(4)-i(1); 
ABSi(3)=i(3)+i(5)-i(2); 
RMSi=RMSi+ABSi.^2; 
RMSlam=RMSlam+lamda(1)^2; 
end 
 
RMSi=sqrt(RMSi./40) 
RMSlam=sqrt(RMSlam/40) 
 
AVGi2=(RMSi(1)+RMSi(2)+RMSi(3))/3 
difi2=abs(irms(2)-AVGi2) 
warning on 
 
a 
b 
 

 
Appendix B.2: TRA5S1fun.m 
Parameter estimation of B-H curve for Five-Legged Core Transformer 
 
function F = TRA5C5D1fun(x); 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1;A(5)=1;A(6)=1;A(7)=1; 
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L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.725;L(5)=1.725;L(6)=2.21;L(7)=2.21; 
% peaki=76.17 and 278.90  a=5.5  b=0.54 
irms=[105.020 224.112]; 
a=x(1); 
b=x(2); 
N=34; 
V=1.0;RMSi=0;RMSlam=0;init=0;  
for ang=0:pi/40:pi*1-pi/40 
 
x0=[init ang a b V];   %Starting Guessoptions.LargeScale='off'; 
options=optimset('Display','iter');   % Option to display output 
AA=[];bb=[];Aeq=[];beq=[]; 
lb=[-55 ang a b V];ub=[55 ang a b V]; 
%[x,fval,exitflag,output]= 
fmincon('TRA5C5Ffun',x0,AA,bb,Aeq,beq,lb,ub,'TRA5C5Ftestcon')  
[y,fval]= fmincon('TRA5C5F1fun',x0,AA,bb,Aeq,beq,lb,ub)  
 
init=y(1); 
lamdax=y(1); 
 
lamda(1)=sin(ang)*51.77*V; 
lamda(2)=sin(ang-pi*2/3)*51.77*V; 
lamda(3)=sin(ang+pi*2/3)*51.77*V; 
lamda(4)=-(lamda(1)/3-lamda(2)/3-lamdax); 
lamda(5)=-(lamda(2)/3-lamda(3)/3-lamdax); 
lamda(6)=-(lamda(3)/3-lamda(1)/3-lamdax); 
lamda(7)=lamda(6); 
B(1)=lamda(1)/N/A(1); 
B(2)=lamda(2)/N/A(2); 
B(3)=lamda(3)/N/A(3); 
B(4)=lamda(4)/N/A(4); 
B(5)=lamda(5)/N/A(5); 
B(6)=lamda(6)/N/A(6); 
B(7)=B(6); 
 
i=L*a.*B./(1-abs(B).*b); 
ff=(i(4)+i(5)+i(6)+i(7)); 
 
ABSi(1)=i(1)+i(6)+i(7)-i(3); 
ABSi(2)=i(2)+i(4)-i(1); 
ABSi(3)=i(3)+i(5)-i(2); 
RMSi=RMSi+ABSi.^2; 
RMSlam=RMSlam+lamda(1)^2; 
end 
 
RMSi=sqrt(RMSi./40); 
AVGi=(RMSi(1)+RMSi(2)+RMSi(3))/3; 
 
V=1.1;RMSi=0;RMSlam=0;init=0;  
for ang=0:pi/40:pi*1-pi/40 
x0=[init ang a b V];   %Starting Guessoptions.LargeScale='off'; 
options=optimset('Display','iter');   % Option to display output 
AA=[];bb=[];Aeq=[];beq=[]; 
lb=[-55 ang a b V];ub=[55 ang a b V]; 
%[x,fval,exitflag,output]= 
fmincon('TRA5C5Ffun',x0,AA,bb,Aeq,beq,lb,ub,'TRA5C5Ftestcon')  
[y,fval]= fmincon('TRA5C5F1fun',x0,AA,bb,Aeq,beq,lb,ub)  
 
init=y(1); 
lamdax=y(1); 
 
lamda(1)=sin(ang)*51.77*V; 
lamda(2)=sin(ang-pi*2/3)*51.77*V; 
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lamda(3)=sin(ang+pi*2/3)*51.77*V; 
lamda(4)=-(lamda(1)/3-lamda(2)/3-lamdax); 
lamda(5)=-(lamda(2)/3-lamda(3)/3-lamdax); 
lamda(6)=-(lamda(3)/3-lamda(1)/3-lamdax); 
lamda(7)=lamda(6); 
B(1)=lamda(1)/N/A(1); 
B(2)=lamda(2)/N/A(2); 
B(3)=lamda(3)/N/A(3); 
B(4)=lamda(4)/N/A(4); 
B(5)=lamda(5)/N/A(5); 
B(6)=lamda(6)/N/A(6); 
B(7)=B(6); 
 
i=L*a.*B./(1-abs(B).*b); 
ff=(i(4)+i(5)+i(6)+i(7)); 
 
ABSi(1)=i(1)+i(6)+i(7)-i(3); 
ABSi(2)=i(2)+i(4)-i(1); 
ABSi(3)=i(3)+i(5)-i(2); 
RMSi=RMSi+ABSi.^2; 
RMSlam=RMSlam+lamda(1)^2; 
end 
 
RMSi=sqrt(RMSi./40); 
AVGi2=(RMSi(1)+RMSi(2)+RMSi(3))/3; 
F=(irms(1)-AVGi)^2+(irms(2)-AVGi2)^2; 
 
 
function F = TRA5C5Ffun(y); 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1.;A(5)=1.;A(6)=1.;A(7)=1.; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.725;L(5)=1.725;L(6)=2.21;L(7)=2.21; 
ang=y(2); 
a = y(3); 
b = y(4); 
N=34; 
V=y(5); 
 
lamda(4)=y(1); 
lamda(1)=sin(ang)*51.77*V; 
lamda(2)=sin(ang-pi*2/3)*51.77*V; 
lamda(3)=sin(ang+pi*2/3)*51.77*V; 
B(1)=(lamda(1))/N/A(1); 
B(2)=(lamda(2))/N/A(2); 
B(3)=(lamda(3))/N/A(3); 
B(4)=(-lamda(1)+lamda(4))/N/A(4); 
B(5)=(lamda(3)+lamda(4))/N/A(5); 
B(6)=(lamda(4))/N/A(6); 
B(7)=B(6); 
 
P=(1-abs(B)*b)./a; 
R=L./P./A/N; 
 
newld4=(-lamda(2)*R(4)-lamda(3)*(R(4)+R(5)))/(R(4)+R(5)+R(6)+R(7)); 
F=(lamda(4)-newld4)^2; 
 
 

Appendix B.3: LTRC5.m 
Parameter estimation of Core loss curve for Five-Legged Core Transformer 
 
clear 
clc 
format compact;format short 
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A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1.;A(5)=1.;A(6)=1.;A(7)=1.; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.725;L(5)=1.725;L(6)=2.21;L(7)=2.21; 
P=[297600 402240] 
N=34; 
x0=[10000 .5];   %Starting Guess 
%options=optimset('LargeScale','off','MaxIter',1000) 
options.LargeScale='off' 
options=optimset('Display','iter');   % Option to display output 
AA=[];bb=[];Aeq=[];beq=[]; 
lb=[1000 .1];ub=[30000 3]; 
[x,fval,exitflag,output]= fmincon('LTRC5fun',x0,AA,bb,Aeq,beq,lb,ub)  
c=x(1) 
d=x(2) 
 
V=1.0; 
B =[1.523 1.523 1.523 0.951 0.951 0.608 0.608]; 
PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5)+c*B(6)/(1-d*B(6))*A(6)*L(6)+c*B(7)/(1-
d*B(7))*A(7)*L(7); 
P1=PL1+PL2 
V=1.1; 
B =[1.675 1.675 1.675 1.031 1.031 0.673 0.673]; 
PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5)+c*B(6)/(1-d*B(6))*A(6)*L(6)+c*B(7)/(1-
d*B(7))*A(7)*L(7); 
P2=PL1+PL2 
 
df1=abs(P1-P(1)) 
df2=abs(P2-P(2)) 
 
By=0:.05:1.8; 
px=(By*x(1))./(1-By*x(2)); 
plot(px,By,'-','LineWidth',2) 
xlabel('P (Watt/cubit unit)') 
ylabel('B (T)') 
%title('B-P Curve') 
%axis([0 1.e6 0 1.6 ]) 
grid 
 

Appendix B.4: LTRC5fun.m 
Parameter estimation of core loss curve for Five-Legged Core Transformer 
 
function F = LTRC5fun(x); 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1.;A(5)=1.;A(6)=1.;A(7)=1.; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.725;L(5)=1.725;L(6)=2.21;L(7)=2.21; 
P=[297600 402240]; 
c=x(1); 
d=x(2); 
V=1.0; 
B =[1.523 1.523 1.523 0.950 0.950 0.611 0.611]; 
PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5)+c*B(6)/(1-d*B(6))*A(6)*L(6)+c*B(7)/(1-
d*B(7))*A(7)*L(7); 
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P1=PL1+PL2; 
V=1.1; 
B =[1.675 1.675 1.675 1.027 1.027 0.681 0.681]; 
PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5)+c*B(6)/(1-d*B(6))*A(6)*L(6)+c*B(7)/(1-
d*B(7))*A(7)*L(7); 
P2=PL1+PL2; 
F=(P1-P(1))^2+(P2-P(2))^2;  
 

 
Appendix B.5: AHC5.m 
Parameter estimation of Hysteresis Loss curve for Five-Legged Core Transformer 
 
clear 
clc 
c =  11567 
d =    0.4694 
fact=c/(1-d) 
Bmax=.0:0.05:1.8 
Pc=c*Bmax./(1-d*Bmax); 
Pe=fact*0.4755*Bmax.^2; 
Ph=Pc-Pe; 
 
x0=[10000 .5];   %Starting Guess 
options=optimset('TolFun',1.e-50); 
[x,resnorm,residual,exitflag,output]=lsqcurvefit('Acurvfit2',x0,Bmax,Ph
) 
%Hx=(B1*x(1))./(1-B1*x(2)) 
a=x(1) 
b=x(2) 
 
Ph1=a*Bmax./(1-b*Bmax); 
 
plot(Pc,Bmax,'.',Pe,Bmax,':',Ph1,Bmax,'LineWidth',2) 
xlabel('P (Watt/cubit unit)') 
ylabel('B (T)') 
%title('B-P Curve') 
%axis([0 300000 0 1.7 ]) 
grid 
h = legend('Pc','Pe','Ph') 
 
 

Appendix B.6: Acurvfit2.m 
Parameter estimation of hysteresis loss curve for Five-Legged Core Transformer 
 
function F = curvfit2(x,B); 
F=(B*x(1))./(1-B*x(2)); 
 

Appendix B.7: AhC5A.m 
Estimation of maximum coercive force for Five-Legged Core Transformer 
 
clear 
clc 
Btop=1.9 
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a2 =  6045 
b2 =    0.4694 
Pgiven=a2*1.52/(1-b2*1.52)/60/34 
a1 =    7.8048 
b1 =    0.5778 
 
for Bmax=.1:0.1:1.8 
Bmax1=Bmax+0.0001; 
a=(Btop-Bmax)/Btop/1; 
Pgiven=a2*Bmax/(1-b2*Bmax)/60/34; 
PL=0; 
 
B=0:0.05:Bmax; 
H=a1*B./(1-b1*B); 
for Hc=.01:.01:10; 
b=Hc*(a+1/a); 
f=B./Bmax1; 
%f=B./Btop; 
   LHD=-b./((1-f)./a+a./(1-f)); 
   RHD=(1-f).*Hc; 
%   LHD(Bmax/0.05+1)=0;RHD(Bmax/0.05+1)=0; 
  LH=H+LHD; 
   RH=H+RHD; 
   DH=RH-LH; 
   P=0.05*DH; 
   PL=sum(P)*2; 
Ahys=LH+RH; 
if PL > Pgiven  
   break; end 
PL=0; 
end 
%Bmax,a,b,Hc,Pgiven,PL 
Ahys=(LH+RH)/2; 
Dif=H-Ahys; 
%plot(H,B,LHD,B,':',RHD,B,'-.','LineWidth',2) 
%plot(H,B,LH,B,':',RH,B,'-.','LineWidth',2) 
%plot(H,B,Ahys,B,Dif,B,':','LineWidth',2) 
plot(Hc,Bmax,'o','LineWidth',2) 
hold on    
%h = legend('Saturation Curve','Left Disp.','Right Disp.');  
%h = legend('Saturation Curve','Left Loop','Right Loop');  
end 
xlabel('Hc (A/m)') 
ylabel('Bmax (T)') 
%title('Hysteresis Loop') 
%axis([-20 50 0 2.0]) 
h = legend('Required Hc for Loss');  
grid 
bb=0:.1:1.8; 
hh=(bb/Btop).^(.5)*2.7; 
hhlin=(bb/Btop)*2.7; 
plot(hh,bb,hhlin,bb,':','LineWidth',2) 
hold off    
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Appendix B.8: TRA5C3A1.m 
Parameter estimation of B-H curve for Three-Legged Core Transformer 
 
clear 
clc 
format compact;format short 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1.;A(5)=1.; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.725;L(5)=1.725; 
% peaki=76.17 and 278.90  
irms=[105.02 224.112] 
x0=[5. .5]   %Starting Guess 
%options=optimset('LargeScale','off','MaxIter',1000) 
options.LargeScale='off' 
options=optimset('Display','iter');   % Option to display output 
AA=[];bb=[];Aeq=[];beq=[]; 
lb=[1. .4];ub=[8 .8]; 
[x,fval,exitflag,output]= fmincon('TRA5C3A1fun',x0,AA,bb,Aeq,beq,lb,ub)  
 
a=x(1) 
b=x(2) 
N=34 
V=1.0;RMSi=0;RMSlam=0; 
for ang=0:pi/40:pi*1-pi/40 
lamda(1)=sin(ang)*51.77; 
lamda(2)=sin(ang-pi*2/3)*51.77; 
lamda(3)=sin(ang+pi*2/3)*51.77; 
B(1)=abs(lamda(1))/N/A(1);B(2)=abs(lamda(2))/N/A(2);B(3)=abs(lamda(3))/N/A(3); 
B(4)=abs(lamda(1))/N/A(4); 
B(5)=abs(lamda(3))/N/A(5); 
P(1)=(1-B(1)*b)/a;P(2)=(1-B(2)*b)/a;P(3)=(1-B(3)*b)/a; 
P(4)=(1-B(4)*b)/a;P(5)=(1-B(5)*b)/a; 
H=B./P; 
R=L./P./A/N; 
i(1)=(R(1)+R(4))*lamda(1); 
i(2)=R(2)*lamda(2); 
i(3)=(R(3)+R(5))*lamda(3); 
ABSi(1)=abs(i(1)-i(3)); 
ABSi(2)=abs(i(2)-i(1)); 
ABSi(3)=abs(i(3)-i(2)); 
RMSi=RMSi+ABSi.^2; 
RMSlam=RMSlam+lamda(1)^2; 
end 
 
RMSi=sqrt(RMSi./40) 
RMSlam=sqrt(RMSlam/40) 
 
AVGi=(RMSi(1)+RMSi(2)+RMSi(3))/3 
difi1=abs(irms(1)-AVGi) 
lamda(1)=51.77; 
lamda(2)=51.77*(-.5-sqrt(3)/2*j); 
lamda(3)=51.77*(-.5+sqrt(3)/2*j); 
B(1:3)=abs(lamda(1:3))./N/A(1:3); 
B(4)=abs(lamda(1))/N/A(4); 
B(5)=abs(lamda(3))/N/A(5); 
B 
 
V=1.1;RMSi=0;RMSlam=0; 
for ang=0:pi/40:pi*1-pi/40 
lamda(1)=sin(ang)*51.77*1.1; 
lamda(2)=sin(ang-pi*2/3)*51.77*1.1; 
lamda(3)=sin(ang+pi*2/3)*51.77*1.1; 
B(1)=abs(lamda(1))/N/A(1);B(2)=abs(lamda(2))/N/A(2);B(3)=abs(lamda(3))/N/A(3); 
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B(4)=abs(lamda(1))/N/A(4); 
B(5)=abs(lamda(3))/N/A(5); 
P(1)=(1-B(1)*b)/a;P(2)=(1-B(2)*b)/a;P(3)=(1-B(3)*b)/a; 
P(4)=(1-B(4)*b)/a;P(5)=(1-B(5)*b)/a; 
H=B./P; 
R=L./P./A/N; 
i(1)=(R(1)+R(4))*lamda(1); 
i(2)=R(2)*lamda(2); 
i(3)=(R(3)+R(5))*lamda(3); 
ABSi(1)=abs(i(1)-i(3)); 
ABSi(2)=abs(i(2)-i(1)); 
ABSi(3)=abs(i(3)-i(2)); 
RMSi=RMSi+ABSi.^2; 
RMSlam=RMSlam+lamda(1)^2; 
end 
 
RMSi=sqrt(RMSi./40) 
RMSlam=sqrt(RMSlam/40) 
 
AVGi2=(RMSi(1)+RMSi(2)+RMSi(3))/3 
difi2=abs(irms(2)-AVGi2) 
lamda(1)=51.77*1.1; 
lamda(2)=51.77*(-.5-sqrt(3)/2*j)*1.1; 
lamda(3)=51.77*(-.5+sqrt(3)/2*j)*1.1; 
B(1:3)=abs(lamda(1:3))./N/A(1:3); 
B(4)=abs(lamda(1))/N/A(4); 
B(5)=abs(lamda(3))/N/A(5); 
B 

 
Appendix B.9: TRA5C3A1fun.m 
Parameter estimation of B-H  curve for Three-Legged Core Transformer 
 
function F = TRA5C3A1fun(x); 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1.;A(5)=1.; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.725;L(5)=1.725; 
% peaki=76.17 and 278.90  a=5.5  b=0.54 
irms=[105.02 224.112]; 
 
a=x(1); 
b=x(2); 
N=34; 
 
V=1.0;RMSi=0;RMSlam=0; 
for ang=0:pi/40:pi*1-pi/40 
lamda(1)=sin(ang)*51.77; 
lamda(2)=sin(ang-pi*2/3)*51.77; 
lamda(3)=sin(ang+pi*2/3)*51.77; 
B(1)=abs(lamda(1))/N/A(1);B(2)=abs(lamda(2))/N/A(2);B(3)=abs(lamda(3))/N/A(3); 
B(4)=abs(lamda(1))/N/A(4); 
B(5)=abs(lamda(3))/N/A(5); 
P(1)=(1-B(1)*b)/a;P(2)=(1-B(2)*b)/a;P(3)=(1-B(3)*b)/a; 
P(4)=(1-B(4)*b)/a;P(5)=(1-B(5)*b)/a; 
R=L./P./A/N; 
i(1)=(R(1)+R(4))*lamda(1); 
i(2)=R(2)*lamda(2); 
i(3)=(R(3)+R(5))*lamda(3); 
ABSi(1)=abs(i(1)-i(3)); 
ABSi(2)=abs(i(2)-i(1)); 
ABSi(3)=abs(i(3)-i(2)); 
RMSi=RMSi+ABSi.^2; 
end 
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RMSi=sqrt(RMSi./40); 
AVGi=(RMSi(1)+RMSi(2)+RMSi(3))/3; 
 
RMSi=0; 
for ang=0:pi/40:pi*1-pi/40 
lamda(1)=sin(ang)*51.77*1.1; 
lamda(2)=sin(ang-pi*2/3)*51.77*1.1; 
lamda(3)=sin(ang+pi*2/3)*51.77*1.1; 
B(1)=abs(lamda(1))/N/A(1);B(2)=abs(lamda(2))/N/A(2);B(3)=abs(lamda(3))/N/A(3); 
B(4)=abs(lamda(1))/N/A(4); 
B(5)=abs(lamda(3))/N/A(5); 
P(1)=(1-B(1)*b)/a;P(2)=(1-B(2)*b)/a;P(3)=(1-B(3)*b)/a; 
P(4)=(1-B(4)*b)/a;P(5)=(1-B(5)*b)/a; 
R=L./P./A/N; 
i(1)=(R(1)+R(4))*lamda(1); 
i(2)=R(2)*lamda(2); 
i(3)=(R(3)+R(5))*lamda(3); 
ABSi(1)=abs(i(1)-i(3)); 
ABSi(2)=abs(i(2)-i(1)); 
ABSi(3)=abs(i(3)-i(2)); 
RMSi=RMSi+ABSi.^2; 
end 
 
RMSi=sqrt(RMSi./40); 
AVGi2=(RMSi(1)+RMSi(2)+RMSi(3))/3; 
 
F=(irms(1)-AVGi)^2+(irms(2)-AVGi2)^2; 
 
 

Appendix B.10: LTC3.m 
Parameter estimation of core loss curve for Three-Legged Core Transformer 
 
clear 
clc 
format compact;format short 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1.;A(5)=1.; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.725;L(5)=1.725; 
P=[297600 402240] 
N=34; 
x0=[10000 .5];   %Starting Guess 
%options=optimset('LargeScale','off','MaxIter',1000) 
options.LargeScale='off' 
options=optimset('Display','iter');   % Option to display output 
AA=[];bb=[];Aeq=[];beq=[]; 
lb=[1000 .1];ub=[30000 3]; 
%[x,fval,exitflag,output]= fmincon('LTRC3fun',x0,AA,bb,Aeq,beq,lb,ub)  
[x,fval,exitflag,output]= fmincon('LTRC3fun',x0,AA,bb,Aeq,beq,lb,ub)  
c=x(1) 
d=x(2) 
 
V=1.0; 
B =[1.5226    1.5226    1.5226    1.5226    1.5226]; 
PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5); 
P1=PL1+PL2 
V=1.1; 
B =[1.6749    1.6749    1.6749    1.6749    1.6749]; 
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PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5); 
P2=PL1+PL2 
 
df1=abs(P1-P(1)) 
df2=abs(P2-P(2)) 
 
 
By=0:.05:1.8; 
px=(By*x(1))./(1-By*x(2)); 
plot(px,By,'-','LineWidth',2) 
xlabel('Pc (watt/cubit unit)') 
ylabel('B (Wb-t)') 
title('B-P Curve') 
%axis([0 2 0 2.0]) 
grid 
 
 

Appendix B.11: LTC3fun.m 
Parameter estimation of core loss curve for Three-Legged Core Transformer 
 
function F = LTRC3fun(x); 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1.;A(5)=1.; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.725;L(5)=1.725; 
P=[297600 402240]; 
c=x(1); 
d=x(2); 
V=1.0; 
B =[1.5226    1.5226    1.5226    1.5226    1.5226]; 
PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5); 
P1=PL1+PL2; 
V=1.1; 
B =[1.6749    1.6749    1.6749    1.6749    1.6749]; 
PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5); 
P2=PL1+PL2; 
F=(P1-P(1))^2+(P2-P(2))^2;  
 

Appendix B.12: AHC3.m 
Parameter estimation of Hysteresis Loss curve for Three-Legged Core Transformer 
 
clear 
clc 
c =  1.0592e+004 
d =    0.4272 
fact=c/(1-d) 
Bmax=.0:0.05:1.8 
Pc=c*Bmax./(1-d*Bmax); 
Pe=fact*0.4755*Bmax.^2; 
Ph=Pc-Pe; 
 
x0=[10000 .5];   %Starting Guess 
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options=optimset('TolFun',1.e-50); 
[x,resnorm,residual,exitflag,output]=lsqcurvefit('Acurvfit2',x0,Bmax,Ph
) 
%Hx=(B1*x(1))./(1-B1*x(2)) 
a=x(1) 
b=x(2) 
 
Ph1=a*Bmax./(1-b*Bmax); 
 
plot(Pc,Bmax,'.',Pe,Bmax,':',Ph1,Bmax,'LineWidth',2) 
xlabel('P (watt/cubit unit)') 
ylabel('B (T)') 
title('B-P Curve') 
%axis([0 300000 0 1.7 ]) 
grid 
h = legend('Pc','Pe','Ph'); 
 
 

Appendix B.13: Acurvfit2.m 
Parameter estimation of Hysteresis loss curve for Three-Legged Core Transformer 
 
function F = curvfit2(x,B); 
F=(B*x(1))./(1-B*x(2)); 
 

Appendix B.14: AhC3A.m 
Estimation of Maximum coercive force for Three-Legged Core Transformer 
 
clear 
clc 
Btop=1.9 
a2 =  5.1657e+003 
b2 =0.4596 
Pgiven=a2*1.52/(1-b2*1.52)/60/34 
 
 
for Bmax=.1:0.1:1.8 
Bmax1=Bmax+0.0001; 
a=(Btop-Bmax)/Btop/1; 
Pgiven=a2*Bmax/(1-b2*Bmax)/60/34; 
PL=0; 
a1 =  3.5880;b1 =  0.5854; 
B=0:0.05:Bmax; 
H=a1*B./(1-b1*B); 
for Hc=.01:.01:10; 
b=Hc*(a+1/a); 
f=B./Bmax1; 
%f=B./Btop; 
   LHD=-b./((1-f)./a+a./(1-f)); 
   RHD=(1-f).*Hc; 
%   LHD(Bmax/0.05+1)=0;RHD(Bmax/0.05+1)=0; 
  LH=H+LHD; 
   RH=H+RHD; 
   DH=RH-LH; 
   P=0.05*DH; 
   PL=sum(P)*2; 
Ahys=LH+RH; 
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if PL > Pgiven  
   break; end 
PL=0; 
end 
%Bmax,a,b,Hc,Pgiven,PL 
Ahys=(LH+RH)/2; 
Dif=H-Ahys; 
%plot(H,B,LHD,B,':',RHD,B,'-.','LineWidth',2) 
%plot(H,B,LH,B,':',RH,B,'-.','LineWidth',2) 
%plot(H,B,Ahys,B,Dif,B,':','LineWidth',2) 
plot(Hc,Bmax,'o','LineWidth',2) 
hold on    
%h = legend('Saturation Curve','Left Disp.','Right Disp.');  
%h = legend('Saturation Curve','Left Loop','Right Loop');  
end 
xlabel('Hc (A/m)') 
ylabel('Bmax (T)') 
%title('Hysteresis Loop') 
%axis([-20 50 0 2.0]) 
h = legend('Required Hc for Loss');  
grid 
bb=0:.1:1.8; 
hh=(bb/Btop).^(.5)*2.2; 
hhlin=(bb/Btop)*2.2; 
plot(hh,bb,hhlin,bb,':','LineWidth',2) 
hold off    
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Appendix B.15: TRA5S1.m 
Parameter estimation of B-H curve for Shell-form transformer  
 
clear 
clc 
format compact;format short 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1;A(5)=1;A(6)=1;A(7)=1.732;A(8)=1.732;A(9)=1;A(10)
=1; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.;L(5)=1.;L(6)=1.;L(7)=.67;L(8)=.67;L(9)=.67;L(10
)=.67; 
% peaki=76.17 and 278.90  
irms=[106.885 226.164] 
x0=[5. .5]   %Starting Guess 
%options=optimset('LargeScale','off','MaxIter',1000) 
options.LargeScale='off' 
options=optimset('Display','iter');   % Option to display output 
AA=[];bb=[];Aeq=[];beq=[]; 
lb=[.5 .1];ub=[20 .8]; 
[x,fval,exitflag,output]= fmincon('TRA5S1fun',x0,AA,bb,Aeq,beq,lb,ub)  
 
a=x(1) 
b=x(2) 
N=34 
V=1.0;RMSi=0;RMSlam=0; 
for ang=0:pi/40:pi*1-pi/40 
lamda(1)=sin(ang)*51.77; 
lamda(2)=sin(ang-pi*2/3)*51.77; 
lamda(3)=sin(ang+pi*2/3)*51.77; 
lamda(4)=lamda(1); 
lamda(5)=lamda(2); 
lamda(6)=lamda(3); 
lamda(7)=lamda(4)-lamda(5); 
lamda(8)=lamda(5)-lamda(6); 
lamda(9)=lamda(1); 
lamda(10)=lamda(3); 
B(1:10)=abs(lamda(1:10))./N/A(1:10); 
P(1:10)=(1-B(1:10)*b)./a; 
R=L./P./A/N; 
 
i(1)=(R(1)+R(9)+R(4)+R(7))*lamda(1)-R(7)*lamda(2); 
i(2)=(R(2)+R(7)+R(5)+R(8))*lamda(2)-R(7)*lamda(1)/2-R(8)*lamda(3); 
i(3)=(R(3)+R(8)+R(6)+R(10))*lamda(3)-R(8)*lamda(2); 
 
ABSi(1)=abs(i(1)-i(3)); 
ABSi(2)=abs(i(2)-i(1)); 
ABSi(3)=abs(i(3)-i(2)); 
 
B=lamda./N./A; 
i=a*B./(1-b*abs(B)).*L; 
BSi(1)=(i(1)+i(4)+i(9)+i(7)); 
BSi(2)=(i(2)+i(5)+i(8)-i(7)); 
BSi(3)=(i(3)+i(6)+i(10)-i(8)); 
ABSi(1)=abs(BSi(1)-BSi(3)); 
ABSi(2)=abs(BSi(2)-BSi(1)); 
ABSi(3)=abs(BSi(3)-BSi(2)); 
 
RMSi=RMSi+ABSi.^2; 
RMSlam=RMSlam+lamda(1)^2; 
end 
 
RMSi=sqrt(RMSi./40) 
RMSlam=sqrt(RMSlam/40) 
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AVGi1=(RMSi(1)+RMSi(2)+RMSi(3))/3 
difi1=abs(irms(1)-AVGi1) 
 
 
V=1.1;RMSi=0;RMSlam=0; 
for ang=0:pi/40:pi*1-pi/40 
lamda(1)=sin(ang)*51.77*V; 
lamda(2)=sin(ang-pi*2/3)*51.77*V; 
lamda(3)=sin(ang+pi*2/3)*51.77*V; 
lamda(4)=lamda(1); 
lamda(5)=lamda(2); 
lamda(6)=lamda(3); 
lamda(7)=lamda(4)-lamda(5); 
lamda(8)=lamda(5)-lamda(6); 
lamda(9)=lamda(1); 
lamda(10)=lamda(3); 
%%-------------------------------- 
B(1:10)=abs(lamda(1:10))./N/A(1:10); 
P(1:10)=(1-B(1:10)*b)./a; 
R=L./P./A/N; 
i(1)=(R(1)+R(9)+R(4)+R(7))*lamda(1)-R(7)*lamda(2); 
i(2)=(R(2)+R(7)+R(5)+R(8))*lamda(2)-R(7)*lamda(1)/2-R(8)*lamda(3); 
i(3)=(R(3)+R(8)+R(6)+R(10))*lamda(3)-R(8)*lamda(2); 
ABSi(1)=abs(i(1)-i(3)); 
ABSi(2)=abs(i(2)-i(1)); 
ABSi(3)=abs(i(3)-i(2)); 
%------------------------------------------ 
 
B=lamda./N./A; 
i=a*B./(1-b*abs(B)).*L; 
BSi(1)=(i(1)+i(4)+i(9)+i(7)); 
BSi(2)=(i(2)+i(5)+i(8)-i(7)); 
BSi(3)=(i(3)+i(6)+i(10)-i(8)); 
ABSi(1)=abs(BSi(1)-BSi(3)); 
ABSi(2)=abs(BSi(2)-BSi(1)); 
ABSi(3)=abs(BSi(3)-BSi(2)); 
 
RMSi=RMSi+ABSi.^2; 
RMSlam=RMSlam+lamda(1)^2; 
end 
 
RMSi=sqrt(RMSi./40) 
AVGi2=(RMSi(1)+RMSi(2)+RMSi(3))/3 
 
RMSlam=sqrt(RMSlam/40) 
 
difi2=abs(irms(2)-AVGi2) 
 

 
Appendix B.16: TRA5S1fun.m 
Parameter estimation of B-H  curve for Shell-form transformer  
 
function F = TRA5CS1fun(x); 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1;A(5)=1;A(6)=1;A(7)=1.732;A(8)=1.732;A(9)=1;A(10)
=1; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.;L(5)=1.;L(6)=1.;L(7)=.67;L(8)=.67;L(9)=.67;L(10
)=.67; 
% peaki=76.17 and 278.90  a=5.5  b=0.54 
irms=[106.885 226.164]; 
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a=x(1); 
b=x(2); 
N=34; 
 
V=1.0;RMSi=0;RMSlam=0; 
for ang=0:pi/40:pi*1-pi/40 
lamda(1)=sin(ang)*51.77; 
lamda(2)=sin(ang-pi*2/3)*51.77; 
lamda(3)=sin(ang+pi*2/3)*51.77; 
lamda(4)=lamda(1); 
lamda(5)=lamda(2); 
lamda(6)=lamda(3); 
lamda(7)=lamda(4)-lamda(5); 
lamda(8)=lamda(5)-lamda(6); 
lamda(9)=lamda(1); 
lamda(10)=lamda(3); 
 
B(1:10)=abs(lamda(1:10))./N/A(1:10); 
P(1:10)=(1-B(1:10)*b)./a; 
R=L./P./A/N; 
 
i(1)=(R(1)+R(9)+R(4)+R(7))*lamda(1)-R(7)*lamda(2); 
i(2)=(R(2)+R(7)+R(5)+R(8))*lamda(2)-R(7)*lamda(1)-R(8)*lamda(3); 
i(3)=(R(3)+R(8)+R(6)+R(10))*lamda(3)-R(8)*lamda(2); 
 
ABSi(1)=abs(i(1)-i(3)); 
ABSi(2)=abs(i(2)-i(1)); 
ABSi(3)=abs(i(3)-i(2)); 
 
B=lamda./N./A; 
i=a*B./(1-b*abs(B)).*L; 
BSi(1)=(i(1)+i(4)+i(9)+i(7)); 
BSi(2)=(i(2)+i(5)+i(8)-i(7)); 
BSi(3)=(i(3)+i(6)+i(10)-i(8)); 
ABSi(1)=abs(BSi(1)-BSi(3)); 
ABSi(2)=abs(BSi(2)-BSi(1)); 
ABSi(3)=abs(BSi(3)-BSi(2)); 
 
RMSi=RMSi+ABSi.^2; 
RMSlam=RMSlam+lamda(1)^2; 
end 
 
RMSi=sqrt(RMSi./40); 
AVGi1=(RMSi(1)+RMSi(2)+RMSi(3))/3; 
 
V=1.1;RMSi=0;RMSlam=0; 
for ang=0:pi/40:pi*1-pi/40 
lamda(1)=sin(ang)*51.77*V; 
lamda(2)=sin(ang-pi*2/3)*51.77*V; 
lamda(3)=sin(ang+pi*2/3)*51.77*V; 
lamda(4)=lamda(1); 
lamda(5)=lamda(2); 
lamda(6)=lamda(3); 
lamda(7)=lamda(4)-lamda(5); 
lamda(8)=lamda(5)-lamda(6); 
lamda(9)=lamda(1); 
lamda(10)=lamda(3); 
 
B(1:10)=abs(lamda(1:10))./N/A(1:10); 
P(1:10)=(1-B(1:10)*b)./a; 
R=L./P./A/N; 
 
i(1)=(R(1)+R(9)+R(4)+R(7))*lamda(1)-R(7)*lamda(2); 
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i(2)=(R(2)+R(7)+R(5)+R(8))*lamda(2)-R(7)*lamda(1)-R(8)*lamda(3); 
i(3)=(R(3)+R(8)+R(6)+R(10))*lamda(3)-R(8)*lamda(2); 
 
ABSi(1)=abs(i(1)-i(3)); 
ABSi(2)=abs(i(2)-i(1)); 
ABSi(3)=abs(i(3)-i(2)); 
 
B=lamda./N./A; 
i=a*B./(1-b*abs(B)).*L; 
BSi(1)=(i(1)+i(4)+i(9)+i(7)); 
BSi(2)=(i(2)+i(5)+i(8)-i(7)); 
BSi(3)=(i(3)+i(6)+i(10)-i(8)); 
ABSi(1)=abs(BSi(1)-BSi(3)); 
ABSi(2)=abs(BSi(2)-BSi(1)); 
ABSi(3)=abs(BSi(3)-BSi(2)); 
 
RMSi=RMSi+ABSi.^2; 
RMSlam=RMSlam+lamda(1)^2; 
end 
 
RMSi=sqrt(RMSi./40); 
AVGi2=(RMSi(1)+RMSi(2)+RMSi(3))/3; 
 
F=(irms(1)-AVGi1)^2+(irms(2)-AVGi2)^2; 
 

Appendix B.17: LTS.m 
Parameter estimation of core loss curve for shell-form transformer  
 
clear 
clc 
format compact;format short 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1;A(5)=1;A(6)=1;A(7)=1.732;A(8)=1.732;A(9)
=1;A(10)=1; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.;L(5)=1.;L(6)=1.;L(7)=.67;L(8)=.67;L(9)=
.67;L(10)=.67; 
P=[297600 402240] 
N=34; 
x0=[10000 .5];   %Starting Guess 
%options=optimset('LargeScale','off','MaxIter',1000) 
options.LargeScale='off' 
options=optimset('Display','iter');   % Option to display output 
AA=[];bb=[];Aeq=[];beq=[]; 
lb=[1000 .001];ub=[30000 3]; 
[x,fval,exitflag,output]= fmincon('LTRSfun',x0,AA,bb,Aeq,beq,lb,ub)  
c=x(1) 
d=x(2) 
 
V=1.0; 
B =[1.5226    1.5226    1.5226    1.5226    1.5226 1.5226    1.5226    
1.5226    1.5226    1.5226 ]; 
PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5)+c*B(6)/(1-d*B(6))*A(6)*L(6)+c*B(7)/(1-
d*B(7))*A(7)*L(7)+c*B(8)/(1-d*B(8))*A(8)*L(8); 
PL3=c*B(9)/(1-d*B(9))*A(9)*L(9)+c*B(10)/(1-d*B(10))*A(10)*L(10); 
P1=PL1+PL2+PL3 
V=1.1; 
B =[1.6749    1.6749    1.6749    1.6749    1.6749 1.6749    1.6749    
1.6749    1.6749    1.6749]; 
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PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5)+c*B(6)/(1-d*B(6))*A(6)*L(6)+c*B(7)/(1-
d*B(7))*A(7)*L(7)+c*B(8)/(1-d*B(8))*A(8)*L(8); 
PL3=c*B(9)/(1-d*B(9))*A(9)*L(9)+c*B(10)/(1-d*B(10))*A(10)*L(10); 
P2=PL1+PL2+PL3 
 
df1=abs(P1-P(1)) 
df2=abs(P2-P(2)) 
 
By=0:.05:1.7; 
px=(By*x(1))./(1-By*x(2)); 
plot(px,By,'-','LineWidth',2) 
xlabel('Pc (Watt/cubit unit)') 
ylabel('B (Wb-t)') 
%title('B-P Curve') 
%axis([0 2 0 2.0]) 
grid 
 

Appendix B.18: LTSfun.m 
Parameter estimation of core loss curve for shell-form transformer 
 
function F = LTRSfun(x); 
A(1)=1.;A(2)=1.;A(3)=1.;A(4)=1;A(5)=1;A(6)=1;A(7)=1.732;A(8)=1.732;A(9)
=1;A(10)=1; 
L(1)=1.;L(2)=1.;L(3)=1.;L(4)=1.;L(5)=1.;L(6)=1.;L(7)=.67;L(8)=.67;L(9)=
.67;L(10)=.67; 
P=[297600 402240]; 
c=x(1); 
d=x(2); 
V=1.0; 
B =[1.5226    1.5226    1.5226    1.5226    1.5226 1.5226    1.5226    
1.5226    1.5226    1.5226 ]; 
PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5)+c*B(6)/(1-d*B(6))*A(6)*L(6)+c*B(7)/(1-
d*B(7))*A(7)*L(7)+c*B(8)/(1-d*B(8))*A(8)*L(8); 
PL3=c*B(9)/(1-d*B(9))*A(9)*L(9)+c*B(10)/(1-d*B(10))*A(10)*L(10); 
P1=PL1+PL2+PL3; 
V=1.1; 
B =[1.6749    1.6749    1.6749    1.6749    1.6749 1.6749    1.6749    
1.6749    1.6749    1.6749]; 
PL1=c*B(1)/(1-d*B(1))*A(1)*L(1)+c*B(2)/(1-d*B(2))*A(2)*L(2)+c*B(3)/(1-
d*B(3))*A(3)*L(3)+c*B(4)/(1-d*B(4))*A(4)*L(4); 
PL2=c*B(5)/(1-d*B(5))*A(5)*L(5)+c*B(6)/(1-d*B(6))*A(6)*L(6)+c*B(7)/(1-
d*B(7))*A(7)*L(7)+c*B(8)/(1-d*B(8))*A(8)*L(8); 
PL3=c*B(9)/(1-d*B(9))*A(9)*L(9)+c*B(10)/(1-d*B(10))*A(10)*L(10); 
P2=PL1+PL2+PL3; 
F=(P1-P(1))^2+(P2-P(2))^2; 
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Appendix B.19: AHS.m 
Parameter estimation of Hysteresis Loss curve for Shell-form transformer  
 
clear 
clc 
c =  7.0718e+003 
d =    0.4272 
fact=c/(1-d) 
Bmax=.0:0.05:1.8 
Pc=c*Bmax./(1-d*Bmax); 
Pe=fact*0.4755*Bmax.^2; 
Ph=Pc-Pe; 
 
x0=[10000 .5];   %Starting Guess 
options=optimset('TolFun',1.e-50); 
[x,resnorm,residual,exitflag,output]=lsqcurvefit('Acurvfit2',x0,Bmax,Ph
) 
%Hx=(B1*x(1))./(1-B1*x(2)) 
a=x(1) 
b=x(2) 
 
Ph1=a*Bmax./(1-b*Bmax); 
 
plot(Pc,Bmax,'.',Pe,Bmax,':',Ph1,Bmax,'LineWidth',2) 
xlabel('P (Watt/cubit unit)') 
ylabel('B (T)') 
%title('B-P Curve') 
%axis([0 300000 0 1.7 ]) 
grid 
h = legend('Pc','Pe','Ph');  
 

Appendix B.20: Acurvfit2.m 
Parameter estimation of hysteresis loss curve for shell-form transformer  
 
function F = curvfit2(x,B); 
F=(B*x(1))./(1-B*x(2)); 
 

Appendix B.21: AhsA.m 
Estimation of maximum coercive force for shell-form transformer  
 
clear 
clc 
Btop=1.9 
a2 =  3.4489e+003 
b2 =    0.4596 
Pgiven=a2*1.52/(1-b2*1.52)/60/34 
 
for Bmax=.1:0.1:1.7 
Bmax1=Bmax+0.0001; 
a=(Btop-Bmax)/Btop/1; 
Pgiven=a2*Bmax/(1-b2*Bmax)/60/34; 
PL=0; 
a1 =    3.8513;b1 =    0.5645; 
 
B=0:0.05:Bmax; 
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H=a1*B./(1-b1*B); 
for Hc=.01:.01:10; 
b=Hc*(a+1/a); 
f=B./Bmax1; 
%f=B./Btop; 
   LHD=-b./((1-f)./a+a./(1-f)); 
   RHD=(1-f).*Hc; 
%   LHD(Bmax/0.05+1)=0;RHD(Bmax/0.05+1)=0; 
  LH=H+LHD; 
   RH=H+RHD; 
   DH=RH-LH; 
   P=0.05*DH; 
   PL=sum(P)*2; 
Ahys=LH+RH; 
if PL > Pgiven  
   break; end 
PL=0; 
end 
Bmax,Hc,Pgiven 
Ahys=(LH+RH)/2; 
Dif=H-Ahys; 
%plot(H,B,LHD,B,':',RHD,B,'-.','LineWidth',2) 
%plot(H,B,LH,B,':',RH,B,'-.','LineWidth',2) 
%plot(H,B,Ahys,B,Dif,B,':','LineWidth',2) 
plot(Hc,Bmax,'o','LineWidth',2) 
hold on    
%h = legend('Saturation Curve','Left Disp.','Right Disp.');  
%h = legend('Saturation Curve','Left Loop','Right Loop');  
end 
xlabel('Hc (A/m)') 
ylabel('Bmax (T)') 
%title('Hysteresis Loop') 
%axis([-20 50 0 2.0]) 
h = legend('Required Hc for Loss');  
grid 
bb=0:.1:1.7; 
hh=(bb/Btop).^(.5)*1.4; 
hhlin=(bb/Btop)*1.4; 
plot(hh,bb,hhlin,bb,':','LineWidth',2) 
hold off    
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APPENDIX C: TRANSFORMER FACTORY TEST REPORT 
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