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Abstract

The past decade has seen the energy consumption in servers and Internet Data Centers

(IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and

cooling have risen to above $30 billion and is likely to exceed spending on the new server

hardware [1]. The rapid rise in energy consumption has posted a serious threat to both

energy resources and the environment, which makes green computing not only worthwhile

but also necessary. This dissertation intends to tackle the challenges of both reducing

the energy consumption of server systems and by reducing the cost for Online Service

Providers (OSPs).

Two distinct subsystems account for most of IDC’s power: the server system, which

accounts for 56% of the total power consumption of an IDC, and the cooling and

humidification systems, which accounts for about 30% of the total power consumption.

The server system dominates the energy consumption of an IDC, and its power draw

can vary drastically with data center utilization. In this dissertation, we propose three

models to achieve energy efficiency in web server clusters: an energy proportional model,

an optimal server allocation and frequency adjustment strategy, and a constrained Markov

model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS)

and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings.

Meanwhile, corresponding strategies are proposed to deal with the transition overheads.

xxiii



We further extend server energy management to the IDC’s costs management, helping the

OSPs to conserve, manage their own electricity cost, and lower the carbon emissions.

We have developed an optimal energy-aware load dispatching strategy that periodically

maps more requests to the locations with lower electricity prices. A carbon emission limit

is placed, and the volatility of the carbon offset market is also considered. Two energy

efficient strategies are applied to the server system and the cooling system respectively.

With the rapid development of cloud services, we also carry out research to reduce

the server energy in cloud computing environments. In this work, we propose a new

live virtual machine (VM) placement scheme that can effectively map VMs to Physical

Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A

VM/PM mapping probability matrix is constructed, in which each VM request is assigned

with a probability running on PMs. The VM/PM mapping probability matrix takes into

account resource limitations, VM operation overheads, server reliability as well as energy

efficiency.

The evolution of Internet Data Centers and the increasing demands of web services raise

great challenges to improve the energy efficiency of IDCs. We also express several potential

areas for future research in each chapter.
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Chapter 1

Introduction

1.1 Background and Motivations

The Internet Services have provided people with convenient ways to communicate with

each other, shop, and access information. It has transformed our way of life. However,

the increasing demand of Internet services also brings some problems. To satisfy global

user demand, more and more Internet data centers (IDCs) were built in recent years.

The increased data centers require more energy supply, at the same time cause increased

heat dissipation, greater cooling requirements, reduced computational density, and higher

operating costs [2]. It places a heavy burden on both environment and energy resources.

The power consumption of Internet data centers in the U.S. doubled between 2000

1



and 2005 [3]. It is estimated that servers consume 0.5 percent of the world’s total

electricity usage, which if current demand continues, is projected to quadruple by 2020 [4].

Meanwhile, the increasing cost for operating IDCs also becomes an issue for the online

service providers (OSPs). Electricity now accounts for a large fraction of the cost for data

centers [5]. In 2005, U.S. data centers consumed 45 billion kW-H; roughly 1.2% of the total

amount of U.S. electricity consumption, resulting in utility bills of $2.7 billion [6]. In 2006,

the U.S. Congress passed bills to raise the IT industry’s role in energy and environmental

policy to the national level [7]. Some analysts predicted that IT infrastructure in IDCs will

soon cost more on power consumption than the hardware itself [8].

In order to reduce the operational cost, OSPs are now focusing more on the energy

efficiency improvement [9]. Two distinct subsystems account for most of an IDC’s power

draw: the server system, which accounts for 56% of the total power consumption of

an IDC; the cooling and humidification systems, which account for 30% of total power

consumption [10]. Server subsystem dominates and its power draw can vary drastically

with data center utilization. It is worthwhile and effective to investigate the server system

in order to improve the overall energy efficiency of IDCs. Meanwhile, electricity price

exhibits both location and time diversities [11]. Therefore, the geographical distribution of

data centers exposes many opportunities to reduce operational cost for OSPs.

This research work is focusing on providing strategies to reduce the energy consumption in

the server system and manage the operational cost for OSPs. To achieve this particular
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Figure 1.1: Research tasks overview.

research goal, there are several major challenges. The first obstacle stems from the

fact that energy management involves the tradeoff between power and performance. We

therefore need to evaluate the energy management policy based on its potential impact on

power and performance. Moreover, workload behavior and performance metrics vary from

different users, how to achieve the service differentiation under the dynamic workload is

important for the power management design. The uneven electricity market, heterogeneous

geographical located IDCs and the uncertainly workload make it even harder to construct

a suitable model to reduce the operational cost for OSPs. Finally, with the rapidly

expanding usage of the virtualization and cloud computing, effective power and resource

management should be also carried out for the cloud services. Motivated by tackling the

research challenges, this project identifies the following specific research tasks as shown in

Figure 1.1.
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1.2 Energy Management in Server Cluster System

Many previous works have been carried out to reduce power consumption in a server

cluster system. Two main mechanisms are commonly used for energy savings: dynamic

voltage/frequency scaling (DV/FS), dynamically adjusts the frequency and voltage of

servers to produce energy savings [12, 13]; Vary-On, Vary-OFF (VOVF) used the server

turn ON/OFF mechanism for energy savings [14–16]. A few work considered integrating

both DV/FS and VOVF mechanisms [8, 17]. Applying DV/FS and VOVF should

take careful considerations of transition overhead, which not only leads to performance

degradation but also reduces the life cycle of hardware components. However, the transition

overhead was not well studied in the literature [18].

In addition to server state control, another effective method for energy management is

to increase the hardware utilization in server clusters by using virtualization techniques.

Especially with the rapidly expanded virtualization techniques and cloud services, cloud

environments require considerable investigation of techniques to improve the energy

efficiency. To effectively use the virtualization techniques, the resources required by an

application must be exactly determined. Reserving too much will result in wasted resources

and thus wasted energy consumption, allocating fewer resources than required can lead

to performance problems. Previous works use workload consolidation to vacate physical

server nodes to improve system efficiency [19, 20]. However, most of them neglect the
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dynamic behavior of workload, which will prevent more energy savings. Moreover, the

use of consolidation strategies must also consider additional factors that are of utmost

importance for data centers, such as Quality of Service (QoS), reliability in addition to

energy consumption. The overheads caused by VM consolidation and migration need to be

investigated.

This dissertation studies the power consumption in server system and provides energy

efficiency strategies in both web service environment and cloud computing environments.

We design dynamic power management strategies to reduce the power consumption in

server system with guaranteed performance.

1.3 IDC Operational Cost Management

Managing IDC energy consumption is complicated because of the diversity and complexity

of data center infrastructure. Energy related costs, on the other hand, have become one of

the most important economical factors for IDCs. Moreover, the reduction of the carbon

emissions has also become a changing task for OSPs [21]. Many of the existing work

on power and electricity cost management only focuse on a single data center [14, 15].

Moreover, they only consider the energy related cost in server systems. Some work on

multiple data centers address the load distribution across data centers with respect to energy

consumption or electricity cost. Only a few work consider the variation of the electricity
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market [5, 11]. The impact of energy sources is rarely addressed [22]. The complexity of

the IDC energy consumption model is not well studied. The network electricity cost is not

studied in the literature for reducing the total cost.

In this dissertation, we extend the server energy management to the operational cost

management for OSPs. We studied the diversity of the electricity market, the network cost,

the energy consumption of IDC, and designed an optimization load dispatching model to

minimize the operational cost across geographically distributed IDCs.

1.4 Dissertation Outline

The main contributions of this dissertation are in the following areas:

• Design an energy proportional model and an optimization model for dynamic power

management in web server clusters (Chapter 2).

• Propose an adaptive Constrained Markov Decision Process (CMDP) for power

management in web server clusters which significantly reduce online computation

time (Chapter 3).

• Extend the server cluster energy management to the IDC cost management, and build

an energy-aware load dispatching model in geographically located IDCs to reduce the

cost for OSPs (Chapter 4).
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• Propose a statistical live virtual machine placement strategy to reduce the server

system energy in cloud environments (Chapter 5).

A brief overview of each chapter is provided here.

Chapter 2 and 3 propose three models for the energy management in web server clusters: an

energy proportional model, an optimal server allocation and frequency adjustment model,

and a constrained Markov model. All three models are tested and evaluated by extensive

simulations. In Chapter 4, we study the energy consumption in an IDC and propose an

energy-aware load dispatching model to help OSPs to conserve, manage their electricity

cost, and lower the carbon emissions. Chapter 5 extends the server power management

for cloud computing services. We present an energy-efficient dynamic virtual machine

placement strategy in cloud environment. Chapter 6 summaries this dissertation.
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Chapter 2

Dynamic Power Management in Web

Server Clusters1

2.1 Introduction

The server system of an Internet Data Center accounts for 56% of its total power

consumption, and its power draw can vary drastically with data center utilization.

Therefore, reducing the energy consumption in server systems becomes a hot topic.

Energy management involves the tradeoff between power and performance. Two main

1This chapter is based on the works from X. Zheng and Y. Cai, Achieving Energy Proportionality In Server

Clusters, International Journal of Computer Networks, CSC Press, Vol. 1, No. 1, pp. 21-35, November

2009. X. Zheng and Y. Cai, Optimal Server Provisioning and Frequency Adjustment in Server Clusters,

39th International Conference on Parallel Processing GreenCom Workshops 2010, pp. 504-511, 2010.
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mechanisms are commonly applied for energy savings: DV/FS dynamically changes the

frequency and voltage of servers to produce energy savings [12, 13]; VOVF uses server

power on/off mechanisms for power management [14–16]. Some thought is given to

integrating both DV/FS and VOVF mechanisms together [8]. Applying DV/FS and VOVF

simultaneously requires careful consideration due to transition overhead, which not only

leads to performance degradation, but also reduces the life cycle of hardware components.

However, the transition overhead was not well studied in the literature [18].

Therefore, we advocate promoting energy consumption to a first class resource constraint,

in addition to performance that is well studied in the literature. Energy constraints will

bring new insights and findings on how to achieve green computing in current server

systems.

This chapter introduces two theoretical frameworks for dynamic power management in

web server clusters. We first propose an energy proportionality model and investigate the

transition overhead based on this model. We also construct an optimization power model in

web server cluster by combining DV/FS and VOVF mechanisms. A novel double control

periods (DCP) strategy is proposed based on the optimization model to compensate the

transition overhead. The simulation results show that both models can provide controllable

and predictable quantitative control over power consumption with theoretically guaranteed

service performance.
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2.2 Related Work

In literatures, green computing is often related to terms like green IT, sustainable

computing, energy efficiency, energy saving, power aware, power saving, and energy

proportional. In this section, we review relevant techniques commonly used on a single

server and server clusters.

The green computing techniques for a single server focus on microprocessors, memories

and disks. Current microprocessors allow power management by dynamic voltage and

frequency scaling (DV/FS). DV/FS works because reducing the voltage and frequency

provides substantial savings in power at the cost of slower program execution. Some

researches tie the scheduler directly to DV/FS [23–25]. Most works deal exclusively with

meeting real-time scheduling deadlines while conserving energy.

Traditionally, many power management solutions rely heavily on heuristics. Recently,

feedback control theoretical approaches for energy efficiency have been proposed by a

number of researchers. On a single server, recent works [26, 27] proposed power control

schemes based on feedback control theory. Femal et al. [28] developed an algorithm

based on linear programming. In [29], a control theoretical power management scheme on

standalone servers was proposed. The feedback control theory is better than the traditional

techniques by providing high accuracy and stability.
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Thermal management is another issue in power-aware computing, since temperature is a

by-product of power dissipation [30]. Recent research demonstrated that dynamic thermal

management (DTM) can respond to thermal conditions by adaptively adjusting a chip

power consumption profile on the according to feedback from temperature sensors [26, 31].

Research work on memory is often combined with processors and disks. In [32], the

authors used open-loop control to shift power between the processor and memory to

maintain a server power budget. In [33], they proposed a solution to store pages and

reliability data in idle RAM instead of using slow disk. A large portion of the power

budget of servers goes into the I/O subsystem, the disk array in particular. Many disk

systems offer multiple power modes and can be switched to a low power mode when not in

use to achieve energy saving. Such techniques had been proposed in [34, 35]. Sudhanva et

al. [36] presented a new approach called DRPM to modulate disk speed dynamically, and

a practical implementation was provided for this mechanism.

In recent years, power management has become one of the most urgent concerns on

server clusters. Some methods proposed on a single server can be extended to server

clusters. In [12, 13], the authors presented similar ways of applying DV/FS and cluster

reconfiguration, using threshold values, based on the utilization of the system load to

keep the processor frequencies as low as possible, with less active nodes. In [37], the

authors extended the feedback control scheme to clusters. Power has been used as a tool

for application-level performance requirements. Sharma et al. [38] proposed feedback
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control schemes to control application-level quality of service requirements. Chen et

al. [39] presented a feedback controller to manage the response time in server clusters.

Some researchers applied DTM on an entire data center rather than individual servers or

chips. In [16], the authors laid out policies for workload placement to promote uniform

temperature distribution using active thermal zones.

VOVF is a dynamic structure configuration mechanism to ensure energy-aware computing

in server clusters, which turns nodes on and off to adjust the number of active servers

by the workload. Other work had been carried out based on VOVF [14–16]. In [17],

The authors proposed a method to reduce network energy consumption via sleeping and

rate adaptation by combining VOVF and DV/FS. Another group developed power saving

techniques for connection oriented servers [40]. The authors tested server provisioning and

load dispatching on the MSN instant messaging platform, and evaluated their techniques in

terms of energy saving and performance.

Virtualization is another key strategy to reduce power consumption in enterprise networks.

With virtualization, multiple virtual servers can be hosted on less but more powerful

physical servers, using less electricity [41]. In [42], researchers developed methods

to efficiently manage the aggregate platform resources according to the guest virtual

machines (VM) of relative importance (Class-of-Service), using both the black-box and

the VM-specific approach. Hu et al. [43] used live migration of virtual machines to transfer

load among the nodes on a multilayer ring-based overlay. In [44], researchers scheduled
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virtual machines in a computer cluster to reduce power consumption via the technique of

DV/FS. An economy driven energy and resource management framework was presented for

clusters in [45]. Each service "bids" for resources as a function of delivered performance.

In [46], researchers formulated the problem as a cooperative game, and used game theory

to find the bargaining point.

The energy-related budget has accounted for a large portion of total storage system cost of

ownership. Some studies tried multi-speed disks for servers [36, 47]. Other techniques

were introduced to regulate data movement. For example, the mostly used data can

be transferred to specific disks or memory, thus other disks can be set to a low power

mode [48].

2.3 Energy Proportional Model

2.3.1 Energy Proportionality

An important principle in green computing is to ensure energy consumption

proportionality, which states that the energy consumption P should be proportional to the

system workload λ [49]:

P = a∗λ +b (2.1)
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Figure 2.1: The energy consumption curves of non-energy proportional

server and strict energy proportional server.

This idea can improve the energy efficiency in real-life usage. Figure 2.1 conceptually

illustrates the energy consumption curve in non-energy proportional servers and energy

proportional servers. The typical server operating range is between 10% - 60%. We can

observe that in a non-energy proportional server, it still consumes about half of its full

power when doing virtually no work [49]. Energy proportional server ideally consumes

no power when idle (b = 0), nearly no power when very little work is performed, and

gradually more power as the activity level increases. Large amount of energy savings can

be achieved through the design of energy proportionality. However, most servers nowadays

are CPU, memory and hard disk intensive servers. The energy consumption of CPU is

almost linear to its utilization [40]. But memory and hard disks are non-linear energy

consumption components. As a result, energy proportionality is not easy to be achieved on

a standalone server because of the hardware constraints.

It is more feasible to achieve energy proportionality in a server cluster. Most computing
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systems nowadays have at least two modes of operation: an active mode when the system

is working and an idle mode when the system is inactive and consumes little energy. Some

researchers proposed to have finer-grained power modes, running at low speed and with

lower power supply voltage. To achieve energy proportionality, it is feasible to adaptively

and dynamically control the number of servers running in active and inactive modes

according to system workload. For simplicity, we assume all the servers in the cluster are

identical nodes. Although data center are inherently heterogeneous due to upgrading cycles

and replacing of failed components, this is a reasonable assumption, since it is normally

preferred that groups of servers are load balanced. On typical web servers and web clusters,

system workload can be described by the request arrival rate λ . Let M be the total number

of servers in the cluster, and Λ be the maximum arrival rate for the cluster. ∑m is the total

number of active servers. The total energy consumption P of a server cluster is:

P = ∑mPac +(M−∑m)Pin (2.2)

Pac is the power consumption of fully active nodes, Pin is the power consumption of inactive

nodes. Based on the energy proportional model, we have:

P
λ
=

Pmax

Λ
r (2.3)

where Pmax = M ∗Pac represents the maximum energy consumption in the server cluster. r

is a parameter, which adjusts the energy consumption curve in Figure 2.1. The rationale of

16



using parameter r is as follows. Ideally the r is set to r = 1 where energy consumption is

strictly proportional to workload. However, we can adjust it to satisfy different performance

constraints. We’ll explain it in the next section. With the help of Equation (2.2), we can

rewrite Equation (2.3) as:

∑m = (
λPac

Λ/M
r−MPin)/(Pac −Pin) (2.4)

Here Λ/M is the maximum jobs that a single cluster node can handle. Ideally Pin = 0, which

indicates that a server consumes no energy when it is running on an inactive mode. For

simplicity, we suppose Pin = 0 in this work, this assumption will not affect the performance

of our model. We can derive that the total number of active servers ∑m is determined by

the system workload λ :

∑m =
λ

Λ/M
r (2.5)

The number of servers may not be an integer based on (2.5). We will set the integer no less

than ∑m, which is the minimal number of servers to run in fully active mode.

2.3.2 Performance Metrics

An important task of energy aware computing is to achieve energy efficiency while ensuring

performance. One important and commonly used QoS metric on Internet services is

17



slowdown, which is defined as the division of waiting time by service time. Another

commonly used performance metric is request time which is the sum of waiting time and

service time. We choose slowdown and request time as performance metrics in our model

because they are related to both waiting time and service time.

Our theoretical framework is built along the line of the previous service differentiation

models presented in [50–53]. In our network model, a heavy-tailed distribution of packet

size is used to describe web traffic. Here we assume that the service time is proportional to

the packet size.

The packet inter-arrival time follows exponential distributed with a mean of 1/λ , where λ

is the arrival rate of incoming packets. A set of tasks with size following a heavy-tailed

bounded Pareto distribution are characterized by three parameters: α , the shape parameter;

k, the shortest possible job; p, the upper bound of jobs. The probability density function

can be defined as:

f (x) =
1

1− (k/p)α αkαx−α−1 (2.6)

where, α,k > 0,k ≤ x ≤ p. If we define a function:

K(α,k, p) =
αkα

1− (k/p)α (2.7)
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then we have:

E[X ] =
∫ p

k
f (x)dx =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K(α,k,p)
K(α−1,k,p) if α �= 1;

(lnp− lnk)K(α,k, p) if α = 1.

(2.8)

Similarly, we can derive E[X2] and E[X−1]:

E[X2] =
∫ p

k
f (x)x2dx =

K(α,k, p)
K(α −2,k, p)

(2.9)

E[X−1] =
∫ p

k
f (x)x−1dx =

K(α,k, p)
K(α +1,k, p)

(2.10)

According to Pollaczek-Khinchin formula, the average waiting time for the incoming

packets is:

E[W ] =
λE[X2]

2(1−λE[X ])
(2.11)

We can derive a closed-form expression of the expected slowdown in a M/G/1 queue on a

single server in Equation (2.12).

E[S] = E[W ]E[X−1] =
λE[X2]E[X−1]

2(1−λE[X ])
(2.12)
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The expected request time with the incoming job rate λ is:

E[R] = E[W ]+E[X ] =
λE[X2]

2(1−λE[X ])
+E[X ] (2.13)

2.3.3 Servers Allocation on Service Differentiation

In a cluster system, the incoming requests are often classified into N classes. Each class

may require different QoS according to its priority. We assume m j is the number of active

server nodes in class j, and λ j is the arrival rate in class j. As it is shown in Figure 2.2.

The expected slowdown of class i in a server cluster can be calculated as:

E[Si] =
λiE[X2]E[X−1]

2(mi −λiE[X ])
(2.14)

Here we choose not to use request time as a performance metric for service differentiation

because of its overly complicated mathematical expression. However, each class should

satisfy the request time constraint. Obviously the results presented in this work will not be

affected by the selection of performance metrics.

We adopt a relative service differentiation model where the QoS factor of slowdown
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Figure 2.2: System model in multiple classes

between different classes are based on their predefined differentiation parameters.

E[Si]

E[S j]
=

δi

δ j
(2.15)

where 1 ≤ i, j ≤ N: We assume class 1 is the highest class and set 0 < δ1 < δ2 < · · ·< δN

, then higher classes receive better service, i.e., lower slowdown.

Based on the above energy proportionality and service differentiation model, according to

Equations (2.5) and (2.15), we can derive the server allocation scheme in a cluster system

as

mi = λiE[X ]+
λ̃i ∑N

i=1 λi(
M
Λ r−E[X ])

∑N
i=1 λ̃i

(2.16)
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Here mi is the number of active servers in class i, and λ̃i = λi/δi is the normalized arrival

rate. The first term of Equation (2.16) ensures that the sub-cluster in class i will not be

overloaded. The second term is related to arrival rates, differentiation parameters, and r.

We can also derive the expected slowdown of class i as:

E[Si] =
δiE[X2]E[X−1]∑N

i=1 λ̃i

2∑N
i=1 λi(

M
Λ r−E[X ])

(2.17)

From Equation (2.17) we can observe that the slowdown of class i is proportional to the

pre-specified parameter δi, and is related to r. The slowdown ratio only depends on the

pre-defined differentiation parameters.

The expected request time for class i can be calculated as:

E[Ri] =
δiE[X2]∑N

i=1 λ̃i

2∑N
i=1 λi(

M
Λ r−E[X ])

+E[X ]≤ βi (2.18)

βi is request time constraint for class i. We can learn from Equation (2.18), request time in

class i is also independent of workload, but depends on both the pre-specified parameter δi

and r.
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2.4 Optimal Server Provisioning and Frequency

Adjustment

The optimal model is built in a web server cluster level. All the requests must meet

a predefined quality of service (QoS). To simplify the problem, we have the following

assumptions: First, all the servers in a server cluster are identical nodes, which means

all the servers are same in terms of hardware. Second, in our model, when a server is

switched off, it consumes no power, when the machine is turned on, it can operate at a

number of discrete frequencies. With the help of adjustable frequency, it is feasible to

reduce power consumption whenever possible. Last, we assume all the incoming requests

are CPU bounded, in other words, CPU speed is the bottleneck of performance. This is still

reasonable because Austin [54] pointed out that CPU is the largest consuming component

for typical web server configuration.

2.4.1 Performance and Power Modeling

Processors today are commonly equipped with mechanisms to reduce power consumption

at the expense of reduced server frequency [55]. As we mentioned before, we assume our

work is built on a server cluster system with uniformed servers. Let M be the total number

of servers. Each server has N levels adjustable frequency fi(1 ≤ i ≤ N), where f1 < f2 <
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f3 < ... < fN . Since all the incoming requests are CPU bounded, higher the operating

frequency leads to greater the server processing capacity, which can be represented as ci =

a fi.

We adopt the same queue model as we described in section 2.3.2. Given an M/G/1 queue

on a server, X is service time, X ′ is the service time under a given capacity c, we have

E[X ′] =
1

c
E[X ] (2.19)

E[X ′2] =
1

c2
E[X2] (2.20)

The average waiting time for the incoming packets under capacity c in a single server can

be represented as:

E[W ′] =
λE[X2]

2c(c−λE[X ])
(2.21)

When applying a round-robin dispatching policy, the packet arrival rate of a node is λ/m.

The processing capacity is always proportional to the operating frequency. The expected

request time for any server in a server cluster can be calculated as:

E[R] =
λE[X2]

2a fi(a fim−λE[X ])
+

1

a fi
E[X ] (2.22)
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Where 1 ≤ i ≤ N,1 ≤ m ≤ M.

To understand the power-to-frequency relationship of an individual server is crutial to the

power aware system design. There are two widely used power model in a single server:

linear and cubic.

Linear model has been widely used in related work [55, 56]. In [55], researchers found

that the server power-to-frequency relationship for DV/FS is approximate linear. There are

two reasons to explain this relationship. One reason is that manufacturers usually settle

on a limited number of allowed voltage levels, which results in less-than-ideal relationship

between power and frequency in practice. The other reason is: DV/FS is not applied to

many components at the system level. In linear model, the power consumption Psingle is set

as a function of server frequency, as: f = fb +α(Psingle − b), in which b is the minimum

power consumed by a fully-utilized server over the allowable range of processor frequency;

fb is the frequency of a fully utilized server running at b Watts; Coefficient α is the slope

of the power-to-frequency curve.

Another commonly used model is cubic relationship between frequency and power. In

cubic model, it assumes that power consumption of all other system components is

essentially constant regardless of system activity. CPU power consumption depends on the

CPU voltage and frequency. Furthermore, there is a linear relationship between frequency

and voltage. The cubic model can be represented as: Psingle = c0 + c1 f 3, where co is

a constant that includes the power consumption of all components except the CPU and
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the the base power consumption of the CPU. The second part is the power consumption

of CPU running at frequency f . This cubic model has been used in many other related

work [8, 57, 58]. The chosen of power model does not affect the overall power optimization

strategy proposed in this work, we use cubic model in our theoretical framework.

The energy consumption of the whole system can be calculated as:

∑P = Pactive +Pinactive +Ptrans (2.23)

Where Pactive and Pinactive are the power consumption of active nodes and inactive nodes

respectively. Ptrans is the power consumption when servers change between active mode

and inactive mode.

2.4.2 Problem Formulation

The energy management strategy can be formulated as a minimization problem: the

optimal solution is obtained by selecting the proper number of active servers running at

fi while request time is within a threshold. We formulate the problem in the following two

scenarios: single class and multiple classes.

In the single class scenario, we assume all the incoming requests are classified into just one

class. In other words, the same QoS should be met. Here a threshold β is set to bound the
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average request time. Let M be the total number of identical servers in the system. m is the

number of active server nodes to handling the incoming requests. We solve the following

problem:

Min : ∑P = ∑Psingle +∑Pinsingle

S.t. E[R] = 1
m ∑m

j=1(
λE[X2]

2a fi(a fim−λE[X ]) +
1

a fi
E[X ])≤ β

(2.24)

where 1 ≤ m ≤ M,1 ≤ i ≤ N. Pinsingle is the power consumption of an inactive server. Here

we do not consider the transition power, because it is considerably less important in typical

Internet server workload, since load fluctuation occurs on a larger time scale [56].

The above optimization is non-linear and discrete in terms of the decision variables for both

objective and constraint. One feasible way is to consider a finite number of frequencies

and server number to determine the optimal solution. However, the complexity is O(NM)

when considering M servers and N levels of adjustable frequency. It is can be reduced to

O(MN) after applying a coordinated voltage scaling approach, in which all active servers

are assigned to equal frequency level. Previous research adopted the same strategy and

showed coordinated voltage scaling approach can provide substantially higher savings [8,

57].

In a cluster system, the incoming requests are often classified into W classes. Each class

may require different QoS according to its priority. We assume m j is the number of active

server nodes in class j, and λ j is the arrival rate in class j. We adopt a relative service
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Figure 2.3: Double control periods

differentiation model where the QoS factor of request time between different classes are

based on their predefined differentiation parameters.

E[Ri]

E[R j]
=

δi

δ j
(2.25)

where 1 ≤ i, j ≤ W . We assume class 1 is the highest class and set 0 < δ1 < δ2 < · · · <

δW , then higher classes receive better service, i.e., smaller request time. We solve the

optimization problem in multiple classes’ scenario as following:

Min : ∑P = ∑W
j=1 m jPsingle +(M−∑W

j=1 m j)Pinsingle

S.t. E[R j] =
λ jE[X2]

2a fi j(a fi jm−λ jE[X ]) +
1

a fi j
E[X ]≤ βδ j

(2.26)

The problem can be solved by decomposing it into W single class optimization problems

as we mentioned in previous section.

2.4.3 Overhead Analysis

The model proposed in this work is a continual optimization process, where we

dynamically allocate active server number and adjust their frequency levels. Here the
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overhead caused by frequency adjustment is ignored since it is very small [59]. We assume

frequency adjustment accomplished instantly. However, the transition time when a server

transfers from an inactive mode to an active mode can not be ignored, which will influence

the performance greatly during the transition period. Especially when the workload is

increasing in the next control period, it may lead to the increase of active servers. However,

sometimes workload increase may result in decrease of active server number. The fact is

that we dynamically optimize the server number and frequency together, less number of

servers may not be an optimal solution even though the workload decreases in the next

control period. Thus, it is necessary to estimate the cost of transition overhead. In general,

transition time depends on the processor and other hardware constraints. We propose a

double control period (DCP) model to compensate the transition overhead, which allows

better of performance.

The basic idea of DCP model is shown in Figure 3.3. ’Double’ stands for two control

periods denoted as T1 and T2 respectively. The control interval of both periods are identical:

T1 = T2 = T . Active server setting and frequency adjustment occur at the beginning of each

control period of T1. Control period T2 helps to turn on the additional servers for the

next control period of T1 beforehand. The two control periods are designed with control

time difference: tdi f f = T − ttrans, where ttrans is the transition time when a server node

transfers from an inactive mode to an active mode. A schematic of DCP model is shown in

Figure 2.4.
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Figure 2.4: Designing of the Double Control Periods (DCP) Model

Workload predictor predicts the incoming requests arrival rate for both control periods:

λT 1(t) and λT 2(t ′ −T ). Here t ′ = t +T − ttrans. In each beginning of the control period

T2, optimal solution calculator computes the optimal solution based on λT 2(t ′ − T ). To

avoid redundant optimization process, we record the optimization solution ST 2(t ′ −T ) . At

each beginning of control period T1, DCP will first check the requests’ arrival rate variance

of λT 1(t) and λT 2(t ′ − T ). If λT 1(t)− λT 2(t ′ − T ) ≤ γ , DCP adopts solution ST 1(t) =

ST 2(t ′ − T ) instead of re-calculating the server provisioning and frequency adjustment

solution according to λT 1(t). This strategy enhances computational efficiency. Additional

servers ∑mλT 2(t ′)−∑mλT 1(t) will be turned on at the beginning of each control period

of T2 if more servers are required for the next control period of T1, each server will set

to be the lowest frequency f1 in order to achieve energy efficiency. Additional servers

have sufficient time ttrans to transfer from inactive model to active mode. DCP model

takes advantage of workload characteristic as we mentioned before, workload fluctuations

occur on a larger time scale, which means λT 1(t) and λT 2(t ′ − T ) are close enough for

optimization prediction.
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Figure 2.5: Comparison of request time in higher priority class between

non-energy proportional model and energy proportional models. r is set

differently according to different requirements of performance in a multiple

classes scenario.

2.5 Performance Evaluation

2.5.1 Energy Propositional Model

We build a simulator which consists of a package generator, a server dispatcher, a number

of waiting queues, and a number of servers. The package generator produces incoming

requests with exponential inter-arrival time distribution and bounded Pareto packet size

distribution. The GNU scientific library is used for stochastic simulation.

Simulation parameters are set as follows. The shape parameter α of the bounded Pareto

distribution is set to 1.5. The lower bound k and upper bound p were set to 0.1 and

100, respectively [60]. The number of servers in the cluster is 20. And we set the
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Figure 2.6: Comparison of request time in lower priority class between

non-energy proportional model and energy proportional models. r is set

differently according to different requirements of performance in a multiple

classes scenario.

normalized maximum jobs one server can handle Λ/M = 1. We set the server active power

consumption to 160W [40]. We set the request time to β = 0.9, β = 1, and β = 1.3 which

correspond to adjustment parameter r = 1.1, r = 1, and r = 0.9 respectively. We show the

simulation results in the workload range of 10% - 80% . When the workload is above 80%,

the impact of energy proportionality constraint is very limited. Since the typical server

operating range is between 10% - 60%, the results presented here are sufficient to test the

energy proportional model.

We first compare the performance metrics as shown in Figure 2.5, 2.6,and 2.7. The

number of classes is normally two or three [61, 62]. We choose two classes of incoming

requests and set the target slowdown ratio to δ2 : δ1 = 2 : 1. The energy curve functions

are set differently according to different request time constraints. Note, in a multiple

classes scenario, parameter r is determined by performance requirements of all classes,
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Figure 2.7: Comparison of slowdown ratio between non-energy

proportional model and energy proportional models. r is set by different

requirements of performance in a multiple classes scenario.

which means it should be set to be the largest value satisfying the requirements of

all the classes. We observe that the model can achieve desirable proportionality of

slowdown differentiation with request time constraints. Figure 2.8 also compares the

energy consumptions for proportional and non-proportional models in multiple classes

scenario.

The model proposed in this work is a continual optimization process, where we

dynamically change the number of active servers. The transition time when a server

transfers from an inactive mode to an active mode can not be ignored, which can influence

the performance during the transition period. Thus, it is necessary to estimate the cost of

transition overhead.

Generally speaking, the transition time for different servers is different, which depends

on the processor and other hardware constraints. Therefore, we study the influence on
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Figure 2.8: Comparison of power consumption between non-energy

proportional model and energy proportional model in multiple classes

scenario. r is set by different requirements of performance. We can achieve

considerable energy saving compare to the non-energy proportional model.
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Figure 2.9: The effect to performance of transition overhead in energy

proportional model, the transition time is set to be 15,20,25,30 respectively.

performance caused by transition overhead under different time. Figure 2.9 shows how

the request time changes when considering transition overhead as the workload gradually

changed from 0%-80% based on the energy proportional model. We only concern the

situation when the workload increases, as the workload decreases, the number of active

servers will decrease. Therefore it will not cause performance degradation. The y-axis
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Figure 2.10: Request time after adding one spare server based on energy

proportional model in a single class scenario, the transition time is set to be

15,20,25,30 respectively.

is the request time under different transition overhead. As indicated in the figure, larger

transition time has more impact on performance. The performance will be affected greatly

when large number of servers can not transfer to active mode on time.

To ensure satisfied QoS, spare servers are added to solve the problem of transition overhead.

Figures 2.10 and 2.11 illustrate the performance after one and two spare servers are

added in a single class scenario. By adding one spare server, the performance can be

improved dramatically compared to the case of no spare server. Adding two spare servers,

the response time can stay under the pre-defined threshold when the workload gradually

changes from 0%-80%. However, in some special situations, the workload may vary

significantly within two control periods. One or two spare servers are not adequate to

compensate the performance degradation. More spare servers are required.

To evaluate the model on realistic traffic patterns, we use an hour’s workload trace collected
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Figure 2.11: Request time when adding two spare servers based on energy

proportional model in a single class scenario, the transition time is set to be

15,20,25,30 respectively.
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Figure 2.12: Request time when adding two spare servers based on energy

proportional model in a single class scenario

by Lawrence Berkeley National Laboratory [63]. Request time threshold is set to be β =

0.6 and r = 1. Figure 2.12 illustrates the performance based on our model in a single

class scenario. The requests arrival rate and job size are normalized. We evaluate the

performance in the situations of non-spare server and spare servers respectively. As shown

in the figure, when the workload decreases, there is no performance degradation, however
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Figure 2.13: Power consumption when adding two spare servers based on

energy proportional model in a single class scenario.

the performance degradation can be clearly seen as the workload increases in the case of

no spare server is added. With one or two spare servers, the performance can be improved

significantly. Especially, when two spare servers are always on, request time is always

under pre-defined threshold. The result also indicates that as the number of spare server

increases, the performance does not change dramatically. The request time tends to stay in a

level, which demonstrate proper spare servers should be set to compensate the performance

degradation.

Figure 2.13 evaluates the power consumption based on our model under real workload data

trace. The system arrival rate is the same as shown in Figure 2.12. The power consumption

is dynamically changed as the workload changed. With little more power consumption, we

can achieve better performance, and eliminate the effect of transition overhead.
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Figure 2.14: Comparison of request time of real workload trace data

between OP model and DCP model in a single class scenario.

2.5.2 Optimal Server Provisioning and Frequency Adjustment

In the simulation, the optimization model is evaluated using both stochastic workload and

real workload trace data. Only the simulation results with real workload data are shown.

Figure 2.14 illustrates the performance based on an optimization (OP) model and a DCP

model in a single class scenario. The request arrival rate and job size are normalized. As

shown in Figure 2.14, performance degradation is clearly seen in the OP model; this is

caused by increasing the number of active servers. The DCP model improves performance

significantly. Figure 2.15 compares the power consumption of our model under real

workload trace data. The OP model and DCP model are further evaluated in a multiple

class scenario as shown in Figure 2.16 and 2.17 under real workload trace data.
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Figure 2.15: Comparison of power consumption between OP model and

DCP model in a single class scenario.
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model in a in a multiple classes scenario.
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Figure 2.17: Comparison of power consumption between OP model and

DCP model in a multiple classes scenario.
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Chapter 3

CMDP Based Adaptive Power

Management in Server Clusters2

3.1 Introduction and Related Work

The primary principle in green computing is to achieve highest possible energy efficiency

with guaranteed performance. The tradeoff between power consumption and performance

is often resolved by an optimization process, in which power consumption is minimized

with the constraint of performance. An on-line controller periodically carries out the

optimization problem and then allocates resources accordingly.

2This chapter is based on the work from X. Zheng and Y. Cai, Markov Model Based Power Management

in Server Clusters, Proc. IEEE/ACM International Conference on Green Computing and Communications
(GreenCom2010), Dec. 2010.
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Constrained Markov Decision Processes (CMDPs) provides a mathematical framework

for modeling decision-making with multiple objectives. CMDP is useful for studying a

wide range of optimization problems. In this chapter, we construct a Constrained Markov

Decision Process (CMDP) model and propose a CMDP based adaptive power management

strategy in web server clusters. Our proposed strategy can greatly reduce the online

computation time through an offline initialization process. The online adaptive server

adjustment process with further improve system performance and deal with the dynamic

changes of workload. The constructed CMDP takes advantages of both DV/FS and VOVF

mechanisms to achieve energy efficiency with guaranteed response times in a web server

cluster. We take careful consideration of transition overhead in modeling the CMDP in

order to obtain more precise power and performance control.

In recent years, power consumption has become one of the most important concerns in

computing systems. Prior work addressed the power management issue on both single

server and server clusters systems. In this section, we only review work related to power

reduction in server clusters since it is more closely related to this work.

There are two main strategies for power reduction: Dynamic Voltage/Frequency Scaling

(DV/FS) and server number controlling: Vary-On Vary-Off (VOVF). DV/FS works by

reducing the voltage and frequency, consequently saving power at the cost of slower

program execution. Researchers have developed various DV/FS scheduling algorithms

to save energy under timing deadlines [12, 13]. Some researchers also utilized feedback
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control to dynamically adjust servers frequency [37]. In these works, control variables can

be either servers frequency or application-level quality of service requirements [37–39].

The feedback control theory performs better than traditional heuristic techniques by

providing higher accuracy and stability in DV/FS.

VOVF is a major mechanism for power reduction applied in server clusters [14–16]. VOVF

dynamically turns idle servers off when the system experiences a light workload, and

turns the appropriate servers on when the system encounters a heavy workload. VOVF

dramatically improves the system energy efficiency by reducing the idle servers’ power

consumption. Virtualization as a key strategy to reduce power consumption for application

services is another way of VOVF. When virtualization being applied, multiple virtual

servers can be hosted on a smaller number of more powerful physical servers, using

less electricity [41]. In [42], researchers demonstrated a method to efficiently manage

the aggregate platform resources according to the guest virtual machines (VM) relative

importance (Class-of-Service), for both the black-box and the VM-specific approach.

Recently, researchers pointed out that combining DV/FS and VOVF potentially provided

higher energy savings [59]. Other researchers developed power saving techniques for

connection oriented servers [40]. Although DV/FS and VOVF are commonly applied for

power reduction, most previous works are formulated and solved on-line. Our CMDP

model is formulated and solved offline, greatly reducing on-line computation time.

The Markov model was first applied for power management in a battery-based system [64,
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65]. Researchers proposed a Markov stochastic model for power control and explored

the tradeoff between power and performance. Recently, the Markov model was further

studied in server clusters for energy savings. In [66], a three-speed disk Markov power

model is formulated in disk systems, and prediction schemes were proposed for achieving

disk energy savings. A CMDP is constructed for power and performance control in web

server clusters in [67]. This work is similar to the work discussed in this paper, however

the DV/FS mechanism was not applied to reduce power consumption. Furthermore, we

also propose an adaptive power management strategy to deal with the dynamic workload

changes, which is not studied in previous work.

3.2 Problem Formulation

Power and performance are of the most importance for designing a power aware computing

system. One of the most effective methods to resolve the tradeoff between power and

performance is to formulate an optimization problem. A power controller can allocate

resources in the computing system according to the optimal solution. This is often

accomplished by a periodical online optimization process. If a combined DV/FS and VOVF

strategy is applied for obtaining the optimal power conservation solution in a server cluster,

the problem is NP-complete to solve exactly. Although by applying a coordinated voltage

scaling approach [8], the online computation complexity can be reduced to O(MF) given

that a server cluster has M homogeneous servers and F adjustable frequency levels. It is
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still time-consuming because of the computation complexity.

In this section, a Constrained Markov Decision Process (CMDP) is constructed to achieve

energy savings. The significant advantage of our CMDP model is that our optimization

solution is computed offline which greatly reduces the online computation time. The online

computation complexity is reduced to O(1) after applying a deterministic CMDP policy.

3.2.1 State Space X and Action Space A

Our CMDP model is built on a homogeneous web server cluster, each server in the cluster

can operate at several discrete frequency levels. With the help of adjustable frequency,

it is feasible to reduce power consumption whenever possible. In a single queue cluster

system, let M be the total number of servers. Each server has F levels adjustable frequency

fi(1 ≤ i ≤ F), where f1 < f2 < f3 < ... < fF . We define the state of the CMDP model with

a tuple x ∈ X :

x = {s,m, fi} (3.1)

In (3.1), s is the number of jobs waiting in a queue. s ∈ {0,1,2, · · · ,S}. S is the maximum

queue length. If more than S jobs arrive in the queue, the queue will be blocked , and

some jobs will be lost. The decision maker should try to avoid queue blocking as much as

possible. We assume that there is at least one server in active mode to handle the incoming
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requests. m ∈ {1, · · · ,M}, fi ∈ { f1, · · · , fF}. m and fi represent the number and running

frequency level of servers in active mode. f1 and fF are the minimum and maximum

frequency levels respectively for a server in an active mode.

A coordinated voltage scaling approach is applied in our model, by which all active

servers are assigned to equal frequencies. Previous researches adopted the same strategy

and proved that the coordinated voltage scaling approach can provide substantially higher

energy savings [8, 57]. A set of composite actions are defined as a ∈ A:

a = {(Ma,Fa);

Ma ∈ {−(M−1),−(M−2), · · · ,0,1, · · · ,M−1};

Fa ∈ {−(F −1),−(F −2), · · · ,0,1, · · · ,F −1}}.

(3.2)

where Ma is the number of server adjustment for the next control period, and Fa is the

frequency adjustment for active servers. For example, Fa = −(F −3) corresponds that all

the servers in active modes adjust their frequency from fi to fi−F+3, for i > F + 3. We

denote by A(x) ⊂ A actions that are available at state x. Set K = {(x,a) : x ∈ X ,a ∈ A(x)}

is the set of state-action pairs. A sequential state and action transition scheme is shown in

Figure 3.1.

To reduce the state space in large size server clusters, we model the system with multiple

queues. New arrival jobs will be distributed to each queue with round-robin discipline

waiting for processing. We then divide the system into several subsystems by the number
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Figure 3.1: Sequential state transiton

of queues in the system and construct a CMDP model separately in each sub-system.

Considering a system with W queues, s is the number of jobs waiting in a single queue,

S is the maximum queue length for each queue. The maximum number of jobs that can be

stored in the system is W ·S. The composite state of the CMDP in each subsystem can be

defined as: x = {s,m j, fi}, where m j ∈ {1, · · · ,Mj}, fi ∈ { f1, · · · , fF}. m j and fi represent

the number and running frequency level of servers in active mode. Mj is the number of

servers to process the jobs in each sub-queue. Because of the construction of the CMDP

model is the same with the single queue system. We only present how to construct a CMDP

model in a single queue system as an instance.

3.2.2 Transtion Probability Pxay

Pxay is the probability in CMDP of moving from state x = {s,m, fi} to y = {s′,m′, f ′i } if

action a = {Ma,Fa} is taken. Given a composite action a = {Ma,Fa} and current state x =

{s,m, fi}, the active server number m′ and frequency level f ′i in next state are deterministic,

since they can be easily determined: m′ = m+Ma, f ′i = fi+Fa . However, the queue length
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is non-deterministic. Consider a single queue with a buffer of finite size S. In each control

period, the probability of i jobs arriving and waiting in the queue is defined as Pi(i); d

jobs leave and finish processing with a probability of Pd(d). The probability Ps,s′ when the

queue length changes from s to s′ can be obtained by:

Ps,s′(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max(m,m′)

∑
d=0

Pd(d) ·Pi(d + s′ − s) s′ ≥ s;

Imax

∑
i=0

Pi(i) ·Pd(i+ s− s′) s′ < s.

(3.3)

where Imax is the maximum number of jobs that can arrive in a control period. We’ll explain

how to obtain the probability Pi(i) and Pd(d) separately.

In our network model, a set of tasks, whose size z follows a heavy-tailed Bounded Pareto

distribution are characterized by three parameters: α , the shape parameter; k, the shortest

possible job; p, the upper bound of jobs [50, 68]. The probability density function can be

defined as:

f (z) =
1

1− (k/p)α αkαz−α−1 (3.4)

where, α,k > 0,k ≤ z ≤ p. If we define a function as:

K(α,k, p) =
αkα

1− (k/p)α (3.5)
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Then we have expectation:

E[z] =
∫ p

k
z f (z)dz =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K(α,k,p)
K(α−1,k,p) if α �= 1;

(lnp− lnk)K(α,k, p) if α = 1.

(3.6)

We define E[Service] as the average service time. Job size follows Bounded Pareto

distribution with the average of E[z]. Here, we assume that the service time is proportional

to the job size and inversely proportional to the server processing capacity c = fi/ fF [68].

Higher processing capacity means faster processing speed. So the average processing

capacity is cea = f
 1+F
2 �/ fF . The average service time for the incoming requests can be

obtained from:

E[service] =
E[z]
cea

(3.7)

The probability that a server finishes processing a job in one control period T is calculated

as follows:

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 i f
T

E[service]
≥ 1;

T
E[service]

otherwise.
(3.8)

The job inter-arrival time follows exponential distribution with a mean of 1/λ , where λ

is the average arrival rate of incoming jobs. The probability of i jobs arriving in a control
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period is:

Pi(i) =
e−λT (λT )i

i!
(3.9)

The model proposed in this work is a continuous controlling process, where we

dynamically allocate the active server number and adjust their frequency. The transition

time for server allocation and frequency adjustment cannot be ignored, which will influence

the performance greatly during the transition period. Let Tr and Tf denote the transition

time of server mode change and frequency adjustment respectively. Given s jobs are in

the queue and m to m′ servers are in active mode for m,m′ ∈ {1,2, · · · ,M}, the probability

that d jobs leave the system in a control period when action a = {Ma,Fa} is taken can be

obtained from:

Pd(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tr

T

⎛
⎜⎜⎝

m

d

⎞
⎟⎟⎠(β )d (1−β )

m−d
+

T −Tr

T

⎛
⎜⎜⎝

m′

d

⎞
⎟⎟⎠(β )d (1−β )

m′−d
Ma ≥ 0;

⎛
⎜⎜⎝

m′

d

⎞
⎟⎟⎠(β )d (1−β )

m′−d
Ma < 0.

(3.10)

where d ∈ {0,1,2, · · · ,min(S,m′)}.
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The transition probability Pxay can be finally summarized as:

Pxay =

⎧⎪⎪⎨
⎪⎪⎩

Ps,s′(a) i f m′ = m+Ma and f ′i = fi+Fa;

0 otherwise.
(3.11)

3.2.3 Objective and Constraints

Our model is built with the objective of minimizing energy consumption under Quality

of Service (QoS) constraints. Both are the functions of state X and action A. We denote

C(xT ,aT ) as objective and R(xT ,aT ) and Pb(xT ,aT ) as performance constraints.

Power modeling. Understanding the power-to-frequency relationship of an individual

server is critical for designing a power aware system. There are two widely used power

models in a single server: linear and cubic. Both have been widely studied in related

work [8, 55–58]. We adopt a cubic power model in our theoretical framework. The

power consumption for a single node at frequency f is: Pact = c0 + c1 f 3, where co is

a constant that includes the power consumption of all components except the CPU, and

the base power consumption of CPU. The second term is the power consumption of CPU

running at frequency f . Note: the chosen of power model does not affect the overall power

model proposed in this work. We denote Pftrans and Tf as the power consumption and

transition time for frequency adjustment. So the power consumption for a single server can
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be expressed as shown in Equation (3.12). In this definition, the first term is the power

before the frequency adjustment is completed; the second term is the power after the server

frequency transfers from fi to fi+Fa; the last term is the frequency transition power.

Pact =
Tf

T
(c0 + c1 f 3

i )+
T −Tf

T
(c0 + c1 f 3

i+Fa
)+

Tf

T
Pf trans (3.12)

We set the power consumption as the objective measure in our CMDP model.

The immediate power consumption is consisted of three parts: active server power

consumption, inactive server power consumption and transition power caused by server

number allocation. The power consumption of the whole system in a control period T can

be expressed as follows:

C(xT ,aT )=

⎧⎪⎪⎨
⎪⎪⎩

Pact(mT +Ma(T −Tr))+(M−m−Ma)PinT +MaPtransTr Ma ≥ 0.

(m−|Ma|)T Pact +((M−m)T + |Ma|(T −Tr))Pin + |Ma|PtransTr Ma < 0.

(3.13)

where Pact and Pin are the power consumption of an active node and an inactive node

respectively. Ptrans is the power consumption when a server change between active mode

and inactive mode. Tr is the transition time. It is clear that transition overhead is taken into

account for power modeling in Equation (4.3).
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The long term objective measure is defined as follows:

Cn
ea(xT ,aT ) =

1

n

n

∑
T=1

C(xT ,aT ) (3.14)

where Cn
ea(xT ,aT ) is the average power consumption in n control periods.

Performance constraints. We choose request time as the performance metric in our model

because it is of the most concern from the users’ perspective. We also ensure job blocking

probability to be within a threshold to obtain high quality of service.

Little’s law relates two important measurement: average waiting time and average number

of jobs waiting in a queue in a service system [69]. It states that the average number of

jobs L waiting for processing in a system is the product of the long-term average arrival

rate λ and the long-term average waiting time of a job in the system W : L = λW . With

the help of it, we can derive the immediate waiting time from the long-term waiting time.

After applying a round-robin dispatching method, the immediate request time considering

the server busy probability can be expressed as follows [70]:

R(xT ,aT ) =

⎧⎪⎪⎨
⎪⎪⎩

s−ρ
∑Imax

i=1 i ·Pi(i)
+

E[service]
c

s−ρ > 0;

0 Otherwise.

(3.15)

In the top of (3.15), the first term is waiting time according to Little’s Law, where ρ =

λE[service]/mc is the server busy probability; the second term is job service time. The
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performance measurement involves all the state information. Let’s denote Rn
ea(xT ,aT ) as

the average request time in n control periods. The performance measure in the long term

can be defined as follows:

Rn
ea(xT ,aT ) =

1

n

n

∑
t=1

R(xT ,aT ) (3.16)

For any state x = {s,m, fi}, job blocking could occur when there are more than S jobs that

need to be stored in the queue, i.e. i+ s− d ≥ S. The job blocking probability Pb can be

derived as:

Pb(xT ,aT ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 i f S− s+1 ≥ Imax;

max(m,m′)

∑
d=0

Pd(d) ·Pi(S+d − s+1) f or S+d − s+1 ≤ Imax.

(3.17)

The blocking probability in long term is defined as:

Pbn
ea(xT ,aT ) =

1

n

n

∑
T=1

Pb(xT ,aT ) (3.18)

Thus, the optimization problem can be formulated as minimizing the power consumption

with constraints of request time and job blocking, all the objective and constraints are
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related to state and actions.

Min : Cn
ea(xT ,aT )

S.t. Rn
ea(xT ,aT )≤ Rmax

Pbn
ea(xT ,aT )≤ Bmax

(3.19)

where Rmax is the maximum average request time, Bmax is the maximum average blocking

probability.

3.3 Markov Control Policy and Adaptive Power

Management

3.3.1 Markov Control Policy

The most critical part of CMDP is to specify the policy by which the controller chooses

action at different states. In our CMDP model, we first obtain an optimal stationary policy,

and then the stationary policy is converted to a stationary deterministic policy by applying

a maximal action probability strategy. We will first explain how to obtain the optimal

stationary policy.

Let f (a) be the probability distribution which determines the probability of taking action a
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at state x under a stationary policy a = π(x). The optimization problem presented in (3.19)

is then converted to obtaining the optimal stationary policy a = π∗(x):

Min : Cn
ea(π)

S.t. Rn
ea(π)≤ Rmax

Pbn
ea(π)≤ Bmax

(3.20)

Linear programming (LP) is an optimization technique of a linear objective function,

subject to linear equality and linear inequality constraints [71]. The optimal stationary

policy of CMDP can be obtained with the help of LP [71]. Let ρ(x,a) denote the steady

state probability over the set of state-action pairs corresponding to the optimal stationary

policy π∗. It is proven that the objective and constraint in (3.20) corresponding to the

optimal policy are determined by the immediate power and performance cost with respect

to the probability ρ(x,a). The CMDP then can be converted to a LP problem as follows:

Min : ∑
x∈X

∑
a∈A(x)

C(x,a)ρ(x,a)

S.t. ∑
x∈X

∑
a∈A(x)

R(x,a)ρ(x,a)≤ Rmax

∑
x∈X

∑
a∈A(x)

Pb(x,a)ρ(x,a)≤ Bmax

∑
a∈A(y)

ρ(y,a) = ∑
x∈X

∑
a∈A(x)

Pxayρ(x,a)

∑
x∈X

∑
a∈A(x)

ρ(x,a) = 1

(3.21)

Let ρ∗(x,a) be the optimal stationary solution of the LP in (3.21). The corresponding

56



optimal stationary policy of CMDP can be expressed as [71]:

f (a = π∗(x)) =
ρ∗(x,a)

∑
a∈A(x)

ρ∗(x,a)
(3.22)

for ∑a∈A(x)ρ∗(x,a)> 0. Otherwise, we specify a performance guaranteed first policy:

f (a = π∗(x)) =

⎧⎪⎪⎨
⎪⎪⎩

1 f or Ma = max(0,s−m) and Fa = F − i;

0 otherwise.
(3.23)

The stationary deterministic policy fd(a) can be obtained from the optimal stationary

policy. We set our stationary deterministic policy fd(a = π∗
d (x)) = 1 if f (a = π∗(x)) as

the maximal probability for all a ∈ A(x), otherwise fd(a = π∗
d (x)) = 0. In each control

period, our online power controller can easily make an action decision according to the

current state and the deterministic policy. This is a one to one mapping with the online

computation complexity of O(1).

3.3.2 CMDP Based Adaptive Online Power Control.

Workload often fluctuates over time with dynamic characteristics. To deal with the changes

of the computing workload, we propose a CMDP based adaptive power control algorithm

as shown in Algorithm 1. This algorithm starts with an offline system initialization process

by analyzing the workload arrival rate and creating a set of CMDP control tables.
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Workload typically exhibits periodic pattern, which makes workload prediction possible

from analyzing the history data. In this work, we do not focus on workload prediction. We

assume that the workload arrival rate is the pre-knowledge and take the workload trace as

input. Given a workload trace data, its arrival rate varies between λmin and λmax. We first

discrete the workload arrival rate from a continuous space to a discrete space and create a

set of CMDP control tables Π∗
d(X ,Λ). Each element λi in the discrete space corresponds

to a CMDP control table π∗
d (x,λi). At the beginning of each control period, the power

controller observes the system state and the system workload arrival rate. It checks the

CMDP control table and makes corresponding action a = π∗
d (x,λi). By this way, the power

controller can make dynamic action decisions with the changes of workload arrival rate.

However, it is not enough to just make an initial decision at the beginning of each

control period. To ensure high performance and system reliability, we propose an online

server adjustment strategy. The basic idea is that when the number of jobs in the queue

approaches the maximum, there is a higher probability of system performance degradation.

For example, the increase of waiting time or queue blocking probability. Therefore, we

increase the system computation capacity before the queue length reaches its maximum. A

parameter Sthreshold is set to determine when to trigger the online server status adjustment

process. For each new arrival job stores in the queue, the power controller checks if the

number of jobs in the queue is larger than S−Sthreshold , if so, the power controller tries to

increase the system computation capacity by frequency adjustment. Frequency adjustment

can be accomplished in a short period of time. It involves small transition overhead. If all
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the servers in the system are currently running at the highest frequency level, the power

controller will switch a server from inactive to active mode.

Algorithm 1 CMDP Based Adaptive Power Control Algorithm

Offline system initialization

1. Workload arrival rate λ analysis: λmin ≤ λi ≤ λmax.

2. Discrete the workload arrival rate range from continuous space to discrete space.

3. Create a set of CMDP control tables Π∗
d(X ,Λ) =

{π∗
d (x,λmin), · · · ,π∗

d (x,λi), · · · ,π∗
d (x,λmax)}

for Each control period T
1. Workload arrival rate λi prediction.

2. Choose an action according to CMDP control tables based on current system state

x and workload λi: a = π∗
d (x,λi).

3. Turn servers ON/OFF and adjust their frequency levels according to step 2.

4. Send requests to the servers with Round-robin policy.

for each new arrival job arrives at the queue

if Queue length s is larger than S−Sthreshold .

if All active servers are running at the highest frequency.

Switch an inactive server to active mode and set its frequency to the lowest level.

else
Select one server and adjust its frequency to a higher level.

end if
end if

end for
accumulate system energy consumption

end for
report system performance and energy consumption

3.4 Evaluation

We built a simulator to evaluate the performance of the CMDP based adaptive power

management strategy. It consists of a job generator, a power controller and several

homogeneous servers. The simulator takes workload trace and the CMDP control tables as
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inputs and outputs the system energy consumption and performance.

3.4.1 Methodology

To better evaluate the CMDP based adaptive power control algorithm, the evaluations

are performed in two simulation environments: small server clusters and large server

clusters. The evaluation in small server clusters is aimed at verifying the correctness of

the constructed CMDP model, while the large one is aimed at evaluating its robustness

to workload. Both simulation environments are sharing the following parameter settings:

each server has F = 4 levels adjustable frequency fi ∈ {2.08,2.25,2.42,2.6}. We adopt

the power model of Pact = 52.69 + 2.66 f 3 [8] in a single server. The inactive server

power consumption is Pin = 10 watts. The server ON/OFF transition power Ptrans and

frequency adjustment transition power Pftrans are set to Ptrans = 50 watts and Pftrans = 10

watts, respectively. The length of each control period is set to: T = 60s. The transition

time is Tr =
T
2 = 30s for the server switching between active mode and inactive mode.

The transition time for frequency adjustment is set to Tf =
T
10 = 10s. Each server has a

processing rate Prate proportional to its frequency level: Prate = 6 · fi
fF

seconds per unit job.

The maximum average request time is RMAX = 50s. The job blocking probability could not

exceed Bmax = 1%. At the beginning of each control period, the power controller observes

the current system status and makes the control decision according to the deterministic

CMDP policy. Each server will change its active or inactive modes and frequency levels
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according to the power controller’s decision. The new arrival jobs will first be stored in the

queue or queues waiting for processing. A round-robin dispatching discipline is applied to

distribute the jobs in the queue for processing.

3.4.2 CMDP Model Evaluation

Parameter setting and baselines : The experiments illustrated in this subsection are

performed in a small server cluster environment. Workload traces are generated by the

job generator with an average arrival rate of λ = 3 jobs/minute. The incoming jobs

followed Bounded Pareto distribution with an average job size of E[z] = 5. The maximum

queue length is set to S = 9. We first evaluate the correctness and effectiveness of our

CMDP model by varying the number of servers in the cluster. We compared the CMDP

model with two baseline models with respect to performance, power consumption and

online computation time. The first baseline model is the VOVF based CMDP model as

describe in [67], in which only the VOVF strategy is applied in constructing the CMDP

model; the second one is an online optimization model in [72] where the optimal controller

dynamically changes the number of active servers and adjusts their frequency levels in each

control period.

Sensitivity to server numbers: We show the average request time and the power

consumption as the number of servers change from 2 to 9 respectively in Figures 3.2
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and 3.3. As shown in Figure 3.2, all three models can achieve desirable performance.

Specifically, the performance is not affected by the change of total server number in the

server clusters, which proves the effectiveness of CMDP model. In Figure 3.3, the online

optimization model contributes the most energy savings, followed by our CMDP model

with an average of 3% more energy consumption, and the VOVF based CMDP model with

an average of 8% more energy consumption. Although our CMDP model requires slightly

more energy consumption compared to the online optimal model, it significantly reduces

the online computation time as indicated in Figure 3.4. Figure 3.4 illustrates the runtime

ratios between our CMDP model and the online optimal model. The waiting and service

time are excluded. According to the results, the CMDP model requires 17% of the runtime

required by the online optimal model when the server number is set to 2, and the ratio

reduces to 3.67% when the server number is set to 9. The runtime ratio greatly decreases

with the increase of server numbers. Based on those results, we can claim that our CMDP

model can significantly reduce online computation time, especially when more servers are

involved.

Sensitivity to job size: To further evaluate the proposed CMDP model, we vary the

average job size. The power consumption and performance are given in Figures 3.5 and

3.6 respectively with respect to job size. Given the same average job size, the power

consumption increases as the number of servers in the server cluster increases, which can be

explained easily: inactive servers still consume a certain amount of energy. In Figure 3.6,

the performance cannot be met when the average job size is set to E[z] = 6, and the server
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Figure 3.2: Request time comparison, the number of servers in the server

cluster is varied between 2 to 9.
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Figure 3.3: Power consumption comparison, the number of servers in the

server cluster is varied between 2 to 9.

number is set to M = 2. The reason is that when the cluster only has two servers, there

is not sufficient computation capacity to meet the performance constraint. So the server

number in a cluster must be appropriate designed, not too large in order to achieve more

energy savings, sufficient enough to satisfy the performance. Except the above situation,

the performance constraint can always be met as we vary the server number and the average
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Figure 3.5: Comparison of power consumption when the average job size

is set to be 5, 5.5, 6 respectively.

job size. However, larger job size requires more energy to achieve the desired performance.

Larger job size will cause an increase in waiting time and queue length, in order to achieve

the same performance, more servers and higher frequency levels are required to process the

incoming jobs.
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Figure 3.6: Comparison of request time when the average job size is set to

be 5, 5.5, 6 respectively.
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3.4.3 Workload Sensitivity Study

Parameter settings: The CMDP model is built based on a statistical distributed workload.

To further evaluate our model, we also perform workload sensitivity study. In this

simulation, we compare the power consumption and performance between real workload

and statistical workload. The real workload trace is collected by Lawrence Berkeley

National Laboratory [63]. The real workload data trace is normalized with an average job

size of E[z] = 5, and the incoming arrival rate λ is varied with time as shown in Figure 3.7.
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The maximum jobs arrival rate is λmax = 60 jobs/minite, and the minimum jobs arrival

rate is λmin = 10 jobs/minites. The statistical workload is generated with the same arrival

rate and job size. The simulation environment is consisted of 50 homogeneous servers

and a power controller. There are 10 queues in the system, and each queue can store the

maximum of 10 jobs. We discrete the workload arrival rate by the step of 0.5 and create

100 CMDP power control tables. The online server adjustment threshold Sthreshold is set to

Sthreshold = 2.

Statistical workload V.S. real workload: In order to make the results more apparent, we

define the processing capacity of the server clusters as the accumulated processing capacity

of each active server. The processing capacity of a single active server in a control period

is defined as:Capacity = ∑ fi
Ti
T , where Ti is the time for a server running at frequency fi.

Higher processing capacity means faster processing ability but more energy consumption.

As we mentioned before, for each state x = {s,m, fi}, m and fi are deterministic given an

action a. We only present the non-deterministic factor s to verify the correctness of the

proposed control algorithm.

Figure 3.8 illustrates the number of jobs in the queue and corresponding processing

capacity in two hours for both statistical workload and real workload. As illustrated in

the figure, the processing capacities increase as the number of jobs in the queue increases,

which means the power controller chooses an action to increase the processing capacity for

achieving quality of service as the number of jobs in the queue increases. On the contrary,
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the power controller reduces the active server numbers and frequency levels if the number

of jobs in the queue is small for more energy savings. In each control period, the power

controller is trying to minimize the energy consumption and guarantee QoS at the same

time. Figure 3.9 illustrates the instant power in two hours. As shown in Figure 3.9, our

algorithm can achieve significant energy savings under low workload in both statistical

workload and real workload, which will contribute to significant energy savings in a server

cluster.

Figures 3.10 and 3.11 compare the hourly power consumption and the average request time

between real workload and statistical workload. The red line in the figure represents the

number of arrival jobs in an hour. The energy consumption is approximately proportional

with the system workload, which proves that our CMDP based adaptive power control

algorithm can effectively control the system energy consumption and performance with the

change of system workload. The real workload requires more energy consumption when

compared to the statistical workload. However, the performance constraint can still be met.

This can be explained by the dynamic behavior as shown in Figure 3.8 and Figure 3.9.

The real workload is more volatile, with more high-frequency variation of changing server

modes in order to satisfy performance. It requires transition time and transition power

and ultimately leads to a longer request time and more energy consumption compared to

the statistical workload. Overall, our model can achieve desirable performance with real

workload.
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(a) Statistical workload
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Figure 3.8: Instant processing capacity and queue length in two hours.
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Figure 3.9: Instant power consumption and queue length in two hours.
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Figure 3.10: Comparison of power consumption between statistical

workload and real workload.
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Figure 3.11: Comparison of request time between statistical workload and

real workload.

Sensitivity to parameter: Next, we study the parameter for online server status

adjustment. We compare the power consumption and the average request time by varying

the control parameter between 0 to 3. As shown in Figures 3.12 and 3.13, the red lines

represent the results when the threshold is set to Sthreshold = 0. In this scenario, there

is no further server status adjustment process after the initial CMDP action decision has

been made. The QoS violations in Figure 3.13 indicate that the CMDP control policy did

not allocate enough system processing capacity to achieve the QoS target. It verifies that

the online server status adjustment process is not only necessary but important in order

to ensure the QoS. As we increase the threshold Sthreshold to 1, there are no significant
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Figure 3.12: Comparison of power consumption between statistical

workload and real workload.
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Figure 3.13: Comparison of request time between statistical workload and

real workload.

changes for both power consumption and performance. When the threshold Sthreshold is

set to 2 and 3, we can obtain the satisfied performance. However, more energy is required

when increasing the threshold. From the above observations, we conclude that the online

server status adjustment process can effectively improve the system performance with the

dynamic workload. However, the control parameter should be carefully set for both energy

savings and performance constraint. The best parameter setting can be obtained by the

online tanning.

70



3.5 Future Work

Hardware integration. A data center is a highly complex system with complex

relationships between hardware and software. The computing capacity of IDCs are usually

over-provided for the sake of reliability and availability. The software based power

management strategies can effectively reduce the unnecessary energy consumptions by

allocating the least possible computing resources with the change of workload. However,

software energy management strategy is ultimately limited by hardware. A recent study

also shows that choosing the right hardware would save more energy than state-of-art power

management software [73]. For example, a single desktop with a low-power embedded

computer sleep proxy, can keep machines in sleep for up to 50% of the time while providing

uninterrupted network access [73]. Moreover, software techniques add more complexities

on top of the computing systems. The complexities can be reduced by redesigning the

hardware itself. Therefore, software and hardware integration will bring more opportunities

to reduce the data center energy consumption.
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Chapter 4

Reducing Operational Costs in

Geographically Located Internet Data

Centers3

4.1 Introduction and Related Work

Online service providers(OSPs) have Internet data centers in multiple geographical

locations in order to satisfy global user demand; however, the dynamic variation of the

3This chapter is based on the works from X. Zheng and Y. Cai, Energy-aware load dispatching in

geographically located Internet data centers. Sustainable Computing Informatics and Systems, Vol. 1, No.

4, pp.275-285, 2011. X. Zheng and Y. Cai, Reducing Electricity and Network Cost for Online Service

Providers in Geographically Located Internet Data Centers, Proc. IEEE/ACM International Conference on
Green Computing and Communications (GreenCom2011), Aug. 2011.
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electricity market is ignored. Furthermore, increased data centers require more energy

supply, more network usage, and at the same time causes increased heat dissipation, greater

cooling requirements, reduced computational density, and higher operating costs [2]. It

places a heavy burden on both environment and energy resources.

Energy related costs, on the other hand, have become one of the most important economical

factors for IDCs. Moreover, the reduction of the carbon emissions has also become a

changing task for OSPs [21]. Electricity is produced via a variety of energy sources, which

can be categorized into renewable and nonrenewable sources. Electricity generated by

nonrenewable sources carry large carbon footprints, which we refer to as Brown energy.

Renewable energy sources can be replenished in a short period of time and also have less

environmental impact, which is we refer to as Green energy [74]. Congress is working on

establishing an emission limit for large carbon emission firms including OSPs to deal with

the carbon footprint problem [75]. The dilemma is left to the OSPs to determine how to

purchase their power supplies in an economic and sustainable manner. Also, electricity

price varies with both location and time because of the energy sources in different regions.

The geographical distribution of data centers therefore exposes many opportunities to

reduce the electricity cost. Besides electricity cost, increased Internet services require more

network usage, which also accounts for a large portion of operation cost for OSPs. Much

of the existing work on power management focused only on a single data center [14, 15]. A

few work considered the variation of the electricity market and addressed load distribution

across data centers with respect to energy consumption or energy cost [5, 76]. However they
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only focus on controlling the energy consumption of the server sub-systems, less attention

has been paid to the dynamic behavior of cooling systems. The impact of energy sources

is rarely addressed [22]. The network cost is not well studied in the literature for reducing

the total cost.

With the above observations, this work develops an optimal energy-aware load dispatching

strategy that periodically maps more request to the locations with lower electricity price.

Energy proportional and chiller ON/OFF strategies are applied to save energy consumption

in each IDC. We also place a carbon emission limit and consider the volatility of the carbon

offset market, which encourages OSPs to control their carbon emission from the financial

perspective.

In order to better present the research work in this work, the topics of power management

and cost management in data centers will be reviewed.

Power management in dater centers There are two main strategies for power reduction

in server system: Dynamic Voltage/Frequency Scaling (DV/FS) and server number

controlling: Vary-On Vary-Off (VOVF). DV/FS works by reducing the voltage and

frequency, consequently saving power at the cost of slower program execution. Researchers

have developed various DV/FS scheduling algorithms to save energy under timing

deadlines [12, 13]. Some researchers also utilized feedback control to dynamically adjust

server frequency [37]. In these works, control variables can be either server frequency or

application-level quality of service requirements [37–39]. VOVF is a key mechanism for
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power reduction applied in server clusters [14–16]. VOVF dynamically turns idle servers

off when the system experiences a light workload, and turns the appropriate servers on

when the system encounters a heavy workload. VOVF dramatically improves the system

energy efficiency by reducing the idle server power consumption. Virtualization as a key

strategy to reduce power consumption for application services, which is another way of

VOVF. When applying virtualization, multiple virtual servers can be hosted on a smaller

number of more powerful physical servers, using less electricity [41]. In [42], researchers

demonstrated a method to efficiently manage the aggregate platform resources according

to the guest virtual machines (VM) relative importance (Class-of-Service), for both the

black-box and the VM-specific approach.

Increasing computation capabilities in IDCs results in higher cooling energy

requirements [77]. There are several works attempting to reduce the energy consumption

in the cooling sub-system. In [78], the authors explored the physics of heat transfer,

and presented methods for integrating it into batch schedulers. It reduced the amount

of heat recirculation in the data center and improved the cooling sub-system efficiency.

A mathematical scheduling problem is formulated in [79] to minimize the data center

cooling cost, they also provided two heuristic methods XInt-GA and XInt-SQP to solve

the problem. In [80], researchers present a unified, coordinated, thermal-computational

approach to the the problem of IDCs energy management. Another group of researchers

formulated an optimization problem to reduce the power consumption in servers and

cooling system by selecting frequency level and cold air supply [81]. An integer linear
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programming was applied to solve the problem.

This work differs from these efforts: all of the above work focus on a single data center,

none of them considered multi-mirror services and their request distribution, and how it

influence on the total cost for OSPs.

Leveraging variability electricity price in reducing cost In [5], the researcher first

considered the variable electricity prices for data centers and proposed a scheme to shut

down the data center when the electricity price is high. Qureshi et al [82] proposed

a load dispatching strategy to reduce total electricity cost. An optimization problem

was formulated in to minimize the electricity cost in geographical located IDCs [76].

In [22], researchers considered the problem of capping the brown energy consumption and

interacting with the carbon market. However, existing efforts focus narrowly on electricity

usage of the server sub-system, without considering the dynamic behavior of the cooling

system and how to leverage it to reduce cost. Also, the network cost is not well studied

in relation to reducing the total operational cost. The contribution of this work is that we

provide a precise modeling of electricity usage in IDCs and provide efficiency strategies

in both server and cooling systems in addition to leveraging variability of electricity price.

The network cost is also considered to obtain the optimal load dispatching among IDCs.
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Table 4.1
Electricity generation by energy source(%) from 2008 to 2010.

Period Coal Petroleum Natural Gas Nuclear Hydroelectric Other Renewable Others

2008 49.5 1.1 19.5 19.7 6.7 3.2 0.3
2009 45.2 1.2 20.8 21.1 7.5 3.8 0.4
2010 46.3 0.9 21.2 20.3 6.7 4.2 0.4

4.2 Background

Electricity Generation Although electricity is a relatively clean and safe form of energy

to use, the production and transmission of electricity do have environmental impacts [74].

Electricity is produced via a variety of energy sources, which can be categorized into

renewable and nonrenewable sources. Electricity generated by nonrenewable sources carry

large carbon footprints, which we refer to as Brown energy. Renewable energy sources can

be replenished in a short period of time and also have less environmental impact, which

is we refer to as Green energy [22]. Table 4.1 gives the detailed information of electricity

generation sources in the U.S. from 2008 to 2010. As shown in the table, nearly 50% of the

electricity is generated by coal. Other "Brown" energy sources like natural gas and nuclear

also place an important role of electricity production, which is about 35%. About 10%

of electricity is generated by "Green" energy sources. Investment in and use of "Green"

energy brings benefits to both our planet and the next generation [83].

Electricity and Carbon offsets Markets. There are ten electricity markets with varying

degrees of inter-connectivity in the United States [74]. Electricity price exhibits both
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location and time diversities because of the electricity generation, price regulation and

other factors. Figure 4.1(a) reflects the real-time hourly electricity price in five selected

market in different regions on Sep.1st 2010 [83]. As shown in the figure, the electricity

price is higher in the afternoon and early evening, which means the demand is higher in

those time periods [83].
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Figure 4.1: Electricity and carbon offset market prices

Carbon offset market is used to transfer permits of emissions, which provided economic

incentives to reduce the emissions of large emissions pollutants like OSPs. A limit or cap

on the amount of carbon emission for a pollutant that can be emitted is set by a central

authority (e.g. government). Any pollutant has to hold the permits, if more emission

permits are required besides the cap, pollutant has to buy permits from the carbon offset

market. The carbon offset trade is intended to encourage the pollutants to reduce emissions

from the economic perspective. Figure 4.1(b) illustrate how this market behaves [84](data

are normalized from e/ton to $/MWh). Although the carbon market price shows less
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Figure 4.2: Internet data centers architecture.

variability compared to electricity price, however it is still changed appreciably over time.

The observation suggests that it is worthwhile to consider the volatilities of both electricity

price and carbon market price in our optimization modeling.

4.3 Problem Overview

4.3.1 Notations

For better understanding of our model, Table 4.2 summarizes the notations and definitions

which will be used throughout this chapter.
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Table 4.2
Notations

Notation Definition

N Total number of Internet data centers
Λ j Maximum workload arrival rate for data center j
Mj Total number of servers in data center j
m j Active server numbers in data center j
a j Energy proportional slope (KWh/requests) of data center j
b j Energy proportional coefficient (KWh) of data center j

Pac j An active server power consumption (KWh) in data center j
Pin j An inactive server power consumption (KWh) in data center j
Pnet j Network equipment power consumption(MWh) in data center j

PUPS j UPS sub-system power consumption(MWh) in data center j
Pj IT equipment sub-system power consumption(MWh) in data center j
Uj System utilization (%) in data center j

Pcooling j Cooling sub-system power consumption(MWh) in data center j
c1 j,c2 j,c3 j chiller power consumption coefficients in data center j

PCARCj CARC system power consumption in data center j
Green j(t) Green supplied electricity price ($) in data center j at time t
Brown j(t) Brown supplied electricity price ($/MWh) in data center j at time t

Bp j(t) Brown power supply mix in data center j at time t
Gp j(t) Brown power supply mix in data center j at time t

Market(t) Carbon offset market price ($/MWh) at time t
Benergy(t) Accumulated brown energy consumption ($/MWh) until time t
BROWN Carbon emission cap

Cost j Total electricity cost($) of data center j in a control period.

W Number of user groups
λi Request arrival rate from user group i

Disi j Distance (km) between user group i and data center j
Delayi j Round trip delay (ms) between user group i and data center j

Ci j Network cost ($/request) for dispatching per unit request from
user group i to data center j

Ncost Total network cost ($) in a control period
λi j The portion of workload dispatched from user group i to data center j

4.3.2 Problem Formulation

Figure 4.2 illustrates a typical IDCs network architecture of large OSPs. To satisfy

global user demand, OSPs have Internet data centers in multiple geographic locations.

They are fully inter-connected by Internet Service Providers (ISPs or their own backbone

network) to carry traffic between the IDCs and their millions of users. In each data

center j, it hosts a large number of servers Mj, the electricity supply is the mix of brown
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energy Bp j(t) and green energy Gp j(t) from local electricity provider. A limited carbon

emission permit BRWON is placed. If the total carbon emissions Benergy(t) exceed the

limit, OSPs have to buy the permit from the carbon offset market based on market price

Market(t). In order to simplify our network model, the users from the same state are

grouped together as a single user i, previous work also utilized the same model [82]. Our

optimization problem formulated as minimizing the overall electricity cost and network

cost Ncost as shown in Equation (4.1). The electricity cost is the summation of each

IDC electricity cost Cost j, which is a dynamic function of several factors: Cost j(t) =

f (Bp j(t),Gp j(t),λi j(t),Market(t)). In each IDC, two energy efficiency strategies are

applied: energy proportional model in the server sub-system and chillier ON/OFF strategy

in the cooling sub-system. For our optimization model to be practical, we guarantee high

performance and availability for end users in addition to minimizing the total cost for OSPs.

We evaluate performance by using the average end-to-end response time AveDelay, since

it is the most concern from the users perspective.

Min :
N

∑
j=1

Cost j +Ncost

S.t.
N

∑
j=1

λi j(t) = λi

W

∑
i=1

λi j(t)≤ Λ j f or any (1 ≤ i ≤W,1 ≤ j ≤ N)

AveDelay ≤ DMAX

(4.1)

We assume the optimization takes place in a centralized location, the optimal solution

then delivers to the distributed IDCs. Our optimization controller dynamically makes the
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following decisions for the next hour in order to minimize the total cost for OSP: (1)

determine the power mix portion: brown energy supply Bp j(t) and green energy supply

Gp j(t) in each IDC; (2) distribute workload λi j from user groups i to data centers j; (3)

calculate active server numbers m j in each IDC; (4) determine chiller ON/OFF based on

workload distribution; (5) monitor the average end-to-end response time; (6) prevent data

center overload.

4.4 Cost and Performance Modeling

4.4.1 Electricity Consumption in IDCs

Construct a suitable model for data center power consumption is a challenging task

because of the diversity and complexity of data center infrastructure. Our modeling

and analysis is focused on the three sub-systems that account for more than 90% of the

power consumption in an IDC [10]. The three sub-systems on which we focus are: IT

equipment system, cooling system and power distribution system. Two external factors

that primarily affect data center power usage are: the aggregate workload presented to

the computing infrastructure and the outside air temperature (which mainly affects cooling

sub-systems) [10]. We do not discuss the dynamic behavior of outside temperature in this

work for simplicity. We construct our model by composing models for the individual data
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center sub-systems: Ptotal j = Pj +Pcooling j +PUPS. The electricity cost for a single IDC

j in an hour can be expressed as in Equation (4.2):

Cost j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Gp j(t)Green j(t)+Bp j(t)Brown j(t))∗Ptotal j

(i f Benergy(t)≤ BROWN)

(Gp j(t)Green j(t)+Bp j(t)(BROWNj(t)

+Market j(t)))∗Ptotal j (Otherwise)

(4.2)

where Benergy(t) =
t

∑
t=1

N

∑
j=1

Ptotal j

Where Brown j(t) and Green j(t) are the brown and green electricity market prices for data

center j. If the total brown energy consumption exceeds the emission limit BROWN, the

OPSs has to buy carbon emission permits from the carbon offset market.

IT equipment energy consumption modeling. The UPS system is always on to supply

power for servers and other IT components. Therefore, the UPS sub-system can be modeled

by a fixed power draw [10]. We first detail the IT equipment sub-systems followed by

cooling sub-system. The power consumption in the IT equipment sub-system mainly comes

from two aspects: the power consumption of servers and networking hardware components.

Unlike servers, the networking hardware has a fixed power draw and typically accounts for

less than 6% of the IT power [85]. The total power consumption in the IT sub-system
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can be significantly reduced by applying energy efficient strategies in the server system.

An important principle to improve energy efficiency is to ensure energy consumption

proportionality, which states that the energy consumption of server system P should be

proportional to the system workload λ [49, 68]: P = aλ . When considering the network

equipment power consumption, the power consumption in IT equipment sub-system should

be linearly increased with system workload: P = aλ + b. For simplicity, we assume

all the servers in the data center are identical nodes. On a typical web server and web

clusters, system workload can be described by the request arrival rate λ . Let Mj be the

total number of servers in a data center j, and Λ j be the maximum arrival rate for the data

center to achieve desirable QoS. m j is the total number of active servers. The total energy

consumption of a data center can be expressed as follows:

Pj = m j(Pac j −Pin j)+MjPin j +Pnet j (4.3)

Pac j is the power consumption of a fully active node, Pin j is the power consumption of an

inactive nodes. Pnet j is the network equipment power consumption. Based on the linear

model: b j = Mj ∗Pin j +Pnet j, which is the power consumption when there is no system

workload. While the system reaches its maximal workload Λ j, the power consumption can

be represented as:

Pmax j = Mj(Pac j −Pin j)+MjPin j +Pnet j = Λ ja j +b j (4.4)
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According to equation 4.3 and 4.4, we can derive the energy consumption model of IT

equipment sub-system as:

Pj =
Mj(Pac j −Pin j)

Λ j

W

∑
i=1

λi j +MjPin j +Pnet j (4.5)

With the help of 4.3 and 4.5, we can derive the total number of active servers in a data

center as:

m j =
∑W

i=1 λi j

Λ j/Mj
=

Uj

Mj
(4.6)

Where Uj is the system utilization in data center j. The number of servers may not be

an integer based on Equation (4.6). We will set the integer no less than m j, which is the

minimal number of servers to run in fully active mode.

Cooling sub-system power consumption modeling. The cooling sub-system evacuates

large amount of heat produced by an IDC. Computer Room Air Conditioners (CRACs) and

fans are used to remove hot air from servers on the data center floor and bring in fresh

cooler air [77]. Conventional CRAC transfers heat from the air to fluid coolant that is then

pumped to large chillers or cooling towers in another part of the facility [10]. The heat is

expelled into the external atmosphere, and the cooled fluid is circulated back to the CRACs.

Generally speaking, the cooling sub-system electricity consumption increases with the

amount of heat it needs to evacuate. Modern data centers use variable speed drive chillers
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and variable speed fans, which gives their cooling systems a large dynamic range. Chillers

are the dominant consumers in the cooling system, so they can require more than three

times as much power as the other cooling components [86]. In our power model, the power

consumption for CRAC systems is simplified as a fixed power consumption PCARC. Given

an outside temperature and a data center utilization level, the chillers can be turned off to

ensure reliable operation with the most energy-efficient manner. We adopt a quadratic

power model for the chiller power consumption as in [82]. So the total power consumption

of cooling system is summarized as:

Pcooling j =

⎧⎪⎪⎨
⎪⎪⎩

c1 jU2
j + c2 jUj + c3 j +PCARCj (i f Uj ≤ 25%)

PCARCj (Otherwise)
(4.7)

4.4.2 Networking Cost Modeling

Network usage costs are a significant component of the total operating costs for OSPs [87,

88]. The cost of network link connected to ISPs is a function of traffic volume, i.e., F(v),

where F is non-decreasing cost function, and v is the charging volume of traffic. The cost

function F is commonly of the form price∗v, where price is the unit traffic volume price of

a link [88]. The charging volume v is based on actual traffic volume. The links between end

users and data centers may be interconnected by multiple ISPs. So the cost varies among

different paths. For simplicity, we define the total network cost as the sum of individual
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network usage costs. In each path, the cost is linearly increased with the traffic volume as

in [82], the total network cost in an hour can be expressed as:

Ncost =
W

∑
i=1

N

∑
j=1

λi j(t)Ci j (4.8)

Although this is a highly simplified model of reality, there is evidence that such model

results in a reasonable approximation to a proper network cost optimization [88].

4.4.3 Performance Modeling

Degraded system performance is known to result in lost revenue. In our optimization

model, we select end-to-end response time as the metric of performance, which consists

of network delay and response time inside an IDC.

We use geographic distance as a rough measure of network latency, which has been tested

and applied as a simple model for modeling network delay [82]. The round trip time

for a request from user group i to data center j is a linear function of its distance Disi j:

Delayi j = c∗Disi j +d.

In a single data center, the incoming workload is coming from multiple user groups based

on our optimization dispatching discipline, which is ∑W
i=1 λi j for any data center j. The

response time inside a data center is the summation of service time and waiting time. We
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obtain the average response time based on the queuing models presented in [50–53]. The

average service time for the incoming packets is E[X ]. According to Pollaczek-Khinchin

formula, the average response time for the incoming packets in data center j with m j active

servers is:

E[R] j =
∑W

i=1 λi jE[X2]

2(m j −∑W
i=1 λi jE[X ])

+E[X ] (4.9)

Based on the above energy proportionality 4.6, equation 4.9 can be re-written as:

E[R] j =
E[X2]

2(Mj/Λ j −E[X ])
+E[X ] (4.10)

After we take network delay into account, the average end-to-end userâĂŹs delay can be

summarized as:

AveDelay =

W

∑
i=1

N

∑
j=1

(λi j(Delayi j +E[R] j))

W

∑
i=1

N

∑
j=1

λi j

(4.11)

4.5 Optimization Problem Solution

Workload and electricity price predictions are beyond the scope of our work. There are

many tools and online services which can provide precise predictions. We only take the
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workload trace and electricity trace as inputs in our optimization process. However, the

optimization problem cannot be solved linearly, since the optimization controller has to

periodically determine both the power mix and workload fractions. In order to solve

the optimization problem, we propose an adaptive optimization algorithm as shown in

Algorithm 2. The dynamic optimization process starts by dividing the carbon emission

cap into 12 pieces, one piece per month. The carbon emission cap for each month is then

weighted by monthly workload intensity. The power mix is determined monthly based

on an average monthly workload and electricity price instead of hourly as in workload

fractions calculation. We claim it as a more practical solution, because an electricity

purchase contract is usually set for a long period of time. At the beginning of each month,

the power mix for each data centers is calculated from half portion of brown energy and

half portion of green energy. The brown energy and the green energy portion are gradually

increased and decreased the by 10% in the optimization process. If the total workload is less

than 25% of the total IDCs processing capacity, all the chillers can be turned off to save

cooling system energy. In this case, the workload fractions can be calculated by Linear

Programming (LP) after the power mix is computed. Otherwise, the optimal controller

will search for possible chiller ON/OFF combinations, and calculate workload distribution

fractions using Quadratic Programming (QP). The minimal cost combination is the optimal

solution for load distribution. We record the brown energy consumption at the end of each

month and update the monthly carbon emission caps for the rest of the months.
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Algorithm 2 Adaptive optimization Algorithm

system initialization

1.divide carbon emission cap into 12 pieces

2.weighted by monthly workload intensity

for each month

calculate the power mix for each data center according to monthly input

for each hour i
if total workload is less than 25% system workload

1. turn off the chillers in all the data centers

2. calculate the fractions of workload distribution using LP

else
1. search for possible chiller ON/OFF combination in all the data centers according

to total workload

2. for each possible combination, calculate the fractions of workload distribution

and total costs using QP

3. search for the minimal cost workload distribution solution

4. turn off chiller according to the minimal cost solution in step 3.

send requests to data centers for processing

accumulate brown energy consumption

end for
update carbon emission cap for the rest of months

end for
report system performance and total cost

4.6 Simulation Results

We built a simulator to evaluate our energy-aware optimization dispatching policy. Our

simulator takes workload traces, electricity, carbon offset market price traces, and a

carbon emission cap as inputs. It simulates the request distribution policy and outputs

the performance and the total electricity and network cost.
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Table 4.3
Data centers power consumption parameters setting

Data
center

Location
Power

supply market
Power consumption
chillers on(KW/h)

Power consumption
chillers off(KW/h)

1 South California San Diego 2.03λ 2 +158.18λ +1166.7 100.5λ +940.36

2 Central Michigan Michigan hub 0.96λ 2 +132.8λ +1209.3 96λ +1036

3 North New Jersey New Jersey 0.77λ 2 +115.15λ +1423 78.5λ +1206

4.6.1 Parameters Setting

We simulated two user groups from the States of Texas and Georgia in the U.S. and three

data centers. We denote the requests from Texas as user group 1 and those from Georgia

as user group 2. The detailed information and parameter settings of the three data centers

are shown in table 4.3. The maximal processing capacities are set as: Λ1 = 16k/s,Λ2 =

18k/sandΛ3 = 20k/s in each data center . The carbon emission cap is set to 75% of the

dynamic energy required to process the trace. The electricity and carbon offset market

prices are collected from the real markets.

4.6.2 Influences of Electricity Price and Network Cost

Online Service Providers often sign long-term contracts with power producers with a fixed

electricity price over the duration of the contract. By implying our energy-aware optimal

load dispatching policy, the OSPs need to work with power producers negotiating the

contracts. In our model, the optimal controller will dynamically distribute the workload
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Figure 4.3: 14 days hourly electricity price and daily electricity price

comparison.

hourly, so it would be preferred if power producers can accept an hourly spot price on the

contract. However, there are two problems we must consider: first, most power producers

will not like to provide the off-peak (the lower hourly prices in a day) spot price, since

sometimes the price can be negative; second, our policy may not contribute the most cost

savings if the spot hourly price shows large fluctuations overtime.

In our evaluation, we first study two kinds of electricity prices: spot hourly electricity price

and average daily price. We also compare the total electricity and network cost of OSPs

between using daily electricity price and hourly spot electricity price. Figure 4.3 shows the

hourly spot electricity prices and average daily prices at three locations for two weeks (Jun.
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Figure 4.4: Electricity and network cost comparison using hourly and daily

electricity price.

1st, 2010-Jun. 14th 2010). The red lines illustrate the hourly spot electricity prices, and the

green lines illustrate the average daily prices. On certain days, the spot hourly electricity

prices show large fluctuations, however the standard deviations of spot hourly price are

normally below 10 (we study the standard deviations of spot hourly prices in a half year

in three locations). Figure 4.4(a) illustrates the dynamic hourly total cost for a week, and

Figure 4.4(b) shows the monthly total cost for a half year. As we can see from the figures,

the hourly electricity price results in slightly more savings than the daily electricity price,
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(multiple ISP).

Figure 4.5: One day(June 1st, 2010) load dispatching comparison

with the average savings of 1%. However, the daily electricity price is sufficient enough

for cost savings if the power producers do not accept hourly spot price on the contract.

Even if a fixed price contract is applied to each data center, our policy will still work once

price differences exist between different locations. For the rest of the simulation, we use

an average daily electricity price to evaluate our energy-aware optimal dispatching policy.

For network cost, we evaluate our optimal energy aware load dispatching policy with varied

network costs given a fixed brown and green power mix in a day. We are not aware of any

public disclosures that provide specific information about the geographic and temporal

variation in network prices [86]. We assume network services are provided by the same

ISP or multiple ISPs through direct links for simplicity. Figures 4.5(a) and 4.5(d) illustrate

95



the workload distribution for two user groups when we do not consider the network cost.

Figures 4.5(b) and 4.5(e) illustrate the workload distribution for two user groups when

the Internet connections are provided by the same ISP, which means the cost per unit job

between each user group and data center is the same. Figures 4.5(c) and 4.5(f) illustrate

the workload distribution for two user groups when the Internet connections are provided

by multiple ISPs, which means the network cost for transferring per unit job between each

user group and data center is different. As shown in Figure 4.5, the workload distribution is

quite different in the above three scenarios, which means network cost plays an important

role in load distribution, so our work can provide a more accurate load dispatching strategy

to reduce the total cost.

4.6.3 Performance Evaluation

To further evaluate our model, we compare our energy-aware load dispatching policy

with two baseline policies. The first baseline policy is energy-aware round-robin load

dispatching policy, in which the workloads for each user groupsăare evenly distributed

to three data centers, energy efficiency strategies are applied in both server and cooling

sub-systems; The second baseline policy is optimal load-dispatching policy, in which each

data center ignores the dynamic power consumption of cooling the system, chillers will

always be on. Figure 4.6 reflects the hourly total electricity and network cost of the three

dispatching policies when the workload is normalized to 20% and 70% respectively. With
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Figure 4.6: Electricity and network cost comparison with different load

dispatching disciplines.

light workload data centers, the optimal load dispatching policy contributes the highest cost

because of the unnecessary cooling power consumptions. On the other hand, with heavy

workload data centers, the round-robin load dispatching policy contributes the highest

total cost because of ignoring dynamic electricity prices. In either situation, our optimal

energy-aware load dispatching policy achieves the most cost savings. We further evaluate

our model for six months with varied workloads as shown in Figure 4.7, and we observe
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Figure 4.7: Monthly electricity and network cost comparison

that our model can significantly reduce the total cost for OSPs.

Next, we study the carbon emission caps and chiller ON/OFF threshold and how they

influence total cost. The carbon emission limits are set to 50%-90% of dynamic energy

required to process the trace, and the chiller ON/OFF threshold varies between 10%-50%.

We study the total cost for different workload intensities in a month. The results are

shown in Figure 4.7. Under different workload intensities, we can summarize the following

conclusions. First, the total cost gradually decreases with the increase of carbon emission

limit, since the green energy price is higher than brown energy. Our controller provides an

accurate power mix decision under different carbon emission limits. Second, the total cost

gradually decreases with the increase of chiller ON/OFF threshold, our optimal controller

helps to save more cooling power by distributing the workload and turning off chillers

whenever possible. Also, there is not a significant cost change under different workload

intensities, which proves that our energy-aware load dispatching is not influenced by the

chiller ON/OFF parameter. Finally, the total cost is higher under higher workload intensity,
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which means our energy-saving strategies applied in the sever sub-system and cooling

sub-system together work to save the total electricity cost.

Finally, we study the brown energy consumption and total cost in a half year as shown

in Figure 4.8. The carbon emission caps are set to 60%, 75% and 90% of the dynamic

energy required to process the trace. The total cost is decreases as the carbon emission cap

increases. It further proves that our optimal controller effectively selected the power mix

in order to save total cost for OSPs.

Figure 4.9 shows the hourly average end-to-end response time in a week. In our simulation,

the maximum average response time is set to 65ms. We can see from the figure that the

average response time is always below the threshold, which means our model can achieve

desirable quality of service.

4.7 Future Work

Cooling system energy efficiency. Considering the fact that cooling system takes 30% of

IDC total power consumption, we argue that the efficiency improvement of cooling system

is part of green computing. Our previous work only used a simplified chiller ON/OFF

strategy to reduce the energy consumption of cooling system. The CRAC fan speed, which

determines the airflow rate through the data center, can also be dynamically adjusted with
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IDC workload. Moreover, with the newer highly modular container based designs, the

dynamic behavior of outside temperatures, cooling system therefore exhibits opportunities

in reducing the total energy consumption of an IDC. Our future work will exploit those

opportunities to improve the energy efficient of cooling system together with the server

system.

Complex network model. Network cost is an important contributor to OSPs costs, and

there could be large differences on the costs levied by different network providers, and

even on the same network provider over time [82]. In our previous work, we modeled the

network cost as a linear function of the traffic volume. This model significantly simplified

the problem, however, in realistic, the network cost is a non-linear function of the network

traffic volume. Moreover, the network charges for a link are levied at the end of a billing

period and are a function of the traffic volume during that entire period instead hourly.

Therefore, we plan to investigate how to estimate the hourly charges of network. For the

complex network cost, how to construct the network model and solve the cost problem are

worthwhile for future researches.
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Figure 4.7: Monthly electricity and network cost with varied carbon

emission limit and chiller ON/OFF threshold.
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Chapter 5

Energy-efficient Statistical Live Virtual

Machine Placement in Cloud Computing

Environments

5.1 Background and Related Work

Cloud computing, a new computing platform in which users can acquire and release the

resources on demand from a Web browser, becomes more and more popular recently.

One of the most important technology making cloud computing possible is the use of

virtualization technology, such as VMware [89], Xen [90, 91]. Virtualization provides a
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method for on demand migration and dynamic allocation of virtual machines(VMs). It

allows users to achieve the same level of performance in a more flexible and secure way.

It also enables workloads to consolidate to less physical machines(PMs), thus reducing

overall data center power consumption.

The use of workload consolidation to vacate PM to improve system efficiency has already

been presented in many other works. A key issue in workload consolidation is to map the

VMs to PMs [92]. Many previous works have formulated the VM/PM mapping problem

as a multidimensional bin-packing problem. Each dimension represents a particularly

resource type of a VM request. The goal is to use the least possible bins to fulfill all

the VM requests [19, 20]. The problem is NP-hard and can be solved by some heuristic

methods such as first-fit or best-fit. However, there are several limitations of bin-packing

based methods: first, most of them formulated the problem in a homogeneous platform with

identical PMs. However, IDCs are inherently heterogeneous because of upgrading cycles

and replacement of failed components, the heterogeneous of PMs makes the problem even

harder than the NP hard bin-packing problem; second, the dynamic behavior of workload

is neglected. When a VM arrives and departs, the VMs consolidation will be violated.

Therefore, it is not only necessary but essentical to deal with the dynamic workload for

energy savings; third, the use of consolidation strategies have to consider additional factors

that are of utmost importance for data centers, such as QoS, reliability in addition to

energy consumption. The overheads caused by VM consolidation and migration need to be

investigated.
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In this work, we propose a new live VM placement scheme that can dynamically and

effectively map the VM requests to PMs with substantial energy savings in a heterogeneous

server clusters. We construct a VM/PM mapping probability matrix, in which each VM

request is assigned with a probability running on a specific PM. The VM/PM mapping

probability matrix takes into account resource limitations, VM operation overheads, server

reliability as well as energy efficiency. Our scheme then decides where to execute a

new job, and whether to move existing jobs in order to improve global system efficiency.

Furthermore, the proposed scheme is able to extend for more considerations in the light

of users’ demand. This work discusses the entire proposed scheme and evaluates its

effectiveness via extensive simulations.

There is an expansion in research on energy efficiency in large scale data center or server

clusters in the past few years. In this section, we only review the work related to VM

management and cloud computing since they are more closely related to this work.

One most influential technology making cloud computing possible is the use of

virtualization [90, 93, 94]. Virtualization allows user to achieve the same level of

performance and security with lower energy consumption by consolidating multiple VMs

into a larger PM [20].

A significant amount of works are focused on VM scheduling and consolidation planning.

The goal is to map VMs to fewest possible PMs without degradation of performance in

a data center or a server cluster. These efforts can be divided into two categories: static
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VM consolidation and dynamic VM consolidation. Under static consolidation, strategies

were proposed to allocate system resources for the incoming VMs with both energy

and QoS considerations [95]. In [96], researchers proposed a statistical static capacity

management in virtualized data centers with guaranteed QoS. In [97], a multi-capacity

aware bin-packing algorithm is proposed to make use of the information in the additional

capacities for resource allocations. However, VM loads often change over time, it is not

sufficient to make good initial placement choices only using static consolidation approach.

It is necessary to dynamically alter placements as conditions change in a data center [1].

The technique of live migration is to reallocate an executing VM between two PMs

without significant interruption of the VM [93, 98]. In [91], the authors proposed a new

consolidation approach in a homogeneous cluster environment that considered both VMs

allocation and VMs migrations. Bo Li [99] investigated the live placement of applications

dynamically in a cloud platform. Another group of researchers presented a planning tool

named ReCon to control dynamic consolidations in an IDC [100]. However, these works

were either formulated in a homogeneous platform or did not treat live migration overhead

carefully. In [9], the authors proposed a score-based live migration mechanism that

carefully addressed virtualization overheads. However, in their work, the active number

of physical servers did not depend on the dynamic VM mapping results, but depended on

two workload intensity thresholds, which will not lead to the most energy savings. Our

work is built on a heterogeneous platform. It has taken into considerations of all the VM

operation overheads, system reliability in addition to energy efficiency. Specifically, the
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dynamic VM placement scheme and the spare server strategy will together determine the

total number of active servers. From one hand, the dynamic VM placement scheme will

minimize the number of servers, from the other hand, the spare server number will be

determined by workload intensity. Therefore, our work will effectively reduce the system

power consumption through dynamic consolidation scheme and also be capable of dealing

with workload spike.

There are also some researchers made efforts to reduce the power consumption or

computational cost in a cloud platform. In [101], a GreenCloud architecture is proposed,

which reported significant energy saving in cloud computing environment. In [102], the

authors proposed a dynamic load distribution policy that addressed all electricity-related

costs as well as transient cooling effects in a cloud platform. Michele Mazzucco [103]

formulated a queuing model to maximize the average revenue for the cloud providers.

5.2 Statistical Dynamic Virtual Machine Migration

5.2.1 Problem Statement

The primary goal of VM management in a visualized data center is to minimize the PMs

needed for all the VM requests. Mapping a VM "correctly" into PMs requires knowing

the capacity of each PM and the resource requirements of the VM. It must also take
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into accounts VM operation overheads, reliability of the PMs, QoS in addition to energy

efficiency.

An example is shown in Figure 5.1 for better understanding the problem. In the example,

we have three PMs in the system, each of them has a limited resource of 10, 11 and

11 respectively. We only consider a single resource type for simplicity in the example.

There are three jobs are currently running on PM1 and PM2. When two new jobs arrive

sequentially, static methods require an additional PM. However, if we firstly migrate V M1

from PM1 to PM2, the new arrival jobs can be both allocated to PM1, while PM3 can

remain off to save energy. Therefore, the consolidation strategy need to find an energy

efficient VM/PM mapping dynamically with the change of system status. The problem

is different from the multidimensional bin packing problems from two perspectives: first,

in traditional bin-packing problem, the bin size is the same. However, in our problem,

the resource capacity of each PM is different; second, the VM operation overheads, the

reliability of PMs and QoS must be considered when packing the VMs into PMs. So our

problem is much harder than the NP-hard bin-packing problem.

In this work, we build a statistical framework for VM management in a heterogeneous

server cluster. A new dynamic VM placement process can be triggered by three different

kinds of events: new VM arrival, VM departure, and the changes of PM reliability. Then,

the best VM/PM mapping is determined with the help of a probability matrix that is

constructed with several considerations.
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Figure 5.1: Dynamic consolidation V.S. static consolidation.

For better understanding of our scheme, Table 5.1 summarizes the notations and definitions

which will be used throughout this chapter.

5.2.2 Transition Probability Matrix Formulation

The probability matrix P consists of N rows and M columns. Each column represents an

active PM in the system, each row represents a VM that is currently running in the system.

The elements in the matrix pi j is the normalized probability of hosting a VM i in a PM j

with several constraints. We firstly study the constraints on an individual PM and obtain

the joint probability p′i j = pres
i j ∗ pvir

i j ∗ prel
i j ∗ pe f f

i j with resource requirements, virtualization

111



Table 5.1
Notations

Notation Definition

N Number of VMs running in the system.
M Number of active PMs.

V MMAP VM and PM mapping vector, |V MMAP|= N.
p′i j The normalized joint probability of hosting VM i in PM j.
pi j The joint probability of hosting VM i in PM j.
pxxx

i j The probability of hosting VM i in PM j with only
consideration of condition xxx.
xxx = res: resource limitations, xxx = ope: VM operation overheads,
xxx = rel: server reliability, xxx = e f f: energy efficiency.

Ri Resource requirement vector of VM i, |Ri|= K +1.
RMIN VM minimum resource requirement vector, |RMIN |= K.
CMAX

j Maximum resource capacity vector of PM j.
Cj Current resource occupation vector of PM j, |Cj|= K.

T cre
j VM creation time in PM j.

T mig
i VM i migration time to any destination PM.

DelayMAX
i maximum performance delay of VM i.

Delayi(t) VM i performance delay at time t.
Uj Resource utilization (%) of PM j.

UMIN
j Resource utilization (%) with one mini VM hosted in PM j.
w j Resource utilization level of PM j.
Wj The maximum number of mini VMs can be hosted in PM j.

Ustatus j Resource utilization status of PM j.
αk Type k resource intensive parameter.

power j Per VM power consumption of PM j.
e f f j Relative power efficiency parameter of PM j.

MIGthreshold Migration threshold.
narrival(t, t +T ) Number of VMs arrival in the next control period T.

ndeparture(t, t +T ) Number of VMs departure in the next control period T.
nspare(t, t +T ) Number of spare PMs in the next control period T.

nidle(t) Number of non-idle PMs at time t.
nAV E (t) Average number of PM required by a VM until time t.

overhead, the physical server reliability and energy efficiency considerations. After that,

we normalize the joint probabilities in each row to obtain the elements in the transition
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probability matrix.

PM1 PM2 · · · PMM

V M1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 · · · p1M

p21 p12 · · · p1M

...
...

...
...

pN1 pN2 · · · pNM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V M2

...

V MN

(5.1)

5.2.2.1 Resource Limitations

Each VM has a specific resource demand from PMs, such as the number of CPUs, memory

size or disc space. We firstly check if a VM can be hosted in the PMs. We define a VM

request i as a K + 1 dimensional vector: |Ri| = K + 1. The first K components represent

the resource demand of a VM. The last component is the estimated running time of the

VM request. It is easy to specify the amount of needed resources; this is typically under the

direct control of the user. Users often run the same applications many times and can predict

runtime based on experience [102]. The resource capacity of a PM j is a K dimensional

vector: |CMAX
j |= K, each component CMAX

j (k)( f or k = 1,2, ...K) represents the maximum

capacity of the resource type k in PM j. A K dimensional vector Cj represents the current

resource occupations of PM j. We define pres
i j is the probability of VM i hosted in PM j by
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only considering the resource requirements:

pres
i j =

⎧⎪⎪⎨
⎪⎪⎩

1; ∀ Ri(k)+Cj(k)�CMAX
j (k) ( f or k = 1,2, . . . ,K)

0 otherwise
(5.2)

The rationale of the above definition is quit straightforward, if there is sufficient resource

for VM i hosted in PM j, the probability pres
i j = 1, otherwise, pres

i j = 0.

5.2.2.2 VM Operation Overheads

To avoid losing customers, our scheme never violates the QoS. We carefully consider

two VM operation overheads from the performance perspective in our framework: VM

migration time and VM creation time.

The VM migration time reflects the time duration from migration start to finish, which we

refer to as migration overhead. The migration time is related to the amount of memory used

by the migrated VM i [91, 104]. It has been tested linearly increased with the requested VM

memory size. We use T mig
i to denote the VM i migration time to any physical machine j.

Two metrics are usually used to quantify the performance of migration. One is downtime,

which reflects the time of the migrated VM with no response. Since this time has been

tested in milliseconds, it is negligible compared to the total runtime [91, 104]. The other

one is performance overhead, which is the performance degradation of co-hosted VMs
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because of extra computation resources consumed to perform the migration. It reduces the

computation capacity, at the same time increases the runtime of co-hosted VMs and the

migrated VM. In the worst case, the performance loss is about the same as the migration

time [91]. Although the performance overhead is fairly short, the numbers of migrations

should be kept to least possible for QoS.

The VM creation time mostly depends on the processing capacity of the PMs. We use T cre
j

to denote any VM creation time on PM j. The incoming request cannot be served until the

creation of the VM is finished. The VM creation time involves extra waiting time for each

incoming request, therefore it affects the overall performance.

In our framework, the QoS is set to complete each job within 105% of the job’s total runtime

plus 30 seconds as in previous work [102]. The latter part of the slack is to avoid missing

the QoS for short running jobs. Let DelayMAX
i be the maximum acceptable delay for the

VM request i, in which DelayMAX
i = 5%∗Ri(K +1)+30 [102]. The VM i current delay is

caused by queuing delay, VM creation and VM migration, we use Delayi(t) to denote it.

We define pope
i j as the probability of VM i migrated to PM j under operation overheads

consideration. Before migrating the VM i, we firstly check if the migration will cause a

violated performance for any co-hosted VMs, or cause a violated performance for the VM

i itself. Suppose VM i is currently hosted in PM m, let V MMAP
i represents the VM/PM

mapping vector, so V MMAP
i = m. The VM i is going to be migrated from PM m to PM j.

The migration will be forbidden under two circumstances: first, there exists a co-hosted
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VM w that the QoS will be violated because of the migration: Delayw(t) + T mig
i >

DelayMAX
w , f or any V MMAP

w = m; second, the violated QoS is detected for the VM i itself:

Delayi(t)+T mig
i > DelayMAX

i . We then set the pope
i j to be 0. Otherwise, we set pope

i j = 1, if

the migration will not result in unacceptable performance loss or the VM i is already hosted

in PM j.

5.2.2.3 Server Reliability

We also consider physical server reliability in the dynamic consolidation process. Each

physical machine is given a probability of reliability prel
j according to its life time, chance

of failure and so on. The higher the probability is, the more reliable of the physical machine.

We use this reliability of the physical machine j as the probability of any VM i hosted in

PM j while only considering the reliability issue, so prel
i j = prel

j . If a physical machine fails,

all the VMs that are running in it will be reallocated.

5.2.3 Energy Efficiency

The primary goal of our work is to improve the overall energy efficiency. The basic idea

is to make the best use of high energy efficiency PMs. In order to achieve this objective,

we design a strategy, in which the utilization status and power efficiency will combine

to determine the probability pe f f
i j , so pe f f

i j is the product of two parts. (Note: the energy

116



efficiency probability pres
i j will be only calculated when the resource limitations can be met:

pres
i j �= 0)

5.2.3.1 Server Utilization Status

From the utilization perspective, we want to ensure each PM is fully or nearly fully utilized

to minimize the number of required PMs. It is important to consider multiple resource types

instead of a single resource type to better evaluate the PM utilization status. For example,

if 100% CPU of a PM is utilized while only 20% memory is utilized. In this case, no more

jobs can be allocated in the physical machine, wasting 80% of memory.

Our work considers multiple resource types. We define two utility functions to evaluate the

resource utilization of each PM as described below.

Joint resources utilization: For each PM j, the resource utilization is a joint product

of several resource utilizations, Uj = ∏ Cj(k)+Ri(k)
CMAX

j (k)
, for k ∈ {1,2,3..K}, each

Cj(k)+Ri(k)
CMAX

j (k)

represents the utilization of resource type k. The PM j with Uj closer to 1 means better

utilization, while closer to 0 means poorer utilization. In this definition, each resource

plays an important role to evaluate the PM utilization, the PM will only be considered well

utilized when each resource is fully or nearly fully utilized.

Resource intensive utilization: For each PM j, the resource utilization is the summation
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of the weighted resource utilization for each resource type, Uj = ∑αk
Cj(k)+Ri(k)

CMAX
j (k)

, for k ∈

{1,2,3..K} and ∑αk = 1, in which αk is the intensive parameter of resource type k. This

definition is extremely useful when certain resource type dominates resource demand. For

example, VMs require a large amount of CPUs and a small amount of other resources.

Also, the PM j with Uj closer to 1 means better utilization, while closer to 0 means poorer

utilization.

After obtaining the resource utilization of each PM j. We non-evenly partition the

resource utilization interval into several sub-intervals for each PM j, and each sub-interval

represents a resource utilization level. We define a minimum resource requirement vector

as |RMIN | = K in order to partition the resource utilization for each PM. Each component

RMIN(k) represents the minimum requirement of the resource type k. This can be treated

as a small instance or a mini instance type in cloud services [105]. Assuming the PM j has

sufficient resources for a maximum number of Wj mini VMs, we then partition the resource

utilization into Wj + 1 levels. Because lack of space, we only show how to partition the
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resource utilization through Joint resources utilization method in Equation (5.3).

L0 = [0,UMIN
j )

L1 = [UMIN
j ,2kUMIN

j )

L2 = [2kUMIN
j ,3kUMIN

j )

...

Lw j = [(w j)
kUMIN

j ,(w j +1)kUMIN
j )

...

LWj−1 = [(Wj −1)kUMIN
j ,W k

j UMIN
j )

LWj = [Wj
kUMIN

j ,1]

(5.3)

In the above equation, UMIN
j =∏ RMIN(k)

CMAX
j (k)

, for k∈{1,2,3..K}, which represents the resource

utilization when only one mini VM hosted in the PM j. Level L0 is an impossible state,

since there is no possibility that the resource utilization Uj with VM i hosted in is less

than the minimum resource utilization UMIN
j . L1 means that there is no more than one VM

hosted in PM j. As the level increases, the utilization of PM j increases. At the last level,

PM j is fully utilized or nearly fully utilized; thus no further VM requests can be accepted,

for which we consider that the PM j has achieved its maximal energy efficiency.

By partitioning the resource utilization, the resource utilization status is defined to be

proportional to its utilization level w j as shown in Equation (5.4). VM i has a higher

probability to be hosted in the PM j with higher utilization level. Note, we formulate
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the problem in an inhomogeneous server system, so each server may have different

computation capacity, that is why we separately partition the resource utilizations into

different groups for different PMs. If all the PMs are identical nodes: W1 = W2 = · · · =

Wj = · · ·=WM.

Ustatus j =
w j

Wj
; i f Uj ∈ Lw j(w j = 0,1, . . . ,Wj) (5.4)

An example is shown below to illustrate how to obtain the utilization status. We only

consider two resource types: CPU and memory in the example. Assuming a PM has

the computational capacity with 4 cores and 8G memory. The minimum VM resource

requirements are 1 core and 1.5 G memory, so 4 mini VMs can be hosted in the PM.

We then partition the resource utilization into 5 sub-intervals as: L0 = [0,3/64), L1 =

[3/64,3/16), L2 = [3/16,27/64), L3 = [27/64,3/4), L4 = [3/4,1], each sub-interval

represents a utilization level. If Uj = 0.7, since 0.7∈ L3, the utilization level of the PM

j is Uj = 3/5.

5.2.3.2 Server Energy Efficiency

It is not enough to just evaluate the server utilization for energy efficiency. For example,

two servers have the same computation capacity, both of them can host a maximum of

W1 =W2 = 4 mini VMs. However, the power consumption of PM 1 is 300 W/h, the power

consumption of PM 2 is 400 W/h. Suppose their current utilization levels are the same.
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Only considering the utilization level, we can allocate a VM to any of them. However,

server 1 should have a high probability because of its lower power consumption.

A relative power efficiency parameter is defined to compare the energy efficiency between

each PM. It will help to best use of energy efficient servers. We define: e f f j =
min:{power j}

power j
(

for j = 1,2, . . . ,M), where power j is the active power consumption of PM j divided by

Wj. In other words, it is the per mini VM power consumption of PM j. The PM j with

the minimum per VM power consumption will have a relative power efficiency parameter

equal to 1. The PM with higher per unit power consumption will be assigned with a smaller

value. In the above example, the relative power efficiency parameter for PM 1 and PM 2

are e f f1 = 1 and e f f2 = 3/4, respectively.

The energy efficiency probability is defined to be proportional to its utilization status and

its relative power efficiency as shown in Equation (5.5):

pe f f
i j =Ustatus j · e f f j (5.5)

5.2.4 Dynamic Consolidation Process

The dynamic consolidation process will be triggered by three different events: new job

arrival, job departure and the failed of PMs. We firstly identify which event causes a new

VM migration process. All three events will bring changes to the probability matrix. For
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a new VM request, we only calculate the probability in the new VM row and allocate it to

the PM with the highest probability. We then update the probabilities column where the

new VM is allocated. For job departure, the departing VM row will be removed, and the

corresponding PM column will be updated in the probability matrix. If a PM fails, all the

VMs hosted in that PM will be treated as new VM requests.

After detecting an event, our VM controller initializes the probability matrix and gets ready

for the dynamic consolidation process. It starts with probability matrix normalization. The

normalization process is important and necessary, because it is aimed at finding a better

improvement instead of higher probability. We divide each pi j with pi(current) (which is the

probability the VM i currently allocated in) in each row to check if there is a better VM/PM

mapping compared to the current one, and then obtain the normalized matrix D. Numbers

in the matrix with values greater than 1 indicate efficiency improvement. Numbers which

are less than 1 correspond to degradation while 1 indicates that the VM is currently hosted

in the PM.

The dynamic consolidation algorithm is shown in Algorithm 3, it consists of several

migration rounds. In each migration round, we select the largest value in the normalized

probability matrix, and move corresponding VM to the new PM, having the VM/PM

mapping updated. After that, we release the PM resources in which the VM moves

from, update the resource occupation of PM which the VM moves to, and refresh the

probability matrix. We only need to recalculate the corresponding PM columns with
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migration involved instead of all the probabilities, and prepare for the next migration round.

Each migration round will bring a more efficient and reliable VM/PM mapping until the

migration is terminated.

To minimize unnecessary migrations and terminate migration rounds, we set a parameter

migration threshold MIGthreshold to restrict the dynamic migration rounds. It ensures that

only those migrations resulting in improvement will be counted. For example, if we set

MIGthreshold = 1.05, the migration process will stop if there is no number larger than 1.05

in the normalized matrix.

Algorithm 3 Dynamic VM consolidation algorithm

Probability matrix P initialization

for each row

Normalize the P by dividing the probability of the current hosted VM and obtain

normalized matrix D
end for
While there is values larger than MIGthreshold in D do

1. Select the largest value in the matrix di j
2. Move VM i from the current PM m to PM j
3. Update matrix P in columns m and j
4. Update wmatrix D in columns m, j and row i.

End while

An example is shown below to illustrate the whole process for better understanding the

dynamic migration process. In the example, there are 4 VMs currently running in three

PMs, in which initially V M1 is running in PM2, V M2 in PM1, V M3 in PM1 and V M4 in PM3.

We first obtain a probability matrix as shown in the probability matrix P, each element

represents the probability of VM i hosted on PM j. We then normalize the probability

matrix in each row to obtain the normalized matrix D. For example, in V M1 row, each
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element is divided by 0.8, since V M1 is currently running in PM2, same for the rest of the

rows. In the normalized matrix below, we observe that 1.28 is the largest value, so we

migrate V M2 to PM2, release the resource of PM1, refresh the PM1 and PM2 columns in

the probability matrix and be prepared for the next migration round.

Probability matrix: P

PM1 PM2 PM3

V M1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.32 0.42 0.26

0.29 0.38 0.33

0.40 0.18 0.41

0.28 0.37 0.35

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V M2

V M3

V M4

Normalized matrix: D

PM1 PM2 PM3

V M1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.75 1.00 0.63

1.00 1.28 1.14

1.00 0.44 1.02

0.80 1.04 1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V M2

V M3

V M4

To improve the dynamic consolidation efficiency, we modified our dynamic

consolidation algorithms to two parallel dynamic consolidation strategies, named Top k

improvements(TKI) and Top k migration time (TKMT). Both strategies can migrate

multiple VMs in one migration rounds, which substantially improve the consolidation
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efficiency.

Top k improvements (TKI) : Top k improvements also consists of several migration

rounds. However, in each migration round, we migrate multiple VMs at the same time.

We select no more than k largest values that are larger than MIGthreshold in the normalized

probability matrix and sort them in a decreasing order. To ensure simultaneous migrations,

only the VMs with unique destination PMs are selected as candidates. We then move VMs

to the new PMs and release the PMs resources in which the VMs move from, update the

resource occupation of PMs which the VMs move to, having probability matrix refreshed.

The next migration round will not start until all the migrations in the current rounds are

finished.

Top k migration time (TKMT) : Top k migration time is similar to top k improvements

algorithm. The difference is that we select no more than k VMs that having the shortest

migration time from the normalization matrix with values larger than MIGthreshold , and sort

them in an increasing order. Also, the VMs with the same destination PMs will be filtered

out.
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5.3 Spare Server Controlling

In addition to dynamic VM consolidation, another key decision is to determine the amount

of active physical servers in the system. The number of active physical machine should be

large enough to handle the unexpected workload spike and avoid performance degradation.

It should also be remained at minimum to achieve energy efficiency in the system.

We periodically determine the active PMs from two aspects. In a time slot T , the total

number of active PMs nac(t, t +T ) is the sum of non-idle PMs nnidle(t) and spare servers

nspare(t, t+T ). The non-idle PMs is the number of PMs hosting VM requests, which can be

easily derived. In order to derive the spare servers nspare(t, t+T ) for the next control period,

we define another parameter NAve(t), which is the average number of PM required by a VM

request. This number can be computed by the non-idle physical servers nnidle(t) divided by

the number of VM requests running in the system. To best estimate this parameter, NAve(t)

is dynamically updated after each dynamic VM migration process. The spare server is

determined by the following equation:

nspare(t, t +T ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0; (i f narrival(t, t +T )−ndeparture(t, t +T )� 0)

narrival(t, t +T )−ndeparture(t, t +T )
NAve(t)

(Otherwise)

(5.6)

In equation(5.6), ndeparture(t, t + T ) is the number of VM requests that will finish their
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execution and depart from the system in the next control period. It can be easily derived,

since each VM request is submitted with an estimated running time. narrival(t, t + T ) is

the number of VM requests arriving in the system in the next time slot T . Workload

prediction is beyond the scope of our work, since there are many tools and methods which

can provide precise predictions [106]. We use a simple workload prediction method to

estimate the number of arrival VMs narrival(t, t + T ). If more VM requests depart the

system, there is no need to keep spare servers. The number of active servers in the

current time nnidle(t) is sufficient to handle the incoming request. Idle server will be

turned off during the dynamic consolidation process. However, we will have no less than

Nnidle(t)+
narrival(t, t +T )−ndeparture(t, t +T )

NAve(t)
servers in the active mode; on the contrary,

if there are more VMs arriving in the system, we will keep nspare(t, t + T ) spare servers

active.

5.4 Evaluation

5.4.1 Parameter Settings

We build a simulator using real workload trace data to evaluate our dynamic VM migration

scheme. It takes workload trace as input and outputs the performance and the power

consumption. The datacenter is configured to have 100 nodes, including 40 fast nodes
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Table 5.2
Data center parameter settings

Nodes Fast Slow

Number 40 60
VM creation time(seconds) 15 20
ON/OFF overhead (seconds) 40 50

Number of processors 2 2
Cores per processor 4 2

Memory (G) 8 4
Active power consumption (W) 400 300
Idle power consumption (W) 240 180

Table 5.3
Average migration time and power consumption comparison.

TKI-J TKMT-J TKI-R TKMT-R

Power consumption (Kw) 973.8 966.8 976.56 966.4
Average migration time (ms) 12.21 14.24 9.79 11.06

and 60 slow nodes. The detailed information and parameter settings of the virtualized data

center is shown in Table 5.2.

Because lack of Cloud Computing traces, we use a slightly modified trace of jobs submitted

to a HPC cluster available from the Parallel Workloads Archive [107]. This trace contains

approximately 10 months (August 2004 through May 2005) of data. The trace, LPC Log,

contains a record for each job serviced by the cluster, with each record containing a job ID,

submitted time, waiting time, actual run-time, and maximum number of cores and amount

of memory used. We randomly extract a week long workload from this trace, and filter out

the canceled jobs, jobs with small memory requirements, then use it as the workload for all

the simulations discussed below.
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Figure 5.2: Workload characteristics.

Figure 5.2 (a) shows the number of arrival jobs per day. This week long workload contains

4574 jobs, with a peak demand of 982 VM requests per day. We only consider two resource

types in the simulation: CPU and memory. We have normalized the memory required by

each job by equally dividing its number of cores required. So each VM request requires a

single core, a specific memory size with an estimate of its run-time. The required memory

and runtime for the week long trace are shown in Figure 5.2 (b)(c). We noticed that most

jobs require the memories less than 1GB. There are 2077 jobs with a runtime less than a

day. The workload indicates that jobs arrive and leave frequently, which makes dynamic

consolidation necessary to improve system efficiency.

129



 0

 300

 600

 900

 1200

 1500

W
ee

kl
y 

po
w

er
 c

on
su

m
pt

io
n 

(K
w

)

week

TKIJ
TKMT-J

TKI-R
TKMT-R

Best-fit
First-fit

Figure 5.3: Weekly power consumption comparison.
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Figure 5.4: Hourly power consumption in a week.

5.4.2 Performance Evaluation

We use the week long workload to evaluate our dynamic VM consolidation algorithms

under different resource utilization functions: top k improvements under joint resource

utilization (TKI-J), top k migration time under joint resource utilization (TKMT-J), top k

improvements under resource intensive utilization (TKI-R) and top k migration time under
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resource intensive utilization (TKMT-R). The migration threshold is set to MIGthreshold = 1.

The resource intensive parameters are set to α1 = α2 = 0.5. We compare our proposed

algorithms with two static schemes: the first one is the first-fit scheme, in which the new

arrival VM request will be placed to the first PM with available computation resources; the

second one is the best-fit scheme, in which the new arrival VM request will be placed to

the PM that can achieve its maximum utilization.

We first compare the weekly power consumption as shown in Figures 5.3. As illustrated

in the figure, our proposed dynamic VM consolidation algorithms consume similar

energy consumptions under both of the two proposed utilization functions. They can all

contribute more energy savings compared to statistic schemes. We do not show the system

performance in detail, because all of them can achieve desirable performance with less

than 1% performance loss. To better illustrate our results, we also record the hourly power

consumptions as shown in Figures 5.4. We can observe that our proposed algorithms

always require less energy consumption compared to static schemes. Based on those

results, we can claim that our dynamic VM placement algorithms can significantly reduce

power consumption in the cloud computing environment.

Next, we study the average time required for the system arriving at a stable state in

each dynamic migration event. Here, a stable state means that there is no value in

the normalization matrix larger than the migration threshold MIGthreshold . The average

migration time evaluates the speed and efficiency of our proposed dynamic consolidation
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algorithms. We compare the weekly power consumption and the average migration time

as shown in Table 5.3. As illustrated in the table, when using the resource intensive

utilization function, both TKI-R and TKMT-R require less migration time but with similar

energy consumptions compared to TKI-J and TKMT-J. Therefore, resource intensive

utilization method outperforms the joint utilization method by eliminating unnecessary VM

migrations and helping the system to achieve the stable state more faster.

5.4.3 Sensitivity to Parameters

To better evaluate our dynamic consolidation algorithms, we also perform sensitivity study.

We first compare the energy consumption by changing the resource intensive parameters.

In this simulation, two resource types are considered: CPU and memory. We use α1 to

denote the CPU resource parameter and α2 denotes the memory resource parameter. The

daily energy consumption is shown in Figure 5.5 by varying α1 from 0.1 to 0.9. As shown

the figure, the energy consumption first decreases and then increases as the CPU resource

parameter increases. The most energy savings are achieved when α1 and α2 are equally

set. It can be explained by the workload characteristics and the PMs compaction capacity.

In this simulation, if a VM is hosted in a PM, it occupies similar percentage of the total

compaction capacity of the PM, because most of the VMs require a single core and a

memory size less than 1GB. So the resource intensive utilization method is partially useful

when most of the VMs require a large amount of certain resource type than other resource
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Figure 5.5: Daily power consumption with the change of CPU resource

parameter.

types. The resource intensive parameter can be used to balance the resource requirements

in order to better evaluate the energy efficiency of the PMs. However, when the workload

is uncertain, the joint utilization method is more effective. We do not show the results here

because of the space limitations.

Next, we study the migration threshold MIGthreshold , and how they influence total power

consumption. The resource intensive parameters are equally set: α1 = α2 = 0.5.

The migration threshold varies between 1.0 and 2.0. We compare the weekly power

consumption and the total number of migrations as shown in Figures 5.6 and 5.7. We

notice that both TKI and TKMT consolidation algorithms consume approximately the

same amount of energy under the same migration threshold. However, both algorithms

(TKI-R and TKMT-R) require less number of migrations when using the resource intensive

utilization method. We also noticed that overall the total number of migrations gradually

decreases with the increase of migration threshold. However, the energy consumption only
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Figure 5.7: Total number of migrations

gradually increases when the migration threshold is larger than 1.5. As the migration

threshold is less than 1.4, the total energy consumption remains at the same level. It

indicates that too strict migration parameter will not significantly improve the system

efficiency, so we can slightly relax the migration parameter to reduce the total number

of migrations.
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5.5 Future Work

Dynamic VM migration across IDCs. Considering geographically located IDCs, the cost

of executing a VM at each data center can be estimated. As the change of electricity price

and other factors, VM can be migrated to another IDC in which the operational cost is

lower. The VM migrations across IDCs bring many possibilities to reduce the operational

cost for OSPs. However, most of the VM images are large, the live migration of a VM

across IDCs through WAN may bring extra latencies. How to design a good replica

migration algorithm in order to minimize the VM migration latencies is challenging. In

my future research, I will address this issue to deal with the problem by combining VM

scheduling strategies with VM replication strategies. The replica placement strategies will

minimize the long term OSPs cost with the constraints of live migration latencies.
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Chapter 6

Conclusion

In this dissertation, we have presented four topics about server cluster energy management

and IDC cost management. We summarize the contributions for each of the four focused

areas as follows:

In Chapter 2, we propose two dynamic power management strategies to reduce the

energy consumption in server clusters. The contributions can be described as follows:

we firstly propose an energy proportional model and a DCP model that can provide

accurate, controllable and predictable quantitative control over power consumption;

second, we discuss our models based on queuing theory in multiple classes scenario, which

can provide service differentiation; third, we analyze the effect of transition overhead

and propose strategies to improve the performance. Finally, we evaluate our models
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via simulation. Simulation results show that our models can achieve predictable and

controllable proportional energy consumption and desirable performance in a server cluster.

In Chapter 3, we design an adaptive CMDP based power management strategy to reduce

power consumption. The contributions can be described as follows: first, a CMDP

model is formulated to minimize the power consumption with guaranteed QoS; second,

the DV/FS and VOVF mechanisms are combined for substantial more energy savings;

third, transition overhead is carefully considered in modeling the CMDP, which provides

more precise power and performance control; fourth, the proposed CMDP based adaptive

power management strategy can greatly reduce computation time and also be capable of

dealing with the dynamic changes of the system workload; finally, our model is evaluated

by extensive simulations. Simulation results show that our strategy can minimize energy

consumption under performance constraint.

Chapter 4 aims to provide an optimal energy aware load dispatching strategy to reduce

overall electricity and network cost in geographically located Internet data centers. We

summarise our contributions as follows: In this chapter, an electricity cost model and

a network cost model are formulated in geographically located Internet data centers.

We formulated an optimization problem to minimize the total cost for OSPs; second,

we consider dynamic behavior of electricity and carbon offset market when solving the

optimization model; third, we propose an adaptive optimization algorithm to solve the

optimal energy-aware load dispatching problem which can achieve desirable performance;
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fourth, two energy efficient strategies are applied in each data center, which greatly

reduces the energy consumptions in IDCs; Finally, our optimal dispatching discipline is

evaluated by extensive simulations. Simulation results show that our dispatching strategy

can minimize electricity cost under performance constraint.

Chapter 5 proposes a statistical live VM placement scheme in a cloud computing

environment. The contributions can be summarized as follows: first, a statistical VM/PM

mapping matrix is constructed by considering the resource requirements, virtualization

overheads, server reliability and energy efficiency; second, we propose a nonuniform

partition strategy together with server efficiency to evaluate the VM/PM mapping energy

efficiency; third, we propose three dynamic VM migrations algorithms to improve system

energy efficiency; fourth, we propose a spare server strategy to determine the number of

active servers in each control period. The proposed strategy can efficiently reduce the

system power consumption and also be capable of dealing with workload spike; finally, our

proposed dynamic VM migration algorithms are evaluated by extensive simulations with

real workload. Simulation results show that our algorithms can save significant energy

compared to static scheme with satisfied performance.
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