

Michigan Technological University [Digital Commons @ Michigan Tech](https://digitalcommons.mtu.edu/)

[Michigan Tech Patents](https://digitalcommons.mtu.edu/patents) **Vice President for Research Office**

2-15-2005

Methods for simultaneous control of lignin content and composition, and cellulose content in plants

Vincent Lee C. Chiang

Laigeng Li

Follow this and additional works at: [https://digitalcommons.mtu.edu/patents](https://digitalcommons.mtu.edu/patents?utm_source=digitalcommons.mtu.edu%2Fpatents%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Biological Engineering Commons](https://network.bepress.com/hgg/discipline/230?utm_source=digitalcommons.mtu.edu%2Fpatents%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Chiang, Vincent Lee C. and Li, Laigeng, "Methods for simultaneous control of lignin content and composition, and cellulose content in plants" (2005). Michigan Tech Patents. 88. [https://digitalcommons.mtu.edu/patents/88](https://digitalcommons.mtu.edu/patents/88?utm_source=digitalcommons.mtu.edu%2Fpatents%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages)

Follow this and additional works at: [https://digitalcommons.mtu.edu/patents](https://digitalcommons.mtu.edu/patents?utm_source=digitalcommons.mtu.edu%2Fpatents%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages) **C** Part of the [Biological Engineering Commons](https://network.bepress.com/hgg/discipline/230?utm_source=digitalcommons.mtu.edu%2Fpatents%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages)

US006855864B2

(12) United States Patent

Chiang et al.

(io) **Patent No.: US 6,855,864 B2**

(45**) Date of Patent: Feb. 15,2005**

(54) **METHODS FOR SIMULTANEOUS CONTROL OF LIGNIN CONTENT AND COMPOSITION, AND CELLULOSE CONTENT IN PLANTS**

- (75) Inventors: **Vincent Lee C. Chiang,** Hancock, MI (US); **Laigeng Li,** Houghton, MI (US)
- (73) Assignee: **Board of Control of Michigan Technological University,** Houghton, MI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 125 days.
- (21) **Appl.** No.: **09/947,027**
- (22) Filed: **Sep. 5, 2001**

(65) **Prior Publication Data**

US 2002/0124281 A1 Sep. 5, 2002

Related U.S. Application Data

- (60) Provisional application No. 60/230,086, filed on Sep. 5, 2000.
- (51) **Int. Cl.7 C12N 5/04;** C12N 15/82; C12N 15/29; A01H 5/00
- (52) **U.S. Cl......................... 800/278;** 800/290; 800/286; 800/298; 800/319; 800/287; 800/284; 800/303;
	- 800/289; 435/468; 435/419
- (58) **Field of Search** 800/290, 287, 800/278, 286, 298, 284, 303, 319, 289; 536/23.1, 23.6; 435/468, 419

(56) **References Cited**

U.S. PATENT DOCUMENTS

6,015,943 A * 1/2000 Boudet et al. 800/298
6,066,780 A 5/2000 Boudet et al. $5/2000$ Boudet et al.

OTHER PUBLICATIONS

- Hu et al., 1998, PNAS 95:5407-5412.* Hu et al 1999, Nature Biotechnology 17:808-812.*
- Levee et al 1999, Molecular Breeding 5:429-440.*
- Kajita et al 1997, Plant Science 128 :109-118.*
- Piquemal et al 1998, Plant Journal 13(1) :71-83.*
- Anterola et al 2002, Phytochemistry 61:221-294.*
- Moonan et al 2002, Journal of Virology 76(3): 1339-1348.*
- Bugos et al., 1991*, Plant Mol. Biol.* 17:203.
- Chang, H.M., and Sarkanen, K.V., 1973, *Tappi* 56:132.
- Hu et al., 1999, *Nature Biotech.* 17:808.
- Marton, J., Sarkanen, K.V., and Ludwig, C.H., eds (Wiley-Interscience, New York), 639.
- Tsai et al., 1994, *Plant Cell Report* 14:94.
- Boudet et al., 1995, *New Phytol.* 129:203.
- Ibrahim, 1997, *Trends Plant Sci.* 2:249.
- Joshi and Chiang, 1998*, Plant Mol. Biol.* 37:663.
- Brasileiro et al., 1991, *Plant Mol. Bio.* 17:441.
- Brasileiro et al., 1992, *Transgenic Res.* 1:133.
- Chen et al., 1998, *Nature Biotechnology* 16, 11:1060.
- Chen et al., 1999, *Planta* 207:597.
- Vasil et al., 1996, *Bio/Technology* 10:667.
- Danekar et al., 1987, *Bio/Technology* 5:587.

De Block, 1990, *Plant Physiol.* 93:1110. Ebinuma et al., 1997, *Proceedings of the National Academic of Sciences* 94:2117. Fillatti et al., 1987, Mo/. *Gen. Genet.* 206:192. Freudenberg, K., 1965, *Scence* 148:595. Horsch et al., 1985, *Science* 227:1229. Howe et al., 1991, *Woody Plant Biotech.* Plenum Press, New York, 283. Hu et al., 1998, *Proc. Natl. Acad. Sci. USA* 95:5407. Humphreys et al., 1999, *Proc. Nat. Acad. Sci. USA* 96:10045. Jornvall et al., 1987, *Eur. J. Biochem.* 167:195. Jefferson et al., 1987, *Plant Molecular Biology Reporter,* 5:387. Lawton et al., 1987, *Plant Mol. Biol.* 9:315. Buxton and Roussel, 1988, *Crop. Sci.* 28,:553. Jung and Vogel, 1986, *J. Anim., Sci.* 62:1703. Leple et al., 1992, *Plant Cell Reports* 11:137. Li et al, 1997, *Proc. Natl. Acad. Sci. USA* 94:5461. Li et al., 1999, *Plant Mol. Biol.* 40:555. Li et al., 2000, *J. Biol. Chem.* 275:6537. McGranahan et al., 1988, *Bio/Technology* 6:800. McGranahan et al., 1990, *Plant Cell Reports* 8:512. Nelson et al. 1996, *Pharmacogenetics* 6:1. Odell et al., 1985, *Nature* 313:810. Parsons et al., 1986, *Bio/Technology* 4:533. Pythoud et al., 1987, *Bio/Technology* 5:1323. Sullivan et al., 1993, *Plant Cell Reports* 12:303. Sarkanen, K.V., and Hergert, H.L., 1971, *Lignins: Occurrence, Formation, Structure and Reaction,* K.V. Sarkanen and C.H. Ludwig, eds (New York: Wiley-Interscience), 43. Trotter, PC., 1990, *Tech. Assoc. Pulp Paper Ind. J.* 73:198. Tsai et al., 1998*, Plant Physiol.* 117:101. Walker et al., 1987, *PNAS USA* 84:6624. Wang et al., 1992, *Mol. Cell. Biol.* 12:3399. Wu et al., 2000, *Plant J.* 22:495. Yang et al., 1990, *PNAS USA* 87:4144. Yamazaki et al., 1993, *J. Biochem.* 114:652. Zhang, X.-H., and Chiang, V.L., 1997, *Plant Physiol.* 113:65.

(List continued on next page.)

Primary Examiner—David T. Fox

Assistant Examiner—Stuart F. Baum

(74) *Attorney, Agent, or Firm*—Michael Best + Friedrich LLP

(57) **ABSTRACT**

The present invention relates to a method of concurrently introducing multiple genes into plants and trees is provided. The method includes simultaneous transformation of plants with multiple genes from the phenylpropanoid pathways including 4CL, CAld5H, AldOMT, SAD and CAD genes and combinations thereof to produce various lines of transgenic plants displaying altered agronomic traits. The agronomic traits of the plants are regulated by the orientation of the specific genes and the selected gene combinations, which are incorporated into the plant genome.

30 Claims, 25 Drawing Sheets

OTHER PUBLICATIONS

Needleman and Wunsch, 1970 J. Mol. Biol. 48: 443-453. Alt-Morbe et al., 1989, *Mol. Plant-Microbe. Interne.,* 2:301-308.

- Chandler et al., 1989, *The Plant Cell,* 1:1175-1183.
- Chen, Ph.D. Thesis, 1991, North Carolina State University, Raleigh, North Carolina.
- Chiang, V.L., and Funaoka, M., 1990, *Holzforschung* 44:309.
- Ebert et al. 1987, *PNAS USA,* 84:5745-5749.
- Fullner and Nester, 1996,/. *Bacteriol.,* 178:1498-1504.
- Fullner et al., 1996, *Science,* 273:11071109.
- Huang et al., 1991, In Vitro Cell Dev. Bio., 4:201.
- Hudspeth et al., 1989, *Plant Mol. Biol.,* 12:579-589.
- Klopfenstein et al., 1991, *Can. J. For. Res.* 21:1321.
- Laursen et al., 1994, *Plant Mol. Biol.,* 24:51-61.
- Li et al., 2001, *Plant Cell,* 13:1567-1585.
- MacKay et al., 1995, *Mol. Gen. Genet.* 247:537.
- Minocha et al., 1986, *Proc. TAPPI Research and Develop-*
- *ment Conference, TAPPI* Press, Atlanta, 89.
- Nilsson, et al., 1992, *Transgenic Res.,* 1:209-220.
- Osakabe et al., 1999, *Proc. Nati. Acad. Sci. USA* 96:8955-8960.
- Sambrook et al., *2nd* ed. 1982.
- Spencer et al., 1992, *Plant Mol. Biol.,* 18:201-210.
- Tricoli et al., 1995, *Biol Technology,* 13:1458-1465.
- Wilde et al., 1992, *Plant Physiol.,* 98:114-120.
- Kajita, et al., 1996, *Plant Cell Physiol.,* 37(7): pp. 957-965.
- Napoli et al., 1990, *The Plant Cell,* 2: 279-289.
- van der Krol, 1988, *Nature* 333: 866-869.
- Bugos et al., 1992, *Phytochemistry,* vol. 31, No. 5, pp. 1495-1498.
- EMBL Acc#X62096 Bugos et al., 1991; Alignment with SEQ ID No: 6.
- Bevan et al., 1983, *Nature,* 304:184.
- Hu, et al., 1998, *PNAS USA,* 95:5407.
- Gou, et al., *The Plant Cell*, Jan. 2001, v13, 73-88.
- MacKAY, et al., PNAS USA, 1997 Jul. 22; 84(15): 8255-8260.
- Parvathi, et al., *The Plant Journal,* 2001, 25(2): 193-202.
- * cited by examiner

FIG. 2A SAD cDNA sequence

1 TTTTTTTTTT TTTCCTAGCC TTCCTTCTCG ACGATATTTC TCTATCTGAA 5 1 GCAAGCACCA TGTCCAAGTC ACCAGAAGAA GAACACCCTG TGAAGGCCTT 1 0 1 CGGGTGGGCT GCTAGGGATC AATCTGGTCA TCTTTCTCCC TTCAACTTCT 1 5 1 CCAGGAGGGC AACTGGTGAA GAGGATGTGA GGTTCAAGGT GCTGTACTGC 2 0 1 GGGATATGCC ATTCTGACCT TCACAGTATC AAGAATGACT GGGGCTTCTC 2 5 1 CATGTACCCT TTGGTTCCTG GGCATGAAAT TGTGGGGGAA GTGACAGAAG 3 0 1 TTGGGAGCAA GGTGAAAAAG GTTAATGTGG GAGACAAAGT GGGCGTGGGA 3 5 1 TGCTTGGTTG GTGCATGTCA CTC CTGTGAG AGTTGTGCCA ATGATCTTGA 4 0 1 AAATTACTGT CCAAAAATGA TCCTGACATA CGCCTCCATC TACCATGACG 4 5 1 GAACCATCAC TTACGGTGGC TACTCAGATC ACATGGTCGC TAACGAACGC 5 0 1 TACATCATTC GATTCCCCGA TAACATGCCG CTTGACGGTG GCGCTCCTCT 5 5 1 CCTTTGTGCC GGGATTACAG TGTATAGTCC CTTGAAATAT TTTGGACTAG 6 0 1 ATGAACCCGG TAAGCATATC GGTATCGTTG GCTTAGGTGG ACTTGGTCAC 6 5 1 GTGGCTGTCA AATTTGGCAA GGCCTTTGGA TCTAAAGTGA CAGTAATTAG 7 0 1 TACCTCCCCT TCCAAGAAGG AGGAGGCTTT GAAGAACTTC GGTGCAGACT 7 5 1 CATTTTTGGT TAGTCGTGAC CAAGAGCAAA TGCAGGCTGC CGCAGGAACA 8 0 1 TTAGATGGCA TCATCGATAC AGTTTCTGCA GTTCACCCCC TTTTGCCATT 8 5 1 GTTTGGACTG TTGAAGTCTC ACGGGAAGCT TATCTTGGTG GGTGCACCGG 9 0 1 AAAAGCCTCT TGAGCTACCT GCCTTTTCTT TGATTGCTGG AAGGAAGATA 9 5 1 GTTGCCGGGA GTGGTATTGG AGGCATGAAG GAGACACAAG AGATGATTGA 1 0 0 1 TTTTGCAGCA AAACACAACA TCACAGCAGA TATCGAAGTT ATTTCAACGG 1 0 5 1 ACTATCTTAA TACGGCGATA GAACGTTTGG CTAAAAACGA TGTCAGATAC 1 1 0 1 CGATTCGTCA TTGACGTTGG CAATACTTTG GCAGCTACGA AGCCCTAAGG 1 1 5 1 AGAAGATCCC ATGTTCTCGA ACCCTTTATA AAATCTGATA ACATGTGTTG 1 2 0 1 ATTTCATGAA TAAATAGATT ATCTTTGGGA TTTTTCTTTA ATAAACGAAG 1 2 5 1 TGTTCTCGAA AACTTAACAT CGGCAATACC CTGGCAGCTA CGAGAAACGC 1 3 0 1 TTTAGAATTG TTTGTAAGTT TGTTTCATTA GGGTGATACC ATGCTCTCGA 1351 GTCCTTTGTA AGATCCATTT ATAGTTGCGT GAATGCTATG AACAAATAAT **1 4 0 1 ATGTTTGCGG CTTCTCTTCA AAAAAAAAAA AAAAAAAAAA AAAAAA**

FIG. 2B SAD protein sequence

1 MSKSPEEEHP VKAFGWAARD QSGHLSPFNF SRRATGEEDV RFKVLYCGIC 51 HSDLHSIKND WGFSMYPLVP GHEIVGEVTE VGSKVKKVNV GDKVGVGCLV 101 GACHSCESCA NDLENYCPKM ILTYASIYHD GTITYGGYSD HMVANERYII 151 RFPDNMPLDG GAPLLCAGIT VYSPLKYFGL DEPGKHIGIV GLGGLGHVAV 201 KFAKAFGSKV TVISTSPSKK EEALKNFGAD SFLVSRDQEQ MQAAAGTLDG 251 IIDTVSAVHP LLPLFGLLKS HGKLILVGAP EKPLELPAFS LIAGRKIVAG 301 SGIGGMKETQ EMIDFAAKHN ITADIEVIST DYLNTAIERL AKNDVRYRFV 351 IDVGNTLAAT KP*

FIG. 3 A Aspen (*P. tremuloides)* PtCAldSH cDNA sequence

FIG. 3B Aspen *(P. tremuloides)* **PtCAldSH protein sequence**

FIG. 4A Aspen (*P. tremuloides***) PtAldOMT cDNA sequence**

GenBank accession number: X62096

FIG. 4B Aspen *(P. tremuloides)* **PtAldOMT protein sequence**

GenBank accession number: X62096

 $\mathcal{A}^{\mathcal{A}}$

FIG. 5A 4CL polynucleotide DNA sequence

ccctcgcgaa actccgaaaa cagagagcac ctaaaactca ccatctctcc ctctgcatct 60 ttagcccgca atggacgcca ca atg aat cca caa gaa ttc ate ttt ege tea 112 aaa tta cca gac ate tac ate ccg aaa aac ett ccc ctg cat tea tac 160 gtt ett gag aac ttg tet aaa cat tea tea aaa cct tgc ctg ata aat 208 ggc geg aat gga gat gtc tac acc tat get gat gtt gag etc aca gca 256 aga aga gtt get tet ggt ctg aac aag att ggt att caa caa ggt gac 304 gtg ate atg etc ttc eta cca agt tea cct gaa ttc gtg ett get ttc 352 eta ggc get tea cac aga ggt gee atg ate act get gee aat cct ttc 400 tee ace cct gca gag eta gca aaa cat gee aag gee teg aga gca aag 448 ett ctg ata aca cag get tgt tac tac gag aag gtt aaa gat ttt gee 496 ega gaa agt gat gtt aag . gtc atg tgc gtg gac tet gee ccg gac ggt 544 get tea ett ttc aga get cac aca cag gca gac gaa aat gaa gtg cct 592 cag gtc gac att agt cct gat gat gtc gta gca ttg cct tat tea tea 640 ggg act aca ggg ttg cca aaa ggg gtc atg tta aeg cac aaa ggg eta ⁶⁸⁸ ata ace agt gtg get caa cag gta gat gga gac aat cct aac ctg tat ■ 736 ttt cac agt gaa gat gtg att ctg tgt gtg ett cct atg ttc cat ate 784 tat get ctg aat tea atg atg etc tgt ggt ctg aga gtt ggt gee teg 832 att ttg ata atg cca aag ttt gag att ggt tet ttg ctg gga ttg att 880 gag aag tac aag gta tet ata gca cca gtt gtt cca cct gtg atg atg 928 gca att get aag tea cct gat ett gac aag cat gac ctg tet tet ttg 976 agg atg ata aaa tet gga ggg get cca ttg ggc aag gaa ett gaa gat 1024 act gtc aga get aag ttt cct cag get aga ett ggt cag gga tat gga 1072 atg ace gag gca gga cct gtt eta gca atg tgc ttg gca ttt gee aag 1120 gaa cca ttc gac ata aaa cca ggt gca tgt gga act gta gtc agg aat 1168 gca gag atg aag att gtt gac cca gaa aca ggg gtc tet eta ccg agg 1216 aac cag cct ggt gag ate tgc ate egg ggt gat cag ate atg aaa gga 1264 tat ett aat gac ccc gag gca acc tea aga aca ata gac aaa gaa gga 1312 tgg ctg cac aca ggc gat ate ggc tac att gat gat gat gat gag ett 1360 ttc ate gtt gac aga ttg aag gaa ttg ate aag tat aaa ggg ttt cag 1408 gtt get cct act gaa etc gaa get ttg tta ata gee cat cca gag ata 1456 tee gat get get gta gta gga ttg aaa gat gag gat geg gga gaa gtt 1504 cct gtt gca ttt gta gtg aaa tea gaa aag tet cag gee acc gaa gat 1552 gaa att aag cag tat att tea aaa cag gtg ate ttc tac aag aga ata 1600 aaa ega gtt ttc ttc att gaa gca att ccc aag gca cca tea ggc aag 1648 ate ctg agg aag aat ctg aaa gag aag ttg cca ggc ata taactgaaga 1697 tgttactgaa catttaaccc tctgtcttat ttctttaata ettgegaate attgtagtgt 1757 tgaaccaagc atgcttggaa aagacacgta cccaacgtaa gacagttact gttcctagta 1817 tacaagctct ttaatgttcg ttttgaactt gggaaaacat aagttctcct gtcgccatat 1877 ggagtaattc aattgaatat tttggtttct ttaatgat 1915

FIG. 5B 4CL Aspen *(P. tremuloides)* **amino acid sequence**

Met Asn Pro Gin Glu Phe lie Phe Arg Ser 1 5 10 Lys Leu Pro Asp lie Tyr lie Pro Lys Asn Leu Pro Leu His Ser Tyr 15 20 25 Val Leu Glu Asn Leu Ser Lys His Ser Ser Lys Pro Cys Leu lie Asn 30 35 40 Gly Ala Asn Gly Asp Val Tyr Thr Tyr Ala Asp Val Glu Leu Thr Ala 45 50 55 Arg Arg Val Ala Ser Gly Leu Asn Lys lie Gly lie Gin Gin Gly Asp 60 65 70 Val lie Met Leu Phe Leu Pro Ser Ser Pro Glu Phe Val Leu Ala Phe 75 80 85 90 Leu Gly Ala Ser His Arg Gly Ala Met lie Thr Ala Ala Asn Pro Phe 95 100 105 Ser Thr Pro Ala Glu Leu Ala Lys His Ala Lys Ala Ser Arg Ala Lys 110 115 120 Leu Leu lie Thr Gin Ala Cys Tyr Tyr Glu Lys Val Lys Asp Phe Ala 125 130 135 Arg Glu Ser Asp Val Lys Val Met Cys Val Asp Ser Ala Pro Asp Gly 140 145 150 Ala Ser Leu Phe Arg Ala His Thr Gin Ala Asp Glu Asn Glu Val Pro 155 160 165 170 Gin Val Asp lie Ser Pro Asp Asp Val Val Ala Leu Pro Tyr Ser Ser 175 180 185 Gly Thr Thr Gly Leu Pro Lys Gly Val Met Leu Thr His Lys Gly Leu 190 195 200 lie Thr Ser Val Ala Gin Gin Val Asp Gly Asp Asn Pro Asn Leu Tyr 205 210 215 Phe His Ser Glu Asp Val lie Leu Cys Val Leu Pro Met Phe His lie 220 225 230 Tyr Ala Leu Asn Ser Met Met Leu Cys Gly Leu Arg val Gly Ala Ser 235 240 245 250 lie Leu lie Met Pro Lys Phe Glu lie Gly Ser Leu Leu Gly Leu lie 255 260 265 Glu Lys Tyr Lys Val Ser lie Ala Pro Val Val Pro Pro Val Met Met 270 275 280 Ala lie Ala Lys Ser Pro Asp Leu Asp Lys His Asp Leu Ser Ser Leu 285 290 295 Arg Met H e Lys Ser Gly Gly Ala Pro Leu Gly Lys Glu Leu Glu Asp 300 305 310 Thr Val Arg Ala Lys Phe Pro Gin Ala Arg Leu Gly Gin Gly Tyr Gly 315 320 325 330 Met Thr Glu Ala Gly Pro Val Leu Ala Met Cys Leu Ala Phe Ala Lys 335 340 345 Glu Pro Phe Asp lie Lys Pro Gly Ala Cys Gly Thr Val Val Arg Asn 350 355 360 Ala Glu Met Lys lie Val Asp Pro Glu Thr Gly Val Ser Leu Pro Arg 365 370 375 Asn Gin Pro Gly Glu lie Cys H e Arg Gly Asp Gin lie Met Lys Gly 380 385 390 Tyr Leu Asn Asp Pro Glu Ala Thr Ser Arg Thr lie Asp Lys Glu Gly 395 400 405 . **410 Trp Leu His Thr Gly Asp lie Gly Tyr lie Asp Asp ASp Asp Glu Leu 415 420 425 Phe lie Val Asp Arg Leu Lys Glu Leu lie Lys Tyr Lys Gly Phe Gin 430 435 440 Val Ala Pro Thr Glu Leu Glu Ala Leu Leu lie Ala His Pro Glu lie 445 450 455 Ser Asp Ala Ala Vaf Val Gly Leu Lys Asp Glu Asp Ala Gly Glu Val 4 60 465 470 Pro Val Ala Phe val Val Lys Ser Glu Lys Ser Gin Ala Thr Glu Asp 475 480 485 490 Glu lie Lys Gin Tyr lie Ser Lys Gin Val lie Phe Tyr Lys Arg lie 495 500 505 Lys Arg Val Phe Phe H e Glu Ala lie Pro Lys Ala Pro Ser Gly Lys 510 515 520 H e Leu Arg Lys Asn Leu Lys Glu Lys Leu Pro Gly lie 525 530 535**

FIG. 6A Aspen (P. *tremuloides***) PtCAD protein sequence**

GenBank accession number: AF217957

- **1 MGSLETERKI VGWAATDSTG HLAPYTYSLR DTGPEDVLIK VISCGICHTD**
- **5 1 IHQIKNDLGM SHYPMVPGHE W G EW EV G S DVTKFKAGDV VGVGVIVGSC**
- **1 0 1 KNCHPCKSEL EQYCNKKIWS YNDVYTDGKP TQGGFAESMV VDQKFW RIP**
- **1 5 1 DGMSPEQAAP LLCAGLTVYS PLKHFGLKQS GLRGGILGLG GVGHMGVKIA 2 0 1 KAMGHHVTVI SSSDKKREEA MEHLGADEYL VSSDVESMQK AADQLDYIID 2 5 1 TVPW H PLEP YLSLLKLDGK LILMGVINTP LQFVSPMVML GRKSITGSFI**
- **3 0 1 GSMKETEEML EFCKEKGLAS MIEVIKMDYI NTAFERLEKN DVRYRFWDV**
- **3 5 1 AGSKLIP***

FIG. 6B Aspen (*P. tremuloides)* **PtCAD cDNA sequence**

GenBank accession number: AF217957

Fig. 7. pBKPpt_{4CL} Pt4CL1-a construct

Fig. 8. pBKPpt_{4CL} PtCAld5H-s construct

FIG. 9-1 The alignment of plant AldOMT protein sequences

motir i

7 CLMNQDKVLM ES.WYYLKDA ILDGGIPFNK AYGMTAFEYH GTDPRFNKVF

FIG. 9-2

FIG. 9-3

10 LKFLKNCYEA LPANGKVIIA ECILPEAPDT SLATKNTVHV DIVMLAHNPG 11 LKFLENCYQA LPDNGKVIVA ECILPVVPDT SLATKSAVHI DVIMLAYNTG

motif III

351 1 GKERTEKEFE GLAKGAGFQG FEVMCCAFNT HVIEFRKKA 2 GKERTEKEFE GLAKGAGFQG FEVMCCAFNT HVIELRKN-3 GKERTEQEFQ ALAKGAGFQG FNVACSAFNT YVIEFLKKN 4 GKERTEQEFE ALAKGSGFQG IRVCCDAFNT YVIEFLKKI 5 GKERTQKEFE DLAKGAGFQG FKVHCNAFNT YIMEFLKKV 6 GKERTQKEFE TLAKGAGFQG FQVMCCAFGT HVMEFLKTA 7 GKERTEKEFE ALAIGAGFKG FKVACCAFNT YVMEFLKTA 8 GKERTEKEFE ALAKGAGFEG FRVALCAYNT WIIEFLKKI 9 GKERTEKEFE ALAKASGFKG IKVVCDAFGV NLIELLKKL 10 GKERTEKEFE ALAKGAGFTG FARLVALTTL GSWNSTSN-11 GKARTEKEFE ALAKGAGFQG FKVVCCAFNS WIMEFCKTA 389

Plant AldOMTs from

1) Aspen,X62096 2) Poplar, M73431 3) Almond, X83217 4) Strawberry, AF220491 5) Alfalfa, M63853 6) Eucalyptus, X74814

7) Clarkia breweri, AF006009 8) Sweetgum, AF139533 9) Arabidopsis, U70424 10) Tobacco, X74452 11) Vitis vinifera, AF239740

FIG. **10-1 The alignment of full length plant CAD protein sequences available in the GenBank database**

Zn2

FIG. 10-2

FIG. 10-3

FIG. 10-4

Full length plant CADs from

- **1) Radiata pine, U62394 2) Loblolly pine, Z37992 3) Loblolly pine, Z37991 4) Norway spruce, X72675 5) Maize, aj005702 6) Maize, Y13733 7) Sugarcane, AJ231135 8) Lucerne, AF083332**
- **9) Lucerne, Z19573**
- **10) Eucalyptus, AF038561**
- **11) Eucalyptus, X65631**
- **12) Tobacco, X62343**
- **13) Tobacco, X62344**
- **14) Aspen, AF217957**
- **15 Cottonwood, Z19568**
- **16) Udo, D13991**

FIG. 11-1 The alignment of full length plant CAld5H protein sequences

1) Aspen; 2) Poplar, AJ010324; 3) Sweetgum, AF139532; 4) Arabidopsis, U38416. *, Heme**binding signature**

4 LTAPKATRLF AVPTTRLICA

FIG. 11-2

L ~~

FIG. 12-1 PLANT 4CL AMINO ACID SEQUENCE ALIGNMENTS

FIG. 12-2

FIG. 12-3

FIG. 12-4

10

15

METHODS FOR SIMULTANEOUS CONTROL OF LIGNIN CONTENT AND COMPOSITION, AND CELLULOSE CONTENT IN PLANTS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/230,086, filed on Sep. 5, 2000, and is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government support awarded by the Energy Biosciences Program, United States Department of Energy, and the United States Department of Agriculture research grant numbers USDA 99-35103-7986, USDA 01-03749, and DOE DE-FG02- 01ER15179. The United States government has certain rights in this invention.

BACKGROUND OF THE INVENTION

The invention provides a method of introducing two or more genes, involved in lignin biosynthesis, into plant cells. The method of the invention employs either an $_{25}$ *Agrobacterium-*mediated or other appropriate plant gene delivery system by which multiple genes together with a single selectable marker gene are simultaneously transferred and inserted into the genome of plants with high frequencies.

The ability to introduce foreign genes into plants is a $_{30}$ prerequisite for engineering agronomic traits in plants. Many systems have been developed for introducing a foreign gene into plant cells, which involve mainly either *Agrobacterium-* or microprojectile bombardment-mediated transformation (Christou, 1996). The principle of all these 35 systems involves the insertion of a target gene into the host plant genome together with a selectable marker gene encoding either antibiotic or herbicide resistance to aid in the selection of transgenic cells from non-transgenic cells. These systems generally are only effective for introducing a $_{40}$ single target gene into the host plant.

To alter agronomic traits, which generally are polygenic in nature, multiple genes involved in complex biosynthetic pathways must be introduced and expressed in plant cells. In this context, the traditional single-gene transfer systems are 45 essentially useless for the following two reasons: 1) it is impractical to introduce multiple genes by repetitive insertion of single genes into transgenic plants due to the time and effort required for recovery of the transgenic tissues; in particular, a repetitive single-gene approach is highly 50 impractical for plant species such as trees which, depending upon the species, require two to three years for transgenic tissue selection and regeneration into a tree; and 2) the presence of a selectable marker gene in a transgenic line precludes the use of the same marker gene in subsequent 55 transformations of plant material from that line. Moreover, the number of available marker genes is limited, and many plant species are recalcitrant to regeneration unless appropriate antibiotic or herbicide selection is used.

Chen et al. (1998) recently reported the genetic transfor-60 mation of rice with multiple genes by cobombardment of several gene constructs into embryogenic suspension tissues. However, particle bombardment-mediated gene transfer into embryogenic tissues is highly species-dependent, and regeneration of whole plants from embryogenic cells 65cannot be achieved for a variety of plant species (Horsch et al., 1985).

2

In contrast, *Agrobacterium*-mediated gene transfer and whole plant regeneration through organogenesis is a simple process and a less species-dependent system than bombardment-mediated transformation and regeneration via embryogenesis. However, the introduction of more than one gene in a single plasmid vector via *Agrobacterium* may be technically troublesome and limited by the number or the size of the target genes (Chen et al., 1998). For example, Tricoli et al. (1995) reported the transfer of three target genes to squash via *Agrobacterium*-mediated gene transfer. A binary plasmid vector containing the three target genes was incorporated into an *Agrobacterium* strain, which was subsequently used to infect the leaf tissue of squash. As only one line was recovered from numerous infected squash tissues that contained all of the target genes, the use of a single binary vector with a number of genes appears to be a highly inefficient method to produce transgenic plants with multiple gene transfers. Therefore, it was commonly accepted that transfer of multiple genes via *Agrobacterium-*₂₀ mediated transformation was impractical (Ebinuma et al., 1997), until success of multiple gene transfer via *Agrobacterium* was first reported in co-pending, commonly owned PCT application, PCT/US/0027704, filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants" by Chiang et al, incorporated herein by reference. However, homologous tissue-specific preparation of transgenic trees to specifically alter lignin content, increase S/G (syringyl: guaiacyl) lignin ratio and increase cellulose quantity, as compared to an untransformed plant was unsuccessful.

Yet, the altering of lignin content and composition in plants has been a goal of genetically engineered traits in plants. Lignin, a complex phenolic polymer, is a major part of the supportive structure of most woody plants including angiosperm and gymnosperm trees, which, in turn, are the principal sources of fiber for making paper and cellulosic products. Lignin generally constitutes about 25% of the dry weight of the wood, making it the second most abundant organic compound on earth after cellulose. Lignin provides rigidity to wood for which it is well suited due, in part, to its resistance to biochemical degradation.

Despite its importance to plant growth and structure, lignin is nonetheless problematic to post-harvest, cellulosebased wood/crop processing for fiber, chemical, and energy production because it must be removed or degraded from cellulose at great expense. Certain structural constituents of lignin, such as the guaiacyl (G) moiety, promote monomer cross-linkages that increase lignin resistance to degradation (Sarkanen, 1971; Chang and Sarkanen, 1973; Chiang and Funaoka, 1990). In angiosperms, lignin is composed of a mixture of guaiacyl (G) and syringyl (S) monolignols, and can be degraded at considerably less energy and chemical cost than gymnosperm lignin, which consists almost entirely of guaiacyl moieties (Freudenberg, 1965). It has been estimated that, if syringyl lignin could be genetically incorporated into gymnosperm guaiacyl lignin or into angiosperms to increase the syringyl lignin content, the annual saving in processing of such genetically engineered plants as opposed to their wild types would be in the range of \$6 to \$10 billion in the U.S. alone. Consequently, there has been longstanding incentive to understand the biosynthesis of syringyl monolignol to genetically engineer plants to contain more syringyl lignin, thus, facilitating wood/crop processing (Trotter, 1990; Bugos et al., 1991; Boudet et al., 1995; Hu et al., 1999).

Depending on the use for the plant, genetic engineering of certain traits has been attempted. For some plants, as indi-

10

15

45

65

cated above, there has been a long-standing incentive to genetically modify lignin and cellulose to decrease lignin and increase cellulose contents. For example, it has been demonstrated that the digestibility of forage crops by ruminants is inversely proportional to lignin content in plants (Buxton and Roussel, 1988, Crop. Sci., 28, 553-558; Jung and Vogel, 1986, J. Anim., Sci., 62, 1703-1712). Therefore, decreased lignin and high cellulose plants are desirable in forage crops to increase their digestibility by ruminants, thereby providing the animal with more nutrients per unit of forage.

In other plants, genetically increasing the S/G ratio of the lignin has been sought. As noted above, lignin in angiosperms is composed of guaiacyl (G) and syringyl (S) monomeric units, whereas gymnosperm lignin consists entirely of G units. The structural characteristics of G units in gymnosperm lignin promote monomer cross-linkages that increase lignin resistance to chemical extraction during wood pulp production. However, the S units present in angiosperm lignin prevent such chemical resistant crosslinks. Therefore, without exception, chemical extraction of G lignin in pulping of gymnosperms is more difficult and requires more chemicals, longer reaction times and higher energy levels than the extraction of G-S lignin during pulping of angiosperms (Sarkanen, K. V., 1971, in Lignins: Occurrence, Formation, Structure and Reaction, Sarkanen, K. V. & Ludwig, C. H., eds., Wiley-Interscience, New York; Chang, H. M. and Sarkanen, K. V., 1973, TAPPI, 56:132-136). As a rule, the reaction rate of extracting lignin during wood pulping is directly proportional to the quantity $_{30}$ of the S unit in lignin (Chang, H. M. and Sarkanen, K. V., 1973, TAPPI, 56:132-136). Hence, altering lignin into more reactive G-S type in gymnosperms and into high S/G ratio in angiosperms would represent a pivotal opportunity to enhance current pulping and bleaching efficiency and to 35 provide better, more economical, and more environmentally sound utilization of wood. 20 25

Recent results have indicated that high S/G ratio may also add further mechanical advantages to plants, balancing the likely loss of sturdiness of plants with severe lignin reduction (Li et al., 2001, Plant Cell, 13:1567-1585). Moreover, a high S/G lignin ratio would also improve the digestibility of forage crops by ruminants (Buxton and Roussel, 1988, Crop. Sci., 28, 553-558; Jung and Vogel, 1986, J. Anim., Sci., 62, 1703-1712). 40

In some applications, both a high lignin content and high S/G ratio have been sought (i.e., combining these two traits in plants). For example, it has been demonstrated that when lignin is extracted out from wood during chemical pulping, lignin in the pulping liquor is normally used as a fuel source 50 to provide energy to the pulping and bleaching operations. This lignin-associated energy source, which is not necessary for pulp mills using purchased fuel for energy, is essential to some pulp mills which depend upon internal sources, such as extracted lignin, to be self-sufficient in energy. Therefore, 55 for this purpose, it may be desirable to increase lignin content in pulpwood species, and at the same time to increase the S/G ratio in these species to facilitate the extraction of more lignin to be used as fuel.

Additionally, for grain production and other non-related 60 purposes, increased lignin content and/or S/G lignin ratio are desirable to provide extra sturdiness in plants to prevent the loss of socially and economically important food crops due to dislodging and due to damage to the aerial parts of the plant.

The plant monolignol biosynthetic pathway is set forth in FIG. 1 and will be explained in more detail hereinbelow. The **4**

key lignin control sites in the monolignol biosynthetic pathway are mediated by genes encoding the enzymes 4- coumarate-CoA ligase (4CL) (Lee et al., 1997), coniferyl aldehyde 5-hydroxylase (CAld5H) (Osakabe et al., 1999) and S-adenosyl-L-methionine (SAM)-dependent 5- hydroxyconiferaldehyde O-methyltransferase (AldOMT) (Li et al., 2000), respectively, for the formation of sinapaldehyde (see, FIG. 1). Further, coniferyl alcohol dehydrogenase (CAD) (MacKay et al., 1997) catalyzes the reaction including the substrate coniferaldehyde to coniferyl alcohol. It has recently been discovered that sinapyl alcohol dehydrogenase (SAD) enzymatically converts sinapaldehyde into sinapyl alcohol, the syringyl monolignol, for the biosynthesis of syringyl lignin in plants (see, FIG. 1). See, concurrently filed, commonly owned U.S. non-provisional application entitled "Genetic Engineering of Syringyl-Enriched Lignin in Plants," incorporated herein by reference. It should be noted that the gene encoding the enzyme sinapyl alcohol dehydrogenase (SAD) represents the last gene that is indispensable for genetic engineering of syringyl lignin in plants.

A summary of the conserved regions contained within the coding sequence of each of the above listed proteins is described below. Because SAD is a recently discovered enzyme in Aspen, sequence alignments with other representative species were unable to be performed.

The protein sequence alignments of plant AldOMTs are shown in FIG. **9.** All AldOMTs have three conserved sequence motifs (I, II, and III) which are the binding sites of S-adenosyl-L-methionine (SAM), the co-substrate or methyl donor for the OMT reaction (Ibrahim, 1997, Trends Plant Sci., 2:249-250; Li et al., 1997, Proc. Natl. Acad. Sci. USA, 94:5461-5466; Joshi and Chiang, 1998, Plant Mol. Biol., 37:663-674). These signature sequence motifs and the high sequence homology of these proteins to PtAldOMT attest to their function as an AldOMT specific for converting 5-hydroxyconiferaldehyde into sinapaldehyde (Li et al., 2000, J. Biol. Chem., 275:6537-6545), the content of which is incorporated by reference, herein, in its entirety. This AldOMT, like CAld5H, also operates at the aldehyde level of the plant monolignol biosynthetic pathway.

The protein sequence alignments of plant CADs are shown in FIG. **10.** It was recently proven that CADs are actually guaiacyl monolignol pathway specific (Li et al., 2001, Plant Cell, 13:1567-1585). Based on high sequence homology, the alignment program picked up CADs from angiosperms as well as gymnosperms (radiata pine, loblolly pine and spruce) which have only G-lignin. All CADs have the Znl binding motif and structural Zn2 consensus region, as well as a NADP binding site (Jornvall et al., 1987, Eur. J. Biochem., 167:195-201; MacKay et al., 1995, Mol. Gen. Genet., 247:537-545). All these sequence characteristics and high sequence homology to PtCAD attest to these CAD function as a G-monolignol specific CAD (Li et al., 2001, Plant Cell, 13:1567-1585).

The protein sequence alignments of plant Cald5Hs are shown in FIG. **11.** Although, there are different types of 5-hydroxylases, i.e., F5H, CAld5H is the sole enzyme catalyzing specifically the conversion of coniferaldehyde into 5-hydroxyconiferaldehyde. All full-length CAld5Hs have the proline-rich region located from amino acid 40 to 45 which is believed to be involved in the process of correct folding of microsomal P450s and is also important in heme incorporation into P450s (Yamazaki et al. 1993, J. Biochem. 114:652-657). Also they all have the heme-binding domain (PFGXGXXXCXG) that is conserved in all P450 proteins (Nelson et al. 1996, Pharmacogenetics, 6:1—41). These signature sequences and the high sequence homology of these

proteins to PtCAld5H their function as a 5-hydroxylase that is specific for converting coniferaldehyde into 5-hydroxyconiferaldehyde (Osakabe et al., 1999, Proc. Natl. Acad. Sci. USA, 96:8955-8960).

The protein sequence alignment of plant 4CLs are shown ⁵ in FIG. 12. In general, 4CL catalyzes the activation of the hydroxycinnamic acids to their corresponding hydroxycinnamoyl-CoA esters. 4CL has the highest activity with p-coumaric acid. 4CL cDNA sequences have been reported from a number of representative angiosperms and ¹⁰ gymnosperms, revealing two highly conserved regions, a putative AMP-binding region (SSGTTGLPKGV), and a catalytic motif (GEICIRG). The amino acid sequences of 4CL from plants contain a total of five conserved Cys residues. 15

Despite recognition of these key enzymes in lignin biosynthesis, there continues to be a need to develop an improved method to simultaneously control the lignin quantity, lignin compositions, and cellulose contents in plants by introducing multiple genes into plant cells.

BRIEF SUMMARY OF THE INVENTION

The invention provides a method of introducing two or more genes involved in lignin biosynthesis present in one or more independent vectors into plant cells. The method of the invention suitably employs an *Agrobacterium-*mediated or another gene delivery system by which multiple genes together with a single selectable marker gene are simultaneously transferred and inserted into the genome of plants with high frequencies. $\overline{30}$

If an *Agrobacterium-*mediated gene delivery system is used, each gene of interest is present in a binary vector that has been introduced into *Agrobacterium* to yield an isolated Agrobacterium strain comprising the binary vector. ₃₅ Moreover, more than one gene of interest may be present in each binary vector. Plant materials comprising plant cells, e.g., plant seed, plant parts or plant tissue including explant materials such as leaf discs, from a target plant species are suitably inoculated with at least two, preferably at least $\frac{1000 \text{ m}}{40 \text{ respectively FIGS}}$. 5A and 5B; three, and more preferably at least four or more, of the isolated *Agrobacterium* strains, each containing a different gene of interest. A mixture of the strains is suitably contacted with plant cells. At least one of the binary vectors in the isolated *Agrobacterium* strains contains a marker gene, and 45 any marker gene encoding a trait for selecting transformed cells from non-transformed cells may be used. Transformed plant cells are regenerated to yield a transgenic plant, the genome of which is augmented with DNAfrom at least two, preferably at least three, and more preferably at least four, 50 and even more preferably at least five of the binary vectors.

The method of the invention is thus applicable to all plant species that are susceptible to the transfer of genetic information by *Agrobacterium* or other gene delivery system. Suitable plant species useful in the method of the invention 55 include agriculture and forage crops, as well as monocots. In particular, plant species useful in the method of the invention include trees, e.g., angiosperms and gymnosperms, and more suitably a forest tree, but are not limited to the tree.

The method of the invention is suitably employed to 60 enhance a desired agronomic trait by altering the expression of two or more genes. Such traits include alterations in lignin biosynthesis (e.g., reduction, augmentation and/or structural changes), cellulose biosynthesis (e.g., augmentation, reduction, and/or quality including high degree of polymer-65ization and crystallinity), growth, wood quality (e.g., high density, low juvenile wood, high mature wood, low reaction

wood, desirable fiber angle), stress resistance (e.g., cold-, heat-, and salt-tolerance, pathogen-, insect- and other disease-resistance, herbicide-resistance), sterility, high grain yield (for forage and food crops), and increased nutrient level.

Thus, the present invention advantageously provides gymnosperm and angiosperm plants with decreased lignin content, increased syringyl/guaiacyl (S/G) lignin ratio and increased cellulose content in which a single trait or multiple traits are changed.

In another aspect, the invention provides gymnosperm plants with syringyl enriched lignin and/or increased lignin content and/or increased syringyl/guaiacyl (S/G) lignin ratio.

Similarly, the present invention also provides angiosperm plants with increased lignin content.

Other advantages and a filler appreciation of specific attributes and variations of the invention will be gained upon $_{20}$ an examination of the following detailed description of exemplary embodiments and the like in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWING(S)

FIG. 1 is a schematic representation of plant monolignol pathways for production of coniferyl alcohol and sinapyl alcohol;

FIG. 2 is the SAD polynucleotide DNA sequence (SEQ ID NO: 1) and the SAD amino acid sequence (SEQ ID NO: 2) respectively FIGS. 2A and 2B;

FIG. 3 is the CAld5H polynucleotide DNA sequence (SEQ ID NO: 3) and the CAld5H amino acid sequence (SEQ ID NO: 4) respectively FIGS. 3A and 3B;

FIG. 4 is the AldOMT polynucleotide DNA sequence (SEQ ID NO: 5) and the AldOMT amino acid sequence (SEQ ID NO: 6) respectively FIGS. 4A and 4B;

FIG. 5 is the 4CL polynucleotide DNA sequence (SEQ ID NO: 7) and the 4CL amino acid sequence (SEQ ID NO: 10)

FIG. 6 is the CAD polynucleotide DNA sequence (SEQ ID NO: 8) and the CAD amino acid sequence (SEQ ID NO: 9) respectively FIGS. 6A and 6B;

FIG. 7 is a map of the DNA construct, $pBKPpt_{4CL}$ Pt4CLl-a, positioned in a plant transformation binary vector.

FIG. 8 is a map of the DNA construct, pBKPpt_{4CL} PtCAld5H-s, positioned in a plant transformation binary vector.

FIG. 9 is the protein sequence alignment of AldOMTs for representative species of plants.

FIG. 10 is the protein sequence alignment of CADs for representative species of plants.

FIG. 11 is the protein sequence alignment of CAld5Hs for representative species of plants.

FIG. 12 is the protein sequence alignment of 4CLs for representative species of plants.

It is expressly understood that the figures of the drawing are for the purposes of illustration and description only and are not intended as a definition of the limits of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method and DNA constructs useful for the transformation of plant tissue for the

40

alteration of lignin monomer composition, increased syringyl/guaiacyl (S/G) lignin ratio and increased cellulose content and transgenic plants resulting from such transformations. The present invention is of particular value to the paper and pulp industries because lignin containing higher 5 syringyl monomer content is more susceptible to chemical delignification. Woody plants transformed with the DNA constructs provided herein offer a significant advantage in the delignification process over conventional paper feedstocks. Similarly, modification of the lignin composition in 10 grasses by the insertion and expression of a heterologous SAD gene offers a unique method for increasing the digestibility of grasses and is of significant potential economic benefit to the farm and agricultural industries.

The terms used in this specification generally have their 15 ordinary meanings in the art, within the context of the invention and in the specific context where each term is used. Certain terms are discussed below, or elsewhere in the specification, to provide additional guidance to the person of skill in the art in describing the compositions and methods 20 located upstream (5'), within, and/or downstream (3') of a of the invention and how to make and use them. It will be appreciated that the same thing can be said in more than one way. Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or 25 not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification, including examples of any terms discussed herein, is illustrative only, 30 and in no way limits the scope and meaning of the invention or of any exemplified term. Likewise, the invention is not limited to the preferred embodiments.

As used herein, "gene" refers to a nucleic acid fragment that expresses a specific protein including the regulatory sequences preceding (5' noncoding) and following (3' noncoding) the coding region or coding sequence (See, below). "Native" gene refers to the gene as found in nature with its own regulatory sequences.

"Endogenous gene" refers to the native gene normally found in its natural location in the genome.

"Transgene" refers to a gene that is introduced by gene transfer into the host organism.

"Coding sequence" or "Coding Region" refers to that 45 portion of the gene that contains the information for encoding a polypeptide. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, for example, prokaryotic 50 sequences, cDNA from eukaryotic mRNA, genomic DNA, and even synthetic DNA sequences.

"Promoter" or "Promoter Sequence" refers to a DNA sequence, in a given gene, which sequence controls the expression of the coding sequence by providing the recog-55 nition site for RNA polymerase and other factors required for proper transcription. Most genes have regions of DNA sequence that are promoter sequences which regulate gene expression. Promoter regions are typically found in the 5' flanking DNA sequence upstream from the coding sequence 60 in both prokaryotic and eukaryotic cells. A promoter sequence provides for regulation of transcription of the downstream gene sequence and typically includes from about 50 to about 2000 nucleotide base pairs. Promoter sequences also contain regulatory sequences such as 65enhancer sequences that can influence the level of gene expression. Some isolated promoter sequences can provide

for gene expression of heterologous DNAs, that is DNA different from the natural homologous DNA. Promoter sequences are also known to be strong or weak or inducible. A strong promoter provides for a high level of gene expression, whereas a weak promoter provides for a very low level of gene expression. An inducible promoter is a promoter that provides for turning on and off of gene expression in response to an exogenously added agent or to an environmental or developmental stimulus. An isolated promoter sequence that is a strong promoter for heterologous DNAs is advantageous because it provides for a sufficient level of gene expression to allow for easy detection and selection of transformed cells, and provides for a high level of gene expression when desired. A promoter may also contain DNA sequences that are involved in the binding of protein factors which control the effectiveness of transcription initiation in response to physiological or developmental conditions.

"Regulatory sequence(s)" refers to nucleotide sequences coding sequence, which control the transcription and/or expression of the coding sequences in conjunction with the protein biosynthetic apparatus of the cell. Regulatory sequences include promoters, translation leader sequences, transcription termination sequences and polyadenylation sequences.

"Encoding" and "coding" refer to the process by which a gene, through the mechanisms of transcription and translation, provides the information to a cell from which a series of amino acids can be assembled into a specific amino acid sequences to produce an active enzyme. It is understood that the process of encoding a specific amino acid sequence includes DNA sequences that may involve base changes that do not cause a change in the encoded amino acid, or which involve base changes which may alter one or more amino acids, but do not affect the functional properties of the protein encoded by the DNA sequence. It is therefore understood that the invention encompasses more than the specific exemplary sequences. Modifications to the sequences, such as deletions, insertions or substitutions in the sequence which produce silent changes that do not substantially affect the functional properties of the resulting protein molecule are also contemplated. For example, alterations in the gene sequence which reflect the degeneracy of the genetic code, or which result in the production of a chemically equivalent amino acid at a given site, are contemplated. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a biologically equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the protein molecule would also not be expected to alter the activity of the protein. In some cases, it may in fact be desirable to make mutants of the sequence to study the effect of retention of biological activity of the protein. Each of these proposed modifications is well within the routine skill in the art, as is the determination of retention of biological activity in the encoded products. Moreover, the skilled artisan recognizes that sequences encompassed by this invention are also defined by their ability to hybridize, under stringent condition, with the sequences exemplified herein.

15

"Expression" is meant to refer to the production of a protein product encoded by a gene. "Overexpression" refers to the production of a gene product in transgenic organisms that exceed levels of production in normal or nontransformed organisms.

"Functional portion" or "functional fragment" or "functional equivalents" of an enzyme is that portion, fragment or equivalent section which contains the active site for binding one or more reactants or is capable of improving or regulating the rate of reaction. The active site may be made up 10 of separate portions present on one or more polypeptide chains and will generally exhibit high substrate specificity.

"Enzyme encoded by a nucleotide sequence" includes enzymes encoded by a nucleotide sequence which includes partial isolated DNA sequences.

"Transformation" refers to the transfer of a foreign gene into the genome of a host organism and its genetically stable inheritance.

"% identity" refers to the percentage of the nucleotides/ $_{20}$ amino acids of one polynucleotide/polypeptide that are identical to the nucleotides/amino acids of another sequence of polynucleotide/polypeptide as identified by a program such as GAP from Genetics Computer Group Wisconsin (GCG) package (version 9.0) (Madison, Wis.). GAP uses the $_{25}$ algorithm of Needleman and Wunsch (J. Mol. Biol. 48: 443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. When parameters required to run the above algorithm are not specified, the default values $_{30}$ offered by the program are contemplated.

"Substantial homology" or "substantial similarity" refers to a 70% or more similarity or 70% homology wherein "% similarity" or "% homology" between two polypeptide sequences is a function of the number of similar positions 35 shared by two sequences on the basis of the scoring matrix used divided by the number of positions compared and then multiplied by 100. This comparison is made when two sequences are aligned (by introducing gaps if needed) to determine maximum homology. The PowerBlast program, 40 implemented by the National Center for Biotechnology Information, can be used to compute optimal, gapped alignments. GAP program from Genetics Computer Group Wisconsin package (version 9.0) (Madison, Wis.) can also be used. 45

"Lignin monomer composition" refers to the relative ratios of guaiacyl monomer and syringyl monomer found in lignified plant tissue.

"Plant" includes whole plants and portions of plants, including plant organs (e.g., roots, stems, leaves, etc). 50

"Angiosperm" refers to plants that produce seeds encased in an ovary. A specific example of an angiosperm is *Liquidambar styraciflua* (L.)[sweetgum].

"Gymnosperm" refers to plants that produce naked seeds, 55 i.e., seeds that are not encased in an ovary. A specific example of a gymnosperm is*Pinus taeda* (L.)[loblolly pine].

As used herein, the terms "isolated and/or purified" with reference to a nucleic acid molecule or polypeptide refer to in vitro isolation of a nucleic acid or polypeptide molecule from its natural cellular environment, and from association with other components of the cell, such as nucleic acid or polypeptide, so that it can be sequenced, replicated and/or expressed. 60

An "isolated" strain of *Agrobacterium* refers to cells 65derived from a clone of *Agrobacterium* that is transformed in vitro with an isolated binary vector.

A "vector" is a recombinant nucleic acid construct, such as plasmid, phage genome, virus genome, cosmid, or artificial chromosome to which a polynucleotide in accordance with the invention may be attached. In a specific embodiment, the vector may bring about the replication of the attached segment, e.g., in the case of a cloning vector.

"Sinapyl alcohol dehydrogenase" or "SAD", coniferyl alcohol dehydrogenase or "CAD", coniferaldeyde 5-hydroxylase or "Cald5H", 5-hydroxyconiferaldehyde O-methyltransferase or "AldOMT", and 4-coumarate-CoA ligase or "4CL" refer to enzymes in the plant phenylpropanoid biosynthetic pathway. In the illustrated embodiments of the present invention, the DNA sequences encoding these enzymes were identified from quaking aspen *Populus tremuloides.* It is understood that each sequence can be used as a probe to clone its equivalent from any plant species by techniques (EST, PCR, RT-PCR, antibodies, etc.) well known in the art.

The Phenyl Propanoid Biosynthetic Pathway

Reference is made to FIG. 1 which shows different steps in the biosynthetic pathways from 4-coumarate (1) to guaiacyl (coniferyl alcohol (6)) and syringyl (sinapyl alcohol (9)) monolignols for the formation of guaiacyl-syringyl lignin together with the enzymes responsible for catalyzing each step. The enzymes indicated for each of the reaction steps are: 4-coumaric acid 3-hydroxylase (C3H) which converts 4-coumarate (1) to caffeate (2); 4-coumarate-CoA ligase (4CL) converts caffeate (2) to caffeoyl CoA(3) which in turn is converted to feruloyl CoA (4) by caffeoyl-CoA O-methyltransferase (CCoAOMT); cinnamoyl-CoA reductase (CCR) converts feruloyl CoA (4) to coniferaldehyde (5); coniferyl alcohol dehydrogenase (CAD) converts coniferaldehyde (5) to the guaiacyl monolignol coniferyl alcohol (6); at coniferaldehyde (5), the pathway splits wherein coniferaldehyde (5) can also be converted to 5-hydroxyconiferaldehyde (7) by coniferaldeyde 5-hydroxylase (Cald5H); 5-hydroxyconiferaldehyde O-methyltransferase (AldOMT) converts 5-hydroxconiferaldehyde (7) to sinapaldehyde (8) which, in turn, is converted to the syringyl monolignol, sinapyl alcohol (9) by sinapyl alcohol dehydrogenase (SAD).

DNA Constructs

According to the present invention, a DNA construct is provided which is a plant DNA having a promoter sequence, a coding region and a terminator sequence. The coding region encodes a combination of enzymes essential to lignin biosynthesis, specifically, SAD, CAD, Cald50MT, and 4CL protein sequences, substantially similar sequences, or functional fragments thereof. The coding region is suitably a minimum size of 50 bases. The gene promoter is positioned at the 5'-end of a transgene (e.g., 4CL alone or together with SAD, Cald5H, and AldOMT, and combinations thereof, or 4CL and CAD alone, or together with CAld5El, SAD, and AldOMT, and combinations thereof, as described hereinafter) for controlling the transgene expression, and a gene termination sequence that is located at the 3'-end of the transgene for signaling the end of the transcription of the transgene.

The DNA construct in accordance with the present invention can be incorporated into the genome of a plant by transformation to alter lignin biosynthesis, increase syringyl/ guaiacyl (S/G) lignin ratio and increase cellulose content. The DNA construct may include clones of CAld5H, SAD, AldOMT, CAD, and 4CL, and variants thereof such as are permitted by the degeneracy of the genetic code and the functional equivalents thereof.

The DNA constructs of the present invention may be inserted into plants to regulate production the following

35

enzymes: CAld5H, SAD, AldOMT, CAD, and 4CL. Depending on the nature of the construct, the production of the protein may be increased or decreased, either throughout or at particular stages in the life of the plant, relative to a similar control plant that does not incorporate the construct into its genome. For example, the orientation of the DNA coding sequence, promoter, and termination sequence can serve to either suppress lignin formation or amplify lignin formation. For the down-regulation of lignin synthesis, the DNA is in the antisense orientation. For the amplification of lignin biosynthesis, the DNA is in the sense orientation, thus to provide one or more additional copies of the DNA in the plant genome. In this case, the DNA is suitably a full-length cDNA copy. It is also possible to target expression of the gene to specific cell types of the plants, such as the epidermis, the xylem, the roots, etc. Constructs in accordance with the present invention may be used to transform cells of both monocotyledons and dicotyledons plants in various ways known in the art. In many cases, such plant cells may be cultured to regenerate whole plants which subsequently reproduce to give successive generations of 20 genetically modified plants. Examples of plants that are suitably genetically modified in accordance with the present invention, include but are not limited to, trees such a aspen, poplar, pine and eucalyptus. 10 15 25

Promoters and Termination Sequences

Various gene promoter sequences are well known in the art and can be used in the DNA constructs of present invention. The promoter in the constructs in accordance with the present invention suitably provides for expression of the linked DNA segment. The promoter can also be inducible so 30 that gene expression can be turned on or off by an exogenously added agent. It may also be preferable to combine the desired DNA segment with a promoter that provides tissue specific expression or developmentally regulated gene expression in plants.

The promoter may be selected from promoters known to operate in plants, e.g., CaMV35S, GPAL2, GPAL3 and endogenous plant promoter controlling expression of the enzyme of interest. Use of a constitutive promoter such as the CaMV35S promoter (Odell et al. 1985), or CaMV 19S 40 (Lawton et al., 1987) can be used to drive the expression of the transgenes in all tissue types in a target plant. Other promoters are nos (Ebert et al. 1987), Adh (Walker et al., 1987), sucrose synthase (Yang et al., 1990), A-tubulin, ubiquitin, actin (Wang et al., 1992), cab (Sullivan et al., 45 1989), PEPCase (Fludspeth et al., 1989) or those associate with the R gene complex (Chandler et al., 1989). On the other hand, use of a tissue specific promoter permits functions to be controlled more selectively. The use of a tissuespecific promoter has the advantage that the desired protein 50 is only produced in the tissue in which its action is required. Suitably, tissue-specific promoters, such as those would confine the expression of the transgenes in developing xylem where lignification occurs, may be used in the inventive DNA constructs. 55

A DNA segment can be combined with the promoter by standard methods as described in Sambrook et al., 2nd ed. (1982). Briefly, a plasmid containing a promoter such as the CaMV 35S promoter can be constructed as described in Jefferson (1987) or obtained from Clontech Lab, Palo Alto, 60 initiation site and the start of the coding sequence, i.e., the Calif, (e.g., pBI121 or pBI221). Typically, these plasmids are constructed to provide for multiple cloning sites having specificity for different restriction enzymes downstream from the promoter. The DNA segment can be subcloned downstream from the promoter using restriction enzymes to 65ensure that the DNA is inserted in proper orientation with respect to the promoter so that the DNA can be expressed.

The gene termination sequence is located 3' to the DNA sequence to be transcribed. Various gene termination sequences known in the art may be used in the present inventive constructs. These include nopaline synthase (NOS) gene termination sequence (see, e.g., references cited in co-pending, commonly-owned PCT application, PCT/US/ 0027704, filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants," incorporated herein by reference.)

Marker Genes

A marker gene may also be incorporated into the inventive DNA constructs to aid the selection of plant tissues with positive integration of the transgene. "Marker genes" are genes that impart a distinct phenotype to cells expressing the marker gene, and thus, allow such transformed cells to be distinguished from cells that do not have the marker. Many examples of suitable marker genes are known to the art and can be employed in the practice of the invention, such as neomycin phosphotransferase II (NPT II) gene that confers resistance to kanamycin or hygromycin antibiotics which would kill the non-transformed plant tissues containing no NPT II gene (Bevan et al., 1983). Numerous other exemplary marker genes used in the method, in accordance with the present invention are listed in Table 1 of co-pending, commonly owned of PCT/US/0027704, filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants," incorporated herein by reference.

Therefore, it will be understood that the following discussion is exemplary rather than exhaustive. In light of the techniques disclosed herein and the general recombinant techniques which are known in the art, the present invention renders possible the introduction of any gene, including marker genes, into a recipient cell to generate a transformed plant.

Optional Sequences in the Expression Cassette

The expression cassette containing DNA sequences in accordance with the present invention can also optionally contain other DNA sequences. Transcription enhancers or duplications of enhancers can be used to increase expression from a particular promoter. One may wish to obtain novel tissue-specific promoter sequences for use in accordance with the present invention. To achieve this, one may first isolate cDNA clones from the tissue concerned and identify those clones which are expressed specifically in that tissue, for example, using Northern blotting. Ideally, one would like to identify a gene that is not present in a high copy number, but which gene product is relatively abundant in specific tissues. The promoter and control elements of corresponding genomic clones may then be localized using the techniques of molecular biology known to those of skill in the art.

Expression of some genes in transgenic plants will occur only under specified conditions. It is known that a large number of genes exist that respond to the environment. In some embodiments of the present invention expression of a DNA segment in a transgenic plant will occur only in a certain time period during the development of the plant. Developmental timing is frequently correlated with tissue specific gene expression.

As the DNA sequence inserted between the transcription untranslated leader sequence, can influence gene expression, one can also employ a particular leader sequence. Preferred leader sequence include those which comprise sequences selected to direct optimum expression of the attached gene, i.e., to include a preferred consensus leader sequence which can increase or maintain mRNA stability and prevent inappropriate initiation of translation (Joshi, 1987). Such

sequences are known to those of skill in the art. Sequences that are derived from genes that are highly expressed in plants will be most preferred.

Additionally, expression cassettes can be constructed and employed to target the gene product of the DNA segment to 5 an intracellular compartment within plant cells or to direct a protein to the extracellular environment. This can generally be achieved by joining a DNA sequence encoding a transit or signal peptide sequence to the coding sequence of the DNA segment. Also, the DNA segment can be directed to a 10 particular organelle, such as the chloroplast rather than to the cytoplasm.

Alternatively, the DNA fragment coding for the transit peptide may be chemically synthesized either wholly or in part from the known sequences of transit peptides such as 15 those listed above. The description of the optional sequences in the expression cassette, is commonly owned, co-pending PCT/US/0027704, filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants," incorporated herein by reference.

Transformation

Transformation of cells from plants, e.g., trees, and the subsequent production of transgenic plants using e.g., *Agrobacterium-*mediated transformation procedures known in the art, and further described herein, is one example of a 25 method for introducing a foreign gene into plants. Although, the method of the invention can be performed by other modes of transformation, *Agrobacterium*-mediated transformation procedures are cited as examples, herein. For example, transgenic plants may be produced by the follow- 30 ing steps: (i) culturing *Agrobacterium* in low-pH induction medium at low temperature and preconditioning, i.e., coculturing bacteria with wounded tobacco leaf extract in order to induce a high level of expression of *the Agrobacterium* vir genes whose products are involved in the T-DNA transfer; 35 (ii) coculturing desired plant tissue explants, including zygotic and/or somatic embryo tissues derived from cultured explants, with the incited *Agrobacterium;* (iii) selecting transformed callus tissue on a medium containing antibiotics; and (iv) converting the embryos into platelets.

Any non-tumorigenic *A. tumefaciens* strain harboring a disarmed Ti plasmid may be used in the method in accordance with the invention. Any *Agrobacterium* system may be used. For example, Ti plasmid/binary vector system or a cointegrative vector system with one Ti plasmid may be 45 used. Also, any marker gene or polynucleotide conferring the ability to select transformed cells, callus, embryos or plants and any other gene, such as for example a gene conferring resistance to a disease, or one improving lignin content or structure or cellulose content, may also be used. 50 A person of ordinary skill in the art can determine which markers and genes are used depending on particular needs.

To increase the infectivity of the bacteria, *Agrobacterium* is cultured in low-pFl induction medium, i.e., any bacterium culture media with a pH value adjusted to from 4.5 to 6.0, 55 most preferably about 5.2, and at low temperature such as for example about $19-30^{\circ}$ C., preferably about $21-26^{\circ}$ C. The conditions of low-pH and low temperature are among the well-defined critical factors for inducing virulence activity in *Agrobacterium* (e.g., Altmorbe et al., 1989; Fullner et 60 al., 1996; Fullner and Nester, 1996).

The bacteria is preconditioned by coculturing with wounded tobacco leaf extract (prepared according to methods known generally in the art) to induce a high level of expression of the *Agrobacterium* vir genes. Prior to inocu- 65 lation of plant somatic embryos, *Agrobacterium* cells can be treated with a tobacco extract prepared from wounded leaf

tissues of tobacco plants grown in vitro. To achieve optimal stimulation of the expression of *Agrobacterium* vir genes by wound-induced metabolites and other cellular factors, tobacco leaves can be wounded and pre-cultured overnight. Culturing of bacteria in low pH medium and at low temperature can be used to further enhance the bacteria vir gene expression and infectivity. Preconditioning with tobacco extract and the vir genes involved in the T-DNA transfer process are generally known in the art.

Agrobacterium treated as described above is then cocultured with a plant tissue explant, such as for example, zygotic and/or somatic embryo tissue. Non-zygotic (i.e., somatic) or zygotic tissues can be used. Any plant tissue may be used as a source of explants. For example, cotyledons from seeds, young leaf tissue, root tissues, parts of stems including nodal explants, and tissues from primary somatic embryos such as the root axis may be used. Generally, young tissues are a preferred source of explants.

The above-described transformation and regeneration protocol is readily adaptable to other plant species. Other 20 published transformation and regeneration protocols for plant species include Danekar et al., 1987; McGranahan et aL, 1988; McGranahan et al., 1990; Chen, Ph.D. Thesis, 1991; Sullivan et al., 1993; Fluang et al., 1991; Wilde et al., 1992; Minocha et al., 1986; Parsons et al., 1986; Fillatti et al., 1987; Pythoud et al., 1987; De Block, 1990; Brasileiro et al., 1991; Brasileiro et al., 1992; Flowe et al., 1991; Klopfenstein et al., 1991; Leple et al., 1992; and Nilsson et al., 1992.

Characterization

To confirm the presence of the DNA segment(s) or "transgene(s)" in the regenerated plants, a variety of assays may be performed. Such assays include, for example, "molecular biological" assays well known to those of skill in the art, such as Southern and Northern blotting and PCR; "biochemical" assays, such as detecting the presence of a protein product, e.g., by immunological means (ELISAs and Western blots) or by enzymatic function; plant part assays, such as leaf or root assays; and also, by analyzing the phenotype of the whole regenerated plant. 40

1. DNA Integration, RNA Expression and Inheritance

Genomic DNA may be isolated from callus cell lines or any plant parts to determine the presence of the DNA segment through the use of techniques well known to those skilled in the art. Note that intact sequences will not always be present, presumably due to rearrangement or deletion of sequences in the cell.

The presence of DNA elements introduced through the methods of this invention may be determined by polymerase chain reaction (PCR). Using this technique, discreet fragments of DNA are amplified and detected by gel electrophoresis. This type of analysis permits one to determine whether a DNA segment is present in a stable transformant, but does not prove integration of the introduced DNA segment into the host cell genome. In addition, it is not possible using PCR techniques to determine whether transformants have exogenous genes introduced into different sites in the genome, i.e., whether transformants are of independent origin. It is contemplated that using PCR techniques it would be possible to clone fragments of the host genomic DNA adjacent to an introduced DNA segment.

Positive proof of DNA integration into the host genome and the independent identities of transformants may be determined using the technique of Southern hybridization. Using this technique, specific DNA sequences that were introduced into the host genome and flanking host DNA sequences can be identified. Hence the Southern hybridiza-

10

tion pattern of a given transformant serves as an identifying characteristic of that transformant. In addition, it is possible through Southern hybridization to demonstrate the presence of introduced DNA segments in high molecular weight DNA, i.e., confirm that the introduced DNA segment has been integrated into the host cell genome. The technique of Southern hybridization provides information that is obtained using PCR, e.g., the presence of a DNA segment, but also demonstrates integration into the genome and characterizes each individual transformant.

It is contemplated that by using the techniques of dot or slot blot hybridization which are modifications of Southern hybridization techniques, one could obtain the same information that is derived from PCR, e.g., the presence of a DNA segment.

Both PCR and Southern hybridization techniques can be used to demonstrate transmission of a DNA segment to progeny. In most instances the characteristic Southern hybridization pattern for a given transformant will segregate in progeny as one or more Mendelian genes (Spencer et al., 1992; Laursen et al.,1994) indicating stable inheritance of 20 the gene. 15

Whereas DNA analysis techniques may be conducted using DNA isolated from any part of a plant, RNAmay only be expressed in particular cells or tissue types, and hence, it will be necessary to prepare RNA for analysis from these 25 tissues. PCR techniques may also be used for detection and quantitation of RNA produced from introduced DNA segments. In this application of PCR, it is first necessary to reverse transcribe RNA into DNA, using enzymes such as reverse transcriptase, and then through the use of conven-30 tional PCR techniques amplify the DNA. In most instances, PCR techniques, while useful, will not demonstrate integrity of the RNA product. Further information about the nature of the RNA product may be obtained by Northern blotting. This technique will demonstrate the presence of an RNA species 35 and give information about the integrity of that RNA. The presence or absence of an RNA species can also be determined using dot or slot blot Northern hybridizations. These techniques are modifications of Northern blotting and demonstrate only the presence or absence of an RNA species. 40 construct, the antisense Pt4CL1 was replaced with 2. Gene Expression

While Southern blotting and PCR may be used to detect the DNA segment in question, they do not provide information as to whether the DNA segment is being expressed. Expression may be evaluated by specifically identifying the 45 protein products of the introduced DNA segments or evaluating the phenotypic changes brought about by their expression.

Assays for the production and identification of specific proteins may make use of physical-chemical, structural, 50 functional, or other properties of the proteins. Unique physical-chemical or structural properties allow the proteins to be separated and identified by electrophoretic procedures, such as native or denaturing gel electrophoresis or isoelectric focussing, or by chromatographic techniques such as ion 55 Plant Cell Reports, 14:94–97) Agrobacterium C58/pMP90 exchange or gel exclusion chromatography. The unique structures of individual proteins also offer opportunities for use of specific antibodies to detect their presence in formats such as an ELISA assay. Combinations of approaches may be employed with even greater specificity such as western 60 blotting in which antibodies are used to locate individual gene products that have been separated by electrophoretic techniques. Additional techniques may be employed to absolutely confirm the identity of the product of interest such as evaluation by amino acid sequencing following 65purification. Although these are among the most commonly employed, other procedures may be additionally used.

Assay procedures may also be used to identify the expression of proteins by their functionality, especially the ability of enzymes to catalyze specific chemical reactions involving specific substrates and products. These reactions may be followed by providing and quantifying the loss of substrates or the generation of products of the reactions by physical or chemical procedures. Examples are as varied as the enzyme to be analyzed and may include assays for PAT enzymatic activity by following production of radiolabelled acetylated phosphinothricin from phosphinothricin.

Very frequently the expression of a gene product is determined by evaluating the phenotypic results of its expression. These assays also may take many forms including but not limited to analyzing changes in the chemical composition, morphology, or physiological properties of the plant. Chemical composition may be altered by expression of DNA segments encoding enzymes or storage proteins which change amino acid composition and may be detected by amino acid analysis, or by enzymes which change starch quantity which may be analyzed by near infrared reflectance spectrometry. Morphological changes may include greater stature or thicker stalks. Most often changes in response of plants or plant parts to imposed treatments are evaluated under carefully controlled conditions termed bioassays.

The invention will be further described by the following non-limiting examples.

EXAMPLE 1

Preparation of Transgenic Aspen

Construction of Binary Vectors

 $pBKPpt_{4CL}$ Pt4CL1-a: Aspen 4CL1 xylem specific promoter (PPt_{4CL}, 1.1 kb, GenBank AF041051) was prepared and linked to aspen 4CL1 cDNA (Pt4CLl, GenBank AF041049) which was orientated in the antisense direction. Then the cassette containing aspen 4CL1 promoter and antisense aspen 4CL1 cDNA was positioned in a plant transformation binary vector, as shown in FIG. 1. $(pBKPpt_{4CL}$ Pt4CL1-a construct)

 $pBKPpt_{4cl}$ PtCAld5H-s: From $pBKPpt_{4CL}$ Pt4CL-a PtCAld5H cDNA in a sense orientation, yielding a $pBKPpt_{4CL}$ PtCAld5H-s transformation binary construct, as shown in FIG. 8.

Also, Example 1 of PCT application PCT/US/0027704, filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants," incorporated herein by reference, describes a number of other gene constructs for preparing transgenic plants. The plants are transformed with a genes from the phenylpropanoid pathway (i.e., 4CL, AEOMT, CoAOMT, and CAld5H) using an operably linked to either a homologous or a heterologous and either a constitutive or tissue-specific promoter

Incorporation of Binary Vector into *Agrobacterium*

According to the protocol described in Tsai et al. (1994, strain was grown in LB with selection of gentamicin at 28° C. overnight. Cells were harvested by centrifugation at 10,000 rpm for 10 minutes at 4° C. The cell pellet was washed with 0.5 volume of ice-cold 20 mM CaCl₂, and centrifuged again. The cells were then resuspended in 0.1 volume of ice-cold 20 mM CaCl₂ in a sample tube. About 1 μ g of binary vector DNA was added to 200 μ L of the cell suspension and mixed by pipetting. The sample tube was chilled in liquid N_2 for 5 minutes and thawed at 37° C. in a water bath for 5 minutes. One mL of LB medium was added and the mixture was incubated at 28° C. for 3 hours with gentle shaking. Twenty μ L of the cells were spread onto a LB

plate containing 25 μ g/mL gentamicin and 50 μ g/mL kanamycin and incubated at 28° C. for 2 days. PCR (amplification conditions, cycling parameters and primers are described below) was used to verify the presence of DNA from the vector in the transformed colonies. Simultaneous Transformation of Aspen with Multiple Genes Via Engineered *Agrobacterium* Strains

For simultaneous transformation of multiple genes, pBKPpt_{4cl} Pt4CL-a and pBKPpt_{4cl} PtCal5H *Agrobacterium* clones were cultured in LB medium at 28° C. overnight separately. The *Agrobacterium* strains were subcultured individually by a 100-fold dilution into 50 mL of LB (pH 5.4) containing 50 μ g/mL kanamycin, 25 μ g/mL gentamycin and 20μ M acetosyringone (in DMSO), and grown overnight at 28° C. with shaking. An equal volume of the same density of individually cultured *Agrobacterium* strains was then mixed. Leaves excised from sterile tobacco plants were cut into pieces with a size of about 5 mm^2 and the leaf discs were then immersed in the *Agrobacterium* mixture for 5 minutes. 10

After removing excess *Agrobacterium* cells, the treated leaf discs were placed on callus induction medium (WPM:Woody Plant Medium, BA: 6-benzyladenine+2,4-D: 2,4-dichlorophenoxyacetic acid; Tsai et al. 1994, Plant Cell Reports, $14:94-97$) and cultured for 2 days. Then, the $_{25}$ pre-cultured leaf discs were rinsed with sterile water several times to remove the *Agrobacterium* cells and washed in 1 mg/mL claforan and 1 mg/mL ticarcillin with shaking for 3 hours to kill *Agrobacterium.* After briefly blot-drying, the pre-cultured and washed leaf discs were cultured on callus induction medium containing 50 μ g/mL kanamycin and 300 μ g/mL claforan for selection of transformed cells. After 2 to 3 subcultures (10 days/subculture), the calli grown on the leaf discs were excised and transferred onto shoot induction medium (WPM+TDZ: N-phenyl-N'-1,2,3-thiadiazol-5-yl- 35 urea) containing 50 μ g/ml kanamycin and 300 μ g/ml claforan for regenerating shoots. After shoots were grown to about 0.5 cm high, they excised and planted to rooting media (WPM with kanamycin and claforan). Whole plants about 7 cm high were transplanted into soil and maintained in a $_{40}$ greenhouse for subsequent molecular characterization. Genomic DNA Isolation 30

Genomic DNA was isolated according to Hu et al. (1998). About 100 mg of young leaves were collected from each plant growing in the greenhouse and ground in liquid N_2 to 45 fine powder for DNA isolation using QIAGEN plant DNA isolation kit (Valencia, Calif.). Specifically, the powdered tissue was added to extract buffer containing 2% hexadecyltrimethylammonium bromide (CTAB), 100 mM Tris-HC1, pH 8.0, 20 mM EDTA, 1.4 M NaCl and 30 mM β -mercaptoethanol at 5 mL/g tissue. The extraction mixture was incubated in a tube at 60° C. for 1 hour with occasional shaking. One volume of chloroform-isoamyl alcohol (24:1) was added and mixed gently. The two phases were separated 55 by centrifugation at 10,000xg for 10 minutes. The aqueous phase was transferred to a new tube and extracted with chloroform in the presence of 1% CTAB and 0.7 M NaCl. The DNA was precipitated by addition of 2/3 volume of isopropanol $(-20^{\circ}$ C.) and kept at -20° C. for 20 minutes. Following the centrifugation at $10,000 \times g$ for 10 minutes, the pelleted DNA was washed with 70% ethanol-10 mM ammonia acetate. Then the pellet was dissolved in 2 mL TE buffer (10 mM Tris-HCl/0.1 mM EDTA, pH 8) and treated with 2 $_{65}$ μ g RNase A at 37 \degree C. for 20 minutes. The DNA was precipitated by addition of 2 mL of 5 M ammonia acetate 60

and 10 mL of 95% ethanol at -20° C. for 20 minutes. After centrifugation, the pellet was washed with 70% ethanol. After a brief drying, genomic DNA was dissolved in TE buffer.

PCR Verification of Foreign Gene Insertion in Host Plant Genome

PCR was used to verify the integration of the gene constructs in the genome of transgenic plants. Two specific primers were synthesized for each construct and used to PCR-amplify the corresponding construct in genome of transgenic Aspen. For the PBKPP t_{4CL} Pt4CL1-a construct, two specific primers were synthesized that amplify a 4CL cDNA fragment. Pt4CLl promoter sense primer (5'CAGGAATGCTCTGCACTCTG3') (SEQ ID NO:11) and Pt4CLl sense primer (S'ATGAATCCACAAGAATTCATS') (SEQ ID NO:12). at the translation start region. Primers for PCR verification of $_{20}$ pBKPpt₄ CL PtCald5H-s construct are Pt4CL1 promoter sense primer (5'CAGGAATGCTCTGCACTCTG3') (SEQ ID NO:13) and PtCald5H antisense primer (5TTAGAGAGGACAGAGCACACG3') (SEQ ID NO:14) at translation stop region.

The PCR reaction mixture contained 100 ng genomic DNA of transformed aspen, and $0.2 \mu M$ of each primer, 100 μ M of each deoxyribonucleotide triphosphate, 1×PCR buffer and 2.5 Units of Taq DNA polymerase (Promega Madison, Wis.) in a total volume of 50 μ L. The cycling parameters were as follows: 94° C. for 1 minute, 56° C. for 1 minute (for 4CL and CAld5H or can vary between cDNA templates used) according to different gene checked) and 72° C. for 2 minute, for 40 cycles, with 5 minutes at 72° C. extension. The PCR products were electrophoresized on a 1% agarose gel.

EXAMPLE 2

Preparation of Other Transgenic Plants

It is important to recognize that there is a substantial percentage of sequence homology among the plant genes involved in the lignin biosynthetic pathway, discussed herein. This substantial sequence homology allows the method in accordance with the invention disclosed herein to be applicable to all plants that possess the requisite genes involved in the lignin biosynthetic pathway. To demonstrate the substantial sequence homology among plant genes, the percentage sequence homology is set forth in tabular form, for example, CAld5H genes (Table 1), AldOMT genes (Table 2), CAD genes (Table 3), and 4CL genes (See FIG. 12). Therefore, it is possible to alter lignin monomer composition, increase S/G lignin ratio, and increase cellulose content in all plants by using the method in accordance with the invention, described herein.

TABLE 1

Protein sequence homology (%) of plant Coniferyl Aldehyde 5-hydroxylase (CAld5H) from 1) Aspen, 2) Poplar, AJ010324, 3) Sweetgum, AF139532; 4) Arabidopsis (Ferulic Acid 5-hydroxylase, F5H)											
	99										
٩	84	84									

5

15

TABLE 2

Protein sequence homology (%) of plant AldOMTs from 1) Aspen, X62096; 2) Poplar, M73431; 3) Almond, X83217; 4) Strawberry, AF 220491, 5) Alfalfa, M63853; 6) Eucalyptus, X74814; 7) Clarkia breweri, AF006009; 8) Sweetgum, AF139533; 9) Arabidopsis, U70424; 10) Tobacco, X74452; 11) Vitis vinifera, $AF239740$

	1	$\overline{2}$	3	4	5	6	7	8	9	10	11	10
1												
$\overline{2}$	99											
3	92	92										
$\overline{4}$	91	90	94									
5	90	90	89	89								
6	89	89	89	87	87							15
$\overline{7}$	88	88	89	88	87	90						
$\,$ 8 $\,$	88	87	88	87	86	85	83					
9	84	84	85	86	82	82	82	83				
10	83	83	83	82	81	82	80	83	77			
11	80	80	78	77	78	77	78	80	76	77		

TABLE 3

To further demonstrate the versatility of this invention in transferring a variety of foreign genes and the applicability of this invention to plants other than the herbaceous species, different binary vectors were constructed and transferred into aspen *(Populus tremuloides)* tree. Two binary vectors, each containing a cDNA sequence and a neomycin phosphotransferase (NPT II) cDNA encoding kanamycin resistance, were constructed. Each vector was then individu- 55 ally mobilized into *Agrobacterium* strain C58 to create two isolated (engineered) *Agrobacterium* strains. It should be noted that about 50 transgenic tobacco plants were generated by the same technique harboring 4 different sets of foreign genes, as described in the PCT application PCTUS0027704 ⁶⁰ filed Oct. 6, 2000, entitled "Method of Introducing a Plurality of Genes into Plants," incorporated herein by reference.

Table 4 summarizes the numerical results from simulta- 65 neous manipulating xylem-specific expression of 4CL and CAld5H in transgenic aspen. After DNA constructs were

incorporated into plant cells by *Agrobacterium* mediated transformation, as set forth by the method in accordance with the invention and after PCR confirmation of transgene integration, 14 positive transgenic trees were randomly 5 selected, representing three different trangenic groups, i.e., Groups I, II and III. Group I (plant #21, 22, 23, 25, and 37) consists of those with the integration of only antisense Pt4CLl cDNA (Table 4). Group II plants (# 32, 84, 93, and 94) harbored only sense PtCAld5H cDNA, whereas Group III plants (#71, 72, 74, and 141) contained both antisense Pt4CLl and sense PtCAld5H transgenes. These transgenic trees were then further analyzed for their lignin and cellulose contents and lignin S/G ratio (Table 4). It is clear that, when 15 compared with the control, untransformed aspen, transgenic plants (#21, 22, 23, 25, and 37) engineered for the suppression of 4CL gene with antisense Pt4CLl transgene had drastic reductions in their lignin content, with significant increases in their cellulose content. Transgenic plants (#32, 84, 93, 94, and 108) engineered for the overexpression of

CAld5H with sense PtCA1b5H transgene had pronounced increases in their S/G ratio, but their lignin and cellulose contents remained essentially unaffected. When engineered for the simultaneous suppression of 4CL gene and overexpression of CAld5H gene, transgenic plants (#71, 72, 74, and 141) all exhibited low lignin content, high S/G ratio and elevated cellulose quantity. In summary, these results show that multiple genes carried by individual *Agrobacterium* strains can be integrated simultaneously into the plant genome.

Moreover, it was demonstrated as shown herein below, that transgenic plants with a nearly 30% increase in cellulose content and over 50% lignin quantity reduction, accompanied with a significant augmentation of the S/G ratio, can be easily produced. It is conceivable that more genes can also be efficiently transferred at one time. Only one suitable marker gene is required for this system, although a number of marker genes can also be employed.

ND: not determined

EXAMPLE 3

Production of Commercially Desirable Agronomic Traits in Transformed Plants

The following genetic transformations illustrate the pro-20 duction of commercially desirable agronomic traits in plants.

Gymnosperms

- A. To produce syringyl-enriched lignin in gymnosperm plants, gymnosperm plants are genetically transformed 25 with SAD, CAld5H, and AldOMT genes in the sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system allows. These three genes can be transferred into the host plant either simultaneously (in one or individual constructs) $_{30}$ or sequentially (in individual constructs) in any order.
- B. To produce decreased lignin content, increased syringyl/guaiacyl (S/G) lignin ratio and increased cellulose quantity in gymnosperm plants, gymnosperm plants are genetically transformed with SAD, CAld5H $_{35}$ and AldOMT genes in the sense orientation and 4CL gene in either sense or antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in $_{40}$ one or individual constructs) or sequentially (in individual constructs) in any order.
- C. To produce decreased lignin content, increased syringyl/guaiacyl (S/G) lignin ratio and increased cellulose quantity in gymnosperm plants, gymnosperm 45 plants are genetically transformed with SAD, CAld5H and AldOMT genes in the sense orientation and 4CL and CAD genes in either sense or antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These five genes 50 can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
- D. To produce increased lignin content in gymnosperm plants, gymnosperm plants are genetically transformed 55 with 4CL gene in the sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system.
- E. To produce increased lignin content and increased syringyl/guaiacyl (S/G) lignin ratio in gymnosperm 60 plants, gymnosperm plants are genetically transformed with SAD, CAld5H, AldOMT, and 4CL genes in the sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant 65 either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.

F. To produce increased lignin content, increased syringyl/ guaiacyl (S/G) lignin ratio in gymnosperm plants, gymnosperm plants are genetically transformed with SAD, CAld5H, AldOMT, and 4CL genes in the sense orientation and CAD gene in the antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.

Angiosperms

- A. To produce increased S/G lignin ratio in angiosperm plants, angiosperm plants are genetically transformed with either CAld5H, AldOMT, or SAD genes in sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These three genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
- B. To produce decreased lignin content, increased S/G lignin ratio and increased cellulose quantity in angiosperm plants, angiosperm plants are genetically transformed with either SAD, CAld5H, or AldOMT genes in the sense orientation and 4CL gene in the sense or antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
- C. To produce decreased lignin content, increased S/G lignin ratio and increased cellulose quantity in angiosperm plants, angiosperm plants are genetically transformed with either SAD, CAld5H, or AldOMT genes in the sense orientation and 4CL and CAD genes in the sense or antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These five genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.
- D. To produce increased lignin content in angiosperm plants, angiosperm plants are genetically transformed with 4CL gene in the sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system.
- E. To produce increased lignin content and increased S/G ratio in angiosperm plants, angiosperm plants are genetically transformed with 4CL in the sense orientation and either SAD, CAld5H, or AldOMT genes also

in the sense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order.

F. To produce increased lignin content and increased S/G ratio in angiosperm plants, angiosperm plants are genetically transformed with 4CL in the sense orienta-10 tion and either SAD, CAld5H, or AldOMT genes also in the sense orientation and CAD in the antisense orientation driven by any appropriate promoter and via any appropriate genetic transformation system. These four genes can be transferred into the host plant either simultaneously (in one or individual constructs) or sequentially (in individual constructs) in any order. 15

All publications, patents and patent applications cited herein are incorporated herein by reference. While in the $_{20}$ foregoing specification, this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the $_{25}$ details herein may be varied considerably without departing from the basic principles of the invention. Accordingly, it is intended that the present invention be solely limited by the broadest interpretation that can be accorded the appended claims. 30

REFERENCES

Bugos et al., 1991, *Plant Mol. Biol.* 17:203.

- Chang, H. M., and Sarkanen, K. V., 1973, *Tappi* 56:132. 35
- Chiang, V. L., and Funaoka, M., 1990, *Holzforschung* 44:309.
- Flu et al., 1999, *Nature Biotech.* 17:808.
- Sarkanen, K. V., and Ludwig, C. H., eds (Wiley-Interscience, New York), 639.
- Tsai et al., 1994, *Plant Cell Report* 14:94.
- Boudet et al., 1995, *New Phytol.* 129:203.
- Ibrahim, 1997, *Trends Plant Sci.* 2:249.
- Li et al., 1997, *Proc. Natl. Acad. Sci. USA* 94:5461.
- Joshi and Chiang, 1998, *Plant Mol. Biol.* 37:663.
- Brasileiro et al., 1991, *Plant Mol. Bio.* 17:441.
- Brasileiro et al., 1992, Transgenic Res. 1:133.
- Chen et al., 1998, *Nature Biotechnology* 16, 11:1060.
- Chen, Ph.D. Thesis, 1991, North Carolina State University, Raleigh, N.C.
- Chen et al., 1999, *Planta* 207:597.
- Christou, 1996, *Bio/Technology* 10:667.
- Chandler et al., 1989.
- Danekar et al., 1987, *Bio/Technology* 5:587.
- De Block, 1990, *Plant Physiol.* 93:1110.
- Ebinuma et al., 1997, *Proceedings of the National Academic of Sciences* 94:2117.
- Ebert et al. 1987.
- Fillatti et al., 1987, *Mol. Gen. Genet.* 206:192.
- Freudenberg, 1965.
- Florsch et al., 1985, *Science* 227:1229.

24

- Flowe et al., 1991, *Woody Plant Biotech.* Plenum Press, New York, 283.
- Fluang et al., 1991, *In Vitro Cell Dev. Bio.* 4:201.
- Fludspeth et al., 1989, *Plant Mol. Biol.,* 12:579.
- Hu et al., 1998, *Proc. Natl. Acad. Sci. USA* 95:5407.
- Hu et al., 1999, *Nat. Biotechnol.* 17:808.
- Humphreys et al., 1999, *Proc. Nat. Acad. Sci. USA* 96:10045.
- Jornvall et al., 1987, *Eur. J Biochem.* 167:195.
- Jefferson et al.,1987.
- Klopfenstein et al., 1991, *Can. J For. Res.* 21:1321.
- Lawton et al., 1987, *Plant Mol. Biol.* 9:31F.
- Buxton and Roussel, 1988, *Crop. Sci.* 28,:553.
- Jung and Vogel, 1986, *J. Anim., Sci.* 62:1703.
- Leple et al., 1992, *Plant Cell Reports* 11:137.
- Li et al., 1997, *Proc. Natl. Acad. Sci. USA,* 94:5461.
- Li et al., 2001, *Plant Cell,* 13:1567.
- Li et al, 1997, *Proc. Natl. Acad. Sci. USA* 94:5431.
- Li et al., 1999, *Plant Mol. Biol.* 40:555.
- Li et al., 2000, J. Biol. Chem. 275:6537.
- MacKay et al., 1995, *Mol. Gen. Genet.* 247:537.
- MacKay et al., 1997.
- McGranahan et al., 1988, *Bio/Technology* 6:800.
- McGranahan et al., 1990, *Plant Cell Reports* 8:512.
- Minocha et al., 1986, *Proc. TAPPI Research and Development Conference,* TAPPI Press, Atlanta, 89.
- Nelson et al. 1996, *Pharmacogenetics* 6:1.
- Odell et al., 1985, *Nature* 313:810.
- Osakabe et al., 1999, *Proc. Nati.Acad. Sci. USA* 96:8955.
- Parsons et al., 1986, *Bio/Technology* 4:533.
- Pythoud et al., 1987, *Bio/Technology* 5:1323.
- Sambrook et al., *2nd* ed. 1982.

45

50

55

60

- Sullivan et al., 1993, *Plant Cell Reports* 12:303.
- Sarkanen, K. V., and Hergert, H. L., 1971, *Lignins: Occurrence, Formation, Structure and Reaction,* K. V. Sarkanen and C. H. Ludwig, eds (New York: Wiley-Interscience), 43.
- Trotter, P. C., 1990, *Tech. Assoc. Pulp Paper Ind. J.* 73:198.
- Tsai et al., 1998, *Plant Physiol.* 117:101.
- Tsai et al., *Plant Cell Reports* 14:94.
- Tricoli et al., 1995.
- Walker et al., 1987, *PNAS USA* 84:6624.
- Wang et al., 1992, *Mol. Cell. Biol.* 12:3399.
- Wu et al., 2000, *Plant J.* 22:495.
- Yang et al., 1990, *PNAS USA* 87:4144.
- Yamazaki et al., 1993, *J. Biochem.* 114:652.
- Zhang, X.-H., and Chiang, V. L., 1997, *Plant Physiol.* 113:65.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 14 <210> SEQ ID NO 1 <211> LENGTH: 1446 <212> TYPE: DNA <213> ORGANISM: aspen populus tremuloides <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SAD <400> SEQUENCE: 1 tttttttttt tttcctagcc ttccttctcg acgatatttc tctatctgaa gcaagcacca 60 tgtccaagtc accagaagaa gaacaccctg tgaaggcctt egggtgggot gctagggatc 120 aatctggtca tctttctccc ttcaacttct ccaggagggc aactggtgaa gaggatgtga 180 ggttcaaggt gctgtactgc gggatatgcc attctgacct tcacagtatc aagaatgact 240 ggggcttctc catgtaccct ttggttcctg ggcatgaaat tgtgggggaa gtgacagaag 300 ttgggagoaa ggtgaaaaag gttaatgtgg gagacaaagt gggcgtggga tgcttggttg 360 gtgcatgtca ctcctgtgag agttgtgcca atgatcttga aaattactgt ccaaaaatga 420 tcctgacata cgcctccatc taccatgacg gaaccatcac ttacggtggc tactcagatc 480 acatggtcgc taacgaacgc tacatcattc gattccccga taacatgccg cttgacggtg 540 gcgctcctct cctttgtgcc gggattacag tgtatagtcc cttgaaatat tttggactag 600 atgaacccgg taagcatatc ggtatcgttg gcttaggtgg acttggtcac gtggctgtca 660 aatttgccaa ggcctttgga tctaaagtga cagtaattag tacctcccct tccaagaagg 720 aggaggottt gaagaacttc ggtgcagact catttttggt tagtcgtgac caagagcaaa 780 tgcaggctgc cgcaggaaca ttagatggca tcatcgatac agtttctgca gttcaccccc 840 ttttgccatt gtttggactg ttgaagtctc acgggaagct tatcttggtg ggtgcaccgg 900 aaaagcctct tgagctacct gccttttctt tgattgctgg aaggaagata gttgccggga 960 gtggtattgg aggcatgaag gagacacaag agatgattga ttttgcagca aaacacaaca 1020 tcacagcaga tatcgaagtt atttcaacgg actatcttaa tacggcgata gaacgtttgg 1080 ctaaaaacga tgtcagatac cgattcgtca ttgacgttgg caatactttg gcagctacga 1140 agccctaagg agaagatccc atgttctcga accctttata aaatctgata acatgtgttg 1200 atttcatgaa taaatagatt atctttggga tttttcttta ataaacgaag tgttctcgaa 1260 aacttaacat cggcaatacc ctggcagcta cgagaaacgc tttagaattg tttgtaagtt 1320 tgtttcatta gggtgataoo atgctctcga gtcctttgta agatccattt atagttgcgt 1380 gaatgctatg aacaaataat atgtttgcgg cttctcttca aaaaaaaaaa aaaaaaaaaa 1440 aaaaaa 1446 <210> SEQ ID NO 2 <211> LENGTH: 362 <212> TYPE: PRT <213> ORGANISM: aspen populus tremuloides <400> SEQUENCE: 2 Met Ser Lys Ser Pro Glu Glu Glu His Pro Val Lys Ala Phe Gly Trp 1 5 10 15 Ala Ala Arg Asp Gin Ser Gly His Leu Ser Pro Phe Asn Phe Ser Arg 20 25 30

-continued

-continued

-continued

	Val Gln Asp Asn Ile Phe Ser Asn Arg Pro Ala Asn Ile Ala Ile Ser		100					105					110		
	Tyr Leu Thr Tyr Asp Arg Ala Asp Met Ala Phe Ala His Tyr Gly Pro	115					120					125			
	Phe Trp Arg Gln Met Arg Lys Leu Cys Val Met Lys Leu Phe Ser Arg 130					135					140				
145	Lys Arg Ala Glu Ser Trp Glu Ser Val Arg Asp Glu Val Asp Ser Met				150					155					160
	Leu Lys Thr Val Glu Ala Asn Ile Gly Lys Pro Val Asn Leu Gly Glu			165					170					175	
	Leu Ile Phe Thr Leu Thr Met Asn Ile Thr Tyr Arg Ala Ala Phe Gly		180					185					190		
	Ala Lys Asn Glu Gly Gln Asp Glu Phe Ile Lys Ile Leu Gln Glu Phe	195					200					205			
	Ser Lys Leu Phe Gly Ala Phe Asn Met Ser Asp Phe Ile Pro Trp Leu 210					215					220				
225	Gly Trp Ile Asp Pro Gln Gly Leu Ser Ala Arg Leu Val Lys Ala Arg				230					235					240
	Lys Ala Leu Asp Arg Phe Ile Asp Ser Ile Ile Asp Asp His Ile Gln			245					250					255	
	Lys Arg Lys Gln Asn Lys Phe Ser Glu Asp Ala Glu Thr Asp Met Val		260					265					270		
	Asp Asp Met Leu Ala Phe Tyr Gly Glu Glu Ala Arg Lys Val Asp Glu	275					280					285			
	Ser Asp Asp Leu Gln Lys Ala Ile Ser Leu Thr Lys Asp Asn Ile Lys 290					295					300				
305	Ala Ile Ile Met Asp Val Met Phe Gly Gly Thr Glu Thr Val Ala Ser				310					315					320
	Ala Ile Glu Trp Val Met Ala Glu Leu Met Lys Ser Pro Glu Asp Gln			325					330					335	
	Lys Arg Val Gln Gln Glu Leu Ala Glu Val Val Gly Leu Glu Arg Arg		340					345					350		
	Val Glu Glu Ser Asp Ile Asp Lys Leu Thr Phe Leu Lys Cys Ala Leu	355					360					365			
	Lys Glu Thr Leu Arg Met His Pro Pro Ile Pro Leu Leu Leu His Glu 370					375					380				
385	Thr Ser Glu Asp Ala Glu Val Ala Gly Tyr Phe Ile Pro Lys Gln Thr				390					395					400
	Arg Val Met Ile Asn Ala Tyr Ala Ile Gly Arg Asp Lys Asn Ser Trp			405					410					415	
	Glu Asp Pro Asp Ala Phe Lys Pro Ser Arg Phe Leu Lys Pro Gly Val		420					425					430		
	Pro Asp Phe Lys Gly Asn His Phe Glu Phe Ile Pro Phe Gly Ser Gly	435					440					445			
	Arg Arg Ser Cys Pro Gly Met Gln Leu Gly Leu Tyr Thr Leu Asp Leu 450					455					460				
465	Ala Val Ala His Leu Leu His Cys Phe Thr Trp Glu Leu Pro Asp Gly				470					475					480
	Met Lys Pro Ser Glu Leu Asp Met Thr Asp Met Phe Gly Leu Thr Ala			485					490					495	
	Pro Arg Ala Thr Arg Leu Val Ala Val Pro Ser Lys Arg Val Leu Cys		500					505					510		

<210> SEQ ID NO 5 <211> LENGTH: 1503

-continued

<212> TYPE: DNA <213> ORGANISM: aspen populus tremuloides <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: AldOMT; GenBank accession number: X62096 <400> SEQUENCE: 5 tcacttcctt tccttacacc ttcttcaacc ttttgtttcc ttgtagaatt caatctcgat 60 caagatgggt tcaacaggtg aaactcagat gactccaact caggtatcag atgaagaggc 120 acacctcttt gccatgcaac tagccagtgc ttcagttcta ccaatgatcc tcaaaacagc 180 cattgaactc gaccttcttg aaatcatggc taaagctggc cctggtgctt tcttgtccac 240 atctgagata gcttctcacc tccctaccaa aaaccctgat gcgcctgtca tgttagaccg 300 tatcctgcgc ctcctggcta gctactccat tcttacctgc tctctgaaag atcttcctga 360 tgggaaggtt gagagactgt atggcctcgc tcctgtttgt aaattcttga ccaagaacga 420 ggacggtgtc tctgtcagcc ctctctgtct catgaaccag gacaaggtcc tcatggaaag 480 ctggtattat ttgaaagatg caattcttga tggaggaatt ccatttaaca aggcctatgg 540 gatgactgca tttgaatatc atggcacgga tccaagattc aacaaggtct tcaacaaggg 600 aatgtctgac cactctacca ttaccatgaa gaagattctt gagacctaca aaggctttga 660 aggcctcacg tccttggtgg atgttggtgg tgggactgga gccgtcgtta acaccatcgt 720 ctctaaatac ccttcaatca agggcattaa cttcgatctg ccccacgtca ttgaggatgc 780 cccatcttat cccggagtgg agcatgttgg tggcgacatg tttgttagtg tgcccaaagc 840 agatgccgtt ttcatgaagt ggatatgcca tgattggagc gacgcccact gcttaaaatt 900 cttgaagaat tgctatgacg cgttgccgga aaacggcaag gtgatacttg ttgagtgcat 960 tcttcccgtg gctcctgaca caagccttgc caccaaggga gtcgtgcacg ttgatgtcat 1020 catgctggcg cacaaccccg gtgggaaaga gaggaccgag aaggaatttg agggcttagc 1080 taagggagct ggcttccaag gttttgaagt aatgtgctgt gcattcaaca cacatgtcat 1140 tgaattccgc aagaaggcct aaggcccatg tccaagctcc aagttacttg gggttttgca 1200 gacaacgttg ctgctgtctc tgcgtttgat gtttctgatt gctttttttt atacgaggag 1260 tagctatctc ttatgaaaca tgtaaggata agattgcgtt ttgtatgcct gattttctca 1320 aataacttca ctgcctccct caaaattctt aatacatgtg aaaagatttc ctattggcct 1380 tctgcttcaa acagtaaaga cttctgtaac ggaaaagaaa gcaattcatg atgtatgtat 1440 cttgcaagat tatgagtatt gttctaagca ttaagtgatt gttcaaaaaa aaaaaaaaaa 1500 aaa 1503 1503 160 ka qaarta iyo qortaa iyo qor <210> SEQ ID NO 6 <211> LENGTH: 365 <212> TYPE: PRT <213> ORGANISM: aspen populus tremuloides <400> SEQUENCE: 6 Met Gly Ser Thr Gly Glu Thr Gin Met Thr Pro Thr Gin Val Ser Asp 1 5 10 15 Glu Glu Ala His Leu Phe Ala Met Gin Leu Ala Ser Ala Ser Val Leu 20 25 30 Pro Met lie Leu Lys Thr Ala lie Glu Leu Asp Leu Leu Glu lie Met 35 40 45

-continued

-continued

-continued

Leu Lys Gin Ser Gly Leu Arg Gly Gly lie Leu Gly Leu Gly Gly Val 180 185 190

-continued

-continued

-continued

35

What is claimed is:

1. A method of producing a transgenic plant comprising: (a) introducing into a plant cell at least one polynucleotide sequence encoding at least two of 4CL antisense RNA, aspen CAld5H, aspen AldOMT and SEQ ID NO:2; and (b) regenerating the transformed cell to produce a transgenic plant.

2. The method of claim **1,** wherein the polynucleotide sequence comprises a sequence encoding 4CL antisense RNA and sequences encoding CAld5H, AldOMT, and SEQ ID NO:2.

3. The method of claim **2** wherein the transgenic plant comprises decreased lignin content, increased syringyl/ guaiacyl (S/G) lignin ratio, or increased cellulose content compared to a non-transformed plant.

4. The method of claim **2** wherein the plant is an angiosperm or a gymnosperm.

5. The method of claim **1** wherein the lignin content of the transgenic plant is decreased relative to the lignin content of a non-transformed plant.

6. The method of claim 1 wherein the transgenic plant $\frac{55}{100}$ comprises an increased syringyl/guaiacyl (S/G) lignin ratio relative to a non-transformed plant.

7. The method of claim **1** wherein the transgenic plant comprises increased cellulose content relative to a nontransformed plant.

8. The method of claim 1 wherein the plant is an 60 angiosperm.

9. The method of claim **8** wherein the angiosperm is a *Populus tremuloides.*

10. The method of claim **1** wherein the plant is a gymnosperm.

11. The method of claim **1,** wherein the polynucleotide comprises 4CL in an antisense orientation; and wherein the transgenic plant comprises a characteristic selected from the group consisting of altered lignin content, increased syringyl/guaiacyl (S/G) lignin ratio, altered cellulose content and combinations thereof compared to a non-transformed control plant.

40 12. The method of claim **11** wherein the transgenic plant comprises decreased lignin content.

13. The method of claim **11** wherein the transgenic plant comprises increased syringyl/guaiacyl (S/G) lignin ratio.

14. The method of claim **11** wherein the transgenic plant 45 comprises increased cellulose content.

15. The method of claim **11** wherein the plant is an angiosperm.

16. The method of claim **15** wherein the angiosperm is a *Populus tremuloides.*

17. The method of claim 11 wherein the plant is a gymnosperm.

18. The method of claim **1** wherein each polynucleotide coding sequence is operably linked to a promoter sequence functional in the plant and a termination sequence; and wherein the plant comprises a characteristic selected from the group consisting of altered lignin content, increased syringyl/guaiacyl (S/G) lignin ratio, altered cellulose content, altered agronomic traits, and combinations thereof compared to a control plant that is not transformed with the polynucleotide sequence.

60 **19.** The method of claim **18** wherein the promoter is tissue-specific.

20. The method of claim **18** wherein the plant is an angiosperm.

21. The method of claim **20** wherein the angiosperm is a ⁶⁵*Populus tremuloides.*

22. The method of claim **18** wherein the plant is a gymnosperm.

23. The method of claim 18 wherein the plant comprises an altered agronomic trait selected from the group consisting of growth, wood quality, stress resistance, sterility, grain yield or nutritional value.

24. The method of claim 1, wherein the polynucleotide 5 sequence encodes 4CL antisense RNA and CAld5H.

25. The method of claim 24, wherein the transgenic plant comprises decreased lignin content, increased syringyl/ guaiacyl (S/G) lignin ratio, or increased cellulose content compared to a non-transformed plant. 10

 26 . The method of claim 24 , wherein the CAld5H comprises SEQ ID NO:4.

27. The method of claim 1, wherein the CAld5H comprises SEQ ID NO:4.

28. The method of claim 27, wherein the polynucleotide sequence comprises SEQ ID NO:3.

29. The method of claim 1, wherein the AldOMT comprises SEQ ID NO:6.

30. The method of claim 29, wherein the polynucleotide sequence comprises SEQ ID NO:5.

> \star \star \gg \star

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO. : 6,855,864 B2 APPLICATION NO. : 09/947027 DATED : February 15, 2005 INVENTOR(S) : Vincent Lee C. Chiang et al. Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Beginning at Column 1, line 11, delete the following paragraph:

"STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government support awarded by the Energy Biosciences Program, United States Department of Energy, and the United States Department of Agriculture research grant numbers USDA 99-35103-7986, USDA 01-03749, and DOE DE-FG02-01ER15179. The United States government **has certain rights in this invention."**

Signed and Sealed this

Twelfth Day of December, 2006

JON W. DUDAS **Director of the United States Patent and Trademark Office**