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Melt water input from the Bering Glacier
watershed into the Gulf of Alaska

Edward G. Josberger', Robert A. Shuchman’, Liza K. Jenkins’, and K. Arthur Endsley’

"Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, Michigan, USA

Abstract The annual runoff from the melting of large glaciers and snow fields along the northern
perimeter of the Gulf of Alaska is a critical component of marine physical and biological systems; yet, most
of this freshwater is not measured. Here we show estimates of melt for the watershed that contains the
largest and longest glacier in North America, the Bering Glacier. The procedure combines in situ observations
of snow and ice melt acquired by a long-term monitoring program, multispectral satellite observations, and
nearby temperature measurements. The estimated melt is 40 km® per melt season, + 3.0 km?, observed over
the decadal period, 2002-2012. As a result of climate change, these estimates could increase to 60 km>/yr by
2050. This technique and the derived melt coefficients can be applied to estimate melt from Alaska to
Washington glaciers.

1. Introduction

The wastage of the glaciers along the Gulf of Alaska (GoA) is an important factor in sea level rise as well as a
significant physical and biogeochemical component of the rich marine ecosystem of this region, yet it is
poorly known. Physically, the combined snow and glacier melt generates the Alaska Coastal Current [Royer,
1979; Arendt et al., 2002; Arctic Monitoring and Assessment Programme (AMAP), 2011]. Biologically, glacier melt
water also provides primary productivity-limiting nutrients [Royer, 1979]. The waters overlying the conti-
nental shelf and slope of the GoA are some of the most productive in the world and are home to some of the
United States’ most important commercial and recreational fisheries [North Pacific Research Board (NPRB),
2005; Royer and Grosch, 2006]. Coastal waters of the GoA serve as important breeding, nursery, and forage
habitats for many valuable species such as salmon, cod, herring, Pacific halibut, sablefish, walleye, pollock,
shrimp, and crab [NPRB, 2005]. The ecosystem and world-renowned fisheries in this region of the GoA
thrive, in part, due to an abundant supply of nutrients. Over the next few decades there is likely to be an
increase in glacier-dominated freshwater discharge, followed by a decrease as glaciers recede [AMAP,
2011; Hinzman et al., 2005] which has the potential to adversely affect the ocean circulation and ecosystem
in this region.

The late spring and summer melting of snow and glacier ice in southeastern Alaska generates the Alaska
Coastal Current that sweeps cyclonically around the GoA. From oceanographic measurements, Royer [1979]
estimated that the freshwater runoff was 23,000 m*s~". Wang et al. [2004] used elevation and meteorological
data to simulate the freshwater flux into the GoA and found that ungauged sources along the coast yield 74%
of the freshwater flux. Numerous studies [Arendt et al., 2002; Meier and Dyurgerov, 2002; Josberger et al., 2006]
have shown that the glaciers in this region are rapidly losing mass. Indeed, Royer and Grosch [2006] have
shown that the water on the shelf of the GoA has warmed and become less salty over the past 40 years,
strengthening the Alaska Coastal Current. The AMAP [2011] give an extensive pan-Arctic assessment of gla-
cier retreat and found that nearly all glaciers have shrunk over the past century.

The glaciers and ice fields of the Wrangell-St. Elias mountain ranges along the southern coast of Alaska
contain the greatest amount of glacier ice outside of Antarctica and Greenland, with the Bering Glacier being
the largest contributor. Bering is the largest and longest glacier in continental North America, with an area of
approximately 5000 km? and a length of 190 km, and the Bering Glacier system covers more than 6% of the
glacier-covered area of Alaska and may contain 15-20% of Alaska total glacier ice [Molnia and Post, 2010].

In this study, ice and snow melt from the Bering Glacier system has been estimated from 2002 to 2012 using
daily air temperature to calculate melt degree days (MDD), melt coefficients for ice and snow derived from 6
years of in situ observations, and end-of-season snow- and ice-delineated land cover obtained from satellite
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Figure 1. Snow and ice cover were estimated from end-of-melt-season MODIS 8 day composites. MODIS bands 1 and 2
were used to classify snow versus ice. Shown in this figure is an example MODIS (top) false-color image and (bottom)
classification from 2007. Top image shows approximate GASS deployment locations. Areas shown in this figure correspond
to the Bering Glacier watershed.

data. This decade-long record shows interannual variation in freshwater production with no apparent trend.
Our results, when driven by regional climate predictions, indicate a significant increase in melt over time.

2. Methods
2.1. In Situ Glacier Melt Data

In situ data were obtained using a specialized Glacier Ablation Sensor System (GASS) that was designed and
fabricated to measure key physical parameters of the system [Shuchman et al., 2010] (www.BeringGlacier.org/
gass). Each autonomous unit measured and recorded hourly the distance from the sensor package to the ice
with an acoustic ranging sensor. GASS units also provided GPS and meteorological data (temperature, wind
speed, humidity, barometric pressure, and light intensity). The units were deployed on the glacier at the
beginning of the melt season 0.5 m above the ice on interlocking aluminum poles set in steam-drilled holes
10 m deep. Figure 1 shows the approximate location of the GASS sites. Periodically during the summer melt
season, the GASS units were lowered on their poles to keep the sensors close and nearly perpendicular to the
ice surface. During these visits, conventional stake measurements were also taken at the sites to measure
bulk ablation. Concurrently, we deployed and recovered water level gauges in Vitus Lake and the Seal River
which are the main reservoirs and conduits to the GoA for Bering Glacier melt water. These data were used to
further document the freshwater discharge from the Bering Glacier system.

GASS observations showed only slight interannual and intra-annual variation in glacier melt. The average
ablation was 5.5 cm/d £ 0.5 cm/d independent of local weather conditions (e.g., wind, clouds, and precipita-
tion). Additionally, the melt record showed little variation along the main stem of the glacier, except for high
melt rates near the terminus which is at sea level near ice-free, low-albedo terrain. Conversely, lower melt
rates were measures in the Bagley Ice Field, high-albedo terrain above the equilibrium line altitude (ELA).
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Table 1. Melt Coefficient (10_3 mweqg/MDD) Were Derived From Hourly GASS Data®

Site 2004 2005 2006 2007 2008 2010 Average SD Elevation (m)
BO1 4.70 427 5.96 3.90 3.97 4.00 447 7.87 E-1 241

B02 413 343 3.28 NA 3.59 3.82 3.65 334 E-1 388

BO3 415 440 3.16 3.19 3.60 3.20 3.62 5.40 E-1 602

B04 3.96 NA 335 3.44 NA 3.38 353 2.89 E-1 792

BO5 5.66 407 3.64 3.58 373 2.94 3.93 9.22 E-1 1,143
B06 NA 3.10 2.08 3.28 3.13 2.19 2.76 5.73 E-1 1,242

3Sites BO1, BO2, BO3, B04, and BO5 were installed in the glacier ice below the equilibrium line altitude (ELA). Site BO6
was installed in the snow above the ELA (see Figure 1 for approximate GASS locations).

2.2. Melt Model

Glacier melt is modeled exceptionally well by the MDD method, otherwise known as the temperature index
method [Ohmura, 2001; Hock, 2003; Bidlake et al., 2010]. Ohmura [2001] shows that glacier and snow melt are
dominated by the sensible heat flux and the short wave solar heat flux from the lower atmosphere. Bering
Glacier is no exception. The MDD approach totals the average daily temperatures that are above 0°C during
the summer melt period. The melt coefficient, which is the quotient of total observed change in snow or ice
height, corrected for the respective density, divided by total MDD, linearly relates the amount of melt over a
given period to the MDD accumulated over that period. Table 1 gives the calculated melt coefficients for all
years and all sites. The value for a given year and location is the average value from three or four bulk ablation
measurements made through the melt season. The melt coefficients are generally uniform for sites B02
through BO5, both spatially and interannually, with an average value of 3.68 x 10> m of water equivalent per
MDD (mweqg/MDD). The ice coefficient used is an average from GASS sites B02, B03, B04, and B05, while the
single BO6 site is used for the snow coefficient.

2.3. Remote Sensing-Derived Estimates of Snow and Ice Cover

To estimate discharge, yearly snow and ice extents were needed. Electro-optical satellite data provided by
the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) sensor can be used to provide synoptic
observations of snow and ice area. Eight day composite images from the end of the melt season (approxi-
mately mid-September each year) were used to conduct an unsupervised classification of snow and ice ex-
tent within the Bering Glacier watershed (USGS Unit 19010402) from 2002 to 2012. MODIS bands 1 and 2
were used for the classification based on their spatial and spectral resolutions (250 m and red and near-IR,
respectively). Figure 1 shows the ice and perennial snow fields mapped from 2007 MODIS data.

2.4. Total Freshwater Melt Calculation

For each year, the melt coefficient describes the amount of melt per MDD—melt per input unit of sensible heat.
The satellite-delineated snow and ice areas are multiplied by their respective melt coefficients, generating a

volume of melt that is scaled by the total MDD to obtain the total freshwater melt per season. Contributions to
discharge from precipitation were also included by scaling liquid precipitation from April to September over the
yearly ice extent within the watershed. For additional details on these calculations, see supporting information.

3. Results

The estimated annual discharge over the decadal period from 2002 to 2012 (Figure 2) ranged from 36 to

45 km®. Surprisingly, the decadal record shows little annual variation around an average estimate of 40 km>
with a standard deviation of 3.0 km>. Observed annual variations are largely explained by differences in MDD
(Figure 2). Precipitation is included in these estimates; without it, the average annual discharge over the decadal
period is 36 km®. To estimate possible future discharge in 2050, four scenarios were calculated for +1°, +2°, +4°,
and +6°C increases in the daily long-term climatology record from the National Weather Service. These esti-
mates are based on temperature only and not changes in cloud cover or precipitation. Future estimates ranged
from approximately 41 to 62 km?>. This is roughly a 50% increase over the current decadal average estimate.

The average yearly freshwater discharge estimate of 40 km? for the Bering Glacier watershed is approximately
equal to the average yearly discharge of the Nile River in Egypt (40 km®) [Dai and Trenberth, 2002]. For
comparison, the Mississippi River discharges roughly 500 km? to the Gulf of Mexico every year, Yukon River
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Figure 2. Total estimated annual discharge from the Bering Glacier into the
Gulf of Alaska from 2002 to 2012 ranged from 36 to 45 km?>. Also included are
the annual melt degree days (MDD) which drives the discharge estimates.

200 km?, and the St. Mary’s River 70 km?
that drains Lake Superior in the
Laurentian Great Lakes [Dai and
Trenberth, 2002]. Other comparable esti-
mates include the Copper (34 km?), the
Susitna (45 km®), and the Colorado

(12 km?>) Rivers [Dai and Trenberth, 2002].

Annual discharge estimates were par-
tially validated using a Bering Glacier-
specific hydrodynamic model as de-
scribed by Josberger et al. [2010]. The
model, which was validated using
acoustic Doppler current profiler mea-
surements, estimates discharge only in
the Seal River (main conduit for Bering
Glacier melt discharge) as a function of
water level in Vitus Lake, a large ice-
marginal lake at the terminus of Bering

Glacier. The daily discharge estimates from the hydrodynamic model, which represent only a portion of the
total watershed, were summed and favorably compared to these remote sensing-derived estimates.

4. Discussion

As we have shown for Bering Glacier, local temperature data from a nearby weather station can be used to
effectively model snow and ice melt using the temperature index method. In the absence of direct temper-
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Figure 3. A strong linear relationship between summer mass balance
and average NCEP reanalysis temperature from May to September for
Bering Glacier and eight other glaciers from Alaska to California
[Rasmussen and Conway, 2004]. The addition of Bering Glacier extends
the range of observations to glaciers located in warmer temperatures, at
lower elevations, and with faster melt rates.

ature observations, regional tempera-
ture data can easily be obtained from
reanalysis data sets such as are provided
by National Centers for Environmental
Prediction (NCEP) [Kistler et al., 2001].

The GASS summer ablation observa-
tions were combined with previous
work by Rasmussen and Conway [2004]
to extend the range of observations to
glaciers located in warmer tempera-
tures, at lower elevations, and with
faster melt rates. Rasmussen and
Conway [2004] developed a relationship
between the summer mass balance and
the average summer temperature at
the ELA using NCEP reanalysis data. We
applied their technique to observations
from eight glaciers located in the
Northeast Pacific (from Alaska to
California) and from Bering Glacier
(Figure 3). Bering Glacier reinforces the
linear trend between temperature and
melt and improves the correlation
coefficient (increase in R? from 0.76 to
0.83). The slope of least squares fit in
Figure 3 corresponds to a melt coeffi-
cient of ~0.003 mweq/MDD, which is
within the range of the values found in
this study, thus validating the use of
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the temperature index method to estimate glacier melt over large areas when combined with remote
sensing observations.

In summary, the in situ observations made at Bering over a 6 year period indicate the Glacier melts at a fairly
constant rate between 4 and 6 cm/d with a variance of only 7 mm/d. This melt rate occurs largely indepen-
dent of cloud cover, wind speed, and precipitation. MDD account for most of the variation in the observed
ablation, thus allowing for total glacier melt to be estimated fairly accurately using local, regional, or global
temperature measurements, or from regional temperature databases such as NCEP.

The Bering Glacier system produced between 36 and 45 km? or Gigatons (Gt) of freshwater annually for the
GoA over the last decade with an interannual variation of 3 km>. This amount of water will potentially increase
upward to approximately 60 km? in the 2050 time frame under a +6° temperature increase as a result of the
warming climate in southeastern Alaska. The annual discharge estimates were calculated using air temper-
ature records converted to MDD, multiplied by a melt coefficient determined from the in situ sensors. To
complete the discharge calculation, satellite observations were used to identify areas of snow and ice cover
within the Bering Glacier system. This technique can be applied worldwide to better understand the contri-
bution of glacier melt to sea level rise and oceanic circulation.
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