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Abstract

Renewable energy is growing in demand, and thus the the manufacture of solar cells and

photovoltaic arrays has advanced dramatically in recent years. This is proved by the fact

that the photovoltaic production has doubled every 2 years,increasing by an average of

48% each year since 2002.

Covering the general overview of solar cell working, and its model, this thesis will start

with the three generations of photovoltaic solar cell technology, and move to the motivation

of dedicating research to nanostructured solar cell. For the current generation solar cells,

among several factors, like photon capture, photon reflection, carrier generation by photons,

carrier transport and collection, the efficiency also depends on the absorption of photons.

The absorption coefficient,α, and its dependence on the wavelength,λ , is of major concern

to improve the efficiency. Nano-silicon structures (quantum wells and quantum dots) have

a unique advantage compared to bulk and thin film crystallinesilicon that multiple direct

and indirect band gaps can be realized by appropriate size control of the quantum wells.

This enables multiple wavelength photons of the solar spectrum to be absorbed efficiently.

There is limited research on the calculation of absorption coefficient in nano structures

of silicon. We present a theoretical approach to calculate the absorption coefficient using

quantum mechanical calculations on the interaction of photons with the electrons of the

valence band. One model is that the oscillator strength of the direct optical transitions is

xxi



enhanced by the quantum confinement effect in Si nanocrystallites. These kinds of quantum

wells can be realized in practice in porous silicon. The absorption coefficient shows a peak

of 64638.2cm−1 at = 343nmat photon energy ofξ = 3.49eV ( = 355.532nm). I have

shown that a large value of absorption coefficientα comparable to that of bulk silicon is

possible in silicon QDs because of carrier confinement. Our results have shown that we can

enhance the absorption coefficient by an order of 10, and at the same time a nearly constant

absorption coefficient curve over the visible spectrum. Thevalidity of plots is verified by

the correlation with experimental photoluminescence plots. A very generic comparison for

the efficiency of p-i-n junction solar cell is given for a cellincorporating QDs and sans

QDs. The design and fabrication technique is discussed in brief. I have shown that by

using QDs in the intrinsic region of a cell, we can improve theefficiency by a factor of

1.865 times. Thus for a solar cell of efficiency of 26% for firstgeneration solar cell, we can

improve the efficiency to nearly 48.5% on using QDs.

xxii



Chapter 1

INTRODUCTION: A REVIEW OF

SILICON PHOTOVOLTAIC CELLS

The reciprocal of electroluminescence is the photovoltaiceffect, wherein the radiation is

converted to electrical energy. Solar cells converts the sunlight energy directly to electric-

ity. Renewable energy is growing in demand, and thus the manufacture of solar cells and

photovoltaic arrays has advanced dramatically in recent years. Photovoltaic technology is

the world’s fastest growing renewable energy technology, and is proved by the fact that the

photovoltaic production has doubled every 2 years, increasing by an average of 48 percent

each year since 2002. Figure 1.1 shows the commercial use of solar panels to generate

street electricity in the city of Gleisdorf in Austria.
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Figure 1.1: The "solar tree", a symbol of Gleisdorf. Permission: Appendix C.1

Earth’s atmosphere is showered with 120,000 TW of power in form of photons in a day.

Using only 10 % efficient solar cells, we can generate 20 TW of energy by only covering

0.16 % of earth surface (148,940,000km2) [2]. This energy will be twice the amount of

energy burnt in fossil fuels. The other way to put this is thatonly 1/10000 of the sunlight

reaching earth’s surface is enough to provide energy for thehumankind. The solar spectrum

is shown in figure 1.2, with curves depicting black body radiation. Giacomo Ciamician in

his lecture onPhotochemistry of the Future, said [3]

2



Figure 1.2: The solar radiation spectrum at earth’s sea level, and top of atmosphere.
Image created by Robert A. Rohde / Global Warming Art. Permission: Appendix
C.1

So far human civilization has made use almost exclusively offossil solar

energy. Would it not be advantageous to make a better use of radiant energy?...

Solar energy is not evenly distributed over the surface of the earth. There are

privileged regions, and others that are less favored by the climate. The former

ones would be the prosperous ones if we should become able to utilize the

energy of the sun. ... If our black and nervous civilization,based on coal, shall

be followed by a quieter civilization based on the utilization of solar energy,

that will not be harmful to the progress and to human happiness.
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1.1 Brief History of Solar Cells

It was in the year 1839, that Photovoltaic effect was first recognized by French physicist

Alexandre-Edmond Becquerel. He noted that electric currentwas produced by the absorp-

tion of light on the silver coated platinum electrode immersed in an electrolyte. It took

more than 40 years for the first practical solar cell to be realized, when in 1883 Charles

Fritts formed a solar cell by coating the semiconductor selenium with an extremely thin

layer of gold to form the junctions. These solar cells were nearly 1% efficient.

In the year 1946, Russell Ohl patented his device as a solar cell under patent US2402662

for L̈ight sensitive devicë. In the 1950s, the development of silicon electronics pavedthe

way for p-n junctions. Bell Laboratories, experimenting with semiconductors, accidentally

found that silicon doped with certain impurities was very sensitive to light. Thus, the first

silicon solar cell was reported by Chaplin, Pearson and Fuller in the year 1954, with an

efficiency of 6 %. This number increased with time, but the cost of production of energy

(around $200 per Watt) hindered the research in this field. During this time, other materials

such as Cadmium Sulphide, Gallium Arsenide, Indium Phosphide, and Cadmium Telluride

were studied as they promised better efficiency than silicon. However, silicon prevailed

and still remains the most important photovoltaic material, because of its abundance, and

also because of the fact that industry is more silicon technology based.

The 1973 Oil Embargo triggered the crisis in energy supply, and the non-oil supplying
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Figure 1.3: Photovoltaic World production with the line showing the best-fit ex-
ponential to the production for the most recent 10 years, indicating a doubling of
production every 2 years. Plot by Geoffrey A. Landis. Permission: Appendix C.1

countries started looking at alternate sources of fuels, more particularly the renewable en-

ergy. Solar photovoltaic research gained momentum as funding for research and develop-

ment increased. As a gesture of promoting solar energy incentive, President Jimmy Carter

installed solar panels on the White House in the year 1977. By the end of 1980, the to-

tal world production of photovoltaic cells power had exceeded 600 kW. Since the cost of

production per watt was very high at this point, there wasn’ta widespread commercial de-

velopment of solar cell technology. But still a lot of improvement in the cost factor had

5



been achieved as the price of photovoltaic energy was down from 100 US$/watt in 1971 to

7 US$/watt in 1985.

Interest in photovoltaic systems and technology kept on growing through the years. The

economics of photovoltaics improved in late 1990s primarily through economies of scale,

which was attributed to the expansion of 18-25 % per annum. By the late 1990s and early

2000s, solar cell technology was being used for remote low power applications such as

navigation, telecommunication, space satellites and rural electrification [4]. The plot in

figure 1.3 shows doubling in production of PV energy over the last 10 years or so. As

the technology of manufacturing solar cells changed, so didthe generations of solar cells

have. With certain advantages and disadvantages over previous generation, the generation

of solar cells have been discussed in brief in the following section.

1.2 Generation of Solar Cells

As with the growth in semiconductor industry, the solar cells have moved through genera-

tions, viz. three which have made impact on the solar cell industry. The salient features of

these generations are listed below. There is continual effort and research conducted in all

the three generations of solar cell to improve the efficiencyand cost of per watt of generated

power.

6



1.2.1 First Generation Solar Cell

Figure 1.4: Solar cell efficiency for various generation solar cell. Source: NREL.
Permission: Appendix C.1

The first generation solar cells are mono crystalline silicon-based, bulk solar cells. These

are basically high quality, single p-n junction based devices. The production cost for this

generation is high owing to the technologies involving highenergy, and high inputs of

labor. The current solar cell efficiency for first generationsolar cell is 27.8 %, which is

fast approaching the theoretical limit of 31 % [5] as described by Shockley-Queisser limit

for single junction device. For more on the Shockley-Queisser limit, please refer to the

7



section on Mathematical Proofs. Even with the high cost per watt of generated energy,

first generation solar cells are most highly commercially produced solar cells, owing to the

high efficiency of these cells. They account for nearly 89.6%of the commercially produced

solar cell market. One of the most recent approach which saves energy is to process discrete

cells on silicon wafers cut from multicrystalline ribbons [6].

The efficiency for first generation solar cells is shown in Figure 1.4 for crystalline silicon

cells. The single crystal solar cell is reaching the stagnation point, and is currently 24.7 %

efficient. Even the concentrator solar cells using microcrystalline silicon, is nearly at the

edge of Shockley-Queisser limit for single gap silicon solar cell, and is 27.6% efficient.

1.2.2 Second Generation Solar Cell

The Second Generation Solar cells came into the market to remedy the high cost of pro-

duction for the first generation solar cell. These were basically the thin-film solar cells,

which were significantly cheaper to produce than their first generation counterparts. But

the gain in cost of production was at the expense of efficiencyof the solar cell, which was

reduced. Another added advantage of second generation solar cell was their flexibility. The

thin-film technology made way for solar panels of light weight and flexible texture, that

could be rolled out on a roof, or any other surface. Research isbeing conducted to improve

the efficiency, and once achieved, second generation solar cell will beat the first generation

8



solar cell owing to the lesser cost of production.

The most successful second generation solar cell materialshave been cadmium telluride

(CdTe), copper indium gallium selenide (CIGS), amorphous silicon (aSi:H) and micromor-

phous silicon. Instead of using wafers of silicon as the base, these materials are deposited

on glass or ceramic surfaces to reduce the cost of the materials used. The trend of com-

mercialization is increasing towards second generation solar cell, which is only obstructed

by the low efficiency of these cells, and hence the cost of production. But recently, a major

manufacturer for this generation solar panels,First Solarbased in Tempe, AZ, reported that

it had reached the importantindustry milestoneof reducing the cost of generated power to

less than $1 a watt. In a statement at the SPIE Conference at SanDiego in 2009, First Solar,

which has produced modules for solar installations in several countries in Europe, said it

had brought costs down to $1 from $3. Other companies such asWurth SolarandNanoso-

lar commercialized the CIGS technology, with a combined production of nearly 450 MW

for the year 2008.

The thin film technology for solar cell production has been researched into a lot, and is

still continuing. Referring to figure 1.4, CIGS solar cells produced in the labs by NREL

are 19.9 % efficient. Even the CdTe solar cells are showing improvement, and with an

efficiency of 16.5 % is one of the sought after materials for thin film solar cells. In fact,

a thin film based heterojunction based CdS/CdTe is one of the most promising candidates

among photovoltaic structures [7].

9



1.2.3 Third Generation Solar Cell

The Third Generation or the current generation solar cells came into research to overcome

the high cost of production (first generation), and low efficiency (second generation) at

the same time. This generation is still in the infant stages,and is very much research ori-

ented. The current generation solar cells are very different in approach as compared to their

counterparts, as they do not rely on traditional p-n junctions to separate the photogenerated

charge carriers. Third generation contains a wide range of solar cell categories, including

polymer solar cells, nanocrystalline cells, and dye-sensitized solar cells. Study of each

category is a research based field.

Figure 1.4 shows the growth of efficiency with time for third generation solar cells. The

multijunction solar cells incorporating nanostructures are still very much research based,

and are hence not shown in this figure. They offer the promise of high efficiency solar cells

with lower cost factors, and hence have the ability to overcome the existing efficiency and

cost drivers. Having said that, the nanostructured solar cells have substantial challenges.

The foremost challenge is that nanostructured solar cells have a surface area smaller as

compared to their counterparts. Hence even with higher absorption coefficient for each

heterostructure, the amount of absorption is less, and hence lesser is the collection, voltage

and Fill Factor (FF). Also, even the most carefully grown heterostructure solar cells, using

MBE (Molecular Beam Epitaxy), have efficiency lower than the same structures without

nanostructures.
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In this thesis, we will concentrate on nanocrystalline cells. This is an approach to circum-

vent the Schockley-Quiesser limit for a single energy threshold material. This is done by

creating multiple bandgaps using either multijunction photovoltaic cells, concentration of

the incident spectrum, or thermal generation by UV light to enhance carrier collection. Cre-

ation of multiple band gaps improves the amount of energy, orphotons absorbed. A solar

cell company in the United Kingdom, Quanta Sol Ltd., recently announced an improvement

in solar cell efficiency using quantum well structures [8]. They cite the enhancement of op-

tical absorption in the quantum wells as the criteria for improvement of solar cell electrical

characteristics, and hence its efficiency. The third generation solar cell aims to achieve

conversion efficiencies of 30-60 %, while retaining low costmaterials and manufacturing

techniques [9, 1]. The current research for third generation solar cells is to improve the

efficiency while keeping the cost low as shown in figure 1.5.

1.3 Introduction to Nanostructured Solar Cells

The silicon nanostructures are proposed for the next generation photovoltaic cells with

increased device efficiencies. There have been many proposed models for next generation

solar cell, wherein the electron confinement in a silicon based quantum dot heterostructure

is proposed [1]. In such kinds of devices, the wide gap materials are being used as upper

cell elements in silicon based tandem cells, as shown in figure 1.6, 1.7.
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Figure 1.5: Current standing of third generation w.r.t. other generations. Source:
Source: SPREE, UNSW. Permission: Appendix C.1

The aim of these next generation cells is to reduce the cost per watt over the previous

generation"thin film" solar cells, by increasing the efficiency of the devices withonly a

small increase in the cost of the area [6]. These effects of increased efficiency (nearly

30-60 % [9]) and low cost thin film processes have the potential to reduce costs per peak

watt of generating capacity very significantly to less than $1 and below. To achieve such

improvements in the efficiency, the Shockley-Queisser limit for single band gap materials

[5] must be bypassed somehow. One way to do this is to have multiple energy threshold

devices, as is the case of the tandem solar cells. There is a significant scope to investigate

the feasibility of heterostructure based device, to achieve the multiple energy threshold

devices [6, 4].
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Figure 1.6: Schematic of a tandem solar cell. Source: SPREE, UNSW. Permission:
Appendix C.1

Figure 1.7: Schematic of an all-Silicon Tandem Cell incorporating the quantum
structures.
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1.4 Loss Mechanisms in Solar Cells

The first and the second generation solar cells have a number of power loss mechanisms

[1], of which the two most important that add up to the loss of nearly half of the incident

solar energy are the inability of the cells to absorb photonswith energy lesser than the

band gap, and the lattice thermalization loss owing to the photons with energy more than

the band gap [1, 6]. Referring to figure 1.8, one can see that forphotons with energy less

than the band gap are not absorbed by the material. For silicon, with a bulk band gap of

Eg = 1.12eV, all photons with wavelength higher than nearly 1100 nm are not absorbed.

Figure 1.8: Loss Processes in a Solar cell [1]. Source: SPREE, UNSW. Permis-
sion: Appendix C.1

An attempt is made in this thesis, to increase the number of band gaps through application

of nano-structures for silicon that exhibit quantum confinement effect . For any semicon-

ductor nanocrystal, its properties depend upon quantum confinement, and therefore upon

dots geometry and symmetry. A brief study of quantum confinement in Silicon Quantum
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Figure 1.9: Density of states for electrons in bulk semiconductors (3D; in blue),
quantum wells (2D; red), quantum wires (1D; green) and quantum dots (0D; black)

Nanostructures is given in B.1. The discreteness of density of states (DOS) in a quantum

dot (QD) allows it to exhibit strong quantum confinement of free carriers. The variation of

DOS w.r.t. dimension is shown in figure 1.9.

Whenever light is incident on a semiconductor, the phenomenaof absorption, reflection

and transmission are observed. Observing these three phenomena, one can obtain informa-

tion on the band structure and electronic properties of semiconductor. To understand the

absorption process at quantum level, we need to understand the physics behind the photon-

electron interaction in a heterostructure. Figure 1.8, it shows the standard solar cell loss

processes. These are [1]:

1. Non-absorption of photons with energies less than band gap energy

2. Lattice thermalization loss
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3. Junction voltage loss

4. Contact voltage loss

5. Recombination loss

Many steps have been proposed to overcome and tackle these losses for the next generation

solar cell. The applications to oversee these steps are discussed in brief in next paragraph.

These steps are:

1. Increasing the number of bandgaps

2. Capture carriers before thermalization

3. Multiple carrier pair generation per high energy photon (or the other way can be

single carrier pair generation with multiple low energy photons)

The next generation solar cells aim to control the above losses by the approach of multi-

ple threshold band gaps. Tandem solar cell is one of the examples for multiple threshold

approach, which exceed the Shockley-Queisser limit. Single p-n junction based nanostruc-

tured solar cells have been proposed, with the use of quantumwell or inter-penetrating

networks of quantum dots [10], or quantum dot solar cells. All of these proposals essen-

tially increase the number of band gaps. There have been efforts to increase the number

of bandgaps by fabricating a tandem cell based on silicon andits oxides and nitrides using

reduced dimension silicon nanostructures to engineer the band gap of an upper cell material
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[1]. Efforts are also being made to see if the other proposed steps enumerated above can

be worked out. This is being done by investigating the "Hot Carrier solar cell", schematic

shown in figure 1.10, in which carrier cooling is slowed such that carriers can be extracted

before thermalization. This requires both an absorber withslowed carrier cooling proper-

ties and collection of carriers over a limited range of energies, such that cold carriers in

the external contacts do not cool the hot carriers to be extracted [1]. Hot electrons in the

conduction band are extracted before they thermalize, resulting in increased photovoltage

at the contacts and theoretical light-to-electricity conversion efficiency limits as high as

68% under one-sun illumination conditions can be achieved [11]. The strategy of multiple

carrier generation is being looked into either by down-conversion in a layer on the front of

the cell or by application of an up-converter to the rear of a Si cell. Rare earth doped phos-

phors in the up-converter absorb below band gap photons and up-convert two or more to

above band gap photons which are then incident on the Si cell.All the current approaches

to circumvent the Shockley-Queisser Limit have been summedup in table 1.1.

In this thesis, we will concentrate on only one of the aspectsof improving the efficiency.

Through application of multiple band gaps using quantum nanostructures of silicon, we will

show improvement in absorption coefficient over second generation solar cell. Companies

like Quanta Sol Ltd. have shown that the first generation of these quantum well photovoltaic

cells have an efficiency of nearly 27% [8]. This is very close to the single p-n junction

cell efficiency [5] of 31%. Adding to this is the fact that the processing steps for these

solar cells have been the thin-film processes, and hence are low cost and ready for large
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Figure 1.10: Hot Carrier Solar Cell Schematic

scale production. Introduction of quantum structures in solar cells increases the spectral

range, and thus achieves high efficiency, with very low dislocations introduced in the crystal

structure.
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SHOCKLEY-
QUEISSER AS-
SUMPTION

APPROACH EXAMPLE

One quasi-fermi
level separation

MULTI -LEVEL ENERGY SOLAR

CELLS - Have multi-levels for
metastable generated carriers

Tandem Solar
Cells using QDs,
Intermediate band
Quantum Wells
Solar Cells such as
SQWC

One photon gener-
ates onee− − h+

pair

SOLAR CELLS WITH MULTIPLE

ABSORPTION PATHS - Multiple
carrier pair generation per high en-
ergy photon, or single carrier pair
generation for many low energy
photons

Impact Ionization,
2-Photon Absorp-
tion

TCarrier = TCell SOLAR CELLS CAPTURING

CARRIERS BEFORE THERMAL-
IZATION - Energy is extracted
from a difference in carrier and
lattice temperature

Hot Carrier Solar
Cells

Solar Spectrum In-
put

MULTI -SPECTRUM SOLAR

CELLS - Conversion of input
spectrum to narrower wavelength
range with same energy profile

Up/Down Conver-
sion

Table 1.1: Current Generation Solar Cell Approaches
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Chapter 2

FUNDAMENTALS OF ELECTRON

TRANSITION, AND TRANSITION

PROBABILITY

2.1 Introduction

The properties for any nanostructured semiconductor, its properties depend upon quantum

confinement, and therefore upon its geometry and symmetry. The discreteness of density

of states (DOS) in a quantum structure, confined in certain dimensions, allows the structure

to exhibit strong quantum confinement. Whenever light is incident on a semiconductor, the
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phenomenon of absorption, reflection and transmission are observed. Observing these three

phenomena, one can obtain information on the band structureand electronic properties of

semiconductor.

For understanding the process of photons’ absorption in thequantum structures, we use a

mathematical model for interaction of photon with an electron [12], with structures under

quantum confinement. Once we have this model, we can relate the optical absorption

coefficientα with the findings of this model, viz. the transition probability of an electron,

and the band structure of the nano particles used.

To define the model, we summarize below the quantum mechanical equations [12, 13] as-

sociated with it. Thereon as we progress, absorption coefficient for various cases discussed

in chapter 1, is derived from this mathematical model.

2.2 Interaction of Photon with an Electron

Photon is defined by a vector potential~A, which is assumed to be a planar wave, given by,

~A =
1
2

Aâexp[ι(~q.~r − t ω)] +
1
2

Aâexp[ι(~q.~r + tω)] (2.1)

â is the unit polarization vector in the direction of~E, which is defined as the Maxwell equa-
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tions for the above vector potential.~q is defined as the wavevector of the photon. For above

equation (2.1), the first term on the right hand side corresponds to the stimulated absorp-

tion, and the second term denotes the stimulated emission. The magnitude of wavevector

of a photon~q, is related to its frequency by,

|~q| = ωη
C

C is the velocity of light, andη is the refractive index of the material being used for photon

absorption.

The vector potential (2.1) obeys the Maxwell Equation givenas,

~E = − ∂
∂ t
~A (2.2)

µ~H = ~∇r × ~A (2.3)

~∇r ·~A = 0 (2.4)

23



By the virtue of being electromagnetic plane wave, the photon’s unit polarization vector

follows the relation,

â·~q = 0

The classical Hamiltonian for interaction of a photon of vector potential~q with an electron

of wavevector~k is given by

~H =
1

2m
(h̄~k − e~A)2 =

1
2m

(h̄2~k2 − h̄ e~k ·~A − h̄ e~A·~k + e2~A2) (2.5)

For low light levels, we can easily ignore the term containing the square of the vector

potential of photon, i.e. the~A2 term, without any loss of generality. Using the low light

assumption, and the operator form of~k (= ι~∇r ),we can write the above equation (2.5) as

~H =
1

2m
(−h̄2~∇2

r + ι 2h̄ e~∇r ·~A) =
−h̄2

2m
~∇2

r +
ι eh̄
m

~A·~∇r (2.6)

The first term of above equation (2.6) is the unperturbed electron energy , and is denoted by

~H0. The second term, denoted by~H ′ is the energy term due to photon-electron interaction .

We will solve the time-dependent Schr ¨odinger equation for this because the interaction of
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photon and electron results in a change of state for the electron with time. Thus we get the

following equation:

(~H0 + ~H ′)Ψ = ι h̄
∂Ψ
∂ t

(2.7)

We solve for the above equation (2.7) by assuming the solutions to be a linear combinations

of the wavefunctionsΨ n for the unperturbed time-independent system, with

Ψ = ∑ An(t)Ψ nexp(
−ιξ n t

h̄
) (2.8)

Hereξ n satisfies the the unperturbed Schr ¨odinger equation~H0Ψ n = ξ nΨ n. Solving equa-

tions (2.7) and (2.8), we obtain

∑ An(~H0Ψ n + ~H ′Ψ n) exp(
− ιξ n t

h̄
) = ∑ (An ξ n + ι h̄

d An

dt
Ψ n) exp(

− ιξ n t
h̄

)

Using the unperturbed Schr ¨odinger equation with the above equation, we can see that the

first term on the LHS is equal to the first term on the RHS. Thus, wecan write
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∑ An~H ′Ψ n exp(
− ιξ n t

h̄
) = ι h̄ ∑ d An

dt
Ψ n exp(

− ιξ n t
h̄

) (2.9)

Multiply both side (2.9) withΨ∗
m exp(

ιξ mt
h̄ ), and integrate over the whole volumeV of the

crystal to get

∑
n

An~H ′ exp(
ι(ξ m − ξ n) t

h̄
)
∫

V
{Ψ∗

m
~H ′ Ψn d r

= ι h̄ ∑ d An

dt
exp(

ι(ξ m − ξ n) t
h̄

)
∫

Ψ∗
mΨ n d r (2.10)

We know that that unperturbed wavefunctions are orthogonal, hence using
∫

V{Ψ∗
m
~H ′Ψn dr =

Nδmn in equation (2.10),

ι h̄
d Am

dt
= ∑

n
An Hmn(t)exp

[

ι (ξ m − ξ n) t
h̄

]

(2.11)

HereHmn(t) is the electron transition matrix element to statem with energyξ m from state

n with energyξ n, for a crystal matrix ofN primitive unit cells. This matrix element is

given by,
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Hmn(t) ≡ 1
N

∫

V
{Ψ∗

m
~H ′ Ψn d r

The equation (2.11) is the differential form for the time-dependent coefficients of the func-

tion given in equation (2.8). We use first-order perturbation theory in order to solve for the

coefficientsAm in equation (2.11). We solve for transition form state 0 to statem, starting

at t = 0 with energyξ 0 (with the assumptionA0(t = 0) = 1 andAn(t = 0) = 0), to get,

ι h̄
d Am

dt
= Hm0(t)exp

[

ι (ξ m − ξ 0) t
h̄

]

Integrate this equation with respect to time,t, to get,

Am(t) =
1

ι h̄

∫ t

0
Hm0(t)exp

[

ι (ξ m − ξ 0) t
h̄

]

dt (2.12)

To evaluate the value of equation (2.12), we need to evaluatethe value ofHmo(t), which

is the unperturbed Hamiltonian for electron transition from state0 to statem, and can be

written using the matrix element equation as (~A is the photon vector potential as defined

earlier),
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Hm0(t) =
ι eh̄
mN

∫

V
{Ψ∗

m

(

~A · ∇r

)

Ψ0 d r (2.13)

We can ignore the stimulated emission term in the equation (2.1), and use it to evaluate
(

~A · ∇r

)

,

Hm0(t) =
ι eh̄ A
2mN

exp(− ι ω t )
∫

V
Ψ∗

m exp(ι~q · r) (â·∇r)Ψ0 d r

= Hm0exp(− ι ω t ) (2.14)

The above equation now is separated in two terms; one independent of time -Hm0, and the

time dependent term - exp(− ι ω t ). Thus, we can write the equation (2.12), using (2.14)

as,

Am(t) =
Hm0

ι h̄

∫ t

0
exp

[

ι (ξ m − ξ 0 − h̄ω) t
h̄

]

dt

=
Hm0

(ξ m − ξ 0 − h̄ω)

{

1 − exp

[

ι (ξ m − ξ 0 − h̄ω) t
h̄

]}

(2.15)

The transition probability for an electron to go from state0 to statem is mathematically

given as|Am(t) |2, which now can be evaluated from equation (2.15). The transition prob-
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ability is thus

|Am(t) |2 = 4|Hm0 |2
sin2

[
(

ξ m − ξ 0 − h̄ω
)

t

2h̄

]

(ξ m − ξ 0 − h̄ω)2 =
|Hm0 |2

h̄2

sin2 xt
x2 (2.16)

Herex =
ξ m − ξ 0 − h̄ω

2h̄ . The curve for the termsin2 xt
(xt)2

, is shown in figure 2.1

Figure 2.1: Plot for sin2 xt
(xt)2 , as in equation (2.16). This is used to define transition

probability.

From figure 2.1 one can observe that the height of the term increases with timet (as t2),

whereas the width is inversely proportional to timet. The area under the curve is given by,

∫ ∞

−∞

sin2 xt
(xt)2 dx = π t
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Using the above calculated area, we can make the approximation that for times sufficiently

long for transition to take place,

lim
t→∞

sin2 xt
(xt)2 =

π
t

δ (x)

δ (x) is the Dirac-Delta function [14]. We can now write the transition probability defined

in equation (2.16), using the Dirac-Delta function as,

|Am(t) |2 =
π |Hm0|2 t

h̄2 δ
[

(ξ m − ξ 0 − h̄ω)

2h̄

]

=
2π |Hm0|2 t

h̄
δ (ξ m − ξ 0 − h̄ω) (2.17)

Equation (2.17) shows us clearly that the probability for anelectron to transit from state0

with energyE0 to a statem with energyEm is zero unless the photon energy,h̄ω, is equal

to the difference in energy between the states. This is basically the energy conservation

in electron transition. The transition probability increases with time,t. The transition

probability can be evaluated to a number, if the time-independent matrix element,Hm0 can

be solved and the value be known for a given transition. An electron of the valence band is

promoted to an excited state in the conduction band that naturally decays to the bottom of

the conduction energy band on a timescale of tens of picoseconds.
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There are viz. three cases for a photon - electron interaction, and hence its absorption

coefficient. For understanding purpose, let us assume direct - gap material with parabolic

band structure. Foremost is the simple case when photon energy is equal to the energy

band gap of the material used in solar cell. These photons will excite an electron from

valence band to the lowermost level of conduction band. Second case is for photons with

energy higher than the band gap; these will be absorbed by thematerial, with the transition

of electrons from filled states in valence band to empty states in conduction band at higher

levels. These electrons at higher state in conduction band will radiate energy in form of

phonons, and de-excite to the lower levels of energy in conduction band. Lastly for photon

energies just below the band gap energy, formation of excitons takes place, wherein the

absorbed radiation transits the electron from filled valence band to impurity states. Such

kind transition of free carriers produces a continuum of absorption which increases with

decreasing photon energy. Crystal lattice also absorbs radiation wherein the energy is given

off in optical phonons.
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Chapter 3

ABSORPTION OF PHOTONS IN

NANOSTRUCTURES

3.1 Introduction

In this chapter, the discussion focuses mainly on the possible three methods for absorption

of photon in nanostructures. The nanostructures, due to their geometry and size, may

exhibit direct bang gap, or indirect band gap features. Our results shown in next chapter,

focuses mainly on nanostructures exhibiting strong quantum confinement, and hence direct

band-gap behavior. Thus in these types of structures, thereis de-localization of electrons,

and hence the excitonic level absorption also presumes an importance at room temperatures.
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The last section of this chapter discusses in brief the effects of Density of States(DOS) on

absorption, and the effect of variation of Fermi Level Distribution on absorption coefficient.

The last section is a classical approach to associate the absorption coefficient,α, and the

photoluminescence spectra,PL.

3.2 Intra-band Absorption of Photons

In this section, the approach is taken to connect between theelectron-photon interaction’s

transition probability, and the absorption coefficientα. The nanostructures can show band

gap variation depending on the size, geometry of orientation of these nanostructures, which

in turn defines the confinement. A number of processes have been discussed in previous

chapter, through which an electron transition can take place. Efforts have been made to

connect all the derivation, but at certain times, the thingswhich are beyond the scope of

this thesis, have been just referenced.

3.2.1 Direct Band Gap Transition

The assumption of parabolic band gap behavior has been takento make the understanding

of the situation, and the associated mathematical calculations easy. A typical energyE−k

diagram for direct gap materials is shown in figure 3.1. As photons with energȳhω (> Eg
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band gap) shine on the material, the electron in valence bandat statek is excited to a state

k′ in conduction band.

Figure 3.1: E-k diagram for photon induced direct-gap electron transition

The initial and final states for the transition of the electron in valence band at statek is

excited to a statek′ in conduction band, are only determined by the photon energyh̄ω.

To get the value of transition probability, defined in (2.17), for this transition, the time -

independent matrix elementHm0, defined in (2.13), has to be solved. For the transition

considered, we can write the matrix elementHm0 as,
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h̄k′k =
ι h̄ eA
2mN

∫

V
Ψ∗

k′ exp(ι~q·~r)
(

â· ~∇r

)

Ψk dr (3.1)

Ψ∗
k′ andΨk are the wavefunctions for the electron in the conduction band and the valence

band respectively. According to Bloch’s Theorem , these electron wavefunctions have the

periodicity of direct lattice, and hence have the form,

Ψk = exp
(

ι~k ·~r
)

uk (r)

uk (r) is strictly cell-periodic (of periodicityR) function such thatu(r) = u(r + R). Using

the definition of wavefunction given above, we can write equation (3.1) as,

h̄k′k =
ι h̄ eA
2mN

∫

V
exp
[

ι
(

~k − ~k′ − ~q
)

·~r
]

u∗k′
[

â· ~∇r uk + ι
(

â·~k
)

uk

]

dr

=
ι h̄ eA
2mN ∑

R
exp
[

ι
(

~k − ~k′ − ~q
)

·~r
]

∫

Ω
u∗k′
[

â· ~∇r uk + ι
(

â·~k
)

uk

]

dr

If we have a closer look at the summation part in the above equation, we can easily see that

for conservation of wavevector, the∑R exp
[

ι
(

~k − ~k′ − ~q
)

·~r
]

= N (N is the primitive

unit cells in the crystal). Thus above equation reduces to
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h̄k′k =
ι h̄ eA
2m

∫

Ω
u∗k′
[

â· ~∇r uk + ι
(

â·~k
)

uk

]

dr (3.2)

This equation can now be broken into 2 terms: the first one involving ~∇r uk, and the second

one involvinguk. Again because of the orthogonality of Bloch function between the bands

[12], the second term would be zero wheneverk = k′, or when the momentum vector is

not changed (nearly true in case of direct band gap material). Thus we can easily say that

the second term would be very small as compared to first term. Considering this, the term

involving ~∇r uk gives rise toallowed termof the matrix, while the term involvinguk is the

forbidden term.

3.2.1.1 Allowed Term in Matrix Element Hm0

For this section, we will calculate the allowed term of the matrix elementHm0, involving

~∇r uk. Thus the equation (3.2) reduces to,

h̄k′k =
ι h̄ eA
2m

∫

Ω
u∗k′
[

â· ~∇r uk

]

dr (3.3)

The crystal momentum is defined as~p = h̄~k = − ι h̄~∇r , so we can write crystal momentum

matrix as~pk′k ≡ − ι h̄
∫

Ω u∗k′
~∇r uk dr . This reduces the Hamiltonian matrix element (3.3)

for allowed term to,
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h̄k′k =
eA
2m

(â· ~pk′k)

Using the above equation, we can reduce the transition probability for electron to make

transition from statek in valence band to statek’ in conduction band, defined in equation

(2.17) as,

|Ak′k(t) |2 =
2π t

h̄

[

(

eA
2m

)2

(â· ~pk′k)
2

]

δ (ξ k′ − ξ k − h̄ω) (3.4)

This is the transition probability of one primitive cell. Toget the total transition probability

for direct band to band transition, we will have to sum above equation (3.4) over allN al-

lowed values ofk, and that too over varying wavelength of the incoming photon, ω. Such a

kind of calculation would become cumbersome, and would require computerized numeri-

cal techniques to solve them. Considering the limitation of this thesis, I have shown how to

calculate the total probability, using the assumption thatthe incoming photon is monochro-

matic i.e. ω is constant. Once we have the transition probability for formonochromatic

wave, we can integrate over all the values ofω, such as in the visible spectrum. We would

also require certain other values, such as the volume occupied by each value of state~k,

Fermi-Dirac distribution for getting the probability of valence shell being occupied, and

conduction band being empty. These values are (proof excluded),
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Volume occupied by each value ofk̃ : Ωk =
(2π)3

V
(3.5)

Fermi Dirac Distribution: f0 (E , T) =
1

1 + exp
[(

E − Ef
)

/k T
] (3.6)

E is the electron energy, andEf is the Fermi Level in the material under consideration,k

is the Boltzmann Constant, andT is the temperature of operation. Fermi Distribution (3.6)

defines the probability of a state being occupied by an electron. Hence, the probability of

state not being occupied is 1− f0 (E , T). The total probability for an electron to transition

between states, in a direct band gap material, can be calculated by integrating the transition

probability (3.4) over the first Brillouin Zone, keeping in mind the Fermi Distribution for

valence and conduction band. This total probability has to be multiplied by a factor of 2, to

incorporate the effects of spin of an electron, during the absorption of photon. Hence, we

can get thetotal probability Pk′k, and thetransition probability rate rk′k (= Pk′k/Vt), as

Pk′k =
2V

(2π)3

∫

Ωk

|Ak′k ( t ) |2 f0 (1 − f0) d~k (3.7)

rk′k =
2

(2π)3

∫

Ωk

|Ak′k ( t ) |2
t

f0 (1 − f0) d~k (3.8)

Using the transition rateAk′k, calculated in (3.4), we can write the transition probability

raterk′k as,
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rk′k =
e2 A2

8π2 h̄ m2

∫

Ωk

(â· ~pk′k)
2 δ (ξ k′ − ξ k − h̄ω) f0 (1 − f0) d~k (3.9)

Going ahead with the parabolic band assumption, from figure 3.1, we can write

ξk′ − ξk = ξg +
h̄2 k′2

2 me
+

h̄2 k2

2 mh

≈ ξg +
h̄2 k2

2 mr

(

assuming k′ ∼= k
)

ξg is the energy band gap for the material,me is the mass of the electron with wavevector

k′, andmh is the mass of the hole with wavevectork. mr is the reduced mass for the electron

and the hole. In the equation defining the transition probability rate (3.9), we can see that

compared with the Dirac-Delta term, all other terms inside the integral vary very slowly

with the variation ofk. Thus we can easily take these terms out of the integral, without any

loss. We define a dimensionless termoscillator strength[15] Os ≡ 2(â· ~pk′k)
2

mh̄ω . Also we

know, thatd~k = 4π k2 dk. Thus, the equation (3.9), can be evaluated as,

rk′k =
e2 A2

8π2 h̄ m2 f0 (1 − f0)

(

Os h̄ mω
2

)

∫

Ωk

δ
(

ξg +
h̄2 k2

2 mr
− h̄ω

)

4π k2 dk (3.10)
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The delta function has a property, such that

∫ ∞

−∞
f (x) δ (x − a) dx = f (a)

Using the above property in equation (3.10), we get the transition probability rate as,

rk′k =

(

e2√m

8πh̄3

) (

2mr

m

)1.5

A2 ω Os f0 (1 − f0)
√

h̄ω − ξg (3.11)

Absorption Coefficientis defined as the transition rate per unit quantum flux (quantum flux

is defined as the number of incident photons per unit area in unit time). Quantum flux can

be calculated from the average value of Poynting VectorSper unit wavelength energy. The

various relations are given below:

QuantumFlux: Φ =

〈

~S
〉

h̄ω

PoyntingVector: ~S = ~E × ~H

ElectricField: ~E = Aω â sin(~q·~r − ω t)

MagneticField: µ~H = −A (~q × â) sin(~q·~r − ω t)

AveragePoyntingVector:
〈

~S
〉

=
1
2
|q| ω A2

µ
=

1
2

η ε0 cω2 A2
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Using above relations, we can solve for Absorption Coefficient, α (= r/Φ ), as

αallowed =

(

e2√m

4πε0 ch̄2

) (

2mr

m

)1.5 (Os

η

)

f0 (1 − f0)
√

h̄ω − ξg (3.12)

3.2.1.2 Forbidden Term in Matrix Element Hm0

In this section, let us consider the forbidden term, containing uk, in the matrix elementHm0.

Thus, the matrix element reduces to,

h̄k′k = − h̄ eA
2m

∫

Ω
u∗k′ uk dr (3.13)

Using this equation with the transition probability (2.17), the forbidden transition proba-

bility for electron transition from state~k in valence band to state~k′ in conduction band, is

given by,

|Ak′k ( t ) |2 =

(

2π t
h̄

) (

eh̄ A
2m

)

| â·~k |2 O
′
s δ (ξ k′ − ξ k − h̄ω) (3.14)

The forbidden oscillator strength, defined asO
′
s =

∣

∣

∫

Ω u∗k′ukdr
∣

∣. For all values of~k 6= ~k′,

0 < O
′
s ≪ 1. To evaluate the forbidden total transition probability,and the forbidden
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transition rate, integrate equation (3.14) over the first Brillouin Zone, keeping in mind

the Fermi distribution. For ease of calculation, we take theaverage value of|â·~k| as k/
√

3

(averaging in 3 directions). Thus the forbidden transitionrate, and the forbidden absorption

coefficient are,

rk′k =

(

e2√m

12πh̄4

) (

2mr

m

)2.5

A2 ω O
′
s f0 (1 − f0)

√

(h̄ω − ξg)
3 (3.15)

α f orbidden =

(

e2√m

6πε0 ch̄2

) (

2mr

m

)2.5
(

O
′
s

η

)

f0 (1 − f0)

√

(h̄ω − ξg)
3

h̄ω
(3.16)

3.2.2 Indirect Band Gap Transition

In case of indirect transition, absorption or emission of a phonon is necessary, to conserve

the wavevector. Simultaneous absorption of a photon and phonon being high-order pro-

cess, and hence have lesser probability, but the additionaldegree of freedom introduced by

phonon energȳhωs makes the transition probability increase as transitions to many more

states are possible. Analysis of indirect transition can bedone by means of direct transition

from state 0 to a virtual stateIc with simultaneous absorption/emission of a phonon to scat-

ter electron fromIc to m. The other way of analysis can be done by considering emission

of a phonon to scatter from 0 to a virtual stateIv with a simultaneous direct transition from

Iv to m. This is shown in figure 3.2
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Figure 3.2: E-k diagram for photon induced indirect-gap electron transition.
Shows two possible mechanisms for electron to transit between states 0 andm,
via intermediate stateIv or Ic

The derivation of transition rate and associated absorption coefficient for indirect transition

is beyond the scope of this thesis. They can be analyzed by second-order perturbation

theory, and can be understood from [16]. I here just give the results. Considering the

virtual state in conduction band i.e.transition occurringthrough intermediate state asIc, we

get the allowed absorption coefficient as,

αc,allowed =

(

m1.5
h e2

32π ε0 cmh̄
√

me

)

(

gc Oc
s ωs

lc ω η

) (

ξIc

k T

)

(

h̄ω ± h̄ωs − ξg

ξIc − h̄ω

)2 ±1
exp(±h̄ωs/kT) − 1
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TRANSITION TYPE DEPENDENCE ON (h̄ω − ξg)

Direct Allowed Transition Varies as(h̄ω − ξg)
1/2

Direct Forbidden Transition Varies as(h̄ω − ξg)
3/2

Indirect Allowed Transition Varies as(h̄ω − ξg)
2

Indirect Forbidden Transition Varies as(h̄ω − ξg)
3

Table 3.1: Band-to-Band Transition

The+ and signs are for the absorption and emission of phonons respectively, with phonon

frequencyωs. gc is the number of conduction band minima, andOc
s is the oscillator strength

for conduction band transition, andlc is the mean free path for electron scattering in the

conduction band. Taking virtual state in valence band, we get the allowed absorption coef-

ficient as

αv,allowed =

(

e2 m1.5
e

32π ε0 cmh̄
√

mh

) (

gc Ov
s ωs

lv ω η

) (

ξIv

k T

)

(

h̄ω ± h̄ωs − ξg

ξIv − h̄ω

)2 ±1
exp(±h̄ωs/kT) − 1

The+ and signs are for the absorption and emission of phonons respectively. Ov
s is the

oscillator strength for valence band transition, andlv is the mean free path for electron

scattering in the valence band. Thus the total allowed absorption coefficient is

αallowed = αc(+ωs)) + αc(−ωs)) + αv(+ωs)) + αv(−ωs)) (3.17)
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We can also calculate the forbidden transition absorption coefficient, which are not a part

of this thesis, but can read in detail in [16]. Thus from aboveequations and equations for

direct gap transitions, we can draw the following conclusion shown in Table 3.1.

3.3 Exciton Level Electron Transition

Exciton, by definition, is an electron-hole pair bounded by Coloumbic attraction between

the pair. These exist at very low thermal energy, as the thermal energy (∼= kT) at room tem-

peratures is enough to dissociate them. Their existence at room temperatures is possible in

quantum structures at room temperatures due to localization of electron in these quantum

confined structures. Excitonic level absorption leads to absorption spectra just below the

fundamental absorption edge, as shown in figure 3.3.

Situation in figure 3.3 is analogous to a hydrogen model. For the n binding energies of

exciton, it can move throughout the crystal with dispersionrelation given by (ineV),

ξxn = 13.6

(

1
nεr

)2
(mr

m

)

ξxn

(

~k
)

= ξxn +

(

h̄2 k2

2M

)

(3.18)
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Figure 3.3: Variation of band structure due to exciton formation. Shows the
coloumbic attraction between the electron-hole pair

mr is the reduced mass for electron and hole,n is the number of exciton levels,εr is the

dielectric constant of the material, andM is the combined effective mass of electron-hole

pair, given byM = me + mh. This exciton model is very similar to the direct band gap ab-

sorption discussed in section 3.2.1, and thus using the results for direct band gap transition,

we can write the exciton absorption coefficient as,
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αex,allowed =

(

e2√m

4πε0 ch̄2

) (

2m∗
r

m

)1.5 (Os

η

)

f0 (1 − f0)
√

h̄ω − ξg − ξxn (3.19)

m∗
r is the reduced mass of the combined system for exciton and thehole, given as,

1
m∗

r
=

1
M

+
1

mh

3.4 DOS, and Fermi Energy Dependence

The absorption coefficient for all cases discussed till now,direct band gap transition 3.2.1,

indirect band gap transition 4.2.2, or the exciton level transition 3.3, we have the fermi en-

ergy dependence in the form of the Fermi Distributionf0. We define the Fermi Distribution

as,

f0 =
1

1 + exp
(

ξ − ξ f /kT
)

This is a simple equation, where the effect of doping profile is considered in the definition

of fermi level energyξ f . Or we can put it this way, that if there is no doping (or very low
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doping profile), above equation can be used to calculate the Fermi - Dirac distribution. We

make the calculation with respect toEf ± 4kT, as 4kT determines the energy window for

which which the Fermi - Dirac distribution rapidly decays tozero (+), or rapidly approaches

one (-).

In cases of a very heavy doping profile(> 1020cm−3), the above equation cannot be used.

For illustration, let us assume we are considering a highly ndoped material. In such kind of

material, the Fermi levelξ f will be inside the conduction band. So now we can comfortably

say that all the states in valence band, and all the states in conduction band from bottom

of conduction band toξ f − 4kT will be occupied. Hence, now the energy required by

the photon to transit an electron from a filled state in valence band to an empty state in

conduction band will be greater than the band gap of the material. This is shown in figure

3.4.

From the above figure 3.4, the energy required by a photon for electron transition is given

by

h̄ω = ξg +
h̄2 k2

2mr
(3.20)

mr is the reduced effective mass for the electron and hole. Thus, we can see that the

fundamental absorption edge has moved due to doping. We can use the above equation
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Figure 3.4: Fundamental Absorption Edge in a heavy n-doped(n+) doped mate-
rial. Shaded region depicts fully filled energy levels. The fermi levelξ f lies in the
conduction band.

to modify the results for direct band gap absorption coefficient for doped materials. This

effect is called theBurstein-Moss shift. We will also have to take into account the change

in the Fermi distribution.
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3.5 Photoluminescence (PL)

The photoluminescence intensity spectrumτ (ξ ) can be related to the absorption coefficient

α (ξ ), using the van Roosbroeck - Shockley equation [17, 18] using the principal of detailed

balance, as

τ (ξ ) ∝
η2 ξ 2 α (ξ )

exp

[(

ξ
k Tc

)

− 1

] (3.21)

ξ is the energy of the photon (= h̄ω), k is the Boltzmann constant,η is the refractive

index of the material, andTc is the actual carrier temperature. The close agreement of

the spontaneous emission spectrum, equation (3.21), with the experimentally observed PL

Spectra, will demonstrate the correctness of shape and value for the measured/calculated

absorption coefficient,α (ξ ).
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Chapter 4

RESULTS AND DISCUSSION FOR

ABSORPTION COEFFICIENT AND

PHOTOLUMINESCENCE

This chapter describes the plots for the absorption coefficients calculated in chapter 3. I

have assumed values for various parameters, and have discussed them as we go along.

These parameters have been calculated according to work done in [19, 20, 21]. For ease of

calculation and reasons explained ahead, the plots here areonly for allowed terms, having

neglected any influence of forbidden transition coefficients.

The results have been discussed for silicon nanostructures, which show band gap variation
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depending upon the confinement which is directly related to the size and geometry of the

structure. We consider silicon quantum dots (QDs), which have known to show direct band

gap transition [20, 22], for diameters for the ODs in confinement region, and have shown

in-direct band gap behavior [23, 24] for other diameters. The diameter of the QD defines

the band gap energy. The differences between the data on energy band gaps are possibly

associated with the dependence of the electronic properties of the QDs on the dot shape

and the surrounding layers, and hence fabrication techniques.

Before we plot the values for absorption coefficients, we needto define any other depen-

dence on wavelength (such as refractive indexη , etc.).

4.1 Refractive Index

From first view of equations defining the absorption coefficients (equations 3.12, 3.16,

3.17, 3.19), one can see that the absorption coefficient depends only on the frequency (or

the wavelength) of the incoming photon, and is independent of the spatial dependence of

the nanostructure. But this might not be true, and the hidden dependence can be seen in the

refractive indexη of the material. The complex refractive index of the nanostructure can

be defined as (ηr is the real part, andηi is the imaginary part),
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η = ηr − ι ηi (4.1)

λ is the wavelength of the light in vacuum. For our calculations, since we are concentrating

in the visible spectrum, the extinction coefficient is negligible as it diminishes for frequency

greater than 400nm [9]. Hence, we want the variation for the real part of the refractive index

with the wavelength of the light, or the incoming photon to beprecise. The data taken from

[9], has been curve fitted using the Herzberger formula [25] used as a variation of Sellmeier

formula[26], as

ηr = βa +
βb

λ 2 − 0.0028

βa andβb are material constants, and are required to be calculated experimentally.λ is the

wavelength of the light in vacuum (inµ m). The constant 0.0028 is an arbitrary choice,

independent of material. After curve fitting from the experimental data [9], the constants

are evaluated asβa = 3.2346 andβb = 0.3698. The Herzberger’s formula for refractive

index of Silicon then is,

ηr = 3.2346+
0.3698

λ 2 − 0.0028
(4.2)
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We are using this relationship, equation (4.2), for calculating the absorption coefficient in

silicon QDs. One thing that we might be concerned with is thatthis might not be a true

relationship in QDs, as the data has been generated for bulk silicon. Due to paucity of time,

and no data availability for silicon QDs, this is the relation we have to work with. This

variation of refractive index is shown in figure 4.1.

Figure 4.1: Variation of Refractive Indexη (y-axis) with the wavelengthλ (µ m)
of incoming photon

4.2 Intra-band Absorption of Photons

We will take the following assumption for the calculations of absorption coefficient for

direct/indirect/exciton electron transition.
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1. Effective mass of electron, and hole: For the mass of electron and hole involved in

the transition from valence band to conduction band, we takethe effective conduction

masses. Effective mass of electron isme = 0.26m0 , and effective mass of hole is

mh = 0.36m0, wherem0 is the rest mass of electron.,

2. Oscillator Strength Os: Due to paucity of information, and knowledge, I could

not dwell more into the study of Oscillator Strength. This study involves a good

knowledge of Quantum Field Theory, which is beyond the scopeof this thesis. This

is one area where more focus needs to be devoted. I have taken the Oscillator strength

for all possible cases as one. This is a point of contention for quantum confined

structures, though this might hold true for these structures, as has been shown [15].

3. Fermi Distribution f0: For the ease of calculations, the material is take as undoped.

We also assume the ideal condition that all states in valenceband are filled, and all

the states in conduction band are empty. Thus,f0 = 0.5 = 1 − f0.

4.2.1 Direct Band Gap Transition

The absorption coefficients for direct band gap transitionscalculated in sections 3.2.1.1 and

3.2.1.2 were

57



αallowed =

(

e2√m

4πε0 ch̄2

) (

2mr

m

)1.5 (Os

η

)

f0 (1 − f0)
√

h̄ω − ξg (4.3)

α f orbidden =

(

e2√m

6πε0 ch̄2

) (

2mr

m

)2.5
(

O
′
s

η

)

f0 (1 − f0)

√

(h̄ω − ξg)
3

h̄ω
(4.4)

The first bracket
(

= e2√m
6πε0 ch̄2

)

are all constants, and thus can be evaluated easily. Using the

Fermi distribution defined above, the allowed and forbiddenterm for absorption coefficient

can be written as

αallowed = 2.7× 10−5
(

2mr

m

)1.5 (Os

η

)

f0 (1 − f0)
√

h̄ω − ξg (4.5)

α f orbidden = 1.8× 10−5
(

2mr

m

)2.5
(

O
′
s

η

)

f0 (1 − f0)

√

(h̄ω − ξg)
3

h̄ω
(4.6)

If we compare the above two equations, we can note that the allowed term for transition

is much greater than the forbidden term for transition. Thuswe can easily neglect the

forbidden term. This is shown if the plot 4.2, where the probability of forbidden transition

to allowed transition is 1 : 9, which technically is very highfor forbidden term. Such a high

value has been taken to show that at even this high value, the forbidden term’s value is very

small as compared to the allowed transition term. The plot has been done for a energy band

gap of 1.69eV [20] for a QD structure of 5nmdiameter, oscillator strengths ofOs = O
′
s,
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refractive index of silicon as described above. Thus, for our further discussion, we will

ignore the contribution due to the forbidden term without any loss.

Figure 4.2: Comparison of absorption coefficientα , for allowed and forbidden
transition for a 9:1 probability

Figure 4.3 has been plotted for varying band gapξg, which will happen for a array cluster

of QDs of varying sizes, as discussed in chapter 1. The figure shows the band gap varying

from 1.12eV (the bulk silicon limit) to 3.65eV (maximum band gap for smallest possible

practically fabricated silicon QD).

We first concentrate on absorption coefficient curve for a single band gap as shown in fig-

ure 4.2. We observe the onset of optical absorption for energies of photonξ > 1.687eV

( = 734.742nm), the band gap assumed for nanostructure silicon here. The absorption co-
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Figure 4.3: Variation of Absorption coefficientα for direct band gap transition,
for photons with varying incoming wavelengthλ , and for a array of Silicon QDs
of varying band gapξg, for dots under quantum confinement

efficient,α, quickly increases from 10000cm−1 to 64000cm−1, and reaches a maximum of

64638.2cm−1 at photon energy ofξ = 3.49eV ( = 355.532nm). Similarly, if we do anal-

ysis for band gap ofξg = 1.82eV, we get the onset atξ > 1.818eV ( = 682.261nm), and

it reaches a maximum of 62344.5cm−1 at photon energy ofξ = 3.61eV ( = 343.402nm).

Smith A. et al. [27], have performed time resolved PL measurements on silicon nanopar-

ticles ( 1 nm) and have reported direct band to band transition with emission in the wave-

length range of 380-450 nm. Thus, this result matches very well with our calculated result

for absorption spectra peak. Our theoretical plots are further proved right as these authors
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also note that polysilane displays strong absorption from 280− 350nm.

One point of contention here is that we should have observed just resonant peaks when

we consider nanostructures, such as these Silicon QDs, as was proved theoretically in the

transition probability 2.17. In the equation for transition probability, we consider the con-

duction band edgeξc to be discreet, instead of continuous. This is true in case ofsilicon

QDs, which will show discreteness in levels or states of conduction band (and of valence

band too) due to confinement in all the three dimensions. But when we simulate for the

results, we have taken continuous bands for ease of calculation, and we assume that the

transition is taking place from the highest level in valenceband to the lowest level in con-

duction band. Also we are ignoring the Pauli’s Exclusion Principle for each possible state

in conduction band.

The decrease of absorption coefficient for low values of wavelength is related to significant

increase in refractive index with decreasing wavelengths which is questionable in silicon

nanostructures. Schmitt-Rink et al. [28] show a peak in absorption coefficientα with a

bandwidth (0.5meV) for GaAs quantum dots. These authors claim that quantum dots have

a substantial advantage in enhancing optical absorption, and similar has been observed in

our plots.

Figure 4.3 depicts the effect of various silicon quantum dots in a solar cell of QD array. Due

to quantum confinement, the energy band gap of QD increases with decreasing diameter.

Here QDs in the range of 2nm to 10nm have been considered, which exhibit quantum
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confinement. As seen here, the onset of absorption shifts to left with increasing bandgap

ξg as expected, and the maximum decreases and shifts to the left. This peak shows a blue

shift as the band gap energy increases from 1.12eV towards 3.65eV. The shifting of the

maximum with lowering wavelengths is also an expected result since the dependence of

absorption coefficient on refractive index is more pronounced at lower wavelengths and the

factor
√

h̄ω − ξg decreases with increasingξg.

4.2.2 Indirect Band Gap Transition

For indirect band gap transition, we only consider the allowed terms. We make use of the

total allowed transition absorption coefficient defined in equation 3.17. There are a lot of

variables that we need to define or assume for plotting this kind of transition. One thing

to keep in mind is that strong quantum confinement in silicon increases the probability of

combination through radiation via the direct-band gap transition, and hence reduces the

electron-phonon interaction [24], effectively reducing the indirect band gap transition. For

QDs bigger in diameter than 8nm, exhibit indirect band gap [24, 21], and do not exhibit a

strong confinement in all directions.
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4.2.3 Exciton Level Electron Transition

Referring to figure 3.3 again, due to localization of electrons in these excitonic states, the

effect of such kind of absorption will be very significant in nanostructures, specially QDs.

We plot then−binding energies for excitonic levels withn = 5 in figure 4.4, defined by

following equation.

ξxn = 13.6

(

1
nεr

)2
(mr

m

)

The electron, however, will only be present in any one of thesen(= 5 inthiscase) possible

excitonic states. Taking the other values similar to those in case of direct gap absorption

4.2.1, figure 4.5 and 4.6 shows the absorption coefficient forexcitonic behavior for varying

band gap and one particular band gap respectively.

The absorption coefficient peak is higher for excitons; thiswas expected as we have lo-

calization of electrons in these excitonic states, and thushigher transition probability. In

figure 4.5, we observe a broad spectrum for absorption, instead of the expected resonance

curve. This is because we consider only one possible excitonic level for all calculations

while plotting the curve in figure 4.5. The resonance of peaksin absorption is seen in fig-

ure 4.6, where we have plotted for all possible excitonic levels shown in figure 4.4. This
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Figure 4.4: n = 5 exciton states binding energy variation with wavelength

is done for a band gap ofξg = 1.69eV. The peaks in the figure 4.6 occur at 354.665nm,

355.313nm, 355.434nm, 355.477nm, and 355.497nm respectively.

4.3 Photoluminescence (PL)

The PL spectra is calculated using equation (3.21) in section 3.21. This PL spectra was

calculated using the exciton absorption coefficient of figure 4.6 forξg = 1.69eV.

Though all these 5 possible excitonic states were considered in generating the plot, in
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Figure 4.5: Comparative plots for exciton and direct gap absorption, keeping all
other parameters same. The band gap varies from 1.12eV to 3.65eV

reality, an electron can occupy only one of these states. Thehighlighted curve shows

the expected PL spectra, as an electron during transition will not occupy all then possible

states. Also in a particular state, it will try and be near thepeak of that particular state, as

it makes electron closer to the conduction band minima. The plot is shown in figure 4.7,

and if we compare the results with the experimental results from [29], we see a very close

match between the results, and thus we can say that out calculated PL is a close match with

that of experimental data.

Our theoretical results for PL are in conjunction with the experimental results. These results
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Figure 4.6: Exciton absorption curve showing the resonance peaks forn = 5 pos-
sible states, forξg = 1.69eV

have been plotted from our derived equation for absorption coefficient, and thus we can say

that our results shown in figure 4.3 and 4.5 should be fairly consistent. Thus all in all we

can say that is very good correlation between the existing results and the theoretical results

proposed here.

The radiative recombination times for Silicon QDs were calculated in [30], and were com-

pared against the experimentally observed PL experimentallifetime [31]. The observed PL

experimental lifetime for Silicon QDs showed that lifetimesharply decreases with the size.

This experimental time is approximately 30 times smaller than the calculated recombina-
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Figure 4.7: The highlighted curve shows the actual PL spectra expected, as the
electron while transiting will not occupy all the states

tion time [30]. This discrepancy in results is attributed tothe uncertainties in the calculation

of various other factors (such as refractive indexη , etc.). But this does not negate the pos-

sibility of other non-radiative recombination mechanisms. The calculated recombination

times are of the order of 103 ps, while the calculated times are of the order of 102 ps [30].

The absorption coefficient curve for single band gap material ,taken as Si for continuity and

comparison with band gap energy of 1.12eV, is shown in plot 4.8 .

Comparing the absorption coefficient curves for direct gap quantum dots of silicon (figure

4.3) and bulk silicon solar cell (figure 4.8), we can see that for bulk silicon solar cell, the

67



Figure 4.8: Absorption Coefficient Curve for Silicon Bulk Solar Cells of 1st Gen-
eration, plotted for allowed terms from section 4.2.2

maximum absorption coefficient is 52000cm−1, and drops quickly as the wavelength in-

creases, or energy decreases. This maximum absorption coefficient is equivalent to direct

gap absorption coefficient Even though the absorption coefficient is high at higher energies,

thermalization of the photo-generated will counter the effect. In case of absorption coef-

ficient for quantum dots, the absorption coefficient is not only high, but also more spread

over the wavelength, to give an improved spectrum for absorption of photons.
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Chapter 5

COMPARISON OF ABSORPTION

COEFFICIENT WITH SOLAR CELL

EFFICIENCY

This chapter will relate the calculated absorption coefficient with the solar cell efficiency.

The model used here is that of ap+− i −n+ junction solar cell. The structure of the solar

cell, and associated physics equations have been discussedin this chapter as we go along.
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5.1 The Solar Cell Structure Design

The model used for the solar cell structure is a genericp+− i − n+ junction cell shown

in figure 5.1. It consists of alternating stacked layers of QDs in the intrinsic region, to

enhance the photo-generated current. The effective band gap for absorption in each many-

QD layer is determined by the lowest confined states of the QDs. The approach is basically

to produce structures with engineered band gap. For the samepurpose, silicon nanocrystals

embedded in the silicon dielectric matrix can be used [1, 32]. As shown in section B.1, the

quantum confined energy levels increase the effective band gap of the nanostructure as

compared to bulk silicon. The energy band diagram for the structure is shown in figure 5.2.

Dr. Conibeer and his group have fabricated such structures using silicon [1], and other

materials such as GaAs/InAs have been also fabricated in such a fashion [33]. For our

work, we are considering silicon nanostructures confined inall three dimensions i.e. QDs,

embedded inSiO2 matrix. These multi-stacked layers can be deposited by sputtering alter-

nating "stoichiometric dielectric / Si-rich dielectric" process, followed by annealing. At the

annealing temperature, the Si in the Si-rich dielectric precipitates out, and crystallizes be-

tween the stoichiometric layers [1]. The size of the QD can becontrolled by the thickness of

the Si-rich layer between the stoichiometric layers. Dopant layers can be co-sputtered while

sputtering Si-rich layer, if the doping of dots is required.Due to strong coupling between

QDs, electronic states demonstrate wire-like character [34], due to which the electrons and

the holes are channeled through. This serves as an efficient mechanism for separating the
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Figure 5.1: Schematic of ap+− i−n+ designed solar cell structure

generated electrons and holes in QDs across the p and n regions.

5.2 Photocurrent in the Solar Cell

We can calculate the photocurrent by the solving the minority carrier transport equation

in each of the possible regions. For convenience purposes, this thesis will only compare
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Figure 5.2: Energy band diagram of thep+− i−n+ solar cell shown in figure 5.1

the currents in the intrinsic region, and study the contribution of QDs to the generated

photocurrent in the i-region.

Carrier confinement exhibited by the QDs, quantizes the energy spectrum into discrete

levels. This is shown in figure 5.2. The absorption edges in these QDs are shifted to higher

energies due to this confinement effect. The photo-carrier generation rateGQD for the QDs

can be written as

GQD(λ , X) = Φ(λ ) [1 − R(λ )]αQD(λ ) exp(−αQD (X − Xn)) (5.1)

Φ(λ ) is the spectral distribution of solar flux incident on solar cell, R(λ ) is the reflection
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coefficient for the surface of the solar cell, andX is the distance of the QDs from the surface

of the cell. The assumption here is that the top surface, or the surface exposed to light or

solar flux is then+ region of widthXn. If the top surface is thep+ region, then the term

(X − Xn) changes to(X − Xp). αQD is the absorption coefficient for quantum dots. The

total photocurrent from the QDs can then be written as

jQD(λ ) = e
∫ Xn+Xi

Xn

GQD(λ , X) dx (5.2)

For the stoichiometric layers, they will also generate somecurrent. The fraction occupied

by this region will be(1 − QDvol). If nQD is the volume density for the QDs, andVQD

is the average volume for one QD, then the fraction occupied by stoichiometric layers is

(1 − nQDVQD). The generation rate for this region is

GS(λ , X) = Φ(λ ) [1 − R(λ )] exp(−α (λ ) Xn) (1 − nQDVQD) αS(λ )

exp(− (1 − nQDVQD)αS (X − Xn))

(5.3)

The photo-generated current due to this generation can be written as

jS(λ ) = e
∫ Xn+Xi

Xn

GS(λ , X) dx (5.4)
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The total current over the whole solar spectrum can now be written as

Ji = e

(

∫ λmax

λmin

( jS + jQD) dλ
)

(5.5)

Using the above calculated current equations in the intrinsic region, and the equations for

efficiency calculations shown in section A.1, we can calculate the currents, and efficiencies

for varying parameters. The above equations are under certain assumptions such as the

diffusion length of carriers is assumed larger than the width of the intrinsic region (Xi),

so that most of the generated carriers in the region are sweptout by the junction field

without any recombination losses. Thus as the width of the intrinsic region increases,

recombination losses governed by the impurity levels increases. There exists a limit to the

maximum number of QD layers we can have in the intrinsic region. Hence there exists

an optimum number of QD layers due to competition between thelight absorption and

recombination losses [33].

5.3 Practical Efficiency Calculations

We will use the following values for the various parameters in the calculation of short

circuit current in the intrinsic region. The solar flux is assumed to be equivalent to black

body radiation at a temperature of 5760k, given as using Plank’s Law,
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Φ(λ ) =
2π h̄ c2

λ 5

{

exp

(

2π h̄ c
k T λ

)

− 1

}

(5.6)

We use the reflection coefficient as 0.1. The values for absorption coefficient is used from

those derived in chapter 3, and calculated in chapter 4. For the silicon QDs, we assume that

minimum band gap attained for confined quantum dots is 1.29eV, and the maximum band

gap is 3.65eV. The other parameters assumed are as shown in table 5.1.

PARAMETERS VALUE UNITS

Maximum Band Gap for Silicon QD (for 1.8nm QD)3.65 eV
Maximum Band Gap for Silicon QD (for 7nm QD) 1.29 eV
Length of i-region (Xi) 3 µ m
Surface Reflection Coefficient (R(λ )) 0.1 -
Volume of QD (VQD) 1.77×10−18 cm3

Volume Density of QDs (nQD) 1.7×1017 cm−3

Band Gap of Stoichiometric Material assumed as Sil-
icon

1.12 eV

Table 5.1: Parameter Values for short circuit current in intrinsic region

We calculate the current using the above parameters. The intrinsic region devoid of QDs is

assumed to be silicon with a band gap of 1.12eV. For calculation purposes, the band gap is

assumed direct gap. On using the above values, the ratio of current for intrinsic region with

QDs to current in intrinsic region without QDs (nQD = 0) (i.e. intrinsic region is made of

undoped silicon of direct band gap 1.12eV), comes out to be 1.865. Hence, keeping other

factors constant, we can improve the efficiency by a factor of1.865 times. Thus for a solar

cell of efficiency of 26% for first generation solar cell, we can improve the efficiency to
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nearly 48.5% on using QDs.
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Chapter 6

CONCLUSION AND FUTURE WORK

This work has made an attempt to plot the absorption coefficient vs. wavelength in nanos-

tructure silicon using quantum mechanical based calculations. The absorption coefficient

shows a peak of 64638.2 cm−1 at = 343nm at photon energy ofξ = 3.49eV ( =

355.532nm). I have shown that a large value of absorption coefficientα comparable to

that of bulk silicon is possible in silicon QDs because of carrier confinement. This carrier

confinement leads to direct band to band transition resulting in a very large value of oscil-

lator strength in the calculation of transition probabilities. A comparison of PL including

excitonic effects in nanostructure silicon further confirms our estimated theoretical plots,

knowing that optical absorption and PL are closely related.

The concept of solar cell is described in brief in chapter5. Using the absorption coefficient
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calculated in chapter 4, we have shown that the efficiency of ap-i-n junction solar cell can

be significantly increased through the use of stacked QD layers in the intrinsic region. The

QDs increases the short circuit current. There is not much effect on the open circuit voltage

by the QDs.

One of the optical parameters used in our calculations is refractive index. A lot of work

should be devoted for detailed calculation of refractive index vs. wavelength plot in nanos-

tructure silicon. A better understanding of oscillator strength in nanostructure is required

for understanding the quantum confinement in better details.

It is very important to relate solar cell efficiency to the optical absorption. A very generic

approach has been used in calculation of efficiency for a solar cell. There are a lot of

assumptions taken, which will not be true in reality. We willfurther investigate the depen-

dence of efficiency not only on optical absorption but also onphoton capture and reflection

based on fundamental principles. Hence the overall efficiency calculation for a QD based

solar cell requires a detailed treatment of electronic bandstructure, carrier emission, cap-

ture, recombination mechanisms and other current losses inthe cell.
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Appendix A

MATHEMATICAL PROOFS

A.1 Shockley-Quiesser Limit

The principle of detailed balance limit [5], for calculation of limiting efficiency in a single

p-n junction device, has been used in this work. The current-voltage relationship for a solar

cell may be written as

Inet = Isc + I0

(

1 − exp
Vnet

Vsol

)

(A.1)

= I0

(

exp
Vop

Vsol
− exp

Vnet

Vsol

)

(A.2)
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Here Inet andVnet are the net current and voltage generated.I0 is the reverse saturation

current for the p-n junction.Voc is the open circuit voltage andIsc is the short circuit

current.Vsol is the solar cell bias. For maximum power (P = InetVnet), dP
dVnet

= 0, which

using equation A.2, can be written as

I0

(

exp
Vop

Vsol
−
(

Vnet + Vsol

Vsol

)

exp
Vnet

Vsol

)

= 0 (A.3)

Let the solution to above equation A.3 beVmax. The current for this solution,Imax, can be

calculated using equation A.2. The fill factor (FF), or the squareness of the I-V curve for

solar cell, can then be calculated as

FF ==
VmaxImax

Voc Isc
(A.4)

The fill factor FF is sometimes also referred to as theimpedance matching factor, m. Solv-

ing for FF, using equation A.2 and A.3, we get

FF ==

(

Vmax
Vsol

)2

(

1 + Vmax
Vsol

− exp− Vmax
Vsol

)

(

Vmax

Vsol
+ ln

(

1 +
Vmax

Vsol

))

(A.5)

For defining the efficiency of the solar cell, we can use above equation A.5, in the equation
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for efficiency. The efficiency is defined as

η =
VmaxImax

Pinput
=

Voc IscFF
Pinput

(A.6)

The principle of detailed balance limit uses the assumption, that the probability of photon

with energy greater than band gap to produce an electron-hole pair is unity. Using the

parameters as defined by Shockley-Queisser [5], for a singlejunction made of Silicon with

bandgap of 1.12 eV, the efficiency limit comes out to be 31%. With infinite junctions made

of silicon, the limit comes out to be 68%.
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Appendix B

PHYSICAL PROOFS

B.1 Quantum Confinement in Silicon Quantum Dot Struc-

tures

The effective mass solution, or the EMA of the Schr ¨odinger equation for electrons confined

in three dimension for a quantum dot is same as that for the EMAof a one dimension

confinement in case of quantum well. For a quantum dot of size (or diameter ’a’), if we

consider a very large confining potential, we can write,

~k̇~a = nπ (B.1)
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k is the wavevector. For n’th confined energy level, the increase in energy is given by

∆ En =
h̄2 k2

2m∗ (B.2)

Using B.1 in B.2, the discrete levels of confined energy in one ofthe dimensions are

∆ En =
h̄2 π2

m∗ a2 n2

If we consider confinement in all three directions, the aboveequation can be written forn1,

n2, n3 as

∆ En =
h̄2 π2

m∗ a2

(

n1
2 + n2

2 + n3
2) (B.3)

For a quantum dot,n1 = n2 = n3 = n, and thus the confined energy levels are

∆ En =
h̄2 π2

m∗ a2 3n2 (B.4)

The above equation B.5 is very similar to that obtained for twodimensional quantum well

confined in one dimension. There is just an added factor of 3, which shows that quantum
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dots have confined energy levels three times those of quantumwells. The corresponding

energy levels for the quantum well in quantum dot are those which are non-degenerate with

the same quantum number. If we consider a cubic quantum dot, we can say that for a given

confined state, a quantum dot has a diameter
√

3 times the width of the corresponding

quantum well. It has been experimentally observed that for aspherical quantum dot, the

diameter for a given confined state is nearly 2 times the widthof the corresponding quantum

well [35].

For calculation purposes, we use the conduction effective masses ofm∗
e = 0.27m0, and

m∗
h = 0.59m0 (considering contributions of both light hole and heavy hole). Using these

values for B.5, we can write the first quantized ground energy state as

E1 = Eg + ∆ E1

For spherical quantum dots, the value of∆ E1 obtained for cubic quantum dots, should be

divided by
(√

3
2

)2
to account for the increased confinement. Hence, on solving,we get

(plotted in figure B.1)

E1 = Eg +
609

(√
3

2

)2
a2

(B.5)
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Figure B.1: Band Gap for Silicon Quantum Dots’ calculated by EMA Approxima-
tion

The bandgap for 10nmdot is nearly 1.2012 eV, and for 1.8nmdot it is 3.65 eV.
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Appendix C

PERMISSION FOR IMAGE REPRINT

C.1 Chapter 1: 1

1.1: Solar Tree - This image is free.

1.2: Solar Spectrum - Permitted under Academic and Non-commercial Use.

1.3: PV World Production - This file has been (or is hereby) released into the public domain

by its author, Geoffrey Landis at the wikipedia project. This applies worldwide. Author

grants anyone the right to use this work for any purpose, without any conditions, unless

such conditions are required by law.
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1.4: Solar Cell Efficiency - This image is a work of a United States Department of Energy

(or predecessor organization) employee, taken or made during the course of an employee’s

official duties. As a work of the U.S. federal government, theimage is in the public domain.

1.5, 1.6, 1.8:

Permission to use images in my thesis

Gavin Conibeer <g.conibeer@unsw.edu.au> Thu, Nov 18, 2010 at 3:55 AM

To: Jaspreet Singh <jnayyar@mtu.edu>

Dear Jaspreet

Yes this should be OK.

But please ensure to give due acknowledgement.

Regards

Gavin

From: jaspreetsn@gmail.com [mailto:jaspreetsn@gmail.com] On Behalf Of Jaspreet Singh

Sent: Thursday, 18 November 2010 2:14 PM To: Gavin Conibeer Subject: Permission to

use images in my thesis

Hi Gavin
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I wanted to use the following images in my thesis for Masters in Electrical Engineering.

1. LOSS PROCESSES IN A STANDARD SOLAR CELL - from the Annual Report

2005, Section 4.5, figure 4.5.1

2. ALL SILICON TANDEM SOLAR CELL - from the Annual Report 2009, Section

4.5.2.1, figure 4.5.2

3. EFFICIENCY AND COST PROJECTIONS - from Annual Report 2004 Section 4.5,

figure 4.8

I would be obliged if you can grant me the permission to use these images in my thesis,

and reprint them.

Regards – Jaspreet S Nayyar

Grad Student - ECE, MSE

Michigan Tech

www.linkedin.com/in/jaspreetnayyar
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