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Abstract 
 

One of the scarcest resources in the wireless communication system is the limited 

frequency spectrum. Many wireless communication systems are hindered by the 

bandwidth limitation and are not able to provide high speed communication. However, 

Ultra-wideband (UWB) communication promises a high speed communication because 

of its very wide bandwidth of 7.5GHz (3.1GHz-10.6GHz). The unprecedented bandwidth 

promises many advantages for the 21st century wireless communication system. 

However, UWB has many hardware challenges, such as a very high speed sampling 

rate requirement for analog to digital conversion, channel estimation, and implementation 

challenges. In this thesis, a new method is proposed using compressed sensing (CS), a 

mathematical concept of sub-Nyquist rate sampling, to reduce the hardware complexity 

of the system. The method takes advantage of the unique signal structure of the UWB 

symbol. Also, a new digital implementation method for CS based UWB is proposed. 

Lastly, a comparative study is done of the CS-UWB hardware implementation methods. 

 Simulation results show that the application of compressed sensing using the 

proposed method significantly reduces the number of hardware complexity compared to 

the conventional method of using compressed sensing based UWB receiver. 
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1.Introduction 
 

In any wireless communication system, one of the most desirable features users want 

is high speed data transfer. However, most of the current wireless systems are limited 

mainly by their respective bandwidths. The Ultra-wideband (UWB) wireless 

communication system is a promising technology with a very wide bandwidth for short 

distance high data rate communication, and long distance low data rate communication. 

High data rate, low cost, and low power consumption are some of the potential 

advantages of the UWB compared to the conventional narrowband wireless systems[1-3]. 

In 2002, the U.S. Federal Communication Commission (FCC) unlicensed a very wide 

bandwidth of 7.5GHz, which spans from 3.1GHz to 10.6GHz for Ultra-wideband 

communication[3]. However, the FCC has put strict power limitation of -41.3dBm/Hz so 

as to keep it at the noise floor of the existing radio frequency (RF) systems because the 

UWB overlaps with existing narrowband systems. According to the FCC, any radio 

frequency (RF) transmission with fractional bandwidth more than 20% or system 

bandwidth of more than 500MHz is characterized as Ultra-Wideband. (The fractional 

bandwidth is defined as 𝐵𝐵 𝐹𝐹𝑐𝑐⁄ , where  𝐵𝐵 = (𝐹𝐹ℎ − 𝐹𝐹𝑙𝑙) 2⁄ , denote -10dB bandwidth and 

center frequency Fc = (𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙 ) 2⁄ , with 𝐹𝐹ℎ  being the upper frequency of -10dB emission 

point, and 𝐹𝐹𝑙𝑙  the lower frequency of the -10dB emission point[1])  

UWB has many advantages over existing narrowband wireless systems. For example, 

the large bandwidth provides very high channel capacity which provides high data rate; 

baseband transmission lowers the system complexity by eliminating the need of 

modulators, intermediate frequency, and other receiver processing circuits; the ultra-short 

duration pulses results in rich multipath diversity; and the ultra-short duration of UWB 

pulse provides high precision ranging and localization at centimeter level.  
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Figure 1.1: UWB and existing narrowband spectrum [4] (Appendix D) 

In addition to these advantages, UWB also faces many technical challenges mainly in 

the receiver design. The formidably high bandwidth of 7.5GHz of UWB requires a very 

high sampling rate according to the Nyquist-Shannon theorem.  

Analog-to-Digital (ADC) converters at such high frequencies are very expensive and 

power consuming. The UWB channel results in many multipath components. Thus, the 

rake receiver is an optimal receiver to capture the maximum energy of the received 

signal; however, it requires large numbers of correlation fingers, which increases the 

hardware complexity of the receiver. Additionally, there have been non-coherent 

receivers mentioned in [5, 6] which significantly reduce the system complexity by 

avoiding the channel estimation, but they perform sub-optimally compared to the 

coherent receivers. 

An alternative UWB receiver design has been proposed in [7-9]based on a 

mathematical concept which eliminates the problem of requirement of high speed ADCs 

for optimal receivers and performance degradation limitation of sub-optimal receivers. 

Using compressed sensing, a signal can be sampled at sub-Nyquist rate based on certain 

signal characteristics. In the case of UWB, it significantly reduces the sampling rate 

requirement of the UWB receiver.  

However, there are some implementation challenges associated with compressed 

sensing based Ultra-wideband receivers. Most importantly, it requires a large number of 
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parallel structures of correlation and integration fingers to collect those compressed 

samples.  

In this thesis, a new method- Joint Frame Reconstruction- has been proposed for 

reducing the hardware complexity of the conventional compressed sensing based ultra-

wideband receiver (CS-UWB). The proposed method reduces the receiver complexity 

(number of parallel correlation-integration fingers) by exploiting the unique UWB signal 

structure. Moreover, a study of hardware implementation of compressed sensing has been 

done, and a new digital implementation method has been proposed for CS-UWB 

implementation. 

 

1.1. Ultra-Wideband Receiver Literature Review 
 

The Impulse Radio Ultra-wideband (IR-UWB) signal is transmitted at the baseband 

level which eliminates the need for a carrier modulator at the transmitter and a carrier 

demodulator at the receiver, thus simplifying the transceiver design. A Gaussian 

monocycle or its derivative pulse of nanosecond duration 𝑇𝑇𝑤𝑤  is transmitted over the 

UWB channel.  

The ultra-short duration pulse results in many resolvable multipath components at the 

receiver. Based on the trade-off between performance and hardware complexity, UWB 

receivers can be categorized into two types - Coherent receivers and Noncoherent 

receivers. In coherent receivers, the most common UWB receiver is the correlation 

(matched filter) based rake receiver which collects the multipath diversity of the received 

UWB signal[1, 3, 4].  

A matched filter based rake receiver captures the energy of the multipath components 

in a received UWB signal. Rake receiver requires channel state information for 

demodulating the UWB signal. An estimated pulse waveform template is correlated with 

the received multipath signal at certain channel taps with corresponding channel co-

efficient. Thus, an essential criterion for rake receiver based UWB is estimating channel 
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information [1, 3, 5]. However, the sampling rate requirement for such channel 

estimation is very large. For a typical UWB indoor channel, the number of channel 

parameters can be as large as 400[1, 3, 10, 11]. 

The digital implementation of the coherent UWB receiver requires sampling of the 

received signal at or above the twice of highest frequency component of the signal. The 

sampling rate requirement for the UWB signal with a pulse width of Tp = 0.7𝑛𝑛𝑛𝑛 is in the 

formidable range of 17.9~35.7GHz[1]. The sampling rate requirement for accurate 

channels estimation requires more than 25GHz of ADC in [12]. ADCs of such high 

sampling rate require high power and are very expensive. Such sampling rate can only be 

possible using either wideband ADCs or a bank of polyphase ADCs with accurate timing 

control [8]. Also, the sub-nanosecond multipath received pulses add another challenging 

task for timing synchronization at the receiver. More importantly, a large number of 

resolvable multipath components through the UWB channel require a rake receiver with 

large number of correlation fingers to capture the rich multipath diversity. 

Noncoherent receivers, on the other hand, provide an alternative to surpass high 

sampling rate processing of the coherent receivers[6, 11, 12]. They do not require 

expensive channel estimation method. An Energy detector (ED) and Autocorrelation 

receiver (AcR) are examples of the most common noncoherent UWB receivers. Energy 

detector consists of a squaring device which uses On-Off keying signaling scheme to 

measure the instantaneous energy of the signal. On the other hand, an Autocorrelation 

receiver consists of an additional delay element before the squaring operation. It uses 

Transmitted Reference (TR) signaling, in which a reference pulse is transmitted before a 

modulated pulse in the same symbol. At the receiver, the delayed reference pulse is used 

as a template for demodulating the modulated pulse.  

Noncoherent receivers are simple in both operation and implementation compared to 

coherent receivers. However, the major limitation of noncoherent receivers is their 

degraded performance. They result in suboptimal performance compared to the coherent 

receivers[6]. Additionally, Auto-correlation receivers require long analog delay lines 

which are difficult to implement in hardware. Weighted energy detection is an improved 
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version of energy detector which divides the signal into smaller segments. It provides 

better performance, but it comes at the cost of additional hardware complexity[11]. 

 Compressed Sensing (CS), a new technique to sample a certain class of signals 

below the Nyquist rate criterion and successfully reconstruct it, has gained application in 

various scientific fields in recent years. In the case of the UWB, it promises to solve the 

major problem of high sampling rate requirement. The applicability of compressed 

sensing technique to UWB has been shown in [7, 13].  

Compressed Sensing, itself, is a nascent mathematical concept that goes against the 

conventional wisdom in data acquisition [14, 15]; therefore, there lies many 

implementation challenges for the compressed sensing based UWB (CS-UWB) receiver. 

In compressed Sensing, M signal measurements are taken of a sparse signal of length N 

where M < 𝑁𝑁. The signal is recovered from these fewer measurements M using a convex 

optimization algorithm [14-16].  

In case of UWB, the number M can be very large which means M  mixer-integrator 

parallel branches are required for to acquire measurements in hardware. However, a less 

complex compressed sensing based UWB receiver has been proposed in[8], which 

transfers the receiver complexity to the transmitter end. In[8] , transmitter and UWB 

channel are part of the compressed sensing process, such that the receiver simply down 

samples the received signal. There have been other compressed sensing based UWB (CS-

UWB) implementation methods proposed in [17-19].  

In this thesis we propose a new joint frame reconstruction method for reducing the 

hardware complexity of compressed sensing based UWB (CS-UWB) receiver by further 

reducing M, the number of mixer-integrator branches for acquiring measurements, than 

the conventional CS-UWB method. A digital receiver design is also proposed for the 

implementation of compressed sensing based UWB receiver. At last, a study is done of 

hardware implementation of compressed sensing based UWB receivers. 
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1.2.   Motivation 
 

     The motivation of this thesis stems from the fact that the exiting UWB receivers 

require very high sampling rate for analog to digital conversion (ADC).Such high-speed 

ADCs are power consuming, high in hardware complexity, and expensive compared to 

low rate ADCs. The alternative receivers to high-speed ADCs , though simple in 

hardware implementation, result in degraded performance. Thus, it is important to find a 

new approach for UWB receiver that not only provides optimal performance, also keeps 

the sampling rate below the Nyquist sampling rate. 

 

Compressed Sensing is a new mathematical concept, which provides an alternative to 

existing UWB receivers which require high-sampling rate. In compressed sensing, a 

signal can be sampled below the Nyquist rate and successfully reconstructed based on 

certain criteria. Thus, UWB fulfils the compressed sensing criteria. However, compressed 

sensing based UWB receiver has its own challenges. One of the major challenges is the 

hardware implementation of compressed sensing for continuous-time domain signal. 

Thus, this thesis investigates the possible solution for reducing the hardware complexity 

of the compressed sensing based UWB receiver without compromising the performance 

of the system.  

 

1.3.   Thesis Outline 
 

The thesis outline starts with the introduction to the UWB technology. It briefly 

describes the place of UWB in the wireless spectrum, it advantages, challenges, and 

potential applications. Rest of the thesis is divided mainly into five chapters which are 

discussed below: 
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Chapter 1: The first chapter is an introduction to the UWB wireless system. It 

provides an overview of UWB receiver’s types with their working method, advantages, 

and challenges. The motivation for the thesis is also mentioned in the same chapter. 

Chapter 2: This chapter provides detailed description about the UWB and 

compressed sensing. First, a UWB signal model is described. Second, a brief introduction 

to a new framework, compressed sensing, is provided. Further, it describes the 

applicability of compressed sensing to UWB system. In the last section, CS-UWB 

receiver design, a comprehensive compressed sensing based UWB system model is 

described. A new digital demodulation receiver design is also proposed. 

Chapter 3: In this chapter, a study of CS-UWB hardware implementation method is 

provided. The study compares the working, advantages, and challenges of various 

compressed sensing hardware implementation methods. The problem is formulated for 

this thesis and a new method is proposed to solve it. 

Chapter 4: In this chapter, all the simulation results are discussed. Matlab simulation 

setup is explained for the different comparison results. The proposed method is compared 

with an existing CS-UWB method. Matlab simulations show improvement of the 

proposed method over exiting method. A hardware reduction comparison is made for 

various cases simulation. 

       Chapter 5: The thesis is concluded with a brief summary of thesis, contributions, 

and future work.   
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2. Compressed Sensing Based UWB 
  

This chapter describes the ultra-wideband and compressed sensing in details 

including their fundamentals. It provides the explanation for the application of 

compressed sensing to the ultra-wideband. Moreover, in the later sections, two CS- UWB 

implementation models are described.  

2.1.   UWB Signal Model  
 

The Impulse Radio-Ultra-wideband (IR-UWB) signal has a different symbol structure 

with respect to the narrowband symbol structure[3]. In the IR-UWB system, a symbol 

consists of number of frames (𝑁𝑁𝑓𝑓), each of duration 𝑇𝑇𝑓𝑓 . Each frame includes a pulse of 

very short duration 𝑇𝑇𝑤𝑤   such that  𝑇𝑇𝑤𝑤 ≪ 𝑇𝑇𝑓𝑓 . The duration of a symbol is then given 

by 𝑇𝑇𝑛𝑛 = 𝑁𝑁𝑓𝑓 𝑇𝑇𝑓𝑓 .  Figure 2.1 shows the structure of a UWB symbol with multiple frames[4].  

Consider a peer-to-peer IR-UWB transmitted signal 𝑛𝑛(𝑡𝑡) which can be represented as: 

𝑛𝑛(𝑡𝑡) = ∑ 𝑏𝑏𝑖𝑖 ∑ 𝑝𝑝𝑁𝑁𝑓𝑓 −1
𝑗𝑗 =0 �𝑡𝑡 − 𝑖𝑖𝑇𝑇𝑛𝑛 − 𝑗𝑗𝑇𝑇𝑗𝑗 �𝑁𝑁𝑝𝑝 −1

𝑖𝑖=0 +  ∑ 𝑏𝑏𝑖𝑖 ∑ 𝑝𝑝𝑁𝑁𝑓𝑓 −1
𝑗𝑗 =0 (𝑡𝑡 − 𝑖𝑖𝑇𝑇𝑛𝑛 − 𝑗𝑗𝑇𝑇𝑗𝑗 )𝑁𝑁𝑤𝑤 −1

𝑖𝑖=𝑁𝑁𝑝𝑝
   

                                                                                                 0 ≤ 𝑡𝑡 < 𝑁𝑁𝑤𝑤 𝑇𝑇𝑛𝑛 

     ………………(1) 

 

 

 

                              𝑇𝑇𝑓𝑓                                                                  𝑇𝑇𝑤𝑤    

  Figure 2.1: UWB symbol structure[4] 
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Where  𝑝𝑝(𝑡𝑡) is a Gaussian pulse derivative[1, 20]. 𝑏𝑏(. ) is the symbol modulation. In 

this thesis we use binary PAM modulation i.e. 𝑏𝑏𝑖𝑖𝜖𝜖{±1} . 𝑁𝑁𝑝𝑝  is the number of pilot 

symbols, and 𝑁𝑁𝑛𝑛  is the number of information bearing symbols. 𝑁𝑁𝑛𝑛 = 𝑁𝑁𝑤𝑤 − 𝑁𝑁𝑝𝑝  is the 

total number of symbols in a burst. 𝑇𝑇𝑛𝑛 = 𝑁𝑁𝑓𝑓 𝑇𝑇𝑓𝑓  is the duration of one symbol.  

The UWB channel has different characteristics from the narrowband system’s 

channel which operates at signal bandwidth of less than 20MHz[21].  Multiple resolvable 

multipath components are received at the UWB receiver due to its large bandwidth. In the 

case of the indoor UWB channel, the multipath components arrive in clusters and each 

cluster has multiple rays (or delayed UWB received waveforms). The arrival of clusters 

and the arrival of rays in each cluster shows Poisson distribution[1].The design of UWB 

receiver systems for optimum performance requires accurate channel modeling[4]. 

According to the channel modeling subcommittee of IEEE 802.15.3a, the standardized 

UWB channel model is a modified version of the Saleh-Valenzuela(S-V) model[20]. 

However, a simple model for the characterization of the UWB channel is a tap-delay-

line fading model. The impulse response of the channel can be written as 

ℎ(𝑡𝑡) = � ∝𝑙𝑙

𝐿𝐿−1

𝑙𝑙=0

𝛿𝛿(𝑡𝑡 − 𝜏𝜏𝑙𝑙) 

……………(2) 

Where ∝𝑙𝑙  represents the channel gain coefficient and 𝜏𝜏𝑙𝑙  is the channel delay for the  

𝑙𝑙𝑡𝑡ℎ  path of the total L multipath components. When the transmitted signal 𝑛𝑛(𝑡𝑡) passes 

through ℎ(𝑡𝑡), it results in multipath components. 

The received multipath signal at the receiver can be written as follows 

   𝑟𝑟(𝑡𝑡) = ∑ 𝑏𝑏𝑖𝑖 ∑ 𝑝𝑝ℎ (𝑡𝑡 − 𝑖𝑖𝑇𝑇𝑛𝑛 − 𝑗𝑗𝑇𝑇𝑓𝑓 )𝑁𝑁𝑓𝑓 −1
𝑗𝑗 =0

𝑁𝑁𝑝𝑝 −1
𝑖𝑖=0 + ∑ 𝑏𝑏𝑖𝑖 ∑ 𝑝𝑝ℎ (𝑡𝑡 − 𝑖𝑖𝑇𝑇𝑛𝑛 − 𝑗𝑗𝑇𝑇𝑓𝑓 )𝑁𝑁𝑓𝑓 −1

𝑗𝑗 =0
𝑁𝑁𝑛𝑛−1
𝑖𝑖=𝑁𝑁𝑝𝑝

+  𝑛𝑛(𝑡𝑡) 

                                                                                                ……………….(3) 

   Pilot Symbols                      +              Information Symbols 
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Where    𝑝𝑝ℎ (𝑡𝑡) = ∑ ∝𝑙𝑙 𝑝𝑝(𝑡𝑡 − 𝜏𝜏𝑙𝑙)𝐿𝐿−1
𝑙𝑙=0  and it is referred as noiseless composite pulse-

multipath channel[22]. It is of frame long duration  𝑇𝑇𝑓𝑓 . 𝑛𝑛(𝑡𝑡)  is the Additive White 

Gaussian Noise (AWGN). UWB channel ℎ(𝑡𝑡) is considered invariant over the duration 

of one burst of symbols. For simplicity, it is assumed that IFI (Inter-Frame Interference) 

is absent, therefore, 𝑇𝑇𝑓𝑓 ≥ 𝑇𝑇𝑝𝑝 + 𝜏𝜏𝐿𝐿−1  where 𝜏𝜏𝐿𝐿−1  is the maximum delay spread of the 

UWB multipath channel. Moreover, Inter-symbol Interference (ISI) is assumed to be 

absent in the system model for the sake of simplicity, also, with wide frame duration the 

ISI can be assumed to be very small in certain environments. 

Receiver processing is illustrated in later chapters in which data demodulation is 

dependent on channel estimation using compressed sensing. Thus, the next section briefly 

explains the concept of compressed sensing, and leads to a compressed sensing based 

UWB receiver. 

 

2.2.   Introduction to Compressed Sensing  
 

In all conventional signal processing applications, sampling theorem (or Nyquist-

Shannon’s theorem) plays a vital role in the analog to digital conversion of signals. 

According to Nyquist-Shannon’s theorem, to acquire any analog signal, the sampling rate 

must be at least twice the maximum frequency component of the signal for its successful 

reconstruction. The key note to make here is that the Nyquist rate is so high in various 

electronics applications ranging from image processing to video capturing that 

compression of data becomes necessity before transmission or digital storage[16]. 

However, according to compressed sensing theory, it is possible to successfully 

reconstruct certain signals from a fewer number of samples based on certain criteria.  

Compressed Sensing is a method in which fewer numbers of samples are acquired 

from a sparse signal along its length by taking non-adaptive linear measurements which 

preserves the structure of the signal, and then using a numerical optimization method, the 

original signal is reconstructed from the fewer number of measurements[14-16]. 
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There are two main criteria in compressed sensing for the successful reconstruction of 

underdetermined signal[14]. 

i. Sparsity, which is the property of the signal.  

ii. Incoherence, a property between representation basis and sensing basis. 

Sparsity of a signal implies that the signal has few non-zero components in some 

basis. The information rate of the signal is lower than its bandwidth. According to CS 

theory, many natural signals are sparse in some domain or over some basis. For example, 

a digital image when acquired using Nyquist rate sampling has many samples, but even 

after throwing many small valued samples (negligible coefficient values) by compression 

techniques, the image reasonably preserves its structure[16].  Another similar example is 

cognitive radio which works on the principle that at any given time there are fewer 

number of frequency bands occupied in the wireless spectrum, making the signal sparse 

in the frequency domain. Mathematically, a signal 𝒙𝒙, can be represented as a sparse 

signal when expanded on an orthonormal basis 𝚿𝚿 = [𝜓𝜓1𝜓𝜓2𝜓𝜓3 … … 𝜓𝜓𝑁𝑁], 

𝒙𝒙 = � 𝛼𝛼𝑛𝑛 𝜓𝜓𝒏𝒏

𝑁𝑁

𝑛𝑛=1

 

……………..(4) 

Where α is the coefficient vector of 𝒙𝒙,  𝛼𝛼𝑛𝑛 = 〈𝒙𝒙, 𝜓𝜓𝑛𝑛 〉.  𝒙𝒙 and α are the representations 

of the same signal in different basis.  

Incoherence is the property which must be satisfied between the measurement matrix 

Φ and the signal’s representation matrix Ψ. The Φ takes fewer linear measurements over 

the length of the sparse signal. Therefore, each projected sample has information over the 

complete length of the sparse signal. The purpose of incoherence the between 

measurement matrix and the representation basis of the signal is to spread the signal in 

the acquired domain. As an example, a spike or delta basis as a measurement matrix and 

a Fourier basis as a representation basis have maximum incoherence between each 

other[14].  



21 
 

 To explain the concept of compressed sensing mathematically, consider real valued, 

finite-length, discrete signal, one-dimensional 𝒙𝒙, where 𝒙𝒙𝜖𝜖𝑅𝑅𝑁𝑁. The 𝒙𝒙  can be considered a 

𝑁𝑁×1 vector which is sparse in some basis Ψ, where Ψ= [𝜓𝜓1 𝜓𝜓2 … … 𝜓𝜓𝑁𝑁], each 𝜓𝜓𝑖𝑖  is a 

column vector of length N. Thus, the signal 𝒙𝒙 can be written as[16] 

𝒙𝒙 =  Ψ𝜶𝜶 

……………..(5) 

Where α is a 𝑁𝑁×1 vector which has few nonzero elements, and 𝒙𝒙  is simply the 

projection of vector α over an orthonormal basis Ψ. Each element of 𝒙𝒙, 𝑥𝑥𝑖𝑖  is the inner 

product of the row of Ψ and column vector α. The sparsity of the signal 𝒙𝒙 is given by 𝐾𝐾, 

which is the number of nonzero elements in α. 

Now to compress a signal, a measurement matrix Φ of dimension M × N  is designed 

in such a way that each row vector of Φ is incoherent with each column vector of Ψ, a 

property which must be satisfied for reconstruction of vector 𝜶𝜶. It is important to note 

that here 𝐾𝐾 << 𝑀𝑀 < 𝑁𝑁. Thus, the projected output vector 𝐲𝐲 (compressed) is given by 

                                                 𝒚𝒚 =  Φ𝒙𝒙          

   ………….(6) 

Where 𝒚𝒚𝜖𝜖𝑅𝑅𝑀𝑀 and  𝒙𝒙𝜖𝜖𝑅𝑅𝑁𝑁. The main problem here is designing a stable non-adaptive 

sensing matrix Φ which must allow the reconstruction of 𝜶𝜶 of length N from 𝒚𝒚 of length 

𝑀𝑀 where M < 𝑁𝑁. Thus, equation (6) can be written as: 

𝒚𝒚 =  Φ𝒙𝒙 = ΦΨ𝜶𝜶 = Θ𝜶𝜶 

…..……(7) 

Where 𝚯𝚯 = 𝚽𝚽𝚿𝚿 is a 𝑀𝑀 × 𝑁𝑁 matrix. 
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The above problem is ill conditioned. However, if 𝒙𝒙 is 𝐾𝐾 sparse and 𝐾𝐾 << 𝑀𝑀 < 𝑁𝑁, 

then for any vector sharing the same K non-zero entries as 𝜶𝜶 and for some ϵ>0, this 

problem can be solved if it satisfies the following condition [14] 

1 − 𝜖𝜖 ≤
‖Θ𝛼𝛼‖2

‖𝛼𝛼‖2
≤ 1 + 𝜖𝜖 

…………(8) 

Here the matrix Θ must satisfy condition (8), called Restricted Isometry Property 

(R.I.P.) for the stable solution of α.  

The important task here is designing a stable the measurement matrix Φ that satisfies 

both the incoherence and R.I.P. property. One such matrix can be designed with high 

probability using a random matrix, such as the Gaussian random matrix.  

According to[14, 16],if the elements of Φ are chosen from an independent and 

identically distributed (i.i.d.)  Gaussian probability density function with zero mean and 

1 N⁄  variance, then Φ has R.I.P. with high probability if 𝑀𝑀 ≥ 𝑐𝑐𝐾𝐾𝑙𝑙𝑐𝑐𝑐𝑐 �𝑁𝑁
𝐾𝐾

� ,where 𝑐𝑐 ≥ 1 is 

the oversampling factor. 

The last task is the reconstruction of the signal 𝒙𝒙 from the reduced set of projections y 

using an optimization process. The optimization problem in (7) can be solved by 

𝑙𝑙1 − 𝑛𝑛𝑐𝑐𝑟𝑟𝑛𝑛 optimization. 

                         𝛂𝛂� = arg min‖𝛂𝛂‖1           𝑛𝑛𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡      Θ𝜶𝜶 = 𝒚𝒚         

………….(9)  

The sparse solution of 𝜶𝜶 can be found using linear programming algorithms such as 

basis pursuit (BP) or other greedy algorithms. In this thesis a greedy algorithm called 

orthogonal matching pursuit (OMP) is used[14, 23] . 
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2.3.   UWB Demodulation using Compressed Sensing 
 

As mentioned earlier, the coherent receivers of UWB requires a formidable sampling 

rate which has high hardware complexity. Compressed sensing (CS), on the other hand, 

takes samples at the sub-Nyquist rate and reconstructs a signal from fewer numbers of 

measurements. Therefore, compressed sensing is well suitable for UWB which has 

hardware limitations with high Nyquist rate sampling. 

Compressed sensing (CS) is a mathematical concept which has recently gained 

application in various fields of engineering. In the case of UWB, the applicability of 

compressed sensing is only possible if the UWB system fulfils the required criteria of 

compressed sensing i.e. sparsity of the signal, incoherence between the basis matrix and 

the measurement matrix, and Restricted Isometric Property (R.I.P.). 

The feasibility of CS to the UWB system can be answered by the following two 

questions:  

a) How is compressed sensing applicable to the UWB? 

b) Compressed sensing works with the discrete signal, so how does it work with the 

analog UWB signal? 

The answer to the first question can be found if the UWB channel characteristics are 

observed. A UWB pulse through a multipath channel results in multiple delay pulses of 

very short duration. The path length differentials can be down to about 30cm[7-9, 12, 22]. 

The received UWB signal results in time sparsity which can be approximated by few 

pulses from a continuous basis. It is the time sparsity of the received UWB signal that 

makes it an ideal candidate for compressed sensing application. 

 To answer the second question, an analog signal model is needed for compressed 

sensing. According to[13, 24], any analog signal with a finite information rate can be 

represented by a finite number of parameters over some continuous basis. 

Mathematically, let 𝑥𝑥(𝑡𝑡) be an analog signal which is sparse over a finite number of 

continuous basis, then it can be represented as 
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𝑥𝑥(𝑡𝑡) = � 𝛼𝛼𝑛𝑛 𝜓𝜓𝑛𝑛 (𝑡𝑡)
𝑁𝑁

𝑛𝑛=1

 

………….(10) 

Where 𝜶𝜶 has few a nonzero component (or dominant components) which means 𝑥𝑥(𝑡𝑡) 

is sparse over continuous basis vectors 𝜓𝜓𝑛𝑛 (𝑡𝑡), where 𝑛𝑛 = 1,2 ….  𝑁𝑁 

The incoherence property and restricted isometry property of the system can be 

achieved with high probability if elements of measurement matrix Φ  be selected as 

identically distributed (iid) Gaussian random as mentioned in the previous section[14].  

 

2.4.   CS-UWB Receiver Design  
     

It was said earlier that the UWB receiver has a big challenge of analog to digital 

conversion at very high bandwidth. Therefore, compressed sensing is a promising 

technique to solve this problem. Consider that a simple correlator (matched filter) based 

UWB detector is used, then, all that is needed is a frame template for frame based 

demodulation and sampling.  

The CS based UWB receiver can be described in two parts. First, pilot symbols are 

used to estimate the channel-template. Compressed sensing is used to reconstruct the 

multipath-frame template[7, 21]. Second, the reconstructed multipath-frame template is 

used to demodulate the information-bearing symbols at frame rate using integrate and 

dump circuit[22]. 

Let  𝑟𝑟𝑝𝑝 (𝑡𝑡)  be the pilot signal carrying 𝑁𝑁𝑝𝑝  pilot symbols with  𝑁𝑁𝑓𝑓  frames in each 

corresponding symbol. Thus,  𝑟𝑟𝑝𝑝 (𝑡𝑡)  can be represented by the following equation: 
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𝑟𝑟𝑝𝑝 (𝑡𝑡) = � 𝑏𝑏𝑖𝑖 � 𝑝𝑝𝑟𝑟 �𝑡𝑡 − 𝑖𝑖𝑇𝑇𝑛𝑛 − 𝑗𝑗𝑇𝑇𝑓𝑓 � + 𝑛𝑛(𝑡𝑡)

𝑁𝑁𝑓𝑓 −1

𝑗𝑗 =0

𝑁𝑁𝑝𝑝 −1

𝑖𝑖=0

 

          0 ≤ 𝑡𝑡 < 𝑁𝑁𝑝𝑝 𝑇𝑇𝑛𝑛 

……….(11) 

If 𝑟𝑟𝑝𝑝 (𝑡𝑡)  is observed in the time window of   𝑘𝑘𝑇𝑇𝑓𝑓 ≤ 𝑡𝑡 < (𝑘𝑘 + 1)𝑇𝑇𝑓𝑓 , where  𝑘𝑘 =

0,1,2 … . . 𝑁𝑁𝑓𝑓 𝑁𝑁𝑝𝑝 − 1, then each 𝑇𝑇𝑓𝑓  duration contains multipath frames contaminated with 

AWG noise. It can be represented as[19] 

𝑝𝑝𝑘𝑘 (𝑡𝑡) = 𝑏𝑏𝑖𝑖 ��
𝑘𝑘

𝑁𝑁𝑓𝑓
�� 𝑝𝑝𝑟𝑟 (𝑡𝑡) +  𝑛𝑛(𝑡𝑡) 

………(12) 

 𝑝𝑝𝑘𝑘 (𝑡𝑡) is frame long multipath channel.  

Receiver processing can be divided into two parts from here - channels estimation 

using compressed sensing, and signal demodulation using correlation detector. The 

following block diagram shows that the received pilot symbols are used for channel-

template estimation using compressed sensing, and the upper and lower part of the block 

diagram show two types of demodulation schemes used for signal demodulation. 

 The output of channel-template estimation using CS is a discrete vector at Nyquist 

rate. It is approximated to analog channel-template for analog demodulation of the 

information bearing signal. However, for digital demodulation, a new receiver design 

method is proposed which down-samples the discrete channel-template and information-

bearing signal at sub-Nyquist rate. 

2.4.1. CS-Based Channel Estimation  
 

The compressed sensing based channel estimation is done in two parts. As shown in 

the figure 2.2, first, using a number of mixer-integrator parallel branches, compressed 

samples are take at frame rate sampling. The mixer operates at or above the Nyquist 
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                                                       Analog Demodulator 

                                                        ADC 
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Digital Demodulator 

 

𝑟𝑟𝑛𝑛(𝑡𝑡)                              𝒓𝒓𝑛𝑛        𝒑𝒑𝑛𝑛𝑠𝑠                                ADC                                                                                                                                                                                

          

 

 

Figure 2.2: Block diagram of CS-UWB receiver design 

 

frequency to provide randomness (The details of operation of mixer is explained in later 

chapter).Second, using convex optimization method, original multipath frame is 

reconstructed from fewer number of samples.  

UWB channel shows time sparsity which means the representation (basis) matrix Ψ 

can be assumed to be an identity matrix[22]. The input to the compressed sensing block is 
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 𝑟𝑟𝑝𝑝 (𝑡𝑡)                                                𝒚𝒚𝑘𝑘            𝒑𝒑𝑛𝑛 

 

 

an analog multipath frame of each pilot symbol. The output of the reconstruction block is 

a discrete representation of analog multipath frame at Nyquist rate. 

 

However, to explain the compressed sensing based channel estimation, consider  𝒑𝒑𝑘𝑘  

the discrete time representation of the continuous multipath-frame in each pilot symbol 

which is obtained using mixer-integrator circuit in the compressed sampling block[22].  

    

Thus, 𝒑𝒑𝑘𝑘 = [𝑝𝑝𝑘𝑘 (0), 𝑝𝑝𝑘𝑘 (𝑇𝑇), … … 𝑝𝑝𝑘𝑘 ((𝑁𝑁 − 1)𝑇𝑇)]† , where 𝑁𝑁 is the number of samples, 

𝑇𝑇 is the Nyquist sampling period, and  † is the transpose operator[19]. The elements of 

the non-adaptive measurement matrix Φ, of dimension  𝑀𝑀 × 𝑁𝑁 , can be chosen as 

identically distributed Gaussian random variables with zero mean and  1 𝑁𝑁⁄  variance. If 

the sparsity order of the multipath-frame is given by 𝐾𝐾, then the number of required 

samples to fulfill the R.I.P. and incoherence property is given by 

 

𝑀𝑀 ≥ 𝑐𝑐𝐾𝐾𝑙𝑙𝑐𝑐𝑐𝑐10(𝑁𝑁
𝐾𝐾) 

…….(13) 

 

                                              𝑟𝑟𝑝𝑝 (𝑡𝑡)                                 𝒑𝒑𝑛𝑛 

 
 
 

 
 
 
 
 
 
 
 

 Figure 2.3: CS based channel-template estimation 
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Where  𝑐𝑐 is an oversampling factor. Compressed sensing based sampling equation for 

𝑘𝑘𝑡𝑡ℎ  frame can be written as 

𝒚𝒚𝑘𝑘 = Φ𝒑𝒑𝑘𝑘  

………(14) 

Where 𝒑𝒑𝑘𝑘  is of N× 1 dimentions 

           Φ is of  𝑀𝑀 × 𝑁𝑁 dimentions 

           𝒚𝒚𝑘𝑘  is of  𝑀𝑀 × 1 dimentions 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑦𝑦𝑘𝑘1
𝑦𝑦𝑘𝑘2
𝑦𝑦𝑘𝑘3
𝑦𝑦𝑘𝑘4

 .
 .
 .
 .
 .

𝑦𝑦𝑘𝑘𝑀𝑀 ⎦
⎥
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Figure 2.4: Matrix representation equation 14 of CS-UWB for a frame 

 

  The 𝑀𝑀 measurment samples are used to reconstruct noisy multipath-frame template 

𝑝𝑝s(𝑡𝑡)  using the orthogonal matching pursuit (OMP) algorithm, an iterative greedy 

algorithm, which is computationally less expensive than linear optimization methods. It 

finds the component with maximum correlation in the measurement signal, eliminates it 

from the signal, and searches again for the maximum correlation component that remains 

in the residual signal[19].  
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We have 𝑁𝑁𝑓𝑓 𝑁𝑁𝑝𝑝  number of pilot frames, and 𝑀𝑀 samples from each frame. According 

to[19], there are two methods to reconstruct noise multipath-frame template. First, the 

OMP algorithm can be used to reconstruct every frame 𝑝𝑝𝑘𝑘� and average over 𝑁𝑁𝑓𝑓 𝑁𝑁𝑝𝑝  frames 

to obtain 𝑝𝑝𝑛𝑛.  

The objective function of this method can be defined as: 

𝒑𝒑k� = arg min‖𝒑𝒑𝑘𝑘 ‖1           𝑛𝑛𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡      𝒚𝒚𝑘𝑘 =  Φ𝒑𝒑𝑘𝑘  

……….(15) 

This method requires running the OMP algorithm 𝑁𝑁𝑓𝑓 𝑁𝑁𝑝𝑝  times and hence it is a 

computationally expensive method. The final multipath-frame template can be calculated 

by averaging the total number of reconstructed frames. 

𝒑𝒑𝑛𝑛 =
1

𝑁𝑁𝑓𝑓 𝑁𝑁𝑝𝑝
� 𝒑𝒑𝑘𝑘�

𝑁𝑁𝑓𝑓 𝑁𝑁𝑝𝑝 −1

𝑘𝑘=0

 

…………..(16) 

The second method (which will be referred to as conventional CS-UWB method) is 

one in which 𝑀𝑀  samples from each frame can be averaged before reconstruction to 

obtain 𝒑𝒑𝑛𝑛. In this method, the sampled vector, 𝒚𝒚  is given as 

𝒚𝒚 =
1

𝑁𝑁𝑝𝑝 𝑁𝑁𝑓𝑓
     � 𝒚𝒚𝑘𝑘

𝑁𝑁𝑓𝑓 𝑁𝑁𝑝𝑝 −1

𝑘𝑘=0

 

……….(17) 

The objective function to recover 𝒑𝒑𝑛𝑛  using 𝒚𝒚  is given by 

𝒑𝒑𝑛𝑛 = arg min‖𝒑𝒑𝑘𝑘 ‖1           𝑛𝑛𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡      𝒚𝒚 =  𝚽𝚽𝒑𝒑𝑘𝑘  

………….(18) 

 The second method is computationally less expensive because it requires only one 

reconstruction after ensemble averaging the frame samples over 𝑁𝑁𝑓𝑓 𝑁𝑁𝑝𝑝  frames. Moreover, 

it implicitly mitigates the effect of AWG noise.     
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2.4.2. Signal Demodulation (Proposed) 
 

There are two signal demodulation methods. First, Analog demodulation, in which an 

approximate analog of the reconstructed multipath frame is used to demodulate the 

analog information-bearing signal using correlation based demodulator. A second 

method, we propose, is a new digital implementation method in which information-

bearing signal and the reconstructed multipath frame are down-sampled below the 

Nyquist rate and demodulated using digital correlation method. Both of these methods 

are explained below: 

 

Analog Demodulation 

The compressed sensing based reconstructed multipath frame can be used to 

demodulate the information-bearing symbols at frame rate sampling using the correlation 

based approach in analog domain. However, we have discrete form of multipath-frame 

temple. Using Whittaker–Shannon interpolation formula 𝒑𝒑𝑛𝑛  can be approximated to 

analog 𝑝𝑝�𝑛𝑛(𝑡𝑡). [25] 

�̂�𝑝𝑛𝑛(𝑡𝑡) = � 𝒑𝒑𝑛𝑛[𝑛𝑛]𝑛𝑛𝑖𝑖𝑛𝑛𝑐𝑐(𝑡𝑡−𝑛𝑛𝑇𝑇
𝑇𝑇 )

𝑁𝑁

𝑛𝑛=1

 

………….(19) 

Now �̂�𝑝𝑛𝑛(𝑡𝑡)is used to demodulate the information-bearing part of received signal 𝑟𝑟𝑛𝑛(𝑡𝑡) 

which is �𝑟𝑟(𝑡𝑡)| 𝑖𝑖=𝑁𝑁𝑝𝑝
𝑁𝑁𝑛𝑛   . Each symbol consists of 𝑁𝑁𝑓𝑓  frames, thus the decision statistic is 

given by adding 𝑁𝑁𝑓𝑓  correlator output samples for the 𝑖𝑖𝑡𝑡ℎ  symbol[19]. It can be written as: 

𝑧𝑧(𝑖𝑖) = � � 𝑟𝑟𝑛𝑛(𝑡𝑡)
(𝑗𝑗 +1)𝑇𝑇𝑓𝑓 +𝑖𝑖𝑇𝑇𝑛𝑛

𝑗𝑗 𝑇𝑇𝑓𝑓 +𝑖𝑖𝑇𝑇𝑛𝑛

𝑁𝑁𝑓𝑓 −1

𝑗𝑗 =0

𝑝𝑝𝑛𝑛� (𝑡𝑡 − 𝑗𝑗𝑇𝑇𝑓𝑓 − 𝑖𝑖𝑇𝑇𝑛𝑛) 

……….(20) 



31 
 

 
 

                                                        ADC 

                      𝑟𝑟𝑛𝑛(𝑡𝑡)                                                      

                                                      𝑝𝑝�𝑛𝑛(𝑡𝑡)                             

 

                                                       𝒑𝒑𝑛𝑛  

Figure 2.5: CS-UWB analog demodulation block diagram         

                             

The detected symbol is given by 

𝑏𝑏𝑖𝑖� = 𝑛𝑛𝑐𝑐𝑛𝑛(𝑧𝑧(𝑖𝑖)) 

……..(21) 

Proposed Digital Receiver Design: 

We propose a new demodulation method for CS-UWB receiver in the digital domain. 

In the digital demodulation of the information bearing signal, instead of approximating 

𝒑𝒑𝑛𝑛  discrete vector into an analog version, the remaining information-bearing signal 𝑟𝑟𝑛𝑛(𝑡𝑡) 

and discrete vector 𝒑𝒑𝑛𝑛   are both down-sampled to 𝒓𝒓𝑛𝑛[𝑛𝑛′] and 𝒑𝒑𝑛𝑛𝑠𝑠  respectively, where the 

down-sampling rate is less than the Nyquist rate of the signal. The following equation 

shows the down-sampling operation: 

𝒓𝒓𝑛𝑛[𝑛𝑛′ ] = 𝑟𝑟𝑛𝑛(𝑡𝑡)𝛿𝛿(𝑡𝑡 − 𝑛𝑛′𝑇𝑇𝑛𝑛 ) 

……….(22) 

Where 𝑛𝑛′ = 0,1,2 … … … 𝑁𝑁𝑛𝑛𝑁𝑁𝑓𝑓 𝑄𝑄 − 1. 𝑄𝑄 is the number of samples in each frame such 

that 𝑇𝑇𝑓𝑓 = 𝑄𝑄𝑇𝑇𝑛𝑛 . 𝑇𝑇𝑛𝑛  is the sampling period which greater than the Nyquist sampling period 

i.e. 𝑇𝑇𝑛𝑛 > 𝑇𝑇 . Similarly, for digital demodulation, same number of samples  𝑄𝑄,  are 

downsampled from 𝒑𝒑𝑛𝑛 to 𝒑𝒑𝑛𝑛𝑠𝑠 . 
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  𝑟𝑟𝑛𝑛(𝑡𝑡)                              𝒓𝒓𝑛𝑛                                       ADC                                                                                                                                                                                
          

                                                    𝒑𝒑𝑛𝑛𝑠𝑠  

 

                                                   𝒑𝒑𝑛𝑛 

Figure 2.6: CS-UWB digital demodulation block diagram 

𝒑𝒑𝑛𝑛𝑠𝑠 [𝑞𝑞] = 𝒑𝒑𝑛𝑛[𝑛𝑛]𝛿𝛿 �𝑛𝑛 − 𝑁𝑁
𝑄𝑄𝑞𝑞� 

……………….(23) 

Where 𝑞𝑞 = 0,1,2 … . . 𝑄𝑄. The down-sampled vector 𝒑𝒑𝑛𝑛𝑠𝑠  is then used to demodulate the 

digital received vector 𝒓𝒓. Similar to the analog demodulation method, a decision variable 

is obtained by adding the correlated vector 𝒓𝒓𝑛𝑛  with 𝒑𝒑𝑛𝑛𝑠𝑠  over 𝑁𝑁𝑓𝑓  frames over the each 

symbol duration. 

𝑧𝑧[𝑖𝑖] = � � 𝑟𝑟𝑛𝑛

𝑄𝑄−1

𝑞𝑞=0

𝑁𝑁𝑓𝑓−1

𝑗𝑗 =0

𝑝𝑝𝑛𝑛𝑠𝑠 [𝑞𝑞 − 𝑗𝑗𝑄𝑄 − 𝑖𝑖𝑄𝑄𝑁𝑁𝑓𝑓 ] 

……(24) 

The decision over each demodulated symbol is made as follows: 

𝑏𝑏[𝑖𝑖] = 𝑛𝑛𝑐𝑐𝑛𝑛(𝑧𝑧[𝑖𝑖]) 

………..(25) 

 
 The next section, explains how CS-UWB is implemented in hardware, and its 

challenges.  

Down Sample 

Digital         
Conversion 
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3. CS-UWB Implementation 
 

This chapter describes study of possible compressed sensing and related techniques’ 

hardware implementation methods. The problem formulation of the thesis is also 

explained in the same chapter with proposed method of solution. 

3.1.   Study of CS Hardware Implementations 
 

The concept of compressed sensing relinquishes the dogma of the Nyquist theorem 

which has ruled the entire electronics industry for very long time. It is a relatively new 

concept, with possibilities of application in wide variety of areas. However, one of the 

most challenging tasks in compressed sensing is its hardware implementation. This 

section describes the study of possible hardware implementation methods for compressed 

sensing or related techniques. 

3.1.1. Random Filters:  

 It is based on the concept of compressed sensing, however unlike compressed 

sensing, it is simple and efficient[26]. A fixed random tap FIR filter is convolved with 

incoming signal and then down sampled at a rate lower than the Nyquist rate to get 

compressed output vector. The sampled signal is then reconstructed using greedy 

algorithm such as OMP. 

It is simpler than compressed sensing because it doesn’t require whole signal at once 

for sampling, it is time-invariant, with easy implementation in software and hardware, 

and it can be generalized to streaming and continuous-time signals. 
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Incoming Signal                                                                        O/P vector 

Random Filter                                                                                       

 

 
 
 
 
 
 
 
                  Figure 3.1: Random filter implementation block diagram 

 However, after it early presentation at a conference [26]not much research has been 

reported on random filters. Moreover, authors in the same paper encourage further 

development of random filters with more focus on the tradeoffs between measurements 

and computational costs.  

 

3.1.2. Analog-to-Information Converter (AIC):  

 It is a method to convert streaming analog signals into discrete form without ADC at 

Nyquist rate. Compressed sensing can be implemented using one of the methods  of AIC- 

random sampling, and random demodulation. 

 

3.1.2.1. Random Sampling: 

 In this method, the incoming signal is non-uniformly sampled at an average sampling 

rate, lower than the Nyquist rate. It has two key components- random sampler which is 

implemented in hardware, and information recovery algorithm to reconstruct the sampled 

signal. Random sampling is implemented using Random Sampling Analog to Digital 

converter (RSADC) [27]. In RSADC non-uniform samples are taken of the incoming 

signal using pseudo-random generator clock which operates at or greater than Nyquist 

rate, to capture very short duration samples of the signal. However, these closed samples 

are taken with low probability. Figure 3.2 shows the block diagram of random sampling 

implementation. 

 

 

Convolution Down-
sampling  
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               Figure 3.2: Random sampling based compressed sensing 

The original signal is reconstructed using a recovery algorithm which is much faster 

than the compressed sensing algorithms. The naïve use of RSADC to wideband analog 

signal doesn’t take advantage the designed algorithm. The wideband analog signal is 

sampled at an average rate, lower than the Nyquist rate, and acquired low rate samples 

are used to recover the original signal. A segmented AIC has been proposed in [28], 

which segments the signal before applying compressed sensing. 

Implementation model for RSADC has been suggested in [29]. However, operation of 

some of the switching devices causes undesired behavior. Moreover, synchronization of 

the sampling part and recovery part must be perfect for successful reconstruction.  

 

3.1.2.2. Random Demodulation:  

It makes use of the existing state-of-art of electronics components. It uses mainly 

mixer, integrator, and low-rate ADC for implementation of AIC[24]. Figure 3.3 shows 

that the incoming wideband signal is multiplied by a predetermined pseudo-random (PN) 

sequence followed by low-pass filtering and low-rate ADC. PN sequence (±1) with chip 

rate at or greater than Nyquist rate spreads the signal on entire spectrum, so that it doesn’t 

get destroyed by the next stage. It changes the polarity of the streaming signal.  

The key point to note in this method is that demodulation of the incoming signal 

using PN sequence (±1) is much easier to implement in hardware than sampling it at the 

Nyquist rate[13]. Thus, it can be implemented using easily available components.  

 

   I/P Signal                                                                            O/P 

                                                                                             Signal                                                                                           

         

RSADC 

 

Reconstruction  

PN 
Generator 
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Incoming     ADC                                                                                     
Signal                                                                     O/P                                                                                                                                                     
              PN                   vector
          Sequence                                                   

Dist. Amp ADC

Dist. Amp ADC

Dist. Amp ADC

Reconstruction
Received 

Signal

              

 

 
                                                                     

         

       Figure 3.3: Random demodulation based compressed sensing 

                           

The reconstruction is done using convex optimization algorithms. However, slower 

sampling rate and complex recovery algorithm are some of the limitations of the random 

demodulation AIC method. 

 

3.1.3. Distributed Amplifiers:  

An alternative to the mixer-integrator implementation is suggested in[17]. Distributed 

Amplifiers (DA) can be used for analog compressed sensing followed by low rate ADCs. 

An implementation diagram of DA is shown in figure 3.4. 

A DA consists of multiple repeated taps, each containing a section of micro-strip 

input and output transmission lines, and the gain cells. There are basically three 

advantages of DA: characteristic impedance of high frequencies changes very slowly, a 

time delay of very short duration (50ps) can be achieved, and gain coefficient scan be re-

configured to change the random coefficients of the measurement matrix.    

 

 

  

 

 

                       Figure 3.4: Receiver structure based on Distributed Amplifiers [17] 

Analog 
Filter 
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However, the concept of DA has been proposed for a noiseless environment for the 

sake of simplicity[17]. It is suggested that the performance of the system will degrade 

substantially in Gaussian noise environment and the authors encourage study on the 

signal reconstruction for noisy channels. Moreover, the effect of nonlinearity has also 

been neglected for the simple design of the system. The non-linearity if considered may 

produce undesired components in the coefficients of the gain cells. 

 

3.2.   Other Implementation Challenges 
 

Another challenge for CS-UWB is the implementation of the measurement matrix. 

The most common distribution for measurement matrix that satisfies the incoherence 

property and R.I.P property of the compressed sensing is the Gaussian distribution. 

However, it is also the most difficult to implement in the hardware[19]. 

Therefore[13, 24], uses Maximum-Length Linear Feedback Shift Register (MLFSR) 

which produces +1/-1 values at the Nyquist rate of the signal. However [19], uses an 

analog friendly hadamard transform, which is comparatively easier to implement in 

hardware.  In [30], independent identically distributed(i.i.d.) Bernoulli random 

distribution is used for its measurement operator. 

The above mentioned hardware challenges are related mainly to the component level 

of CS-UWB implementation. However, for successful reconstruction of the sampled 

signal it requires 𝑀𝑀 number of mixer-integrator parallel branches. In case of UWB, this 

𝑀𝑀  may be very large. The structural problem is the main part of this thesis and is 

discussed in next section in detail.  
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3.3.   Problem Formulation 
 

This thesis identifies its problem in the structural implementation of the measurement 

matrix Φ, which requires a large number 𝑀𝑀 of mixer and integrator branches to obtain a 

reduced length vector 𝒚𝒚. This problem is illustrated below. 

If 𝒙𝒙 is a discrete, finite length, noise-free UWB frame long signal of length 𝑁𝑁, and 

sparsity order 𝐾𝐾 , then the following matrix representation shows that every measurement 

sample is the inner product between each row vector  φm,N  of measurement matrix Φ and 

column long vector 𝒙𝒙 where 𝑛𝑛 = 1,2 … . , 𝑀𝑀  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
𝑦𝑦4
 .
 .
 .
 .
 .

𝑦𝑦𝑀𝑀⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜑𝜑1,1    𝜑𝜑1,2    𝜑𝜑1,3                                                      𝜑𝜑1,𝑁𝑁
𝜑𝜑2,1    𝜑𝜑2,2    𝜑𝜑2,3                                                      𝜑𝜑2,𝑁𝑁
𝜑𝜑3,1    𝜑𝜑3,2    𝜑𝜑3,3                                                     𝜑𝜑3,𝑁𝑁

… … … … … … … … … … … … … … … … … … . .
… … … … … … … … … … … …

 
 

… … … … … … … … … … … … … … … … . .
 

𝜑𝜑𝑀𝑀,1    𝜑𝜑𝑀𝑀,2    𝜑𝜑𝑀𝑀,3                                                        𝜑𝜑𝑀𝑀,𝑁𝑁  ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
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.
.
.
.
.
.
.
.
.
.
.

𝑥𝑥𝑁𝑁−1
𝑥𝑥𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

             Figure 3.5: Compressed Sensing matrix representation 

The above matrix can be represented in hardware using 𝑀𝑀  mixers and integrator 

circuits in the figure 3.6. 
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     Figure 3.6: Hardware implementation of CS-UWB 

Consider an example of a discrete length UWB multipath-frame of 𝑁𝑁 = 1200 with 

sparsity order of 𝐾𝐾 = 35%. then, the required number of measurement samples 𝑀𝑀 can be 

given by the equation 𝑀𝑀 ≥ 𝑐𝑐𝐾𝐾𝑙𝑙𝑐𝑐𝑐𝑐 �𝑁𝑁
𝐾𝐾

�, with 𝑐𝑐 = 1, such that it satisfies R.I.P. property 

and meets the incoherence criterion between the measurement matrix and the basis 

matrix. In this case, 𝑀𝑀  is approximately found to be 440, which is very large as far as the 

hardware complexity of the system is concerned.  
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A parallel segmented compressed sensing method is proposed in [30] in the context 

of cognitive radio. It divides the signal into smaller segments before compression. Then, 

it rearranges the samples in a long vector before reconstruction. Therefore, each segment 

now requires lesser number of measurement samples. Moreover, the performance of the 

system improves with increased number of samples. A similar work has been proposed in 

[30]. However, segmenting the signal comes at the cost of increased sensing time. It 

requires windowing function for segmenting the signal, which requires fine timing 

precision. Additionally, each sub-sample in above mentioned papers collects incomplete 

information of the signal. Our proposed method is similar in approach but different and 

very specific to UWB signal structure. 

 

3.4.   Proposed Method 
  

The conventional method discussed in section 2.4 uses CS to collects 𝑀𝑀 samples from 

each frame of the pilot symbol, and reconstructs the multipath frame template after 

ensemble averaging over 𝑁𝑁𝑓𝑓  frames. The reconstructed multipath-frame template is then 

used to demodulate the remaining information bearing signal by using integrate and 

dump operation. The number 𝑀𝑀 in the conventional method is found to be very large for 

hardware implementation. 

 Therefore, we propose a different reconstruction method which significantly reduces 

the number of mixer and integrator branches 𝑀𝑀, and also improves the performance of 

the system for the same 𝑀𝑀.  

We propose a joint frame reconstruction method, which exploits the unique symbol 

structure of the UWB signal. As we have discussed, a UWB symbol consists of a number 

of frames which carry the same information every 𝑇𝑇𝑓𝑓  time period. The proposed method 

collects 𝑀𝑀 measurement samples from each frame, and stacks them in a long sequence 

before reconstruction. The simulation results show the efficiency of the proposed method. 
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Considering the same CS-UWB system as mentioned in section 2.4,  

𝑝𝑝𝑘𝑘 (𝑡𝑡) = 𝑏𝑏𝑖𝑖 �
𝑘𝑘

𝑁𝑁𝑓𝑓
� 𝑝𝑝ℎ (𝑡𝑡) +  𝑛𝑛(𝑡𝑡) 

……….(26) 

Where 𝑝𝑝𝑘𝑘 (𝑡𝑡) is the 𝑘𝑘𝑡𝑡ℎ  received pilot frame and 𝑘𝑘 = 1,2,3 … … . 𝑁𝑁𝑝𝑝 𝑁𝑁𝑓𝑓  

In the proposed method, the elements of the measurement matrix are also chosen 

from identically distributed Gaussian random variables with zero mean and 1 𝑁𝑁⁄  

variance. Each frame is sampled by a different Φ. Therefore, for 𝑘𝑘𝑡𝑡ℎ  frame,  Φk can be 

attributed as a measurement matrix with the dimension 𝑀𝑀 × 𝑁𝑁.  Consider 𝑁𝑁𝑝𝑝 = 1, 

for the simplicity to understand the method. However, it can be extended to  𝑁𝑁𝑝𝑝 > 1, 

where the same method can be repeated for frame reconstruction for each pilot 

symbol. Thus, 𝑘𝑘 = 1,2,3 … … . 𝑁𝑁𝑓𝑓  

The following equation shows the CS operation over 𝑘𝑘𝑡𝑡ℎ frame. 

𝒚𝒚𝒌𝒌 = Φk𝒑𝒑𝒌𝒌 

……(27) 

 Where 𝒚𝒚𝒌𝒌 = [𝑦𝑦𝑘𝑘1  𝑦𝑦𝑘𝑘2  𝑦𝑦𝑘𝑘3 … … 𝑦𝑦𝑘𝑘𝑀𝑀 ]𝑇𝑇,  and contains 𝑀𝑀 samples from each 𝒑𝒑𝒌𝒌 frame.  

The proposed reconstruction method stacks the collected samples from each frame as: 

𝒚𝒚 = [𝒚𝒚1
𝑻𝑻 𝒚𝒚2

𝑻𝑻 𝒚𝒚𝟑𝟑
𝑻𝑻 … … 𝒚𝒚𝑘𝑘

𝑻𝑻 … … 𝒚𝒚𝑵𝑵𝒇𝒇
𝑻𝑻 ]𝑇𝑇 

….….(28) 

The measurement matrix used for each frame is also stacked in similar manner to get 

the actual reconstruction matrix: 

V= [𝚽𝚽1 𝚽𝚽2 𝚽𝚽3 … 𝚽𝚽k … 𝚽𝚽N f ]
𝑇𝑇 

……..(29) 

The objective function for reconstruction is again based on 𝑙𝑙1 − 𝑛𝑛𝑐𝑐𝑟𝑟𝑛𝑛  optimization 

process as follows: 
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𝒑𝒑𝑛𝑛 = arg min‖𝒑𝒑𝑘𝑘 ‖1           𝑛𝑛𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡      𝒚𝒚 =  V𝒑𝒑𝑘𝑘  

…..(30) 

In this thesis, we used orthogonal matching pursuit (OMP) algorithm for the 

reconstruction. The sampled vector 𝒚𝒚  and the reconstruction matrix 𝐕𝐕  are the only two 

main input requirements for the OMP algorithm. Similar to the section 2.4,the 

reconstructed and analog approximated frame 𝑝𝑝𝑛𝑛(𝑡𝑡)  is used to demodulate the 

information-bearing signal. 

Thus, 

𝑧𝑧(𝑖𝑖) = � � 𝑟𝑟(𝑡𝑡)
(𝑗𝑗 +1)𝑇𝑇𝑓𝑓 +𝑖𝑖𝑇𝑇𝑛𝑛

𝑗𝑗 𝑇𝑇𝑓𝑓 +𝑖𝑖𝑇𝑇𝑛𝑛

𝑁𝑁𝑓𝑓 −1

𝑗𝑗 =0

𝑝𝑝𝑛𝑛(𝑡𝑡 − 𝑗𝑗𝑇𝑇𝑓𝑓 − 𝑖𝑖𝑇𝑇𝑛𝑛) 

…….(31) 

The following section shows the performance and complexity comparisons between 

the conventional method and proposed method. 
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4. Results 
 The results of the proposed method are presented in this chapter. It begins with the 

description of simulation setup. The performance for the mentioned method is presented 

with graphs. 

4.1.   Simulation Setup 
 

   This section describes various parameters setup for Matlab simulations. The 

proposed method is compared with the CS-UWB time sparsity method shown in [22], 

which will be referred to as the conventional CS-UWB method. In the simulation, the 

Gaussian monocycle pulse is used with time width 𝑇𝑇𝑤𝑤 = 0.6𝑛𝑛𝑛𝑛. Each UWB symbol has 

𝑁𝑁𝑓𝑓 = 5 number of frames with 𝑇𝑇𝑓𝑓 = 200𝑛𝑛𝑛𝑛  as the frame duration. Thus, the time 

duration of the symbol is 𝑇𝑇𝑛𝑛 = 1𝜇𝜇𝑛𝑛𝜇𝜇𝑐𝑐. Each burst of the signal consists of 𝑁𝑁𝑖𝑖 = 1000 

information-bearing symbols and 𝑁𝑁𝑝𝑝 = 1 number of pilot symbols or otherwise stated. 

For simplicity, the system is modeled for a single user, with only one pulse in each frame.  

 The I-UWB channel is modeled as the indoor residential LOS channel (CM1) mentioned 

in[20]. Various parameters for the used channel model are set according to the 

recommended values in[20]. Inter-Frame Interference (IFI) is assumed to be absent so 

that  𝑇𝑇𝑓𝑓 ≥ 𝑇𝑇𝑤𝑤 + 𝜏𝜏𝑛𝑛𝑎𝑎𝑥𝑥 where 𝜏𝜏𝑛𝑛𝑎𝑎𝑥𝑥  is the maximum delay spread of the channel, and 𝑇𝑇𝑤𝑤  is 

the pulse duration.  In the simulation setup, frequency dependency path loss is taken out 

of the used channel model[20] for the sake of simplicity. This means that only real-

valued impulse response is considered.  

In the simulation, 2-PAM modulation is used in which independent binary symbols 

are generated with equal probability. The system sampling frequency is set to 20GHz , 

which is higher than the Nyquist frequency of the UWB pulse. It gives a time resolution 

of 50ps. 
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The number of channel realizations is kept at 4000 (for each channel model) or 

otherwise stated. The channel is assumed to be invariant over a burst of symbols. Bit 

error rate (BER) is used as the performance criterion with respect to signal-to-noise ratio. 

However, performance comparisons are done on averaging the (BER) over the total 

number of channel realizations.  

The number of samples in each multipath frame is N = 1200 with sparsity K = 35%, 

the minimum number of samples required from each frame is 𝑀𝑀𝑛𝑛𝑖𝑖𝑛𝑛 = 440. Orthogonal 

Matching Pursuit(OMP) algorithm is used for sparse signal recovery. The number of 

iteration is set to 300 for residual energy of 𝜀𝜀 = 10−4  [31]. The high value of 𝜀𝜀 may 

result in fast processing of the algorithm, however, the results may not be accurate. On 

the other hand, if the value is kept very low, then the algorithm takes a very long time to 

process results. The term ‘Compression Ratio’ is used quite often which means the ratio 

of actual number M and length of a frame N. The following section compares the 

performance of conventional compressed sensing based ultra-wideband (CCS-UWB) 

receiver and proposed compressed sensing based ultra-wideband (PCS-UWB) for 

different compression ratios and number of frames per symbol. 

 

4.2.  Performance Comparisons 
 

The performance comparison can be divided into the following categorizes based on 

the cases: 

Case 1: Compression ratio 𝑀𝑀𝑁𝑁 <35% and pilot symbol 𝑁𝑁𝑝𝑝 = 1 

 In this case, the compression ratio 𝑀𝑀 𝑁𝑁⁄  is kept below the approximate sparsity level 

𝐾𝐾 = 35% of the UWB noiseless frame. Figure 4.1 shows the performance comparison 

for both the conventional CS-UWB (CCS-UWB) and proposed CS-UWB (PCS-UWB). It 

is obvious that the conventional method would not be able to recover the estimated frame 
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at 5% of compression ratio because it fails to fulfill the criterion of compressed sensing 

reconstruction of 𝑀𝑀 ≥ 𝑐𝑐𝐾𝐾𝑙𝑙𝑐𝑐𝑐𝑐10(𝑁𝑁
𝐾𝐾). However, at 10% and 20% of the compression ratio,  

 

 

 

 

 

 

 

 

 

 

 

   Figure 4.1:Performance graph for compression ratio less than 35% 

the larger components of the frame are reconstructed which provide reasonable 

performance even at low compression region. However, the proposed method 

successfully performs even with low compression ratio of 5% as it increases its number 

of samples to 𝑀𝑀𝑁𝑁𝑓𝑓   by stacking  𝑀𝑀  samples from each frame.  

Thus, for lower compression ratio, the proposed method still successfully estimates 

the channel frame. The performance of both methods improves as we increase 

compression ratio from 𝑀𝑀 𝑁𝑁⁄ = 5% to 𝑀𝑀 𝑁𝑁⁄ = 20% which also shows that an increase 

in the number of projections improves the performance.  

 

Case 2: Compression ratio 𝑀𝑀𝑁𝑁 >35% and pilot symbol 𝑁𝑁𝑝𝑝 = 1 
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In this case, performance is compared for compression ratio 𝑀𝑀 𝑁𝑁⁄  greater than 35%. 

Figure 4.2, shows that both methods successfully perform for increased compression ratio  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Performance graph for compression ratio more than 35% 

as both of them fulfils the compressed sensing criteria. However, the key point to note 

here is that the performance difference between both methods for each compression. 

For 𝑀𝑀 𝑁𝑁⁄ = 40% , proposed method outperforms the conventional method. However, 

as the compression ratio increases from  𝑀𝑀 𝑁𝑁⁄ = 40%  to  𝑀𝑀 𝑁𝑁⁄ = 60% , proposed 

method still performs better but the performance gap decreases. 

 

Case 3: Compression ratio 𝑀𝑀
𝑁𝑁 =10%  and  𝑀𝑀

𝑁𝑁 =20%  with  𝑁𝑁𝑓𝑓 = 5 and 15 number of 

frames in each symbol for both compression ratios. 

 In this case, the compression ratio 𝑀𝑀 𝑁𝑁⁄  is kept constant at 10% and 20 %. However, 

the number of frames per symbol is varied for both compression ratios. Figure 4.3 shows 
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the performance comparison for both conventional CS-UWB and proposed CS-UWB 

under mentioned criteria. As the number of frames increases the performance of the 

proposed method and conventional CS method improves.  

 

Figure 4.3: Performance graph for different number frames in each symbol 

 

The figure above shows the comparison for frame size 𝑁𝑁𝑓𝑓 = 5 or 15 . It is concluded 

that the performance can be increased for the same hardware complexity but at the cost of 

decreased data rate.   

 

4.3.  Hardware Comparison 
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 The key advantage of the proposed method over conventional method is that the 

proposed method performs better even for low compression ratio. The following table 

shows the comparison of using different compression ratios on the hardware reduction 

and performance gain/reduction. The comparisons are made at approximately constant 

performance criterion of  

BER≈ 10−2 

𝑀𝑀𝑛𝑛𝑖𝑖𝑛𝑛 = 440 

Parallel Structures’ Reduction (%) =
𝑀𝑀𝑛𝑛𝑖𝑖𝑛𝑛 −𝑀𝑀

𝑀𝑀𝑛𝑛𝑖𝑖𝑛𝑛
× 100 

Performance Improvement (dB) = SNR of PCS-UWB-SNR of conventional CCS-UWB 

The second column in the table 4.1 shows the reduction in hardware complexity 

achieved with reduced number of parallel structures. The third column shows 

performance comparison with respect to the conventional CS-UWB for same M, number 

of parallel branches. The performance gap between CCS-UWB and PCS-UWB decreases 

with increase in M. Comparison of hardware complexity and performance in 

different compression ratios 

Table 4.1                                                                                                                         
Comparison of hardware complexity and performance in different compression ratios 

M Parallel Structures’ 
Reduction compared to 

𝑀𝑀𝑛𝑛𝑖𝑖𝑛𝑛   
(Approx %) 

Performance 
Improvement compared to 

CCS-UWB for same M 
(Approx dB) 

60 86 Very high 

120 72 5 

240 45 2 
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5. Conclusion and Future Work 
 

This thesis provides an overview of UWB and CS-UWB receiver. An introduction to 

CS and its implementation challenges. The three main contributions of this thesis are as 

follows: 

1. A new CS-UWB digital receiver design is proposed. It requires CS-UWB 

implementation at low-rate processing in the digital domain. 

2. A study of CS hardware implementation, mainly of analog signals. The 

implementation methods are explained with their working, advantages, and 

challenges. 

3. A new reconstruction algorithm is proposed for CS-UWB implementation which 

not only reduces the hardware complexity of the system but also improves the 

performance. It is an incremental advancement to reduce the hardware complexity 

of the system. 

Compressed sensing has applications in various fields of signal processing. CS-UWB 

also has its similarity to cognitive radio which requires very wide bandwidth receiver 

processing. Thus, the future work related to this thesis can be described below: 

1. The proposed digital receiver design can be applied to other high bandwidth 

system where Nyquist rate sampling is a limitation.  

2. The proposed reconstruction algorithm can be extended to CS-UWB multiuser 

scenario. However, it will also require more processing. 

3. Similar to the UWB, other high bandwidth technologies such as cognitive radio, 

faces similar CS based hardware challenges. The proposed receiver design or 

reconstruction algorithm can also be applied to cognitive radio or wireless sensor 

networks with relevant modifications. 
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Appendices 
 

Appendix A 
MATLAB script files used for the simulation for case 1 

function [SNR cber pber]= 
CSUWB_BELOW_SPARSITY(crs,Np,Nf,CMN,num_channels) 
  
%CSUWB_BELOW_SPARSITY(cr,Np,Nf,ch,num_channel) 
%CSUWB_BELOW_SPARSITY: Compressed Sensing based Ultra-wideband system 
with  
%                      sensing matrix operating below the sparsity level of 35% 
% Inputs 
%crs               Compression Ratio (M/N), default [.05,.10,.20] 
%Np               Number of pilot symbols, default 1  
%Nf               Number of frames in each symbol, default 5 
%CMN              Type of channel according to the Reference 21,default 1 
%num_channel      Number of channel realizations, default 4000 
%Outputs 
% Bit Error rate performance of CCS-UWB and PCS-UWB for  
% different comprestion ratios 
%SNR               The range of Signal to Noise ratio 
%cber              CCS-UWB  bit error rate for different compression ratios 
%pber              PCS-UWB bit error rate for different compression ratios 
%Description 
%CSUWB_BELOW_SPARSITY gives BER performance graph for conventional  
%compressed sensing ultra-wideband (CCS-UWB) and proposed compressed 
%sensing  ultra-wideband (PCS-UWB) for different compression ratios (M/N) 
  
  
if nargin<5 
    num_channels=4000; 
end 
  
if nargin<4 
    CMN=1; 
end 
if nargin<3 
    Nf=5; 
end 
if nargin<2 
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    Np=1 
end 
if nargin<1 
    crs=[0.05 0.1 0.2] 
end 
   
%###################PARAMETERS #################################### 
  
Fs=20e9;                   %Digital frequency 
fp=2e9;                    %Pulse frequency   
Tc=10e-9;                  %Chip Width 
Tf=200;                    %Frame duration in Nanoseconds 
Ni=1000;                   %Number of information symbols 
Ns=Np+Ni;                  %Total number of symbols 
SNR=[-11:1:9];            % SNR in dB 
   
%############PULSE GENERATION ###################################### 
  
tc = gmonopuls('cutoff', fp);      % Pulse width parameter 
Tp  = -2*tc : 1/Fs : 2*tc;         % Actual pulse width 
p = gmonopuls(Tp,fp);              % UWB Pulse 
  
%############CHIP GENERATION ####################################### 
  
chiptime=0:1/Fs:Tp-1/Fs;           % Chip samples 
chip=zeros(length(chiptime),1);     
chip(1:length(p))=(p');            % UWB Chip 
  
%########## UWB CHANNEL ########################################## 
  
uwb_h=uwb_channel(CMN,num_channels);   % Reference 21 
  
  
%############# SIMULATION ########################################### 
  
  
for cr=1:length(crs)                % Iteration for each compression ratio 
          
for snrdb=1:length(SNR)            % Iteration for each SNR 
       for z=1:num_channels         % Number of channel realizations 
         
%############ FRAME GENERATION ##################################### 
  
frame1=conv(uwb_h(:,num_channels),chip); 
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frame=frame1(1:1200);               
N=length(frame); 
  
 %############## PILOT SIGNAL ######################################### 
  
sig=zeros(Nf*N,1); 
  
for j=1:Nf 
    
    sig((j-1)*N+1:j*N,1)=frame;   
end 
  
for n=1:Np 
    s2(1:length(sig),n)=sig;                             
end 
  
  
%######### TRANSMITTED SIGNAL ################################### 
  
s=single(zeros(Ns*length(sig),1)); 
s(1:Np*length(sig))=s2(:); 
Mod=(sign(randn(Ni,1)));                    % Modulation 
s3=single(sig*Mod(1:Ni,1)');                
s(Np*length(sig)+1:Ns*length(sig),1)=s3(:);  % Modulated TX signal 
  clear s3; 
   
%############ RX SIGNAL GENERATION ################################# 
rt=SNR(snrdb);                            % SNR value 
len=length(s);                            % Length of TX signal 
awg=awgnnoise(rt,s,len,fp,Fs);            %AWG Noise generation 
r=s+awg;                                  % RX signal with AWG Noise 
clear s; 
  
 %############Reconstruction Methods%############ 
  
M=single(round(crs(cr)*N));                 % Number of reduced dimention 
  
cy=zeros(M,1); 
py=zeros(M*Nf,1); 
cfrmrec=zeros(N,1); 
pfrmrec=zeros(N,1); 
pPhi=zeros(M*Nf,N); 
cPhi=randn(M,N); 
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for l=1:Nf 
        if l==1; 
    pPhi((l-1)*M+1:l*M,1:N)=cPhi; 
    else 
        pPhi((l-1)*M+1:l*M,1:N)=randn(M,N); 
    end 
end 
  
%############# RECEIVER #############################################  
  
for n=1:Np 
      for j=1:Nf 
     
          rp(1:N,1)=r((n-1)*length(sig)+(j-1)*N+1:(n-1)*length(sig)+j*N,1); 
      
         cy=cy+cPhi*rp;                                         % CCS-UWB 
         py((j-1)*M+1:j*M,1)= pPhi((j-1)*M+1:j*M,1:N)*rp(1:N);  % PCS-UWB    
  
 %########### RECONSTRUCTION ######################################  
end 
end 
  
[cfrmrec(1:N,1),iters, activationHist]=SolveOMP(cPhi,cy/Nf,N,[],0,0);                      
[pfrmrec(1:N,1),iters, activationHist]=SolveOMP(pPhi,py,N,300,[],0,0,1e-4);  
   
%###############Demodulation################# 
  
for n=1:Ni 
     for j=1:Nf 
                        
          
         cfrm(1:N,j)=r((n+Np-1)*length(sig)+(j-1)*N+1:(n+Np-
1)*length(sig)+j*N).*cfrmrec; 
         cfrmsum(1,j)=sum(cfrm(:,j)); 
          
          
          
         pfrm(1:N,j)=r((n+Np-1)*length(sig)+(j-1)*N+1:(n+Np-
1)*length(sig)+j*N).*pfrmrec; 
         pfrmsum(1,j)=sum(pfrm(:,j)); 
          
     end 
      
     csymb(n)=sign(sum(cfrmsum(1,:)/N)); 
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      psymb(n)=sign(sum(pfrmsum(1,:)/N)); 
      
 end 
  
 clear r; 
 clear ynew; 
 clear frmrec; 
 clear frmrec2; 
  
 %############ ERROR CALCULATION ################################### 
  
 ccnterr(z,snrdb)=length(find(Mod-csymb'));           
  
 pcnterr(z,snrdb)=length(find(Mod-psymb'));  
  
end 
  
end 
 %############# BIT ERROR RATE ###################################### 
  
cber(cr,1:snrdb)=sum(ccnterr(:,:))/(z*(Ni));         %BER for CCS-UWB 
  
 pber(cr,1:snrdb)=sum(pcnterr(:,:))/(z*(Ni));        %BER for PCS-UWB 
end 
  
  
%########### PERFORMANCE PLOTS #################################### 
   
figure, 
semilogy(SNR,cber(1,1:snrdb),'k-*',SNR,pber(1,1:snrdb),'k-
s',SNR,cber(2,1:snrdb),'k:+',SNR,pber(2,1:snrdb),'k:s',SNR,cber(3,1:snrdb),'k--
+',SNR,pber(3,1:snrdb),'k--s') 
title('BER Performance with Compression ratio (M/N) less than 35%') 
xlabel('SNR (dB)') 
ylabel('Average BER') 
legend( 'CCS-UWB 5%', 'PCS-UWB 5%','CCS-UWB 10%', 'PCS-UWB 10%','CCS-
UWB 20%', 'PCS-UWB 20%') 
axis([-11 9 1e-5 1]) 
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Appendix B 
MATLAB script files used for the simulation for case 2 

function [SNR cber pber]= 
CSUWB_ABOVE_SPARSITY(crs,Np,Nf,CMN,num_channels) 
  
 %CSUWB_ABOVE_SPARSITY(cr,Np,Nf,ch,num_channel) 
%CSUWB_ABOVE_SPARSITY: Compressed Sensing based Ultra-wideband system 
with  
%                      sensing matrix operating above the sparsity level of 35% 
% Inputs 
%crs              Compression Ratio (M/N), default [0.4 0.6] 
%Np               Number of pilot symbols, default 1  
%Nf               Number of frames in each symbol, default 5 
%CMN              Type of channel according to the Reference 21,default 1 
%num_channel      Number of channel realizations, default 1000 
%Outputs 
% Bit Error rate performance of CCS-UWB and PCS-UWB for  
% different comprestion ratios 
%SNR               The range of Signal to Noise ratio 
%cber              CCS-UWB  bit error rate for different compression ratios 
%pber              PCS-UWB bit error rate for different compression ratios 
%Description 
%CSUWB_ABOVE_SPARSITY gives BER performance graph for conventional  
%compressed sensing ultra-wideband (CCS-UWB) and proposed compressed 
%sensing  ultra-wideband (PCS-UWB) for different compression ratios (M/N) 
if nargin<5 
    num_channels=2; 
end 
  
if nargin<4 
    CMN=1; 
end 
if nargin<3 
    Nf=5; 
end 
if nargin<2 
    Np=1 
end 
if nargin<1 
    crs=[0.4 0.6] 
end 
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%#################PARAMETERS ####################################### 
  
Fs=20e9;                   %Digital frequency 
fp=2e9;                    %Pulse frequency   
Tc=10e-9;                  %Chip Width 
Tf=200;                    %Frame duration in Nanoseconds 
Ni=2;                   %Number of information symbols 
Ns=Np+Ni;                  %Total number of symbols 
SNR=[-17:1:-3];            % SNR in dB 
   
%###########PULSE GENERATION ###################################### 
  
tc = gmonopuls('cutoff', fp);      % Pulse width parameter 
Tp  = -2*tc : 1/Fs : 2*tc;         % Actual pulse width 
p = gmonopuls(Tp,fp);              % UWB Pulse 
  
%############CHIP GENERATION ####################################### 
  
chiptime=0:1/Fs:Tp-1/Fs;                % Chip samples 
chip=zeros(length(chiptime),1);     
chip(1:length(p))=(p');            % UWB Chip 
  
%############ UWB CHANNEL ########################################## 
  
uwb_h=uwb_channel(CMN,num_channels); 
 
%############# SIMULATION ########################################### 
  
 for cr=1:length(crs)                % Iteration for each compression ratio 
          
for snrdb=1:length(SNR)            % Iteration for each SNR 
       for z=1:num_channels         % Number of channel realizations 
         
%############ FRAME GENERATION ##################################### 
  
frame1=conv(uwb_h(:,num_channels),chip); 
frame=frame1(1:1200);               
N=length(frame); 
   
%############# PILOT SIGNAL ######################################### 
  
sig=zeros(Nf*N,1); 
  
for j=1:Nf 
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    sig((j-1)*N+1:j*N,1)=frame;   
end 
  
for n=1:Np 
    s2(1:length(sig),n)=sig;                             
end 
  
%############ TRANSMITTED SIGNAL ################################### 
  
s=single(zeros(Ns*length(sig),1)); 
s(1:Np*length(sig))=s2(:); 
Mod=(sign(randn(Ni,1)));                    % Modulation 
s3=single(sig*Mod(1:Ni,1)');                
s(Np*length(sig)+1:Ns*length(sig),1)=s3(:);  % Modulated TX signal 
  clear s3; 
  
%############ RX SIGNAL GENERATION ################################# 
rt=SNR(snrdb);                            % SNR value 
len=length(s);                            % Length of TX signal 
awg=awgnnoise(rt,s,len,fp,Fs);            %AWG Noise generation 
r=s+awg;                                  % RX signal with AWG Noise 
clear s; 
  
  
%############Reconstruction Methods%############ 
  
M=single(round(crs(cr)*N));                 % Number of reduced dimention 
  
cy=zeros(M,1); 
py=zeros(M*Nf,1); 
cfrmrec=zeros(N,1); 
pfrmrec=zeros(N,1); 
pPhi=zeros(M*Nf,N); 
cPhi=randn(M,N); 
  
for l=1:Nf 
        if l==1; 
    pPhi((l-1)*M+1:l*M,1:N)=cPhi; 
    else 
        pPhi((l-1)*M+1:l*M,1:N)=randn(M,N); 
    end 
end 
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%############# RECEIVER #############################################  
  
for n=1:Np 
      for j=1:Nf 
     
          rp(1:N,1)=r((n-1)*length(sig)+(j-1)*N+1:(n-1)*length(sig)+j*N,1); 
      
 %%%%%%%%%%%% Compressed Sampling for ALL 
Methods%%%%%%%%%%%%%% 
         cy=cy+cPhi*rp;                                         % CCS-UWB 
         py((j-1)*M+1:j*M,1)= pPhi((j-1)*M+1:j*M,1:N)*rp(1:N);  % PCS-UWB    
  
 %############ RECONSTRUCTION ######################################  
end 
end 
  
[cfrmrec(1:N,1),iters, activationHist]=SolveOMP(cPhi,cy/Nf,N,[],0,0);                      
[pfrmrec(1:N,1),iters, activationHist]=SolveOMP(pPhi,py,N,300,[],0,0,1e-4);  
  
 %###############Demodulation################# 
  
for n=1:Ni 
     for j=1:Nf 
                        
          
         cfrm(1:N,j)=r((n+Np-1)*length(sig)+(j-1)*N+1:(n+Np-
1)*length(sig)+j*N).*cfrmrec; 
         cfrmsum(1,j)=sum(cfrm(:,j)); 
          
          
          
         pfrm(1:N,j)=r((n+Np-1)*length(sig)+(j-1)*N+1:(n+Np-
1)*length(sig)+j*N).*pfrmrec; 
         pfrmsum(1,j)=sum(pfrm(:,j)); 
          
     end 
      
     csymb(n)=sign(sum(cfrmsum(1,:)/N)); 
      
      psymb(n)=sign(sum(pfrmsum(1,:)/N)); 
      
 end 
  
 clear r; 
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 clear ynew; 
 clear frmrec; 
 clear frmrec2; 
  
 %################### ERROR CALCULATION 
################################### 
  
 ccnterr(z,snrdb)=length(find(Mod-csymb'));           
  
 pcnterr(z,snrdb)=length(find(Mod-psymb'));  
  
end 
  
end 
 %################### BIT ERROR RATE 
###################################### 
  
cber(cr,1:snrdb)=sum(ccnterr(:,:))/(z*(Ni));         %BER for CCS-UWB 
  
 pber(cr,1:snrdb)=sum(pcnterr(:,:))/(z*(Ni));        %BER for PCS-UWB 
end 
  
  
  
%################### PERFORMANCE PLOTS 
#################################### 
  
figure, 
semilogy(SNR,cber(1,1:snrdb),'k-*',SNR,pber(1,1:snrdb),'k-
s',SNR,cber(2,1:snrdb),'k:+',SNR,pber(2,1:snrdb)) 
title('BER Performance for Compression Ratio(M/N) more than 35%') 
xlabel('SNR (dB)') 
ylabel('Average BER') 
legend( 'CCS-UWB 40%', 'PCS-UWB 40%','CCS-UWB 60%', 'PCS-UWB 60%') 
axis([-17 -4 .0001 1]) 
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Appendix C 
 

MATLAB script files used for the simulation for case 3 

function [SNR cberNf1 pberNf1 cberNf2 
pberNf2]=CSUWB_DIFF_FRAMES(crs,Np,Nf1,Nf2,CMN,num_channels) 
  
%CSUWB_DIFF_FRAMES(cr,Np,Nf1,Nf2,ch,num_channel) 
%CSUWB_DIFF_FRAMES: Compressed Sensing based Ultra-wideband system with  
%                   sensing matrix operating for different number of 
%                   frames per symbol for different compression ratios 
%Inputs 
%crs               Compression Ratio (M/N), default [0.1 0.2] 
%Np                Number of pilot symbols, default 1  
%Nf1               Number of frames in each symbol, default 15 
%Nf2               Number of frames in each symbol, default 5, Nf1>Nf2 
%CMN               Type of channel according to the Reference 21,default 1 
%num_channel       Number of channel realizations, default 4000 
%Outputs 
% Bit Error rate performance of CCS-UWB and PCS-UWB for  
% different comprestion ratios 
%SNR               The range of Signal to Noise ratio 
%cberNf1              CCS-UWB Nf1 bit error rate for different compression ratios 
%pberNf1              PCS-UWB Nf1 bit error rate for different compression ratios 
%cberNf2              CCS-UWB Nf2 bit error rate for different compression ratios 
%pberNf2              PCS-UWB Nf2 bit error rate for different compression ratios 
%Description 
%CSUWB_DIFF_FRAMES gives BER performance graph for conventional  
%compressed sensing ultra-wideband (CCS-UWB) and proposed compressed 
%sensing  ultra-wideband (PCS-UWB) for different frames per symbols Nf1 and Nf2 
%for different compression ratios (M/N) 
  
  
if nargin<6 
    num_channels=4; 
end 
  
if nargin<5 
    CMN=1; 
end 
if nargin<4 
    Nf2=5; 
end 
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if nargin<3 
    Nf1=15; 
end 
if nargin<2 
    Np=1 
end 
if nargin<1 
    crs=[0.1 0.2] 
end 
%num_channels=4;CMN=1;  Nf1=15;Nf2=5;Np=1;crs=[0.01 0.05] 
  
%################PARAMETERS ####################################### 
  
Fs=20e9;                   %Digital frequency 
fp=2e9;                    %Pulse frequency   
Tc=10e-9;                  %Chip Width 
Tf=200;                    %Frame duration in Nanoseconds 
Ni=10;                   %Number of information symbols 
Ns=Np+Ni;                  %Total number of symbols 
SNR=[-15 :1:5];             % SNR in dB  
  
%############PULSE GENERATION ###################################### 
  
tc = gmonopuls('cutoff', fp);      % Pulse width parameter 
Tp  = -2*tc : 1/Fs : 2*tc;         % Actual pulse width 
p = gmonopuls(Tp,fp);              % UWB Pulse 
 
%###########CHIP GENERATION ####################################### 
  
chiptime=0:1/Fs:Tp-1/Fs;           % Chip samples 
chip=zeros(length(chiptime),1);     
chip(1:length(p))=(p');            % UWB Chip 
  
%############ UWB CHANNEL ########################################## 
  
uwb_h=uwb_channel(CMN,num_channels);  % Reference 21 
  
%############ SIMULATION ########################################### 
  
  
for cr=1:length(crs)                % Iteration for each compression ratio 
          
for snrdb=1:length(SNR)            % Iteration for each SNR 
       for z=1:num_channels         % Number of channel realizations 
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%############ FRAME GENERATION ##################################### 
  
frame1=conv(uwb_h(:,num_channels),chip); 
frame=frame1(1:1200);               
N=length(frame); 
 
  
%############## PILOT SIGNAL ######################################### 
  
sig=zeros(Nf1*N,1); 
  
for j=1:Nf1 
    
    sig((j-1)*N+1:j*N,1)=frame;   
end 
  
for n=1:Np 
    s2(1:length(sig),n)=sig;                             
end 
  
%############ TRANSMITTED SIGNAL ################################### 
  
s=single(zeros(Ns*length(sig),1)); 
s(1:Np*length(sig))=s2(:); 
Mod=(sign(randn(Ni,1)));                    % Modulation 
s3=single(sig*Mod(1:Ni,1)');                
s(Np*length(sig)+1:Ns*length(sig),1)=s3(:);  % Modulated TX signal 
  clear s3; 
  
  
%############RX SIGNAL GENERATION ################################# 
rt=SNR(snrdb);                            % SNR value 
len=length(s);                            % Length of TX signal 
awg=awgnnoise(rt,s,len,fp,Fs);            %AWG Noise generation 
r=s+awg;                                  % RX signal with AWG Noise 
clear s; 
   
%############Reconstruction Methods%############ 
  
M=single(round(crs(cr)*N));                 % Number of reduced dimention 
  
cyNf1=zeros(M,1); 
pyNf1=zeros(M*Nf1,1); 
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cyNf2=zeros(M,1); 
pyNf2=zeros(M*Nf2,1); 
  
cfrmrecNf1=zeros(N,1); 
pfrmrecNf1=zeros(N,1); 
cfrmrecNf2=zeros(N,1); 
pfrmrecNf2=zeros(N,1); 
  
  
pPhi=zeros(M*Nf1,N); 
  
cPhi=randn(M,N); 
  
for l=1:Nf1 
     
    if l==1; 
    pPhi((l-1)*M+1:l*M,1:N)=cPhi; 
  
    else 
        pPhi((l-1)*M+1:l*M,1:N)=randn(M,N); 
    end 
end 
  
%############# RECEIVER #############################################  
  
for n=1:Np 
     
    for j=1:Nf1 
     rp(1:N,1)=r((n-1)*length(sig)+(j-1)*N+1:(n-1)*length(sig)+j*N,1); 
      
 %%%%%%%%%%%% Compressed Sampling for ALL 
Methods%%%%%%%%%%%%%% 
 if j<=Nf2 
    cyNf2=cyNf2+cPhi*rp;            % Conventional method's Compresed Sampled output 
     
    pyNf2((j-1)*M+1:j*M,1)= pPhi((j-1)*M+1:j*M,1:N)*rp(1:N);      
    Phinf((j-1)*M+1:j*M,1:N)=pPhi((j-1)*M+1:j*M,1:N); 
 end 
     
    cyNf1=cyNf1+cPhi*rp;            % Conventional method's Compresed Sampled output 
     
    pyNf1((j-1)*M+1:j*M,1)= pPhi((j-1)*M+1:j*M,1:N)*rp(1:N);     
  
 %########## RECONSTRUCTION ######################################  
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end 
end 
 [cfrmrecNf2(1:N,1),iters, activationHist]=SolveOMP(cPhi,cyNf2/Nf2,N,[],0,0);                     
% Reconstructed frame (CM) 
[pfrmrecNf2(1:N,1),iters, activationHist]=SolveOMP(Phinf,pyNf2,N,300,[],0,0,1e-4);  
  
 [cfrmrecNf1(1:N,1),iters, activationHist]=SolveOMP(cPhi,cyNf1/Nf1,N,[],0,0);                     
% Reconstructed frame (CM) 
[pfrmrecNf1(1:N,1),iters, activationHist]=SolveOMP(pPhi,pyNf1,N,300,[],0,0,1e-4);  
  
  
%###############Demodulation################# 
  
for n=1:Ni 
     for j=1:Nf1 
                        
         if j<=Nf2 
              
             cfrmNf2(1:N,j)=r((n+Np-1)*length(sig)+(j-1)*N+1:(n+Np-
1)*length(sig)+j*N).*cfrmrecNf2; 
         cfrmsumNf2(1,j)=sum(cfrmNf2(:,j)); 
               
         pfrmNf2(1:N,j)=r((n+Np-1)*length(sig)+(j-1)*N+1:(n+Np-
1)*length(sig)+j*N).*pfrmrecNf2; 
         pfrmsumNf2(1,j)=sum(pfrmNf2(:,j)); 
          
          
         cfrmNf1(1:N,j)=r((n+Np-1)*length(sig)+(j-1)*N+1:(n+Np-
1)*length(sig)+j*N).*cfrmrecNf1; 
         cfrmsumNf1(1,j)=sum(cfrmNf1(:,j)); 
                   
         pfrmNf1(1:N,j)=r((n+Np-1)*length(sig)+(j-1)*N+1:(n+Np-
1)*length(sig)+j*N).*pfrmrecNf1; 
         pfrmsumNf1(1,j)=sum(pfrmNf1(:,j)); 
          
      end 
          
     end 
          
      csymbNf1(n)=sign(sum(cfrmsumNf1(1,:)/N)); 
      psymbNf1(n)=sign(sum(pfrmsumNf1(1,:)/N)); 
       
      csymbNf2(n)=sign(sum(cfrmsumNf2(1,:)/N)); 
      psymbNf2(n)=sign(sum(pfrmsumNf2(1,:)/N)); 
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 end 
  
 clear r; 
  
  
 %###########ERROR CALCULATION ################################### 
  
  ccnterrNf1(z,snrdb)=length(find(Mod-csymbNf1')); 
  pcnterrNf1(z,snrdb)=length(find(Mod-psymbNf1'));  
  
  ccnterrNf2(z,snrdb)=length(find(Mod-csymbNf2')); 
  pcnterrNf2(z,snrdb)=length(find(Mod-psymbNf2'));  
  
  
end 
  
end 
 %########### BIT ERROR RATE ###################################### 
  
 cberNf1(cr,1:snrdb)=sum(ccnterrNf1(:,:))/(z*(Ni)); 
  
 pberNf1(cr,1:snrdb)=sum(pcnterrNf1(:,:))/(z*(Ni)); 
 cberNf2(cr,1:snrdb)=sum(ccnterrNf2(:,:))/(z*(Ni)); 
  
 pberNf2(cr,1:snrdb)=sum(pcnterrNf2(:,:))/(z*(Ni)); 
end 
  
  
semilogy(SNR,cberNf2(1,1:snrdb),'k-+',SNR,cberNf1(1,1:snrdb),'k-
s',SNR,cberNf2(2,1:snrdb),'k:+',SNR,cberNf1(2,1:snrdb),'k:s',SNR,pberNf2(1,1:snrdb),'k
--+',SNR,pberNf1(1,1:snrdb),'k--s',SNR,pberNf2(2,1:snrdb),'k-
.+',SNR,pberNf1(2,1:snrdb),'k-.s') 
title('10%') 
xlabel('SNR (dB)') 
ylabel('Average BER') 
axis([-15 5 .00005 1]) 
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Appendix D 
Permission for using figure 1.1 in the thesis 

 
  
Zimbra Collaboration Suite jodhbirs@mtu.edu 

 

Re: Request for the Copyright 
Permission 

Wednesday, January 19, 2011 2:46:45 
PM 

From:  pavlenko.artem@gmail.com 

To:  jodhbirs@mtu.edu 

Hello Jodhbir, 
 
Yes, you may reprint the figure. Just please mention that it's taken from our website. 
 
Good luck on your thesis! 
 
Best regards, 
Artem Pavlenko, 
Managing Editor, 
iXBTlabs.com (former www.Digit-Life.com) 
 

On Wed, Jan 19, 2011 at 22:38, Jodhbir Singh <jodhbirs@mtu.edu> wrote: 
 

Hello  

  I am Jodhbir Singh,completing a Master's thesis at Michigan Technological University 
entitled "Compressed Sensing Based Ultra-Wideband Communication Hardware 
Reduction." I would like your or Alexander Medvedev (unclesam@ixbt.com) 
permission to reprint in my thesis figure from Alexander Medvedev's following article: 

            Medvedev, A. (2003) Following the IDF: Ultra Wide Band Wireless Data Transfer 
Technology, www.digit-life.com/articles2/uwb/?11789. 
     The figure to be reproduced is Emitted Signal Power vs. Frequency(Hz)  

http://www.digit-life.com/articles2/uwb/?11789�
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The given e-mail address of Alexander Medvedev  is not working. In case I should 
request permission directly from him, then please provide me with his new e-mail address 
or forward this e-mail to him/her. 

The requested permission extends to any future revisions and editions of my thesis, 
including non-exclusive world rights in all languages, and to the prospective publication 
of my thesis by UMI (ProQuest). These rights will in no way restrict republication of the 
material in any other form by you or by others authorized by you. Your or Alexander 
Medvedev permission will also confirm that you own [or Byrds Research & Publishing 
Ltd ] the copyright to the above-described material. 

If these arrangements meet with your approval, please reply to this e-mail with 
agreement. Thank you very much. 

 

Sincerely, 

Jodhbir Singh 

MS candidate 
Department of Electrical and Computer Engineering 
Michigan Technological University 
Houghton, MI 49931 
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