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Abstract

To address the need of increasing fuel economy requirements, automotive Original
Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in
their powertrain line-ups. The turbine-driven technology uses a forced induction device,
which increases engine performance by increasing the density of the air charge being
drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion
chamber, thus increasing engine performance. During the compression process, the air
is heated to temperatures that can cause pre-ignition, resulting in reduced engine
functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to
extract heat from the compresses air. The present research describes the physics and
develops the theoretical equations that define the process. It also develops a 3-D
computational model of the CAC internal flow with condensate using ANSYS® Fluent
and validates the predictions of the 3-D model using measurements from Ford
experimental data. Finally, the research presents a correlation that provides an approach
for designing heat exchangers for practical applications that encounter moisture in the
powertrain air intake air stream. The overall benefit identified is an experimentally
validated simulation methodology to evaluate and design CACs that function outside the

condensate formation zone during vehicle operation modes.

Xi



Introduction

A charge air cooler (CAC) heat exchanger is used in conjunction with gasoline turbo
direct injection (GTDI) internal combustion (IC) engines, as illustrated in Figure 1.1, and
diesel engines to increase combustion output. Engines make use of exhaust gas recovery
(EGR) from the exhaust gas (deisel engine application) or fresh air from the atmosphere
(IC application) to increase air intake density (also refered to as compressed or charge
air) by compressing and cooling air or EGR prior to its entrance into the combustion
chamber. Original Equipment Manufacturers (OEMs) have reported up to a 20% fuel
economy improvement and up to a 15% CO; reduction. OEMs recognize that an 1-4
GTDI provides performance equivalent to that of a V-6 and a V-6 GDTI performs
equivalent to that of a V-8, per the NHTSA! estimates.

Atmospheric air entering the
turbocharger

Figure 1.1 — Schematic of turbocharged engine equipped with a CAC

Reprinted with permission from Ford Motor Company; Internal Report

! National Highway Traffic Safety Administration “2017-2025 Model Year Light Duty Vehicle GHG
Emission and CAFE Standards: Supplemental”



Atmospheric air enters the air-induction tube and is sent through the turbocharger for
compression, as shown in Figure 1.2. The turbocharger and CAC are introduced in the
powertrain system to compress (IC application) or EGR (diesel application) and cool the
air, respectively. The result is denser air, which increases horsepower, improves fuel

economy output, and reduces emissions.

Air Box

74

<

N

Turbocharger

Figure 1.2 — Air flow direction from air induction to engine intake manifold
Reprinted with permission from Ford Motor Company; Internal Report

Eco-boost? GTDI engines deliver compressed, cool, dry air into the combustion chamber.
In gasoline applications, atmospheric air enters through the turbocharger for compression.
Moisture is always present in atmospheric air in the form of water vapor. If the water
vapor is condensed, it can lead to boosted engine operational failures such as misfire due

to ingestion of water into the combustion chamber.

2 Called Ecoboost by Ford Motor Company.



During the compression process, the air is heated to temperatures that can result in
reduced engine functionality, such as pre-ignition engine knock. The introduction of the
CAC is necessary to remove heat after the turbocharging process to cool the compressed

air to the appropriate temperature, thus preventing engine misfire.

The CAC is positioned directly behind the front fascia and in front of the condenser and
radiator, as depicted in Figures 1.3 and 1.4. The air is heated when it is compressed in
the turbocharger before it enters the rectangular cross-section of the horizontal intake tube
of the CAC. While the heat is being removed from the air to achieve the desired exit

temperature, formation of undesirable condensate can occur.

Radiator

Condenser

CAC

Figure 1.3 Figure 1.4

Front fascia and fascia cut away exposing CAC location in vehicle position
Reprinted with permission from Ford Motor Company; Internal Report
The current solution, as discussed in the literature review section, is insufficient for
predicting the amount of condensate that forms and collects in the CAC and air induction
system (AIS) ducts during engine operation. The CAC inlet conditions, temperature,
pressure, relative humidity, and air velocity are well defined and are based on ambient
weather conditions during operation. The CAC exit conditions are defined by specific
vehicle programs and are based on the required engine performance, as dictated by
vehicle driving duty cycles. The CAC is introduced to cool the charged air compressed

by the turbo charger prior to its entrance into the combustion chamber.



Depending on the required exit temperature and pressure, the CAC is sized to reject a
prescribed amount of heat that is generated during the compression process. As the
charged air moves through the CAC, it is cooled down, often resulting in an undesirable

condensate due to the temperature reduction.

Under the condition in which too much condensate is generated and accumulation occurs,
there is a risk of the condensate being pushed into the combustion chamber during
demanding engine loads or maximum velocity with vehicle grade, referred to as a wide-
open throttle (WOT) condition. The ingestion of a critical mass of water into the
combustion chambers can lead to misfire and other adverse effects. Currently, there is
no way to accurately predict the amount of condensate formation during engine operation

or the conditions under which it is formed.

The objective of this research is to study the physics of condensate accumulation in a
horizontal aluminum tube and accurately predict the incident of insipid condensation
across the entire line of the tube. The understanding of this phenomenon will aid in the
proper design of systems that use dry compressed air. During the heat removal process,
unwanted condensate can be formed and may lead to operational error states that can
affect the quality of the end product. The case in which a heat exchanger is used to
remove heat and, thereby, lower the temperature of the compressed air is studied. This
research will result in an experimentally validated simulation methodology to evaluate
and design CAC heat exchangers for practical applications that encounter moisture in the
air stream in cooling systems; heat, ventilation, and air condition (HVAC) systems; and

power process industries.



Literature Review

A detailed review of research on condensate formation of compressed air inside
horizontal tubes was conducted. Dry compressed air is used in many applications,
including engines, paint spraying, driving pneumatic tools, mixing sterile
pharmaceuticals, food processing, and heating and refrigeration systems. Condensate in
these systems can lead to operational error states that can affect the quality of the end
product. The issue of compressed atmospheric air from the immediate environment and
the creation of condensate — because air will always contain moisture in the form of water

vapor — was also reviewed.

There is very little information available on the subject of the creation of condensate in
charge air coolers. Published research on the physical accumulation of condensate in heat

exchanger tubes and its effects on the downstream processes are limited.

Criteria of Condensation within CAC tube
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Figure 2.1 — The criteria for an exampled charge air system,
including turbo-compressor-CAC at 20 degrees ambient
Reprinted with permission from SAE International Report No. 0148-7191



According to Tang (Tang 2011), a criterion is defined for condensation based on the

typical CAC opening condition of 10,000 Pascal and 20°C, as shown in Figure 2.1.

Saturation temperatures increase as pressure ratios increase. Tang asserted that when the
defined operational conditions are met, condensation will occur above the temperature
curves. The highlighted red zone represents the condition currently under investigation.
The subject zone does yield condensation; therefore, additional study is needed. Further,
Tang’s study does not include CFD simulation or experimental correlation of the

condensation mechanism creating a need for added work.

Much of the work that is available is not related to the adverse effects as a result of the
presence of water condensate in the flow stream, addressing instead the use of
condensation as a method of enhancing heat transfer, the removal of water from
compressed air to a level where no condensate can be formed, and any other containments

that are present.

Dalkilic (A. S. Dalkilic and Wongwises 2009) presented a comprehensive body of
research pertaining to condensation creation during internal tube flow. Their research
summarizes condensation studies inside horizontal tubes and the review of different
approaches in determining the heat transfer coefficients. The authors categorize their
research into tube orientation and tube geometry, considering flow patterns and pressure

drop. A summary of their work lists all reviewed correlations.

The authors believe that the study of condensation heat transfer mechanism is unlimited.
The automotive industry would benefit from a better condensation map that more
accurately predicts the flow patterns in the horizontal tubes of the heat exchangers and

how the heat transfer coefficient is affected.

This current research uses the literature review completed by Dalkilic, focusing
specifically on smooth horizontal tubes, and develops a correlation specific to CAC flow

patterns that is impactful to automotive industry applications.



The available research was divided into several categories, as outlined in subsequent

subsections.

Enhancements of heat transfer coefficient

Dalkilic (Amet Selim Dalkilic et al. 2013) investigated heat transfer enhancement
techniques for internal tube flow used by refrigeration, automotive, and process
industries. The study focuses on discovering methods to increase heat flux of flow in
horizontal tubes through improvements in heat transfer coefficients. The flow pattern
and phase of refrigerant have critical effects on the convective heat transfer coefficient

and associated heat flux.

Their study emphasizes the relationship between tube geometry and phase of fluids with
the size of heat transfer coefficient. The research concludes that heat transfer coefficients
increase with the mass flux average vapor quality of the refrigerant. As a result of this

study, a correlation for the condensation heat transfer coefficients was proposed.

Reductions in heat transfer rate

Conversely, Murase (Murase et al. 2006) described the reduction in heat transfer
performance of a given row of a bank of horizontal tubes due to the inundation of
condensate falling from higher tubes to lower tubes in the bank. It was noted that this is
due in part to the larger film thickness around the lower tubes. It was determined that
inundation affected the heat transfer coefficient and, therefore, the heat flux. Correlations
were also drawn between the surface of the tube (smooth, wired wrapped or finned) and
the effect of inundation on the heat transfer coefficient. Ultimately, the authors confirm

the relationship between the condensation on the tube and the rate of heat flux.

Vyskocil (L. Vyskocil et al. 2014a) modeled two vessels filled with several species
connected by a tube. The article contends that non-condensable gas layers degrade the
heat transfer rate when temperatures are lowered to saturation conditions during
containment. In this case, a non-condensation barrier created near the wall reduced the

heat transfer coefficient. The goal of the authors’ work was to develop a condensation



model when non-condensable gases are present. The model predicted the rate of

condensation and the reduction in heat flux.

Modeling of species in the airstream

Articles on the physical accumulation of condensate in tubes and its effect on downstream
processes have not been found. The majority of the work related to this topic is found in
internal studies currently underway at Ford Motor Company. The Ford research team is
working to determine the effect of condensate and soot in charged diesel applications that
consider exhaust gas recovery. Ford created a CAC condensation model based on a study
by Mehdi Abarham (Ford Confidential) to understand the challenges associated with low-
pressure EGR, including engine misfiring, freezing damage, and charge air cooler
corrosion. The intent was to understand water condensation, evacuation, and
entrainment, as well as to estimate the water ingestion rate. Several items were
considered, including the soot particulate chemistry of EGR and the effects on the

performance and life cycle of the charge air cooler.

Garcia (Garcia 2012) studied the corrosive nature of EGC condensate in CACs that
develops as a result of lower operating pressures due to introduction of EGR in diesel
engines. The acidic natural of the condensation on exhaust gases can lead to corrosion of
the CAC and other components, thereby introducing additional contaminates in the
system. Bench tests were developed and run to determine the amount of condensate and
level of acidity present during the vehicle driving cycle. While a corrosion bench test
was developed, predictions models were not developed. There is an opportunity to
expand this work to include a simulation that predicts condensation and its species that
correlates to the corrosion bench test. This would be useful in predicting heat flux and

estimating the useful life of components and systems.

Unlike the 2-stroke diesel engine, the 4-stroke naturally aspirated engine needs only to
consider atmospheric intake air. Therefore, the study by Kanefsky et al. (Ford
Confidential) was modified to consider only atmospheric air. In parallel, the research

laboratory constructed a full test rig and gathered experimental data using actual hardware



to measure the amount of condensate accumulation in various tube geometries of compact
charge air coolers and compare that to real-life data. The referenced test rig and resulting
data will be used to correlate the 3-D model that will be developed as a result of this
research. Additional work is still underway to document research in the area of charge
air cooler condensate accumulation. Recommended methodologies for accurately
predicting when condensate is accruing will be referenced and used as a tool while

conducting this research.

Condensation removal

Industrial plants use compressed air for many purposes. The compressed air contains
condensate which causes corrosion and a resulting deterioration and ultimate breakdown
in the equipment of the operating systems, according to Mikhushkin (Mikhushkin and
Bogachenko 1992). The author proposes the use of a three-stage heat exchanger for
drying the compressed air prior to its use. While it is understood that the condensate will
form and needs to be removed, the drying equipment proposed is arbitrary. There is an
opportunity to improve the prediction of condensate to be removed and develop a model
to optimize the drying equipment. In passenger car applications where there in a shortage
of component real estate, it is difficult to find package space to accommodate such a

dryer.

Prediction of onset of condensation in tubes using Computational Fluid Dynamics

Vyskocil (Ladislav Vyskocil et al. 2014b) created a Computational Fluid Dynamics
(CFD) simulation of air-steam flow with condensation over a flat plate, making use of
ANSYS®Fluent code. The study concluded that non-condensable gases form a layer and
then degrade heat transfer to the wall. The model was also able to correctly predict the
point at which condensation begins. In addition, the calculation on vapor concentration
and temperature were in agreement with their experimental data. As the heat exchanger
tube can be modeled as flow between parallel flats plate, the study will be relevant and

will be used to expand the scope of flow through tubes.

AbdulNour (Bashar S. AbdulNour and Foss 1997) describes a CFD methodology that

will be used. In this study, a 3-D steady flow was considered. A methodology to solve
9



similar non-isothermal flow problems was described in detail by AbdulNour (Bashar
AbdulNour 1998; 1999). He used CFD to solve the 3-D flow and energy equations
associated with phase change due to the defrosting of the ice layer on automobile
windshields. The methodology starts with generating surfaces from the solid model.
These surfaces, wetted by the fluid, constitute the flow and heat transfer boundaries of
the flow domain. Surface mesh is then spread on the surfaces and volume mesh is
generated by projecting the surface mesh on the interior of the domain. The density,
distribution, and uniformity of the mesh are critical to the quality of the results and speed

of convergence of the computational solution.

The flow parameters dictating the equations to be solved, flow and thermal boundary
conditions, mathematical models such as turbulence, and the numerical control
parameters are included in the computational model during the pre-processing step. The
CFD solver is then run to yield the results. The residuals of the solution variables are
monitored at each iteration until they converge when all residuals diminish to the pre-
selected error criteria. The results include the velocity, pressure, temperature, and other
flow parameters of interest at every single cell in the computational domain. These results
are examined in the post-processing step and presented in a format suitable to evaluate
the relevance of the results and quality of the solution. The cited authors compared CFD
results to test measurements and concluded that the CFD predictions are adequate to

model complex flow problems.

Flow pattern prediction during condensation

Tanhan (Tandon et al. 1982) discussed the problem of flow pattern prediction during
condensation inside horizontal tubes. It is necessary to select the best correlation for
predicting condensation heat transfer coefficients. There are numerous correlations that
exist in literature. However, Tanhan asserts that no single correlation is best for heat
exchanger design purposes and takes an experimental approach to predicting various flow
maps. Several flow pattern maps were discussed and compared in the article. The authors
have proposed a correlated flow regime map that takes into consideration the full body of

work cited in their study. These flow patterns were considered in this research to develop

10



a useful profile that can be used to predict the flow patterns during charge air cooling in

the horizontal-tube heat exchanger considered in the research.
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Description of Problem

Charge air flows through aluminum tubes of a CAC to remove enough heat to achieve
the required temperature for efficient engine operation. A singular rectangular tube is
analyzed in the study. The tube is depicted in Figure 3.1 by a three-dimensional, turbulent
flow of a Newtonian, isotropic, homogenous fluid with constant density and kinematic
viscosity. The computational results are obtained by making use of the Cartesian

coordinate system three-dimensional solver strategy. The governing transport equations

are defined and the various boundary conditions are described for the problem.

Cooling Air/

0.00 100.00 200.00 {mm)
T ]
50.00 150.00

Charge Air
Figure 3.1 — Schematic representation of the flow problem
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Mathematical Formulation

This three-dimensional, incompressible flow problem is described by the appropriate
conservation of mass, conservation of momentum (Navier-Stokes), and conservation of
energy equations. The governing equations will be defined, along with the necessary
initial and boundary conditions required to solve the velocity profiles, pressure, film
temperature, and wall film during operation. Furthermore, the differential equations of

motion are expressed in dimensionless form.

Let the following characteristic variables be used for the normalization of the variables

in this study:
H = Length U = velocity t=time p = pressure = pU?,
Ts = Surface temperature T = Ambient temperature

where H is the distance between upper and lower surfaces of the flow regime, U is mean

inlet velocity, and p is the density of the fluid.

To render the equations dimensionless, the following definitions are assumed:

In the preceding definitions, asterisks indicate the dimensionless parameter.

Area
P

The hydraulic diameter is defined as Dy = 4(——) ; P = wetted perimeter. For the case

of a narrow rectangle, where the width b is much larger than the height H, we have:
Dy = 2H.

The internal passage of the charge air flow represents the boundaries for the present

solution.
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Definition

X = xi+yj+ zk, V=ul+vj+wk

where u(x,y,z,t),v(x,y,z,t) and w(x, y, z, t) are the velocity components in the

x—,y —and z — directions and T, Jand k are unit vectors in the x-, y- and z-

directions, respectively.

9 .

S . . a ~ a ~ o S . . .
V is the gradient operator . +5 J +£k and V=H V is the dimensionless

gradient operator.
. . d
V2 is a Laplacian operator = Iz +—=+—.
V2* is the dimensionless Laplacian operator = H2V?2.
Conservation of mass
%17 (pV) =0
at
orVV=0  when p= constant 1
or V*V* = 0 in dimensionless form 2
Conservation of momentum (Navier-Stokes Equations)
a]_/) — o\ = 1= —
— VW= —-—=-V V72V
Y: + (V ) ’ P + 3
In dimensionless form,

v’
at*

—%

_>*._>* _ __>>|< % i 2*_>>|<
+ (VV)V = Vp + V¥V 4

Where Re = l:/—H is the Reynolds number, which is the dimensionless parameter that

includes fluid properties and the length and velocity scales for the problem. It is the ratio

of the inertial forces divided by the viscous forces.
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The kinetic pressure equals py, and can be defined as:

px=pt+pgz where p is the pressure, and pgz is the body force
Pt =pt+ %Z* in dimensionless form.

Conservation of energy
pc g =kV?T—PV ﬂ + )ﬂ , where @ is the viscous dissipation function that is set to
zero since it is negligible. V - V is zero due to incompressibility.

DT _
Dt

aV?T 5
where o= % is thermal diffusivity,

DT* 1 1 ek e 1 .
+ = — —I?*T* in dimensionless form 6
Dt Re Pr

where Re = l:}—H is the Reynolds number, and

Pr= % is the Prandtl number.

The initial and boundary conditions required to solve the energy equation for the

temperature distribution of the charge air are:

Definitions: x-direction: w=width, y-direction: L=length z-direction, h=height
[.Cs.: Ts=21°Cand 50% RH , Tair = 55°C and 30% RH
BCl: kz_z @x=W =hair ( Ts - Tair)
oT
BC2: k&@xzo = hair ( Tair - TS)

BC3: Tay-0=55°C
BC4: Tay-L=24°C

BC5: Z_I @z=H = hair ( Ts - Tair)
BCe: Z—z @z=0 = hair ( Tair - TS)
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These boundary conditions are modified by Fluent when the wall metal is included in the
conjugate heat transfer model. In such case, the boundary conditions of the cooling air
outside the tube will be utilized. These five dimensionless equations, the initial condition,
and six boundary conditions are used to solve for the velocity, temperature, and mass
fraction of condensate in the tube (Lumsdaine and Voitle 1993; Frank and David 1996,
Potter et al. 2011).

The objective of this research is to study the physics of condensate accumulation in the
aluminum tube of the CAC heat exchanger to accurately predict the incident of insipid
condensation across the entire line of the tube. The following methodology was used

during this research study:

1. Understand the physics of the process and develop the theoretical equations that
describe the process.

2. Develop a 3-D computational model of the CAC internal flow with condensate.

3. Conduct laboratory experimentation making use of the Ford Motor Company
condensation test rig developed by the Ford research team.

4. Validate the simulation predictions of the 3-D model using measurements from

the Ford experimental data.

This research will result in the development of an experimentally validated simulation
methodology that can be used when designing heat exchangers for practical applications

that encounter moisture in the air stream.
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Experimental setup

The experimental setup for the CAC condensation test rig and procedure are summarized
in this chapter. The CAC testing rig was designed to simulate conditions that the CAC
experiences during vehicle operations in order to understand how condensate forms in
the CAC tube. Air flow, representing charge air, of a controlled relative humidity (RH),
temperature, pressure, and air velocity rate is passed through a single tube of a CAC.
From these known conditions the temperature at fourteen locations along the tube and the

total amount of condensate collected were measured.

The test rig was designed and assembled to measure the internal air temperature of the

charge air as it was being cooled, as illustrated in Figures 4.1 and 4.2.

24V DC
Power Touch
Supply Control
Screen
Controller
Water
Heater
Outlet Air Inlet Air
Chamber Chamber
‘Water
Pump AirInlet
Heaters
Air Flow
Valve

Cooling Heat
Exchanger

Figure 4.1 — Cooling test rig experimental setup
Reprinted with permission from Ford Motor Company; Internal Report
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Water
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Figure 4.2 — Block diagram of experimental hardware
Reprinted with permission from Ford Motor Company; Internal Report

The CAC test rig was comprised of 100 components, as shown in Table 4.1.
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Table 4.1— Test Rig Build of Material

Part Number Supplier Cost
Cooling Fan Assembly
Sanyo Denki San
4 Acel20 109S024UL Newark $37.00
Water Pump
Eldex
Eldex Optos 3HM 5986 Laboratories | $2,803.00
Controls
Watlow RM
2 Control Module RMC1R1R1R1RAAAA $1,900.00
Watlow RM Limit
2 Module RML-55C-J-AAAA $1,900.00
Relays, switches,
power supplies, etc. $7,500.00
Watlow Ez-Zone
5 Displays PM3C1CA-AAAABAA $840.00
Display
National
1 Instruments HUD TPC-2512 $1,200.00
Mass Flow Controller
1 Omega FMA 5545 $1,900.00
Heat Exchanger
1 GEA Plate Type FP3X8-14 $88.00
CAC Samples
5 Technosport prototype $20,000.00
Total $38,168.00
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The testing rig’s operation limits are defined in Table 4.2. The limits are defined by
maximum design temperatures, maximum operational conditions, or lab safety protocol.

Table 4.2: Test Rig Operation Limits

Parameter Maximum
Operational Limit
Inlet Charge Air Temperature (°C) 80
Pressure (kPa) 353
Inlet Relative Humidity (%) 100
Charge Air Mass Flow Rate (m3/s) .85
Outlet charge Air Temperature (°C) 80

The CAC is positioned directly behind the front fascia in the cooling module and in

front of the condenser and radiator to extract charge air heat, as shown in Figure 4.3.

Front of Vehicle/

oR| |
a
i

| \

Figure 4.3 — Vehicle Block Diagram of cooling module in vehicle position
Reprinted with permission from Ford Motor Company; Internal Report

One CAC tube was instrumented with fourteen 36-gauge thermocouples along the length
of the tube, as pictured in Figure 4.4; the thermocouple positions are shown in Figure 4.5
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Figure 4.5 — CAC thermocouple locations

The CAC was mounted in a manner that restricted airflow in all tubes except the tube
with instrumentation, as pictured in Figure 4.6. The mounted CAC was then attached to
the air duct systems that directed cooing air flow in a crossflow pattern, as pictured in

Figure 4.7.
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Figure 4.6 — CAC mounted to allow flow through one tube
Reprinted with permission from Ford Motor Company; Internal Report

Figure 4.7 — CAC mounted to air duct
Reprinted with permission from Ford Motor Company;
Internal Renort

Four cooling fans were attached to the top of the air duct and were used to control the

mass for rate of the cooling air, as pictured in Figure 4.8.
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Figure 4.8 — Cooling fans attached to the air duct

Figure 4.9 — Pressure and velocity instrumentation in air box at charge air let

Figure 4.9 shows the pressure and velocity gauge position inside the air box at the charge
air inlet. The remaining components were assembled to replicate the cooling of charge
air during vehicle operational modes. Upon completion of the test rig build, the test phase

began.
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Test protocol

The ambient conditions (temperature, pressure, and RH) were recorded. The test rig was
powered on and the inlet conditions (charge air inlet temperature, pressure, air velocity,
and RH) were set. Each test was preceded by a standard baseline. The baseline data was
used to determine the consistency of the test data. The cooling rig was run for a period
of 60 minutes to achieve steady-state at the baseline condition at a set RH, pressure,
temperature, and air velocity. Once the steady-state condition was achieved, the
temperature profile was recorded over 60 minutes. After the baseline was established,
the appropriate parameter was adjusted and run until it was stabilized (60 minutes)

(Wheeler et al. 1996).
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The Computational Scheme

In this study, in-tube condensation during cooling of charge air is considered, making use
of ANSYS® Fluent 15.0, a three-dimensional Computational Fluid Dynamics (CFD)
commercial software. The flow field was modeled as incompressible, turbulent flow with
conjugate heat transfer. The k-epsilon turbulent model was used with near wall treatment
(log law of wall) to resolve turbulence in the small channel. For the pre-processing and
after treatment, ANSYS® Geometry Modeler and Meshing utility were used. Post-
processing was done using ANSYS® Workbench report utility.

There were significant advantages of the parallel processing architecture of the Fluent
CFD tool, even when dealing with fine grid resolutions. Computational demand for 3-D
CFD computation was much larger than what can be managed on a standard desktop, so
the Ford high performance computing (HPC) grid with 64 cores per case was used. This
reduced the computational time to 12 hours/case instead of an average of 180 hours per

case using a personal laptop.

A reasonable approach to simulate this problem by engaging multiple models was taken,
which parallels researchers such as Kakimpa (Kakimpa et al. 2010), who used the thin-
film modeling approach to accurately predict and reproduce film thickness with lower
computational cost. The researchers modeled the flow as an incompressible Newtonian
fluid for which the velocity profiles, film pressure, and temperatures were solved to
determine the film flow. In the aforementioned study, the Eulerian thin-film model was
successfully paired with the finite volume solution to simulate thin-film over a rotating
plate. Al (Al et al. 2015) engaged both the Eulerian multiphase and RNG k-epsilon

models to investigate flows between a stationary shroud and rotating spiral bevel gear.

In addition to the continuity, momentum and energy equations, the approach followed for

this research is listed in Figure 5.1
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Figure 5.1 — Overview of computational approach
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ANSYS® Fluent includes the necessary models, such as k-g turbulent model with near
wall treatment, which was crucial for this study. In addition, Fluent can simultaneously
use multiple models (conjugate heat transfer and film development due to moisture
condensation dominated by the forced convection) and uses all the hardware resources

evenly during solving.

Initially, the goal of the CFD study was defined. The objective was two-fold; first, to
study the physics of water vapor condensate accumulation in an aluminum tube for
different humidity and inlet temperature conditions and secondly, to map the temperature
distribution of the fluid in both the x- and y-directions through the tube. The domain was
the singular aluminum tube with pores median to approximate the internal fin structure.

The fluid domain was meshed with elevations in the x- and y-directions.

Additionally, this research sought to accurately predict the amount of water condensate
across the length of the tube at any time period of the driving cycle. The Porous and k-
epsilon RNG model were used to resolve velocity and pressure gradient and dissipation
of kinetic energy, respectively. The near wall model (wall film) is used to solve the
velocity near the wall. The conjugate heat transfer model is used to include the heat
conduction through the wall and the phase change model was used to calculate the mass
of the condensate and the thickness of the water film present. The mass of water film and

its thickness are two key factors in the design of systems that use compressed air.

CFD simulation results were validated using experimental data. The objective was to
develop a new protocol that will aid in CAC tube design that reduces condensate

formation during vehicle driving duty cycles.

The CFD simulation model, results, and recommended next steps are included in this

chapter.
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Pre-Processing

Geometry

Initially, the fluid domain (charge air) was created - an extrusion for a singular tube. The
aluminum tube with the dimensions 64mm wide by 657mm long by 7.8mm tall of 0.4mm
thickness was included for this conjugate heat transfer problem. The two bodies were
connected to create one domain for consideration. To deal with the variation in the heat
flux based on immediate boundary conditions, the model was expanded to include a third

domain that represents the cooling air in cross-flow over the aluminum tube, as shown in

Figure 5.2. The three domains were connected to create one domain for simulations.

Figure 5.2 — Geometry of 3-dimensional tube with surrounding cooling air region
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Meshing

Once the geometry was completed, it was determined that the mesh with elevations in the

boundary layer, as shown in Figure 5.3, would be used to study the problem. The charge

air flows in the positive y-direction and the cooling air flows in the positive x-direction.

The solid and fluid domains were discretized using a hexahedral-mesh. A fine mesh was

required to ensure wall film solution was obtained. Table 5.1 details the mesh statistics

for each case. The solution was based on the fine mesh where a total of 2,040,642

elements were used to discretize the entire domain, including the aluminum tube, charge

air (inside the aluminum tube), and external air.

Aluminum tube Cooling Air

Charge Air

z

o

Figure 5.3 — The aluminum tube meshed with the two air flow bodies are connected

Table 5.1: CAC mesh statistics

CAC Mesh Statistics
Coarse Coarse Mesh 2 Fine Mesh
Mesh1
Number of Elements 944,267 1,367,808 2,040,642
Number of Nodes 978,267 1,414,773 2,106,258
Computation Time 2:31 5:03 54:39
Maximum Inflation 5 5 5
Layers

29



The CFD solver worked better with the hexahedral mesh, so the majority of the mesh was
created with hexahedral cells. The boundary layer was measured in micrometers due to
the small cross-sectional area of the CAC tube. To partially resolve the boundary layer,
a five-layer inflation was added in the mesh with growth rate of 1.2 for each additional
layer. (The subsequent layer was 1.2 times the cell height compared to the previous
layer.) The maximum cell size was Imm and the minimum face width was 0.0965mm,

with a total of 2,040,642 elements.

Boundary Conditions

The required boundaries conditions were defined to run the solution. The initial
temperatures and velocity of the charge air and cooling air were known. However, for
the range of charge air velocities, the Reynolds number was calculated to determine if the

flow regimen was laminar of turbulent.

Assumptions

T=20°C and P=101.325kPA ; pair= 1.2041 kg/m3, and vair= 15.11 x 10 m%/s

Re = prD , where D (Hydraulic diameter) is Dy = 2ab
v a+b
b=7.5mm Dp=0.0134m

a= 64mm

The vehicle driving duty cycle defined the charge air velocity range of 4 m/s to 12m/s.

(12m/s)(0.0134m)

Re tow= SOOI _3 54737 Re pigh=
0.00001511m2/s

0.00001511m2/s

=10,663.06

Since the full range of the Reynold’s number Re > 2000, then the flow was turbulent.

The boundary conditions were then considered for a single tube. The charged inlet and
outlet air were set. The cooling air temperature varied but was known. Inlet and outlet

pressure were set. The velocity of both the charge and cooling air were known. The heat
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transfer coefficient was dependent upon the ambient cooling air temperature and the
ambient relative humidity. Table 5.2 details the baseline computation and experimental

boundary conditions.

Table 5.2: CAC computational boundary conditions

Boundary Condition Value
Inlet Charge Air Temp 55°C
Outlet Charge Air Temp 24.7°C
Inlet Charge Air Relative 29%
Humidity
Ambient Relative Humidity 50%
Inlet Charge Air Velocity 10 m/s

The models used in this simulation included:

Pores Median Model

It was difficult to create a 3D model of the charged air cooler including fins. Also, if the
model were made with fins, it led to the problem of meshing the boundary layer for each
fin surface. This added to the computational load and consumed valuable computational
time. To model the fins in ANSYS Fluent, passages of the charged air cooler were
assumed to be coarsely porous. For this assumption, the distance between two fins was
measured and used with the sheet metal thickness to calculate the porosity of the charged
air cooler. The porous media model increased the total pressure gradient and provided

virtual surface area.

Ap = % fomUZ . pressure drop

e e A m
f=(KC+1—02)—(1—02—Ke)Z—i+2(Z—i— )+ foa e

Ac v;
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Definitions of factors are:
Ap = streamwise pressure drop

f = streamwise pressure loss coefficient

pm = mean primary fluid density
Uy, = primary fluid velocity at the minimum flow area
o = minimum flow to face area ratio

K. = entrance loss coefficient

K, = exit loss coefficient

A = primary fluid-side surface area

A, = minimum cross-sectional flow area
fc = core friction factor
v, = specific volume at the exit

v; = specific volume at the inlet

Ap = mean specific volume = %(ve + v;)

K. and K, are obtained from experimental data.
fe = aRepyy,

a = core friction coefficient

b = core friction exponent

Re,,in = Reynolds number for velocity at the minimum flow area

pm UAmin Dh
Repmin =
Um
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Pm = mean primary fluid density
Um = mean primary fluid viscosity
Dy, = hydraulic diameter

Uy, = primary fluid velocity at the minimum flow area

UAmin E

For a heat exchanger core, the hydraulic diameter can be defined as

Dy = 4L (ﬁ)
A

L represents the flow length of the heat exchanger. If the tubes are normal to the primary

fluid flow, then L is the length in the primary fluid flow direction. U is the mean fluid

velocity and ¢ is the minimum flow-to-face area ratio as described by Kays (Kays and

London 1984). The fin geometry pictured in Figure 5.4 was taken from the subject

reference guide, which was incorporated in the CAC design by the manufacturer and was

used to calculate the porosity factor for simulation.

Figure 5.4 — CAC fin cross-area at opening geometry used for porosity calculation

The porosity value for fin geometry was calculated as follows:

Void Space _ Areacell = a®

Porosity (P) =

Total Space  Area cell

33



The porous media assumption helped to calculate the pressure drop without using extra

geometrical features.

Turbulence Model (k-epsilon € Re-Normalization Group RNG)

The CAC was composed of a stack of tubes with a cross-section of 2mm x 64mm. Each
tube was separated by the same cross-sectional area, which was the passageway for the
crossflow cooling air. Both passages for the charged air and the cooling air were also
fitted with the fins of wavelength 1.5mm across the entire length of the charged air cooler.
The objective of the 3-D CFD simulation was to determine the amount of condensate and

to identify the timing of the dew point occurrence using transient treatment.

The CAC tube had fins which had a 2.5mm x 64 mm cross-section and had fins inside
which were 1.5 mm apart. Due to the closely spaced structure of the CAC tube, epsilon
(dissipation term of the turbulence modelling) was difficult to resolve in the near wall

region and could not be used.

The k-epsilon (¢) RNG model was a good fit because it worked well with the enhanced
near wall treatment. RNG k-epsilon model had the extra R-epsilon term in the epsilon
equation, which improved the accuracy for rapidly strained flows. In rapidly strained
flows, the RNG model yielded a lower turbulent viscosity than the standard - model.
RNG theory provided analytical formula for the turbulent Prandtl number, where the
standard k-epsilon model uses constant values which make it difficult to resolve turbulent

dissipation term near wall.
d d ] ok
52 (k) + a_xl-(pkui) = a_x]_<ak.ueff E) + Gy + Gy — pe — Yy + Si

d 0 0 oe £ g2
a(pg) + a_xi(pgui) = a_x] ae.ueffa_x]_ + CleE(Gk + C3£Gb) - CZSP? - Rs + Se

G, represents the generation of turbulence kinetic energy due to the mean velocity

Gradients.

Gy, 1s the generation of turbulence kinetic energy due to buoyancy.
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The quantities ox and a are the inverse effective Prandtl numbers for £ and ¢,

respectively. Sk and S, are user-defined.
Cie = 1.42

Cye = 1.68

1_
R Cupr” (n_on) &’
T 14803 k

Sk
wheren = ?,770 = 4.38,5 = 0.012

RNG theory provides differential formulation for effective viscosity for low Reynolds

and 1s dependent on near wall treatment.

Near wall treatment

Turbulent flow was significantly affected by the presence of a wall. In addition, the mean
velocity field was affected through the no-slip condition that had to be satisfied at the
wall. Prandtl postulated that at a high Reynolds number, there is an inner layer close to
the wall in which the mean velocity profile is determined by the viscous scales, (Pope

2000).

Currently, Fluent does not handle condensation without a user-defined function (UDF) to
resolve diffusion of the wall film. Consequently, the author developed a unique UDF that
allowed the case to be solved. Fluent makes use of the near wall law to evaluate the
velocity in the region close to the wall. The near wall equation used by ANAY'S has the

following form:

The law-of-wall for mean velocity yeilds

* 1 *
U* = Eln(Ey ) where
. U o) i : o :
U* = ——— is the dimensionless velocity
Tw/p
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1/4 ,.1/2
* :pcu kp” Yp

u

is the dimensionless distance from the wall

y

and

K = von Karman constant (= 0.4187)

E = empirical constant (= 9.793)

U,= mean velocity of the fluid at the wall-adjacent cell centroid.
k,,= turbulent kinetic energy at the wall-adjacent cell centroid.

¥p= distance from the centroid of the wall-adjacent cell to the wall.
p = dynamic viscosity of the fluid.

Conjugate Heat Transfer Model

In solid regions, the energy transport equation used by ANSYS® Fluent has the

following form:

9
o2 (oh) + V- (Bph) = V- (kVT) + S,

p = density
T
h = sensible enthalpy, j cpdT
T_ref

k = conductivity
T = temperature
Sy = volumetric heat source

This research presents a reasonable approach to simulating this problem by using the

foundational system of governing equations coupled with multiple models to simulate the
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wall film and temperature distribution across the horizontal tube of the CAC. This
approach focuses heavily on the boundary layer close to the wall. Future work on
modelling the condensation formation and temperature distributions would include use

of the large eddy simulation (LES) model to resolve all boundary layers.

Condensation Model
The Lee model (Lee 1979) calculated the interfacial heat transfer coefficients and, hence,

liquid-vapor mass transfer which is governed by the following vapor transport equations:

0 — . .
a (avpv) + V- (avpv Vv) =My, — My,

where

v = vapor phase

a,, = vapor volume fraction

Py = vapor density

Vv) = vapor phase velocity

m,,, m,,; = the rates of mass transfer due to evaporation and condensation, respectively.

The comparison between the saturation temperature and the actual local temperature is

checked using the following equations:

If T; > Tsq: (evaporation)

(Tl - Tsat)

my, = coef f - a;p T
sat

If T, < T4 (condensation)

(Tsat_Tv)

my = coeff - a,p, T
sat
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If the local temperature is less than saturation temperature, the condensation equation
calculates the mass of vapor which is converted into liquid. If the local temperature is
greater than the saturation temperature, the evaporation equation calculates the mass of
liquid which is converted to vapor. These values are plugged into the vapor transport

equation above.
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Experimental Results

This section describes the primary objectives of this research:
1. Define the test plan of action.
2. Verify that the collected test data were robust and in control.

3. Determine the amount of time required by the experiment to reach steady-state,

which required the determination of the time constant (7).

4. Define a steady-state range of operation that will be compared to the simulation

data.

The test procedure was specifically designed to evaluate the temperature distribution and
condensation formation inside a CAC tube at various vehicle representative loads when
subjected to variable inlet relative humidity (RH). A test rig was built to isolate a singular
tube and send a controlled amount to compressed air at a specified temperature and
velocity through the subject tube. The cooling rig pictured in Figure 6.1 was constructed

to collect this data.
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Figure 6.1 — Cooling test rig experimental setup
Reprinted with permission from Ford Motor Company; Internal Report

Velocities 8m/s, 10m/s, and 12m/s were most common in the CAC for vehicle crusing
speeds between 55 miles/hr to 70 miles/hr, where condensate formation led to error states.
These cases were investigated for different relative humidities. The outlet temperature
of the turbocharger provided constant air temperature at 55°C; therefore, the CAC inlet
condition was maintained constant at 55°C for all cases. In addition, the engine inlet
temperature requirement was approximately 25°C, so the outlet temperature of the CAC
tube was maintained at a constant 25°C. Table 6.1 summarizes the boundary conditions

that were run.
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Table 6.1:Test Boundary Conditions

Boundary Condition Value
Inlet charge air temp 55°C
Outlet charge air temp 24.7°C
Inlet charge air relative 29%., 40%,
humidity 50%
Ambient relative 50%
humidity
Inlet charge air velocity 8m/s, 10 m/s,
12m/s

The test cases listed in Table 6.2 were investigated for different levels of relative

humidity.
Table 6.2:Experimental test cases
Velocitycin | Tempcc | RHce | Tempc
m/sec in°C in% | out°C
10 55 30 25
10 55 40 25
10 55 50 25
12 55 30 25
12 55 40 25
12 55 50 25
8 55 30 25
Procedure

The ambient lab conditions were recorded and the test rig was powered on. The baseline
condition was the initial condition run during testing. The baseline boundary conditions
were input and the data acquisition system was activated. The baseline condition was run
for 90 minutes to achieve steady-state. This allowed for 60 minutes of recording of

steady-state data. The data acquisition system was switched off. A new test condition
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was loaded, new boundary conditions were set, and the data acquisition system was
turned on. Ressler (Ressler et al. 2003) indicates that T provides a measure of a system’s
rate of response to input. Furthermore, T represents the time required by the experimental
system to reach 63.2% of the steady-state value relative to its initial value. The time

constant to steady-state is given by:

-t/t
Tt)=T +(T-T )e (1)
SS o SS
Where T(t) = temperature at time t

TH =temperature at steady-state
SS

T = temperature at time initial
(0]

T = time constant

Determining the steady-state region of the test was necessary because this data will be
correlated to the simulation results. The cooling test rig was comprised of several
electronically controlled mechanical components that resulted in a system control -
system response delay. There was a transient region followed by the steady-state region.
The determination of thermal time constant (1) was resolved to identify the steady-state
region of the experimental test data. A confidence interval was then determined for the
normalized mean temperature across the CAC tube to assert a level of control over the

experiment.
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Data and Results

Identification of t

The baseline condition of 10m/s, 30% RH, and 55°C required charge air inlet temperature
were used to determine the time constant of the cooling rig. The T was based upon the
time to achieve steady-state for charge air inlet temperature; T equaled 40 minutes. Figure

6.2 illustrates the measured to actual temperature in non-dimensional time, t/t.
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Figure 6.2 — Charge air inlet temperature from start to end of test cycle

Figure 6.3 depicts a normalized plot of the RH (end-point divided by the difference of the

max-min values), which illustrates the range in which steady-state was reached.
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Figure 6.3 — Measure-to actual Temperature in non-dimensional time t/T

Using Equation 6.1, 7 is calculated to equal 40.03 minutes. The steady-state time interval

of 40 to 80 minutes was therefore chosen for simulation correlation.

_t Te— Tss

e r=In T = 40.03 minutes.
To_ Tss

Validation of Robustness

Table 6.3 shows the mean temperatures for eight thermocouples placed along the length
of the CAC tube for the designated steady-state interval of 40 minutes to 80 minutes.
Evaluation of the mean thermocouple data within the identified steady-state region of 40

to 80 minutes fell within 2.5 deviations of the respective mean values, as illustrated in

Table 6.3.
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Table 6.3: Mean temperature thermal couples
Temperature of specified thermal couples during
steady-state region (40 minutes — 80 minutes)

TC Mean Temp (K) Normalized mean Temp Standard

(T mean/T ambient) Deviation
2 296.7 1.00 0.0047
3 299.0 1.01 0.0039
6 298.8 1.01 0.0055
7 303.9 1.03 0.0047
10 300.8 1.02 0.0055
11 306.9 1.03 0.0061
12 305.8 1.03 0.0076
13 315.1 1.06 0.0057

The range of correlation was selected from 40 to 80 minutes (in the identified steady-
state region of the test data). Evaluation of the temperature data within the identified
steady-state range was successfully demonstrated to correlate with the simulation data
with 95% confidence. A 95% confidence interval was calculated for the normalized
mean temperature for each thermocouple within the identified steady-state range. The
mean temperatures for eight thermocouples randomly selected along the length of the

CAC tube for the designated steady-state interval are shown in Figures 6.4 through 6.11.
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The actual thermocouple profiles demonstrating transient and steady-state regions of data
are shown below. The CAC tube was positioned so that the even numbered TCs, which
are 2mm from the vertical surface of the tube, received first cooling air and were subjected
to the effects of forced convection. Figure 6.12 illustrates the temperature profile of the
even numbered TCs which have a steady-state temperature range of 301K-295K. The
odd numbered TCs were on the trailing end of the cooling air (62mm from the front face)

with less direct effects from the cooling air. Therefore, these TCs registered higher
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temperature values. Figure 6.13 illustrates the temperature profile of the odd numbered

TCs, which have a steady-state temperature range of 311K-296K.
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Figure 6.12 — Temperature profile of even TCs
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Figure 6.13 — Temperature profile of odd TCs
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Condensation inside the tube occurred for all of the cases, as shown in Figure 6.14. The
minimum temperature at which condensation occurred was 305°K. Once the film formed,
the surface heat transfer coefficient dropped suddenly because the film layer also

provided thermal resistance.

Conclusion/Opportunities

The thermal time constant was successfully calculated and the time at which the
experiment reached state-state was determined to be 40 minutes. The steady-state time
range of 40 to 80 minutes was chosen for correlation. Determining the mean
thermocouple temperatures for the steady-state time interval of the experimental data
falling within 95% confidence interval provided assurance that the experiment was
consistent. The mean temperatures for the steady-state time interval of 40 to 80 minutes

will be used to correlate the simulation data.
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Analysis

The simulation accurately predicted the temperature profile for all cases. The simulation

predicted the amount of condensate formation and presented a flow pattern for all cases

with charge air inlet velocity of 12 m/s, as shown in Table 7.1.

Table 7.1: Condensate Values from CFD Simulation

Velocity RH % Condensate
ml/hr.
12 30 19.2
12 40 32.05
12 50 51.2

The mesh sensitivity study indicated that a coarse mesh would not fully resolve the
species concentration within the wall sub layer. Therefore, a finer mesh was created for

the simulation correlation. The fine mesh statistics are listed in Table 7.2.

Table 7.2: Fine mesh statistics

CAC Fine Mesh Statistics

Minimum Face 9.66¢- Inflation
. Growth 1.2
Size 002mm
Rate
Maximum Face Maximum
. 1.0mm | Aspect 10.652
Size ]
Ratio
.. ) Number
Transition Ratio 0.272 2,106,258
of Nodes
. ) Number
i/;axelrr:um Inflation 5 of 2,040,642
y Elements
Inflation
+ -
y 2-3 Layers >
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The fine mesh is shown in Figure 7.1.

1] 0.0L 0.02{m)
| Eaa— SS—

0.005 0.015

Figure 7.1 — Fine mesh
According to Pope (Pope 2000), to ensure the full boundary layer resolution,

the following condition should be true:

yt = zX where y™ is the measure of boundary layer and

1) Viscous sub-layer 0 <y*<5

2) Buffer sub-layer 5 <yt < 30

3) Fully turbulent sub-layer 30 <y* < 400 (% =0.1- 0.2).

The fine mesh was necessary to realize the developed wall film. The cases with a velocity
of 12 m/s has y+ less than five, as shown in Figure 7.2. Therefore, the viscous sub-layer

was resolved and wall film could be determined.
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Figure 7.2 — y+ contour for the CAC tube fine mesh

Coarse Mesh

Eight cases were run with the coarse mesh on the Ford High Performance Computing
Gird (HPC), utilizing 64 processors. The experimental mean temperature data were
calculated in the time interval of 40 minutes to 80 minutes for the baseline condition of
55°C inlet charge air temperature, 30% RH, and 10m/s charge air velocity and compared
to the simulation results, as show in Figure 7.3. Post-processing yielded temperature
profiles consistent with the experimental data but did not, however, yield condensate

because the mesh did not fully resolve the boundary layer of the flow.
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Figure 7.3 — Correlation of experimental to simulation data for coarse mesh

10m/s and RH 30%

The coarse mesh yielded a temperature profile consistent with the experimental data but,
due to unresolved boundary layer, the Eulerian wall film model could not predict the film
mass. Therefore, a refinement in inflation wall layer was made in terms of y+ using

ANSYS® Fluent’s mesh adaption utility.

Fine Mesh

The fine mesh simulations were run and the experimental mean temperature data was
compared to the steady state turbulence simulation results, as show in Figures 7.4 and
7.5. The error bars indicate the maximum and minimum mean temperatures recorded by
the designated thermocouple and demonstrate experimental correlation to the simulation
results. The thermocouples at both ends of the tube show slightly lower temperatures

(.1°C) and was outside the experimental data range. The subject thermocouples were in
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close proximity to the air boxes; the air boxes created cooling effects that were not
simulated in the CFD model.
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Figure 7.4 — Correlation of experimental to simulation data for
10m/s and RH 40%
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The CAC considered for the research operated at 18,140 Pascal with minimal pressure
drop across the tube. Figure 7.5 displays the contour plot of the temperature profile on

the inner wall of the CAC tube for 12m/s and 40%RH to range from 306°K to 319°K.
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Figure 7.5 — Contour plot of temperature profile on inner
wall of CAC tube (K) for 12m/s and RH 40%

Condensate Formation

Figure 7.6 shows the condensation in terms of the inner wall film thickness for the 12m/s
and 40% relative humidity case. After reaching steady-state turbulence, the film of
maximum thickness (25um) develops at the rear face of the tube near the outlet. This
indicates that condensate was forming and being reconstituted or pushed and accumulates
condensate at the exit end of the tube. This was due to the wall film motion with the air

flow and the surface heat transfer coefficient, which changes along the length of the tube.
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Figure 7.7 shows almost twice the film thickness (41.3um) due to a 10% increase in
relative humidity. The area covered by the wall film is 1.5 times greater compared to

the previous case.

Figure 7.8 illustrates the wall film progression during the 100 seconds of simulation.
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Experimental data was collected for total mass creation after one hours for the 50%RH,
12m/s condition. After reaching steady-state turbulence for 50% RH, the film of
maximum thickness, which is 24um, develops at the rear face of the tube near the outlet.
By integrating the film mass over the surface area of the tube and time, the total
condensation mass is calculated. The values were compared to the amount collected
during the laboratory experiment for the same charge air inlet velocity, cooling air mass

flow rate and relative humidity of both air streams. The results are shown in Table 7.1.

Table 7.3: Condensation creation for 50% RH

Velocity(m/s) Condensation Condensation
(ml/hr.) Experiment | (ml/hr.) Simulation

12 44 51

Heat Transfer

The surface heat transfer coefficient and heat flux on the inner wall was compared for
12m/s at 40%RH to 50% RH. Condensation occurred when the vapor temperature
dropped below its saturation temperature. Condensation also provided resistance to heat
transfer between the air and the surface of the inner wall. In this case, when comparing
the wall surface along the length of the tube, the heat flux and heat transfer coefficient
were greater for 50% RH as compared to 40%RH, as shown in Figures 7.9 and 7.10. The
dominate component was the heat transfer across the width of the tube, which varied by
approximately 4,000 W/m?. This was due to the heating of the cooling air that flowed
through the 3.5mm gap between two tubes. When the cooling air came into contact with
the tube (at x=0), it suddenly caused a reduction of heat within the tube. At the mid-plane
(x=32mm), heat flux going out was one- half of its initial value. At the rear edge of the
tube (x=64mm), heat flux was approximately equal to that at mid-plane heat flux, though

in the opposite direction.

The higher RH caused more condensate and greater film thickness. The moisture acted

as a thermal resistor and stored heat. Flow of charge air stripped the wall film away from
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the metal surface, locally increasing the heat transfer (reflected in Figure 7.9 at y=0.3m

and x=.032m), and condensate re-accumulated to form wall film.
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The wall temperature for 12m/sec, 50% RH is greater than 40% relative humidity by
3°K, as shown in Figure 7.11.
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Figure 7.11 — Wall temperature (K) for 12m/s
comparison of 40% RH to 50% RH

Boosted engines increase the system pressure, which leads to increased dew-point
temperatures. According to Tang (Tang 2011), a criterion is defined for condensation
based on the typical CAC opening condition of 10,000 Pascal and 20°C. Saturation
temperatures increase as pressure ratios increase. Tang asserted that when the defined
operational conditions are met, condensation will occur inside and towards the exit point

of the tube and the inlet of the engine intake manifold.

The front side of the CAC tube was exposed to the cooling air first and, therefore, had
more heat transfer than any other surface. The minima and maxima for the curves shown
in Figure 8 defined the zone for the condensation at that particular velocity. The Eulerian
film assumed the temperature of the metal boundary and heat transfer coefficient changed

with the temperature of the film.

Wall film acquired the temperature of the wall when it formed, as shown in Figures 7.12

and 7.13. Wall temperature also changed with the motion of the wall film.
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A methodology for the design of CAC that provides maximum thermal performance
without generation of a critical mass of condensate is shown in Figure 7.14. The
described experimentally validated simulation methodology can be used to evaluate and
design CACs that function outside the condensate formation zone during operation

modes.
The Methodology is based on:

1) The development of a 3-D computational model of the internal flow for a CAC

using ANSYS® Fluent.

2) The simulation was validated by measurements from a Ford Motor Company

experimental data which showed correlation.

Upon completion, the model provides a validated simulation methodology for designing
heat exchangers for practical applications that encounter moisture in the powertrain air

intake air stream.
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Conclusion

The solution to the problem described in this research is not available in literature. This
is a current OEM issue which will persist as long as turbo charged engines continue to be
a strategy to achieve fuel economy targets. The creation of the described 3-D multi-phase
CFD model that includes a unique UDF that predicts the condensate formations and
temperature distribution across the tube is useful in the design of CACs for the following

reasons:
1. Experimentation is time intensive and very expensive
2. Effective simulation saves OEMs experimentation time and money.
3. The model provides the engineer with a design tool that saves time and money.

During engine duty cycles, small engines in a big vehicle require more boost. Higher
pressure ratio raises the dew point temperature and can create more condensate in a cold

CAC tube.

Boosted engines are becoming commonplace in passenger car and light truck applications
to achieve fuel economy targets. An unintended error state of charge air coolers is
condensation formation. Increasing pressure increases the dew-point temperature, which

is aligned with current CAC operating ranges.
The present research resulted in the following key findings:

1. As the velocity of the inlet charged air was increased, the condensate quantity

increased for the same area of the CAC tube wall.

2. Increase in relative humidity was a major factor in the condensation formation

along with the velocity of the air.

3. Condensate formation was predominant once steady state was reached in the

experiment, as evidenced by the transient simulation. After 100 seconds of the
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steady turbulence in real time, the condensate mass reached the steady formation

rate.

Wall film formation and evaporation were concurrent processes. Relative
humidity, surface heat transfer coefficient, and finned surface area were some of
the critical factors that determined the rate of wall film formation and evaporation
processes. More investigation is necessary to calculate the relationship between

evaporation rate and the condensate formation rate inside the CAC tube.

RNG k-¢ turbulence modelling with Eulerian film model provided satisfactory
results in terms of the film mass thickness and the movement of the wall film. To
obtain realistic values for the film thickness, enhanced wall treatment was most

suitable. However, it was an expensive method in terms of computation.

Y" in this simulation was in the range of 1-3, which resulted in resolved viscous
sub-layer near wall region. This region was the predominant region for the wall
film accumulation. The stripping and movement of the wall film was highly
mesh-sensitive. In this case, mesh independence was achieved for given boundary

conditions.

The present research and methodology provide a solution to a practical and
escalating problem that has significant functional and financial impact and is not

currently available in literature by:

a. Developing a multi-phase CFD model to solve a critical problem by
exploring and expanding the usage and capability of the software. It was
necessary to write a unique user define function (UDF) to handle the

multi-phase flow.
b. Providing a practical and robust methodology to analyze CAC designs.

c. Developing a desktop tool with a user interface where engineers submit a

job and obtain results with a rapid turn-around time.
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d. Verifying the Ford CAC test rig and providing confidence in data,
providing engineers an experimentally verified methodology to validate

CAC designs.
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Future Work

Experimental errors that are due in large part to the lack of accurate measurements for

condensate need to be eliminated.

Experimental Opportunities

1.

The boxes at the inlet and the outlet of the experimental rig should be removed
from the rig or the boxes need to be included in the simulation, which will

require a much larger mesh.

Electrifying the tube is a new method to measure the surface temperature. If a
very small amount of current is passed through the tube each time a droplet of
condensate drops, there is a peak in the current. This allows for accurate
location of the condensate formation to correlate the simulation. This could

yield comprehensive three-dimensional experimental data.

Employ a Particle Image Velocimetry (PIV) method utilizing lasers to determine
the velocity. Place a laser into the CAC tube and position a camera to take high-
speed pictures to enable velocity vectors and observe development of

condensation.

Insert a viewing window on the tube where the maximum condensation occurs
and take high-speed picture of the condensation, which can be correlated with

the simulation data.

Simulation Opportunities

1.

Adaptation of y+ — there is an algorithm that changes half of the mesh and
creates different y+ values. Currently, RNG k-epsilon is being used from a y+=

2.7 and several simulation cases that did not yield condensation.
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2. Complete a parametric study to understand how changes in y+ correlate to
condensation. Switch from RNG k epsilon model (time averaged), which uses
the Eulerian film model. If y+ is changed from 5 to 1, the process by which

condensation changes can be evaluated.

3. Use the Large Eddy Simulation (LES) model to solve local data as a function of
time and location. If LES is used, any portion of the experimental data can be

correlated without having to wait for the experimental data to reach steady-state.
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Appendix I

User-Defined Function

UDF
#include "udf.h"

static real Psat of temp(real t);

static real op pressure=101325.0;

static real Mwater=18.0;

static real Mair=28.8;

/* relative humidity of the incoming air, 0.5 indicates 50
s */

real inlet charge phi = 0.3;

real inlet coolant phi = 0.5;

DEFINE DIFFUSIVITY (watervapor diffusivity, c, t, i)
{

real pressure, Tcell, diff coeff;
pressure = op_pressure + C_P(c,t);
Tcell = C_T(c,t);

diff coeff = (0.926*pow(10,-

6.0)/ (pressure*0.001) ) *pow (Tcell,2.5)/ (Tcell+245.0) ;

return diff_coeff;
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/* The following profile sets the water vapor mass

fraction at the inlet based on T and p */

DEFINE PROFILE (inlet charge water vapor, thread, i)
{
real Psat, Pwater, Pair, rr, omega, inletrhum;

face_t £;

if (!Data_Valid P()) return;

#if 'RP_HOST
begin_f loop(f, thread)
{
Psat = Psat of temp(F_T(f,thread));
inletrhum = inlet charge_phi;
Pwater = Psat * inletrhum;
/* Corrected Pair - missing F P ! */
Pair = F_P(f,thread)+ op_pressure - Pwater;
rr = Mwater/Mair;
omega = rr * Pwater/Pair;
F_PROFILE(f, thread, i) = omega/(l.0+omega) ;
}
end f loop(f, thread);
#endif
}

DEFINE PROFILE (inlet coolant water vapor, thread, i)
{

real Psat, Pwater, Pair, rr, omega, inletrhum;

face_t £;
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if (!Data_Valid P()) return;

#if 'RP_HOST
begin f loop(f, thread)
{
Psat = Psat_of temp(F_T(f,thread));
inletrhum = inlet coolant phi;
Pwater = Psat * inletrhum;
/* Corrected Pair - missing F P ! */
Pair = F_P(f,thread)+ op_pressure - Pwater;
rr = Mwater/Mair;
omega = rr * Pwater/Pair;
F_PROFILE(f, thread, i) = omega/ (1.0+omega) ;
}
end f loop(f, thread);
#endif
}

/* Calculate saturation pressure at a given temperature */

real Psat_of temp(real T Kelvin)
{
real n4, n3, n2, nl, c0, cl, c2, c3, c4, c5;

real Tmin, Tmax, T, i, saturation_pressure;

n4d = -0.0000154539;
n3 = 0.0014359522;
n2 = 0.0110544681;
nl = -0.0111461694;
cO 0.6141199339;
cl 0.0440621262;
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c2 = 0.0014401567;
c3 = 0.0000268954;
cd = 0.0000002720;
c5 = 0.0000000028;
Tmin = 273.16;

Tmax = 368.0;

if (T_Kelvin < Tmin)
T Kelvin = Tmin;
if (T_Kelvin > Tmax)

T_Kelvin = Tmax;

/* Convert temperature from Kelvin to Celsius scale */

T = T Kelvin - 273.15;

if(T < 1.0)

{
saturation_pressure = 611.65 + 49.31*T;

else

/* Calculation saturation pressure in Kpa */
i=1.0/(T+0.001) ;
saturation_pressure =

T* (T* (T* (T* (T* (c5) +c4) +c3) +c2) +cl) + cO

+ i*(i* (i* (i* (n4)+n3)+n2)+nl);

/* Convert saturation pressure from Kpa to Pa */

saturation_pressure = saturation pressure*1000.0;
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return saturation_pressure;

Appendix II

-64 Z

67 vY
-70
X
Contours of Surface Heat Transfer Coef. (w/m2-k) (Time=1.0000e+02) Oct 27, 2015

ANSYS Fluent 15.0 (3d, dp, pbns, spe, rke, transient)

Figure AIL.1 — Contours of Surface Heat Transfer Coefficient

At x=0, surface HT coefficient is maximum (negative suggests outward direction of
heat flow).
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Appendix 111

This letter provides permission to use figure 2.1.

From: copyright <copyright@sae.org>
To: Robin Johnson-Cash; [ Cash, Rebin (.Y.)
(¢ copyright; ! Nori Faught

Subject: RE: Permission to use a graph from SAE Paper = 2011-01-1168
Dear Robin Johnson-Cash:
Thank you for contacting SAE International.
The permission is hereby granted for the specific use indicated by you on your email dated November 24, 2015,
The use of: use Figure 1 (The eriteria foran
» exampled charge air system, including turbo-compressor-CAC at 20
» degree Cambient) from Y. Tang, “The Condensation within a CAC - Thermadynamics Analysis,”
>vol.1, 2011
Please note that permission s also subject to the fallowing terms and conditions:
~-Permission s granted for non-exclusive English language rights, and for the specfic title indicated in your email (academic dissertation)
~-Permission s required for new requests, or further use of the material
--The SAE material must be clearly identified and include the following statement “Reprinted with permission from SAE Intemational.”
--We also request that you include a complete reference to the SAE document in the reference section of your report.
--This permission does not cover any third party copyrighted work which may appear in the material requested.
-Licensor's use of this material, in whole or in part, is entirely its responsibility, and SAE International does not warrant or is not responsible for any use of the material.

Regards,

Manica

Manica Nogueira
Content Acguisition Manager
Muftimedia

SAE INTERNATIONAL
400 Commonwealth Drive
Warrendale, PA 15036

0 +LTATI21525
m+1.412.9%6.5809

e Nogueira@sae.org

WWww.5ae.0r!
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Appendix IV
This letter provides permission to use figures 1.2,1.3, 1.4,4.1,4.2,4.3,4.6,4.7 and 6.1.

Froem: Huang, Larry (L]

Senk Wednesday, September 15, 2015 312 PM

T Cash, Robés (R}

Ce: Kanefsiry, Peter (F.)

H;-:hu:mmmm

Hi Roban,

| don't hane any problem in for you fo use e maienal that | used bedors. But for fhase two images, | used
tham for car inkemal bmdm-{ig. and fomgat wher they came from. | @m nct 100% sure § thare i any
copyright issue in using these two images, ewen though | would think it's unfkely. Thanks.

Flagasds,

LE s

Taiting AEG & T15

Frem: Cash, Fobin {R.1.)

Sentr Teastyy, September 15, 2015 D018 &M
T Huang, Larry [L.); Kanefsiy, Peter (F.]
Subject: Premission in wse pichures;\graphics

Importance: High
Feter/Lamy,

| am requasting perrEszion to use thase pictures in my dizsertrbion document thek wene aither st or goad by youin
& Ford neport, tect rigmanual stc Flesse sdyise if sive me permizson. (than have to have them wethed throush OGC
fior Ford spproval. Thank you.
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Appendix V
This letter provides permission to use figures 1.2,1.3, 1.4,4.1,4.2,4.3,4.6,4.7 and 6.1.

Frosm: Kanehky, Fee (7}
Senk , Septemier 71, 2015 512 AM
T Cash, Rotis (RLY.)

et AE- ta

s L
Rotin,

Fow N use any of my meberisl.. D0 you have the onginels or just scanned copies?

Froam: Cash, Rabin (R.Y.)
Sentr Tuesdyy, Septomber 15, 2015 L0118 AM

Tt Huaeg, Larry {L.}; Kanessiy, Peter (F.)
Subject: Permission &0 (5 BT/ Rt
Dnpeortan on: Fgh

Feeter/Lory,

I'am Fequesting pemmission to uss thess pichores in my disserbrtion docsmint that wene sither crastas or uead by you in
& Ford report, test rg manual etc. F ise if mive me ission. | than have to have them vatbec throush OG0
fior Ford spproval. Thank you.
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Appendix VI

This letter provides permission to use figure 1.1.
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From: Miller, Thomas (T.L)
Sent: ‘Wednesdsy, September 23, 2005 10019 AM

€&z McLenon, Mar (AM]
Subject: RE- Permission to use usration

Rabin,

You're welcome to use it. Aln might De able to Zet you & nicer copy.
Rezards,

Thomas £ kiler

Fod Motor Co.

Tmiller6@ord.com
313 BA3-3652

From;: Cash, Rabin (R.Y. )

Sent: Wednesday, Segtember 23, 2005 10019 AM
Tai Mclanon, Man [(AM.)

Gz Miller, Thamas (T1.)

Subject: PW: Parmisson to we Dlustration

Thanks Tom.

Alsn, Pisace Boiviss if | may use this outswsy in the manner geccrived below.

From: Miller, Thomas (T.L)

Sent: ‘Wedneadsy, Seafember 23, 2005 10T A
Ton Cash, Acken [RLY.)

C= McLenon, Alan {A4.)

Subject: RE- Permission to use ustration

Hi Rabin,
Alan Mclenon in cur section should be adle to beln you out with cutewey drawings.
Regards,

Thomas I
Fond Motor Co.

TImillers @@ ford.com
3i3 B43-3es52

From: Cash, Robin (RLY.)

Sent: Wednesday, September 23, 2015 G20 AM
Ta Miller, Thomeas (T.1.)

Subject: Permisgion to ime Thustration
Importance: High

T,

| am working on my PhD cissertstion | With an agreement with Ford snd Michizan Tedh] and | need to use some pictures
far purposes of talking demonsirating the issue [ CAC condensation]. Did someone from your team oreate the engine
portion of the picture? if fo, may | use it in my dissertation? | wouid cover up the name of the engine
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