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Abstract 
 

Implanted medical devices undergo complications the longer they remain in contact 

with tissue or blood. This rejection of foreign materials by our body is one of the largest 

reasons innovations in biomedical sensors and implanted technology are being held 

back. One means to hold off this unwanted response is through the utilization of nitric 

oxide (NO) releasing materials. Two unique NO releasing polymeric materials were 

synthesized and characterized before being implanted subcutaneously. Both NO 

releasing materials described used S-nitrosothiol (RSNO) chemistry as the main 

mechanism for NO release. The first material described covalently links an RSNO to 

the backbone of PVC while the second material has RSNOs covalently attached to a 

hyperbranched polyamidoamine (HPAMAM) molecule, which is then blended within a 

polymer matrix. A high reservoir of NO was observed in the NO releasing HPAMAM 

when compared to other NO releasing polymers.  

The two materials (SNAP-PVC, SNAP-HPAMAM blended in PVC) were implanted 

subcutaneously and were tested versus control polymers that did not release NO; 

materials were explanted after 1 and 15 days and histological characterization was 

completed. The inflammatory response was then observed through histological analysis 

and NO demonstrated anti-inflammatory properties, specifically by observing the 

presence of cells marked with CD11b, CD163, and iNOS. Fibrosis was also a major 

inflammatory response carefully observed. NO releasing implants showed a much more 

resolved state of inflammation and wound healing while the controls demonstrated 

signs of chronic inflammation and increased number of pro-inflammatory cells. The 

long lasting SNAP-HPAMAM PVC NO releasing materials showed a large reduction in 

chronic inflammatory macrophages marked with iNOS with a slight upregulation in 

anti-inflammatory macrophages after 15 days of implantation. Compared to control 

PVC implants, a significant reduction in fibrosis was observed as the encapsulation 

thickness was 120.28±36.1 µm while SNAP-PVC was 74.20±29.9 µm and SNAP-

HPAMAM was 38.68±21.0 µm. A trend was seen in the reduction of CD11b+ cells with 
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an increase in NO from the implants, along with an increasing trend of CD163+ cells. 

The presence of chronic inflammatory iNOS cells was also greatly reduced with the 

increase of NO to the surrounding subcutaneous tissue.
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Chapter 1 : Introduction 
 

1.1 Discovery and Background of Nitric Oxide 
 

1.1.1 Background of nitric oxide 
 

The first role of nitric oxide (NO) as an important signaling molecule was initially 

demonstrated by Ferid Murad in 19771. Murad and his colleagues investigated the 

impact NO had on enzyme regulatory functions within the body- specifically with 

guanylate cyclase (sGC) and the formation of cyclic guanosine monophosphate 

(cGMP). Once this mechanism of activation was clarified, the role of cGMP was then 

studied more closely. They investigated the role of nitrite containing compounds within 

various organs of the body and observed vascular relaxation and NO were closely 

associated, but did not exactly understand the mechanism that was responsible for this 

phenomenon1-2. The discovery of endothelial cells impact on controlling the relaxation 

of smooth muscle cells through acetylcholine was then proven by Robert F. Furchgott, 

bringing up the role of endothelial derived relaxation factor (EDRF) within vascular 

endothelial cells3. The identity of this unknown vasorelaxation function was then 

proven to be NO in 1986 when he and Louis J. Ignarro along with other colleagues 

proved that the EDRF that was causing smooth muscle cell relaxation was actually NO4-

5. Identifying this important pathway brought up a multitude of other questions of its 

function in various places throughout the body. Virtually every mammalian cell in the 

body is influenced in some way by NO as this highly reactive free radical molecule 

plays an important role in cell signaling.  

1.1.2 Nitric oxide’s function in the body 
 

The production of NO is accomplished through specific enzymatic pathways based on 

three different isoforms depending on the location in the body: endothelial nitric oxide 

synthase (eNOS), neuronal nitric oxide synthase (nNOS), and inducible nitric oxide 
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synthase (iNOS). These enzymes produce NO by catalyzing the reaction of L-arginine 

and nicotinamide adenine dinucleotide phosphate (NADPH) to form L-citrulline and 

NO6-7. eNOS and nNOS are labeled as constitutive NOS as they are calcium-calmodulin 

dependent pathways. Healthy vasculature requires the production of NO through eNOS 

within endothelial cells8-9. Under normal conditions, NO is constantly produced by 

eNOS within blood vessels. Stimulation of NO synthesis begins either through shear 

stress caused by blood flow along the endothelial lining or by endothelial receptors 

specific to certain ligands which stimulate calcium release within the cell to eventually 

activates eNOS10 (Figure 1.1). NO produced diffuses into the smooth muscle cell layer 

to activate the enzyme sGC. sGC is then modified into cGMP, which is an important 

factor for causing smooth muscle cell relaxation and vasodilation within blood 

vessels11. NO is also released into the bloodstream where it interacts with platelets, 

contributing to the non-adhesive properties to vasculature through the same sGC-cGMP 

pathway seen in smooth muscle cells12-13.  If NO production is impaired in the 

endothelium, the risk for atherosclerosis and hypertension drastically increase. Neuronal 

cell signaling is the primary function of NO production through nNOS (Figure 1.2). 

The presence of NO was discovered in numerous neural systems in the body, which 

regulate the release of certain neurotransmitters such as the increase in production of 

acetylcholine14, 15. iNOS is the one isoform that is not dependent on the calcium-

calmodulin pathway that eNOS and nNOS require. This is due to the fact that the 

calmodulin is more tightly bound when compared to the other enzymes, and is unable to 

react as readily with calcium ions16. Macrophages are the main producer of iNOS, and 

are activated in the presence of certain cytokines and bacteria17 (Figure 1.3). It is a 

strong mediator of inflammatory response and regulating the immune system. The NO 

produced in this pathway is used to destroy foreign bacteria as NO forms peroxynitrites 

(ONOO-) in the presence of radical oxygen species (ROSs), a highly damaging product 

to cellular structures18. 
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Figure 1.1. Mechanism for the production of NO from eNOS within endothelial cells. 
Acetylcholine and/or shear stress causes the upregulation of calcium ions within 

endothelial cells, which leads to the conversion of L-arginine to L-citrulline and NO 
facilitated by eNOS. NO then diffuses into the bloodstream where it causes platelet 

deactivation and into the smooth muscle layer where vasorelaxation occurs. 
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Figure 1.2. Mechanism of production of NO at a neuronal synapse through nNOS. The 
production is first stimulated by the release of glutamate to cause the upregulation of 
calcium within the connecting neuron. This then leads the conversion of L-arginine to 
L-citrulline and NO facilitated by nNOS. NO then leads to the production of cGMP 

which regulates ion mediation in neurons along with controlling the presynaptic release 
of certain neurotransmitters like acetylcholine. 
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Figure 1.3. Inducible production of NO through the regulation of iNOS within 
macrophages. The only NO pathway that is not calcium-calmodulin regulated. It is 

triggered by the interaction of macrophages with specific cytokines (IFNγ) and bacterial 
products (LPS). After NO is produced, its main role in this instance is the intracellular 

killing of pathogen through the formation of ONOO-.  

1.2 Biological Response to Implanted Biomaterials 
 

1.2.1 Response to blood contacting foreign materials 
 

There is huge potential to improve patient interventions by controlling the biological 

response toward blood and tissue contacting devices and the materials in which they are 

fabricated. The response from the body when a foreign material is introduced to the 

biological environment often times causes failure of the implanted device. In the case of 

intravascular implants such as sensors and catheters, proteins immediately adsorb to the 

surface of the material upon implantation, which platelets then bind to and become 

activated (Figure 1.4). Once activated, soluble fibrinogen is converted to insoluble 
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fibrin, forming a clot19-20. This can cause serious complications for the device that is 

implanted inside a patient such as incorrect sensor readings or occluded catheters due to 

the interference around the sensor area or the lumen of the catheter. Clot formation also 

creates a risk for embolism as it can break off of the device and block a vessel further 

down the bloodstream.  

 

Figure 1.4. Biological response to implanted blood contacting biomaterials. Once a 
foreign material comes in contact with blood, proteins will immediately adhere to the 

surface. This creates binding sites for circulating platelets to attach to and become 
activated. After platelet activation, fibrin is formed which leads to even more platelet 

adhesion to the surface and eventually a thrombus is formed. 

1.2.2 Response to tissue contacting foreign materials 
 

Medical devices that are implanted within the tissue of a patient will undergo a wound 

healing response. The inflammatory response is an important part of the wound healing 

process in the body, and work together to contain/isolate or remove foreign materials 

while remodeling and repairing any tissue damage that occurred around the device. This 

response can have negative effects on device functions. One common issue that leads to 

their failure is the formation of a fibrous capsule around the implant along with chronic 

inflammation occurring due to the constant recruitment of macrophages to the area21. If 

a material that is unable to be properly phagocytized by the converging macrophages, it 

is completely isolated from the rest of the body with a thick collagenous capsule. Over 

time, this can cause a complete loss of functionality of the implant, requiring it to be 

Device before implantation Protein adsorption to surface Platelet adhesion Fibrin and thrombus clotting

Fibrin

Red blood 
cell
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replaced which subjects the patient to more invasive surgeries. This response is due to 

the macrophages present around the implant area attempting to remodel the damaged 

extracellular matrix (ECM). During this remodeling phase, an overexpression of 

fibronectin by macrophages is present along with the release of pro-fibrogenic 

cytokines to increase fibroblast activation22-23. Macrophages release matrix 

metalloproteases (MMPs) to facilitate the remodeling, which influence how other cells 

migrate to the foreign material and differentiate24. 

The evaluation of the biocompatibility of a material is often gauged through histological 

analysis over a period of time. The inflammatory response is a complex series of 

signaling chemicals and cells that vary in quantity and type (Figure 1.5). Neutrophils 

and other emigrating white cells are predominant during the acute inflammation stage 

and only last for a few hours to days, but macrophages have also been shown be in their 

highest concentration while neutrophils are still present25. This migration of leukocytes 

to the injury site is facilitated through the chemotaxis process. A large variety of 

chemotactic species are released from the body and attach to receptors on the leukocyte 

cell membranes which causes them to permeate through the vasculature to the wound 

site and become activated. Once activated, neutrophils begin to phagocytize any foreign 

materials by attaching itself to it, engulfing it, and eventually degrading or killing it26. If 

the initial cause of inflammation is not resolved during the acute phase, chronic 

inflammation begins. This is stimulated from a constant release of pro-inflammatory 

stimuli that occur during the acute inflammatory phase.  During the chronic 

inflammation phase, the presence of neutrophils drastically decreases, and 

macrophages, monocytes, and lymphocyte occurrence increases27. There is no longer a 

systemic response as the foreign body response is limited to the injury site or 

biomaterial.  
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Figure 1.5. Escalation of the inflammatory response and wound healing to an implanted 
biomaterial. Time and intensity vary on the chemical and physical properties of 

implanted biomaterial and the degree of trauma caused during implantation. Neutrophils 
and blood monocytes first migrate to the injury site, then within hours, the blood 
monocytes are converted into macrophages. Once chronic inflammation occurs, 

neutrophils are removed by the macrophages present and eventually form FBGCs to 
remove large particulates. The final resolution is to isolate off the material through a 

fibrous capsule. Modified figure previously done by Anderson26. 

1.2.3 Macrophage signaling 
 

Macrophage migration and adhesion to foreign biomaterials is the inevitable host 

response that causes the most complications for biological implants. For blood 

contacting materials, platelets will release a number of chemoattractants like interleukin 

(IL-1), transforming growth factor (TGF-β), and platelet-derived growth factor (PDGF) 

to allow macrophages to reach the implantation site28. Once macrophages arrive, more 

chemoattractants such as PDGF, tumor necrosis factor (TNF-α), and IL-6 are released 

from the macrophages themselves to recruit even more to the site28. Implants that are 

left in long enough will eventually lead to the formation of foreign body giant cells 

(FBGCs). Macrophages that are adhered to the biomaterial surface are signaled by IL-4 

and IL-13 to initiate the fusion into FBGCs if the material is too large to be 

phagocytized29-31. Surface modifications of implanted polyurethanes have been shown 
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to alter the way macrophages adhere and fuse to form FBGCs by introducing silicone 

into the polymer matrix showing the possibility to control chronic inflammation on a 

material32. However, once FBGCs are formed, the process of frustrated phagocytosis 

begins. This process occurs as an attempt to degrade and destroy the foreign substance 

that was unable to be removed simply by macrophages. FBGCs will release ROSs, 

degradative enzymes, and acid hydrolases at the material surface in an attempt to 

remove it33-34. The introduction of ROSs to the environment allows for alterations in 

surface chemistry of the implanted material, leading to an even greater loss of material 

functionality. 

1.2.4 Macrophage phenotyping 
 

Macrophage phenotype also plays a large role in the inflammatory response to 

biomaterials and are labeled as either classically activated macrophages, or M1 

macrophages, and alternatively activated macrophages, or M2 macrophages. M1 

macrophages are activated from the presence of bacterial lipopolysaccharides and 

signaling chemicals related with infection35. This phenotype is strongly associated with 

the aggressive removal of foreign substances through inflammation and are responsible 

for the release of pro-inflammatory cytokines like IL-1β, IL-6, IL-12, and TNF-α36. M2 

macrophages are more involved with tissue repair and dealing with parasitic types of 

infections37. Instead of increasing the amount of inflammatory cells to be recruited to a 

site, this phenotype releases anti-inflammatory cytokines such as TGF-β and IL-10 to 

help control it36. The two phenotypes also have very different metabolic pathways of L-

arginine as well. As described with the NOS enzyme reactions, L-arginine is an 

important precursor for the production of NO. The production and utilization of NO 

through iNOS is mainly done through M1 macrophages as a means to initiate 

intracellular killing to foreign bacteria. M2 macrophages upregulate arginase to 

synthesize urea and ornithine which are important for the production of collagen and 

cell proliferation38-39. These mechanisms make sense when applied to a typical wound 

healing situation, where M1 macrophages are dominant for the first few days to remove 
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foreign substances and then M2 macrophages take over after to remodel and repair the 

damaged tissue40-41.  

1.3 Polymers Used in Biomedical Settings 
 

1.3.1 Parameters for designing polymeric biomaterials 
 

Polymers are one of the most widely used materials in medicine. Their applications are 

limitless due to their highly modifiable mechanical and chemical properties which allow 

them to be designed for specific situations. Depending on the application a polymer is 

needed, there are certain criteria that must be met to ensure the best results42. Implanted 

polymers could be required to be a facilitator of mass transfer from a device to the 

surrounding tissue. This brings up the issue of porosity of a polymer into question. If 

the polymer is transporting large molecules like proteins, it must have a tailored 

permeability to allow that transfer. Other types of polymers only need to facilitate small 

gaseous molecules like oxygen, and have more lenient porosity parameters. Some 

common biocompatible polymers used for limited molecular permeability of water and 

other larger molecules are silicone rubbers and polytetrafluoroethylene (PTFE)43-44.  

Reactivity is another important parameter that must be taken into consideration for an 

implanted polymer. When in contact with tissue, the cells involved in the foreign body 

response will release harsh reactive chemicals in an attempt to degrade it. The surface 

of a biomaterial will become acidic as a result of this response, sometimes reaching a 

pH as low as 445. A polymer must be able to resist this reactive environment as the 

inflammatory response progresses. In the late 1980’s, polyether polyurethane 

elastomers were used for pacemaker lead insulation over silicone rubber due to their 

better mechanical and chemical properties. Over time, device failure occurred due to 

environmental stress cracking within the polymer. This occurred due to chemical ion 

oxidation that led to the cleavage of the polymer chains, causing a reduction in 

mechanical properties20. Chemical modifications are a popular method to make 

polymers relatively inert in the body to prevent this type of complication. Some 
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polymers have reactive functional groups allowing for the attachment of drugs or 

proteins to increase the biocompatibility and lower the reactivity to local chemical 

species.  

1.3.2 Biodegradable polymers 
 

If the implanted material is only temporary but requires reintegration and remodeling, a 

degradable material with nontoxic byproducts is often a good choice for materials 

selection. One of the most popular clinically used polymers for this type of application 

is poly-L-lactic acid (PLLA). PLLA is a biodegradable, crystalline polymer with 

excellent mechanical properties for applications such as sutures. The properties of the  

PLLA can be tuned such that it can take as long as 2 to 6 years before it is completely 

reabsorbed into the body, which is much longer than most biodegradable polymers used 

in medicine46-47. Other biodegradable polymers have faster degradation times such as 

polyglycolide (PGA), which has been used as a copolymer with PLLA to form 

poly(lactide-co-glycolide) (PLGA), which has adjustable degradation times based on 

the ratio of PGA to PLLA48. 

1.3.3 Hydrogels 
 

Hydrogels are another class of polymer with many uses in medicine. They are described 

as synthetic, hydrophilic polymers that swell when exposed to water49. This property 

allows hydrogels to be applied to areas of controlled drug release. As water enters the 

polymer matrix, polymeric chains become more loosely bound, allowing the release of 

any drug the hydrogel could be containing50. Hydrogels most commonly release their 

desired drugs from a physical change (pH, temperature, hydrophobicity) rather than 

through a typical chemical reaction where covalent bonds are cleaved. Along with drug 

release, the structural aspect of hydrogels is also an important parameter. Polyethylene 

glycol (PEG) hydrogels specifically have been used as tissue repair scaffolds. PEG has 

the ability to change its material properties simply by adjusting parameters such as 

crosslinking density and molecular weight to alter the material and chemical properties 
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of the hydrogel51. Chemical crosslinking needs to be taken carefully into consideration 

as some crosslinkers can react with the drug trying to be administered, causing the 

formation of unwanted, possibly toxic products, which will eventually lead to a large 

immune response from the host52. 

1.3.4 Hydrophobic polymers 
 

Unlike the polymers used in hydrogels, hydrophobic polymers have no water uptake 

and have unique properties when in contact with cells and tissue. The most popular 

class of hydrophobic polymers used in biomedical applications are silicone rubber 

based materials. Polydimethylsiloxane (PDMS) based silicone rubber have been shown 

to have excellent biocompatibility, low toxicity, stability in a physiological 

environment, and are chemically inactive53-56. Using a hydrophobic material like PDMS 

is useful for long lasting implantable applications that resist the cellular infiltration and 

remodeling seen in the biodegradable and hydrophilic materials. Like any long term 

implanted material, PDMS and other hydrophobic polymers still see issues of chronic 

inflammation, showing that another modification to these materials is needed to 

overcome the body’s response to foreign materials.   

1.4 Background of Current Nitric Oxide Donating Materials 
 

1.4.1 Nitric oxide chemistry 
 

In order to be able to mimic the body’s range of production of NO at different 

physiological locations, many NO donating materials have been synthesized. Since NO 

is a highly reactive free radical molecule, strategies of covalently linking it to materials 

to stabilize and control it were developed. The two most widely used synthetic NO 

donors are based on the chemistry of S-nitrosothiols (RSNOs) and N-diazeniumdiolates 

(NONOates). Choosing which type of NO donor is important as each has their own set 

of release mechanisms, stability under physiological conditions, and covalent linking 

chemistry. Having a wide variety of controllable parameters gives a large amount of 
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flexibility when deciding where and how you want NO to be delivered. This localized 

and highly controlled delivery is important to harness the therapeutic potential of NO in 

part because NO has a half-life ranging from seconds to minutes depending on the 

physiological environment it’s exposed to57-59.  

1.4.2 S-Nitrosothiols 
 

For RSNO modified materials, there is a degree of control with how NO is administered 

to an area as can be highly stable under in vivo conditions if appropriate precautions are 

taken. The main mechanisms for NO to be cleaved from an RSNO system are by light 

and metal ions60-61.  Photolytic cleavage of the sulfur-nitrogen bond occurs at the 

wavelengths of 340 nm and 545 nm62. Knowing this chemical property gives the 

possibility of using RSNO based materials as a controlled therapeutic for the 

administration of NO. RSNO’s are among the safest and most biocompatible NO 

donors to use within materials as they are produced endogenously in the form S-

nitrosoglutathione (GSNO). This formation occurs by the reaction of glutathione (GSH) 

with N2O3 to form GSNO. A key RSNO that is used for NO delivery from polymeric 

biomaterials is S-nitroso-N-acetyl-D-penicillamine (SNAP) (Figure 1.6). Both SNAP 

and GSNO have been shown to have positive effects to vasculature in respects with 

vasodilation and preventing platelet adhesion63. SNAP is more reactive with ions such 

as iron and copper to trigger NO release than GSNO. The reaction of copper with 

RSNOs has been thoroughly investigated as one of the key metal triggers. Copper (II) 

ions (Cu2+) specifically interact with RSNOs by first being reduced to Cu+ by thiol 

anions present. Cu+ is then able to cleave the sulfur-nitrogen bond while being 

regenerated back to Cu2+ The cleaved sulfur complexes can then form disulfide bonds 

as the reaction cycle continues64. 
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Figure 1.6. Structure of S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-D-
penicillamine (SNAP). GSNO is an endogenous S-nitrosothiol commonly found in the 
body while SNAP is used in chemical synthesis to artificially add nitric oxide donating 

groups to synthetic materials.  

1.4.3 N-diazeniumdiolates 
 

Diazeniumdiolates, also known as NONOates, are a class of zwitterionic compound that 

are used in the NO donating research field with different chemical properties compared 

to RSNO’s. The first investigation of using NONOates as a potential drug administering 

molecule was done by Dr. Larry K. Keefer at the National Cancer Institute. The release 

kinetics and dissociation properties of NONOates were investigated and proved to have 

useful characteristics under physiological pH and temperature65. Two molecules of NO 

per NONOate molecule are able to be produced and these NONOates can have a half-

life of up to 20 hours under these conditions, depending on the surrounding functional 

groups66. The release mechanism of NO from these molecules is either via proton 

mediated decomposition or thermal degradation66. This opens up a wide range of 

applications for areas that require short and large high amounts of localized NO as the 

donor can be covalently bound to larger molecules or polymers. However, these 

molecules some of the controllability and in vivo longevity compared to some RSNOs. 

Dimethylhexanediamine diazeniumdiolates (DMHD/N2O2) is a popular NO donating 

material for these applications, and has been blended in with multiple polymer matrices 

to demonstrate its ability to release a large amount of NO over a short duration (Figure 

1.7). 
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Figure 1.7. Structure of dimethylhexanediamine diazeniumdiolates (DMHD/N2O2). 
This zwitterionic NO donating structure allows for the release of two moles of NO per 
molecule when placed under physiological conditions. The release is passive and very 

rapid – making it an excellent choice of NO donor for short term passive release. 

 

1.5 Applications of Nitric Oxide Donating Materials 
 

1.5.1. Concerns for nitric oxide concentration 
 

Determining the proper amount of NO to be administered to an area in the body when 

developing synthetic NO releasing materials is critical. Depending on the level and 

duration of NO generated, it can be used to mediate cell proliferation and protect them, 

or it can be used to trigger cell apoptosis. Concentration of NO determines how far NO 

is capable of diffusing and consequently what type of signaling molecules it interacts 

with. Table 1.1 gives an overview of the range of concentrations NO and its 

corresponding cellular function. Although the concentrations are given in molar 

concentrations, in a true physiological environment, NO exists mainly as a flux being 

emitted from a cellular source. The concentrations stated are estimates based on the NO 

dissolved in solution around the environment. 
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Table 1.1. Effect of NO when administered at varying concentrations to certain cell 
types.The effects of NO have a large variety based on the concentration being 

administered, along with where in the body the release is occurring. When developing 
synthetic materials that are able to release NO, it is important to be aware of the 

concentrations being administered to achieve the desired outcome. 

 

 NO 

concentration 

 

Physiological Effect 

 

References 

1-30 nM • Endothelial cell release of NO (eNOS 

mechanism) 

• Leads to smooth muscle relaxation 

through conversion of sGC to cGMP 

• Maintains vascular tone 

• Cell proliferative effects 

67 

30-60 nM • Levels emitted from tumor cells 

• Tumor proliferation  

• Antiapoptotic 

68-69 

~100 nM • Hypoxic inducible factor 1α (HIF-1α) 

accumulation 

• VEGF accumulation 

69-70 

~400 nM • Upregulation of p53 – caused by damage 

to DNA 

• Antipathogen and tumorcidal 

• Macrophage release of NO (iNOS 

mechanism) 

70 
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>1 µM • Nitrosative stress - Protein 

nitrosation/nitration 

• Inhibition of DNA repair and 

mitochondrial respiration 

• Leads to full cell cycle arrest 

71 

 

1.5.2 Improving biocompatibility of foreign devices 
 

Controlled NO releasing materials that are capable of delivering the appropriate level of 

NO at the appropriate time can be used to improve biocompatibility of blood and tissue 

contacting devices, creating safer and more effective implanted devices such as 

intravascular and subcutaneous sensors, and has the broader potential to improve 

performance of virtually all implanted biomedical devices. A specific example would be 

synthesizing a material to copy the NO release seen from healthy vasculature, which is 

estimated to be approximately 0.5-4 x 10-10 mol cm-2 min-1 depending on the specific 

location within the circulatory system72. Various polymeric materials have been 

fabricated that release NO at this level and have shown much success in inhibiting 

platelet adhesion and activation to foreign blood contacting materials and lowering the 

chronic inflammatory response of subcutaneous tissue contacting materials73-77. 

Experimental setups have been design using an extracorporeal circuit (ECC) for in vivo 

experiments on rabbits to prove NO releasing material’s effect on platelet adhesion to 

foreign materials78.  

1.5.3 Interaction with macrophages and mast cells 
 

NO’s effect on macrophages is still being investigated as various levels of NO can 

influence them in different manners. When trying to apply an NO donating material to 

ward off macrophage attachment and recruitment, NO flux must be carefully 

considered. Large amounts of NO being delivered to a site where macrophages are 
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present can prevent the production of recruitment cytokines, while small amounts can 

actually influence a higher production of these inflammatory inducing cytokines79. 

Lung macrophages in culture have been treated with NO from SNAP at concentrations 

ranging from millimolar to micromolar, and were shown to have a decrease in pro-

inflammatory cytokines80. There is also the risk of trying to utilize a high, uncontrolled 

dose of NO to prevent this signaling as a bolus of NO will cause cell death and tissue 

necrosis.  

Mast cells are another large contributor to the immediate inflammatory response to a 

biomaterial. The primary function of mast cells is the release of histamine to cause 

vasopermeation between vascular endothelial cells to allow the migration of leukocytes 

to the injury site. NO has been previously shown to inhibit the histamine release from 

activated mast cells to mediate this inflammatory response81-82. Specifically, NO’s 

interaction with interferon gamma (IFN-γ) was investigated. IFN-γ induces NO 

production from nearby cell populations, which then directly inhibits mast cell 

degranulation83-84. Experiments were performed by inhibiting NO production through 

NOS by administering a competitive inhibitor in a culture of tissue type mast cells 

containing IFN-γ. Once the NO production was allowed, there was a drastic decrease in 

serotonin release from mast cells, signifying NO’s effect to prevent degranulation. 

Degranulated mast cells also release cytokines like IL-4 and IL-13, which play large 

roles in determining how harsh and long the foreign body reaction will persist85. Using 

NO to prevent this degranulation process and release of cytokines could be a large 

benefit for slowing chronic inflammation.   

1.5.4 Role in vascular diseases 
 

Applying NO release as a treatment for vascular disorders has also been studied.  After 

balloon angioplasty treatment, there is damage to the endothelium which eventually 

leads to myointimal hyperplasia caused from the migration of smooth muscle cells to 

the lumen of the vasculature and eventually proliferation86. A cascade of events then 

occur which causes the occlusion to worsen – smooth muscle cells change phenotype 
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and start to produce ECM, the adhesion of platelets to the newly formed ECM, and 

eventually the recruitment of more inflammatory cells to the region worsen87. NO at 

these damaged vascular sites can prevent all of these negative effects caused as vascular 

smooth muscle cell proliferation is inhibited by NO as well as platelet activation as 

mentioned previously88. Other disorders that are due to a reduction in NO activity 

within vasculature are hypercholesterolemia and atherosclerosis89-90. Oxidized low-

density lipoproteins (LDLs) are the leading cause for hypercholesterolemia as it reacts 

and inactivates endogenous NO91-92. It also causes the generation of superoxide anions 

from the endothelium and migrating macrophages, creating an environment of high 

oxidative stress41. This highly oxidative area scours and reacts with NO that would 

otherwise be promoting healthy vascular function. For coronary artery diseases, 

saphenous vein grafts eventually undergo atherosclerosis and vessel occlusion within 

the first 10 years due to the migration and proliferation of smooth muscles cells93. 

nNOS gene transfer to these saphenous vein graft sites demonstrated the ability of NO 

to a large reduction in these negative effects, prolonging the life of these grafts94. 

1.5.5 Cancer therapeutic applications 
 

Another application for highly controlled NO releasing materials is in drug delivery to 

tumors. NO in appropriate doses is known to induce apoptosis in cells and could 

function as an effective local cancer treatment95. NO in an oxidative environment reacts 

to create peroxynitrites, which is seen specifically in activated macrophages. Tumors 

have been shown to have increased levels of superoxides and other ROSs, giving NO 

the ability to be a potent cancer therapeutic when applied correctly96-69.  If exposed to 

the right level of NO, the cancerous region would be exposed to localized oxidative 

byproducts, damaging the tumor, while other nearby areas could be left relatively 

unharmed as the ROS level would be much lower. This level of NO must be 

administered carefully as certain fluxes of NO can also increase tumor angiogenesis97. 

NO has been shown to promote vascularity and increase the production of vascular 

endothelial growth factor (VEGF) in endothelial cells98.  
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1.5.6 Reendothelialization of vessels  
 

In other environments, the increase in vascularity from endothelial cells could be seen 

as a positive effect.  Decellularized vascular implants or biodegradable materials that 

need cellular infiltration and revascularization would benefit greatly from the increase 

in production of VEGF from endothelial cells, allowing the opportunity of NO donating 

materials being able to revascularize vessel grafts at a much quicker rate while still 

preventing unwanted inflammation at the implantation site74, 98-99. In unmodified vessel 

grafts, smooth muscle cells are the primary cell type that infiltrate and proliferate, 

causing occlusion of the vessel. NO would be able to promote the infiltration of 

endothelial cells in its place from the neighboring endothelial cells. Grafts incorporating 

NO have been done previously and shown to prevent platelet adhesion and recruitment 

to these sites that would otherwise perpetuate this inflammatory response to eventually 

lead to graft failure100. 

1.6 Detection Methods of Nitric Oxide 
 

1.6.1 Griess assay 
 

The most important part of analyzing any NO releasing material is the methods used to 

determine and quantify the release into the surrounding environment. Since NO is a free 

radical gas, accurate detection becomes complex due to its high reactivity with the 

surrounding environment. A popular method to determine NO production is to measure 

the amount of nitrites in solution is through the Griess assay, which was formulated by 

Peter Griess in 1879101 (Figure 1.8). This method can be used to quantify the amount of 

NO in solution by indirectly measuring the oxidation products that are formed when 

reacted with oxygen. These oxidation products can then react with sulfanilamide and N-

1-naphthylethylenediamine to form a fluorescent azo dye. Using a plate reader, the dye 

formed can be detected using a 550 nm filter which then quantifies the amount of NO 

being converted to nitrites. The absorbance found can then be compared to a calibration 
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curve of nitrite values to give the amount of NO released into solution. This method can 

give false results though as NO can readily react with oxygen in solution to form nitrate 

molecules, which would give lower amounts of NO than what is being measured102. 

 

Figure 1.8. Chemical detection of NO through the Griess reaction. 
NO is first converted into a nitrite product, where it then interacts with sulfanilamide 

and N-1-napthylethylenediamine to form a fluorescent detectable dye which is 
detectable at 540 nm. This can then be used to quantify the amount of NO that was 

released within a solution. 

1.6.2 Electrochemical  
 

Electrochemical detection of NO is another method for quantifying NO release from a 

material (Figure 1.9). There are two strategies for electrochemically identifying NO – 

electrooxidation and electroreduction through the use of Ag/AgCl electrodes. 

Electrooxidation reduces NO to generate N2O2
2- through a single step, two electron 

reaction, while electroreduction of NO is completed through a three step pathway where 

NO is oxidized to form nitric acid, and then is further oxidized in water to form NO3
- 

103-104. Electrochemical electrodes have been shown to be able to detect NO 
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continuously in a biological environment that is generating NO in real time105. This 

would give insight to NO generation from cells in vivo as electrodes can be constructed 

small enough to monitor vasculature and organs. The downside for this method is that 

its detection limit of 1 µM is much less sensitive when compared to the 

chemiluminescent and Griess assays106. There could also be interference based on how 

far the electrode is from the site that is generating NO. In an in vivo environment, NO 

has a very short half-life and might not even come into contact with the electrode if it is 

not placed properly107. 

2NO + 2e
-

N2O2
2-

Electrooxidation

NO - e
- NO+

NO+ + OH
-

HNO2 H+ + NO2
-

Electroreduction

 

Figure 1.9. Chemical mechanisms for the electrochemical detection of NO. Through 
electrooxidation, NO undergoes a two electron reduction to form N2O2

2-. 
Electroreduction goes through a multistep oxidation path to form NO2

- from NO. 
Concentration of NO is then measured by referring the current recorded to a known 

calibration standard. 

 

1.6.3 Chemiluminescence 
 

The most accurate method to directly measure NO coming from a either a NO releasing 

sample or cells in media is through chemiluminescence (Figure 1.10). Using a system 

purged with nitrogen, there are no reactive side products to interfere with NO 

measurement as seen with other NO detection assays. It also gives a detailed profile of 

NO being released over a period of time. This allows the calculation of NO fluxes from 

cells and materials, which is an important parameter to keep in mind when calibrating 

NO releasing biomaterials to the physiological levels of release seen in the body. For 

this detection method, NO reacts with ozone to produce oxygen and nitrogen dioxide in 
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an excited state. During the relaxation of nitrogen dioxide, a photon is emitted which 

can be measured108. 

NO + O3
               

NO2
*+ O2

NO2
*                    

NO2
 + hv

 

Figure 1.10. Mechanism for the detection of NO through chemiluminescence. NO is 
initially reacted with ozone to form a nitrogen dioxide in the excited state. As this 
molecule relaxes, it emits a photon which can then be measured and quantified. 

1.7  Statement of Purpose 
 

Knowing all of the beneficial effects and applications of NO is crucial when developing 

a unique NO donating material. Chapter 2 describes an NO donating PVC material 

which utilizes covalent bound RSNOs. By covalently attaching the NO donor to the 

backbone of the polymer, it allows a uniform NO flux across the polymer area when 

triggered by light for controlled release. This characteristic gives it beneficial uses for in 

vitro NO delivery models. Chapter 3 utilizes dendrimer chemistry to develop a highly 

branched polymeric structure capable of high NO storage. Most NO donors that 

passively or actively release NO do not last for long periods of time. By synthesizing a 

hyperbranched molecule with high NO capacity, a polymer can be loaded with a 

tremendous amount of NO capable of delivering NO longer than most other NO donors. 

Chapter 4 describes how subcutaneous inflammation can be controlled using the two 

materials previously described. The foreign body response to subcutaneously implanted 

devices dramatically reduces its longevity. By utilizing these beneficial effects of NO 

described, the developed materials were used to prevent the harsh inflammatory 

responses normally observed. This can then be applied to any future subcutaneously 

implanted devices to increase its implantation life, reducing the amount of interventions 

required to constantly replace sensors needed to record specific analytes. The 

preliminary data in chapter 5 delves into the potential effects NO can have on viruses. 

The mechanisms by which macrophages use NO to kill foreign bacteria is hypothesized 
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to destroy viruses in a similar manner, but the exact dosage is still unknown. The 

groundwork for that chapter describes an accurate method of delivering NO to viruses 

suspended in solution to find this dosage level.  
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Chapter 2 : Controlled Nitric Oxide Release from 
Covalently Linked S-Nitroso-N-Acetyl-D-Penicillamine 
to Polyvinyl Chloride (SNAP-PVC) 
 

2.1 Introduction 
 

PVC is the most widely used polymeric material used in medical applications ranging 

from blood bags, heart lung bypass sets, endotracheal tubes, and many other medical 

related materials1. Around 25% of all biomedical devices contain some form of PVC 

due to its wide range of mechanical property variability with plasticizer additives2. 

Some of the plasticizers that can be used in PVC are toxic such as di-(2-ethylhexyl 

phthalate) (DEHP), and are able to leech out of the polymer into the blood3,4. Although 

these ester based plasticizers are toxic, much safer PVC plasticizers have been 

developed to be used for blood contacting purposes. Examples of non-toxic plasticizers 

that are blendable with PVC are citrates and sebacates1,5. Plasticizer leeching can also 

be controlled by performing surface modifications to the polymer. A common technique 

used is surface crosslinking, which acts as a barrier to prevent the escape of any 

unwanted chemicals6. This can also be useful for an NO releasing blendable compound 

that is designed to only release NO at a certain area and time and not diffuse out of the 

material. PVC is also has a very low cost to manufacture compared to other medical 

grade polymers and has a strong resistance to external chemical components. Being able 

to chemically modify a polymer is also an important characteristic of a polymer. The 

free chlorine reactive groups allow for the attachment of other chemical components to 

further enhance the surface chemistry of PVC. Chemically modifying the plasticizers 

used within the polymer is also an option for attaching small molecules which is a 

popular strategy for NO releasing polydimethylsiloxane (PDMS), a well characterized 

NO donating material7,8.1 

                                                 
1 Material in this chapter is in the process of being submitted for publication. 
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Polymers can be synthesized to mimic the endothelium’s NO release levels to prevent 

unwanted foreign body response. A novel NO releasing PVC based polymer is 

described and shown to have tunable NO releasing properties depending on the trigger 

mechanism. NO releasing PVC has been reported by blending N-diazeniumdiolates 

within the polymer matrix and covalently binding it to a modified version of the 

polymer9,10. N-diazeniumdiolates do not have the controllability that RSNOs contain as 

they are limited to only passively release their NO reservoir over a short time11. Using a 

SNAP based system, a material is able to have a tunable control of NO release for a 

variety of situations along with the possibility to create a passive release system. 

When developing an NO releasing polymer, the capability of NO diffusion through a 

polymer matrix is important. NO permeability through PVC has been characterized 

using Fick’s law of diffusion where the equation is as follows: 

                               ln � 𝐶𝐶𝑜𝑜
𝐶𝐶𝑜𝑜−𝐶𝐶

� =  𝐷𝐷𝐷𝐷
𝑙𝑙𝑙𝑙
𝑡𝑡                                   (1) 

Where C is the concentration of NO, D is the diffusion coefficient, A is the area being 

diffused through, l is the path length, V is the chamber volume, and t is the time. 

Although its diffusion kinetics are not as good as silicone rubber, it is greatly enhanced 

through the addition of the plasticizer dioctyl sebacate12. This needs to be taken into 

consideration when a system with mass transfer of NO through PVC or any other 

polymer is designed. NO releasing materials that are blended within a polymer matrix 

while in contact with blood will need to be designed with a layer that prevents diffusion 

of the NO donor out of the material, but still allows the permeability of NO itself. This 

diffusion rate can be tailored to the dosage of passive NO being administered as well. 

Having an additional parameter available to modulate the rate of NO release could be 

beneficial. 

Herein, a synthetic route is described where (PVC) is aminated to a specified extent and 

then further modified by covalently linking S-nitroso-N-acetyl-D-penicillamine (SNAP) 

groups to the free primary amine sites to form a nitric oxide releasing polymer (SNAP-
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PVC). Controllable release of NO from SNAP-PVC is described using photoinitiation 

from light emitting diodes (LEDs). Ion mediated NO release is also demonstrated as 

another pathway to give a passive mechanism for NO delivery. The large range of NO 

fluxes obtainable from the SNAP-PVC films demonstrates the potential uses in 

mediating unwanted inflammatory response in blood and tissue contacting devices. 

2.2 Experimental Details 
 

2.2.1 Materials 
 

Polyvinyl chloride (average Mw = 233,000, Mn = 99,000), ethylenediamine, 5, 5’-

dithiobis (2-nitrobenzoic acid), triethylamine, 1,4,8,11-tetraazacyclotetradecane, N-

acetyl-D-penicillamine (Fluka),  and concentrated hydrochloric acid were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). ATTO-TAGTM FQ reagent was purchased from 

Invitrogen (Grand Island, NY, USA). Tert-butyl nitrite (90% technical grade, Acros 

Organics) was purchased from Fisher Scientific. Magnesium sulfate, copper (II) 

bromide, L-ascorbic acid sodium salt, and acetic anhydride (Alfa Aesar) were 

purchased from VWR (West Chester, PA, USA). 

2.2.2 Synthesis of NAP-thiolactone 
 

The procedure to synthesize a self-protected N-acetyl-D-penicillamine (NAP) 

thiolactone was accomplished according to the procedure from Moynihan and Robert13 

(Figure 2.1). 5g of N-acetyl-D-penicillamine was dissolved in 10 mL of pyridine while 

10 mL of acetic anhydride and 10 mL of pyridine were mixed in a separate container. 

The solutions were both cooled in an ice bath for 1 h before being combined. The 

mixture was allowed to stir at room temperature for approximately 24 h until the 

solution turned light red. The solution was rotary evaporated at 45˚C until the solution 

stopped boiling. The temperature was then increased to 60˚C until most of the solvent 

was evaporated to obtain an orange viscous liquid. The resulting product was then 

dissolved in 20 mL of chloroform and washed and extracted three times with 20 mL of 
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1M HCl. MgSO4 was added to the chloroform solution to remove any water and was 

then removed by vacuum filtration. The chloroform was removed by rotary evaporation 

at room temperature and the resultant crystals were collected and rinsed with hexanes 

and filtered. Light yellow/white colored crystals were recovered and vacuum dried 

overnight. 
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Pyridine
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N-acetylpenicillamine thiolactoneN-acetyl-DL-penicillamine
 

Figure 2.1. Synthesis of thiolactone self-protected N-acetyl-D-penicillamine (NAP-
thiolactone). The base molecule N-acetyl-D-penicillamine is first dissolved into chilled 

pyridine and acetic anhydride where it is then allowed to stir for approximately 24 
hours. The pyridine is then rotary evaporated off and the resulting viscous liquid is 

dissolved in chloroform and extracted three times with 1M HCl. Any excess water is 
removed by placing anhydrous magnesium sulfate into the organic solution and filtered 
off. The chloroform is then rotary evaporated off at room temperature and rinsed with 

hexanes to give a white/light yellow crystalline product. 

2.2.3 Synthesis of SNAP-PVC 
 

The overall schematic to synthesize SNAP-PVC is shown below in Figure 2.2. 

Aminated PVC was first synthesized using a modified procedure from Tinkilic et al14.  

2.5 g of PVC was suspended in 50 mL of methanol, 11 mL of triethylamine, and heated 

to 60˚C. 15.25 mL of ethylenediamine was added once the solution reached 

temperature. The reaction mixture was allowed to reflux for at varied time points (1, 2, 

and 4 hours) at 60˚C. The resulting light yellow polymer powder was then filtered and 

washed thoroughly with water, methanol, 1M HCl, methanol, and water in that order 

before being dried under vacuum.   
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200 mg of the synthesized PVC-NH2 was dissolved in 10 mL of anhydrous N, N-

dimethylacetamide (DMAC). 60 mg of NAP-thiolactone was then added to the mixture 

and allowed to stir overnight. 2 mL of the NAP-PVC solution was taken out and 

nitrosated using 0.5 mL of t-butyl nitrite. The t-butyl nitrite was first chelated of any 

copper stabilizer using a 30 mM aqueous cyclam solution (1, 4, 8, 11-

tetraazacyclotetradecane). For the chelation step, approximately 3 mL of t-butyl nitrite 

and 5 mL of 30 mM cyclam were mixed and stirred vigorously. The cyclam was then 

removed and the t-butyl nitrite was rewashed with more cyclam a total of three times 

before the cleaned t-butyl nitrite was extracted and stored at 2oC. The light yellow/clear 

solution of PVC-thiolactone turns a light green-yellow color after allowing it to react 

with t-butyl nitrite for 24 hours. The SNAP-PVC solution was then cast into 

polytetrafluoroethylene (PTFE) rings and left to air dry overnight to form a thin layered 

polymer film.  The films can also be dried under a vacuum as moisture will cause the 

films to be less transparent, hindering the ability the LED can trigger photoinitiated NO 

release. 
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Figure 2.2. Synthesis route of SNAP-PVC. PVC is first modified to contain reactive 
primary amine site by suspending PVC resin in methanol, triethylamine, and 

ethylenediamine while refluxing at 60oC. This attaches the ethylenediamine to the PVC 
backbone. The free primary amine can then react with NAP-thiolactone to form a NAP-
PVC polymer. Nitrosation of the free thiol group was then done through the reaction of 

t-butyl nitrite to form SNAP-PVC. 

 

2.2.4 Polymer characterization 
 

The quantification of the degree of amination of the PVC was done by using the ATTO-

TAG FQ test for primary amines. Fluorescence testing was done using a 96-well plate 

reader (BioTek Instruments) and the amount of primary amines was determined using a 

glycine calibration curve. The fluorescent tag is maximally excited at 450 nm with an 

emission maximum at 550 nm15. Once the aminated PVC reacts with NAP-thiolactone, 
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a free thiol is exposed on the polymer backbone. Ellman’s test for thiols was done to 

quantify the amount of thiols grafted onto the polymer using 5, 5’-dithiobis (2-

nitrobenzoic acid) (DNTB) following a modified protocol developed by George 

Ellman18. Tris-buffer was substituted with PBS (pH = 7.4). Absorbance was then taken 

at 412 nm after the reaction with 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB) using a 96-

well plate reader.  As the reaction progressed, FTIR was done to characterize the 

important polymer functional groups (Mattson Genesis II).  

2.2.5 Quantification of primary amines 
 

Primary amines are able to be accurately quantified through their reaction with 3-(2-

furoyl)quinoline-2-carboxaldehyde (FQ) to form a fluorescent isoindole product17 

(Figure 2.3). This is an extremely sensitive method, able to detect amines in the 

attomole (10-18) range. The development of this detection method was originally made 

to quantify trace amounts of peptides and amino acids that could not be identified 

through traditional methods like liquid chromatography and capillary electrophoresis. 

The application can be applied to synthetic materials with a primary amine present. The 

reaction that occurs with FQ, potassium cyanide (KCN), and the primary amine 

containing sample is shown in the schematic below. 
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Figure 2.3. Mechanism for the fluorescent detection of primary amines using the 
ATTO-TAG FQ amine derivation kit.3-(2-furoyl)quinoline-2-carboxaldehyde (FQ) in 

the presence of a potassium cyanide will react with a primary amine site to form a 
fluorescent product. This product has an excitation wavelength of 450 nm and an 

emission maximum of 550 nm, which can be quantified to give an accurate 
measurement of primary amines in a material when compared to a calibration curve. 

For a control, glycine-HCl was used and diluted to multiple concentrations to generate a 

calibration curve. Each well to be tested on the 64-well fluorescent plate contained 

10µL of 10mM CBQCA, 20µL of 10mM KCN, and 10 µL of sample. The reaction was 

allowed to sit on a shaker plate for 1 hour while protected from light before being tested 

in the plate reader with an excitation wavelength of 450 nm with an emission maximum 

at 550 nm.  
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2.2.6 Quantification of thiols 
 

Thiol quantification through the use of DTNB directly cleaves the DTNB molecule into 

two TNB anions, where one of the free molecules reacts with the thiol being measured 

(Figure 2.4). The other TNB anion is what is measured by the spectrophotometer at 412 

nm. Cysteine was used to generate a calibration curve up to an absorbance of 1.0. Any 

absorbance above 1.0 would not be measured as Beer’s Law cannot accurately predict 

concentrations above those values. 
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Figure 2.4. Mechanism for the detection of free thiols using Ellman’s assay. 5,5'-dithio-
bis-2-nitrobenzoic acid (DTNB) has its disulfide bond cleaved in the presence of free 

thiols. The free thiol then forms another disulfide bond with one part of the DTNB 
while the measured product is emitted into solution and is quantifiable at 412 nm when 

compared to a calibration standard. 

2.2.7 Nitric oxide release by photoinitiation 
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The light source used for photoinitiation of the SNAP-PVC films were 460 nm blue 

VAOL-5GSBY4 LEDs obtained from Mouser Electronics Inc (Mansfield, TX, USA).  

A 130 Ω resistor was hooked up in series with the LED and a variable voltage source 

was applied to the system.  The emission spectra and relative intensity of the LED with 

respect to drive current is shown to be linear over the currents being used to power the 

LED for the study and was characterized by Starrett et al16.  

2.2.8 Nitric oxide measurements 
 

Nitric oxide release from the polymer was directly measured by the chemiluminescent 

reaction of NO with ozone using a Sievers 280i Nitric Oxide Analyzer (GE 

Instruments). SNAP-PVC films with a diameter of 5.5 mm were placed inside an amber 

glass sample holder with an inlet nitrogen sweep gas flowing at 200 mL min-1. The LED 

was mounted in the top of the sample holder 5 cm above the film to be tested. Varying 

voltage levels were used (0, 3, 4.5, 6, 7.5 volts) at 130 Ω to demonstrate the control of 

the nitric oxide flux from the polymer film. Total NO release of the polymer films was 

done by cleaving the sulfur-nitroso bond through copper mediated decomposition 

following a procedure developed by Frost et  al17. A solution of 10 mM CuBr2 and a 

100 mM solution of L-ascorbic acid sodium salt were used for the NO quantification. 2 

mL of the CuBr2 solution are placed in a glass sample holder containing a weighed 

SNAP-PVC film. After 5 minutes, 500 µL of the 100 mM L-ascorbic acid solution is 

then added to reduce the Cu2+ ions to Cu+, enhancing the sulfur-nitroso bond cleaving. 

The test was continued until all of the NO reservoir was depleted.   

 

2.3 Results and Discussion 
 

2.3.1 FTIR analysis 
 

Each step from the reaction schematic shown in the SNAP-PVC synthesis route is 

verified using FTIR which is seen in Figure 2.5.  After attaching ethylenediamine to the 
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PVC backbone, primary amines and secondary amines are present in the spectrum 

which is seen in the N-H bending at 1641 cm-1. The attachment of NAP-thiolactone to 

the free primary amine sites shows the formation of NAP-PVC as the presence of a 

carbonyl peak is present at 1750 cm-1. 

 

 

Figure 2.5. FTIR spectrum of PVC (green), PVC-NH2 (blue), and NAP-PVC (red). 
Once ethylenediamine is attached to PVC, the presence of N-H bending is seen at 1641 
cm-1. The attachment of NAP-thiolactone to the free amine shows the appearance of the 
amide carbonyl peak at 1750 cm-1 along with the secondary amine stretching around the 

3300 cm-1 region. 

 

 

 

2.3.2 Quantification Results 
 

Quantification of the amination of PVC was verified through using the ATTO-TAG FQ 

test for amines. Once the NAP-thiolactone ring opens and reacts with the primary amine 

sites on the polymer backbone, free thiol groups are exposed. To identify the extent to 
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which this reaction is occurring, Ellman’s test for thiols was done. The quantification of 

primary amine and thiol functional groups were normalized per milligram of polymer. 

Primary amine quantification showed 0.201±0.013 µmol/mg of PVC-NH2. Thiol 

quantification showed 0.153±0.009 µmol/mg of NAP-PVC. To verify the capacity, 

copper mediated NO release was performed on the nitrosated polymer (SNAP-PVC) 

and showed the NO released to be 0.0392 ±0.004 µmol per milligram of polymer, 

which is a 25.6% NO addition efficiency of the NAP-PVC compound. 

2.3.3 Nitric oxide release results 
 

The physiological NO flux for healthy vasculature is estimated to be in the range of 0.5 

– 4 x 10-10 mol cm-2 min-1, which is achieved from the SNAP-PVC films at certain 

intensities of light. The NO flux varies depending on the location in the body. 

Vasculature with higher sheer stress will promote more NO release from vascular 

endothelial cells19. After damaging the vascular walls from an implanted device, more 

NO release may be initially required to prevent unwanted immune response and 

neointimal hyperplasia in the affected area20. Developing a material that is able to adjust 

the NO flux in real-time increases the number of applications a hydrophobic polymer 

coating could have in a medical setting. 

The NO release profile from SNAP-PVC films (diameter 5.5 mm, thickness 0.1 mm) at 

varying drive current applied to a 470 nm wavelength LED is shown in Figure 2.6. 

Nitrogen sweep gas carried the NO released by photoinitiation to the NOA to give a 

stair step profile based on the voltage supplied to the LED. The profile shows the wide 

range of control that the polymer is able to obtain. As the LED is adjusted, there is little 

decay in the NO being released at each level showing the stability of the NO reservoir 

within the polymer.  
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Figure 2.6. Controlled NO release profile of SNAP-PVC at varying LED voltages. A 
baseline is first obtained with the LED off, and is then turned on with a 3V supply at 

130Ω. It is then turned off again until the baseline is reached again before being 
supplied with an additional 1.5V while holding the resistance constant. Once 7.5V is 

reached, the processed is repeated but with a decreasing supply of 1.5V. 

NO release of SNAP-PVC in phosphate buffered saline (PBS) at 37oC was also tested to 

show the release under physiological conditions. Ions are able to penetrate the polymer 

film and interact with the reactive SNAP groups as PVC is a popular polymer used in 

ion selective electrodes21. This provides another pathway to stimulate the NO response 

for in vivo applications as other methods like photoinitiation could cause complications 

when implemented. In some scenarios, having a level of passive release over a short 

period of time may be the desired route of NO delivery. This follows a similar release 

profile as seen with N-diazeniumdiolate NO donors, but is able to release lower 

amounts over a longer period of time. The passive release of SNAP-PVC in PBS at 

37oC is shown in Figure 2.7. 
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Figure 2.7. NO release profile of SNAP-PVC placed in PBS at 37oC. 5.5 mm diameter, 
100 µm thick films were submerged in 2 mL of PBS while stirring at physiological 

temperature to demonstrate SNAP-PVC’s passive NO release. This profile is similar to 
NONOates but is able to persist a lower and more constant release. 

 

The NO capacity and release demonstrated by SNAP-PVC could potentially be much 

larger as there are many unreacted chlorine sites on the backbone of the polymer. A 

longer reaction time with ethylenediamine could be implemented to achieve a higher 

degree of amination, but complications with crosslinking and solubility occur as PVC 

becomes more dechlorinated22. This limits the amount of NO storage capacity of PVC 

through using a component like ethylenediamine as an aminating agent. PVC also 

becomes darker in color the more dechlorinated it becomes, which would hinder the NO 

release by photoinitiation as light penetration through the film will be limited. NO 

release from films reacting with ethylenediamine from 1 to 4 hours was tested, and 2 

hours was found to have the highest capacity and release ability of NO, which is 
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demonstrated in Figure 2.8. 

 

Figure 2.8. SNAP-PVC photoinitiated NO release at 37oC in nitrogen at different 
synthesis reaction times. The reaction times with ethylenediamine (EDA) were 1 hour 

(red), 2 hours (green), and 4 hours (blue). The same LED and stepwise voltage 
increases seen in Figure 2.6 were used here. As the reaction time of EDA with PVC 
increases, more crosslinking between the polymer chains occurs. This crosslinking 
limits the amount of free amine sites to be reacted with NAP-thiolactone while also 

causing the PVC to become a darker yellow color, limiting the release from the LED.  

Total NO release was also determined for the polymer films with varied reaction times 

to ensure that the 2 hour EDA reacted SNAP-PVC was the most optimized reaction 

time to achieve the highest NO loading in the material. To do this, the three films were 

all placed into a reaction chamber where a high intensity UV light was shined onto the 

films until no visible NO release was detected. Figure 2.9 shows that the higher 4 hour 

reaction time SNAP-PVC was releasing the lowest amount of NO while the 2 hour 

reaction time SNAP-PVC released the highest. This displays the limit of NO release 

that can be done using this method, as the crosslinking interferes too much passed a 

certain amination point. This is further proven in Table 2.1, where the increase in 
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ethylenediamine reaction time does show to increase the nitrogen content, but a 

decrease in primary amines at the 4 hour reaction time. Further improvements could be 

made to increase the capacity by using a self-protected aminating agent instead of a 

difunctional aminating agent. This would allow the attachment of the reactive molecule 

to the backbone of the PVC chains with no crosslinking. The polymer could then be 

deprotected to expose the reactive group that could then be modified with SNAP.  

 

Figure 2.9. SNAP-PVC compounds with varied reaction times in EDA with triggered 
UV light photoinitiated for total NO release. The SNAP-PVC films were categorized 
into 1 hour (blue), 2 hour (green), and 4 hour (red) reaction times with EDA. Films 

were rinsed with DI water beforehand and vacuum dried to get rid of any excess nitrites 
that could interfere with the testing. SNAP-PVC with the 2 hour reaction time proved to 
have the highest NO storage capabilities while the higher 4 hour reaction time showed 

the lowest. This further proves the crosslinking kinetics that occur when reacting a 
polymer with a difunctional molecule over long periods of time. 
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Table 2.1. FQ and CHN analysis on aminated PVC to observe the primary amine and 
nitrogen content as reaction time with ethylenediamine increases. As the reaction time 
with ethylenediamine increases, the amount of primary amines present decrease at the 4 
hour reaction time point. From the CHN combustion data, there is an increase in 
nitrogen content, proving the crosslinking of ethylenediamine to other polymer chains 
the longer the solution is refluxed. 

Sample Primary amine 

content (µmol/mg) 

%N (by mass) 

PVC 1 hour reaction time 0.0362±0.016 0.15 

PVC 2 hour reaction time 0.201±0.013 0.167 

PVC 4 hour reaction time 0.0188±0.0023 0.20 

 

 

2.4 Conclusion 
 

The synthesis of NO releasing SNAP PVC was successful and the flux of NO obtained 

from the polymer was shown to release at a variety of physiological ranges. This could 

greatly improve the potential applications for blood and tissue contacting PVC based 

materials that are already used in medical settings. Depending on the degree of 

amination and light intensity administered from specific LED wavelengths, SNAP-PVC 

is able to be utilized to deliver specific controlled NO loading and release. The material 

could also be applied used as implantable device coatings to improve biocompatibility 

or to prevent neointimal hyperplasia of vessels. It could also be used as a base material 

for catheters and other PVC related medical devices, extending the duration it is 

allowed to stay in contact with tissue and blood before complications occur.  
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Chapter 3 : High Capacity Nitric Oxide Release from 
S-Nitroso-N-Acetyl-D-Penicillamine Modified 
Hyperbranched Polyamidoamine (SNAP-HPAMAM) 
for Controlled Nitric Oxide Release 
 

3.1 Introduction 
 

Nitric oxide (NO) has been proven to be an important molecule with multiple functions 

such as maintaining vascular health, mediating inflammatory response, and preventing 

bacterial adhesion depending on the level of NO that is being released1-3. To further the 

advancement of biomedical devices and sensors, being able to mediate and reduce the 

foreign body response of a patient is an important factor. For patients that are in critical 

condition where an important analyte is constantly monitored, biosensors must be able 

accurately measure it. Due to the foreign body response, these medical devices often 

lose their functionality over a short period of time. NO has the ability to minimize 

unwanted inflammatory response and increase the longevity of implantable medical 

devices. The two most popular NO releasing materials to be applied in a medical 

application are S-nitrosothiols and N-diazeniumdiolates4-5. These molecules are able to 

be covalently attached to materials to provide stable, NO releasing compounds. The 

release mechanisms of these and other NO donors have been well characterized6.  Long 

term NO release at a physiological level is necessary for keeping implantable devices 

free from unwanted immune response, favoring the slower and more controlled release 

mechanism of S-nitrosothiol chemistry.  Using an NO donor with the potential for a 

high NO reservoir, polymers would able to contain the amount of NO required for these 

long term situations. 2 

Dendrimers are highly branched, symmetrical macromolecules that can have a wide 

array of surface chemistry characteristics. They start with a core molecule, and from 

there can progress in size and functionality with stepwise reactions done in separate 
                                                 
2 Material in this chapter is in the process of being submitted for publication. 
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batch processes. Several groups of researchers led by Buhlier, Newkome, and Tomalia 

pioneered the development of dendritic type macromolecules to eventually lead to the 

large field of dendrimer research that is seen today7-9. A similar class of macromolecule 

to dendrimers are hyperbranched polymers. Hyperbranched polymers do not have the 

symmetry that is seen with dendrimers, and are usually a large array of randomly sized 

molecules as there are no purification or chromatography steps during the processing10. 

Because of this, hyperbranched polymers act more like synthetic polymers as they have 

a large molecular weight distribution of different sized chains, whereas perfectly 

synthesized dendrimers only contain a single mass to be observed11. Dendrimers and 

hyperbranched molecules have the ability contain a large reservoir of NO due to the 

large amount of surface functional groups they contain. Dendrimers have been widely 

used in medicine and are continuing to grow in popularity due to its molecular storage 

capabilities and high functionality12. They are used in a variety of medical applications 

such as cancer treatments, gene therapy, and precise drug delivery12-15. A popular class 

of dendrimer that is widely used in research is polyamidoamine (PAMAM). PAMAM 

dendrimer and hyperbranched polymer cytotoxicity has been previously investigated 

and found that the main mechanism for which these molecules decrease cell viability is 

through cationic disruption of cell plasma membranes16,17. By modifying the primary 

amine sites with SNAP functional groups, PAMAM dendrimers have been shown to not 

negatively affect the cells they interacts with18. 

NO releasing dendrimers have been tested before by Stasko et al. to demonstrate the 

NO storage capability of this type of molecular architecture19. The authors were able to 

fully characterize 64 armed dendrimers with the ability to deliver large, precise amounts 

of NO. While this type of NO releasing molecule is excellent for targeted therapeutics, 

it is limited in its role for integrating into polymer matrices. The synthesis route for 

creating high generation dendrimers takes a large amount of labor and time due to the 

extent of the purification processes required. Hyperbranched polymers are similar to 

dendrimers but contain defects within the structure due to skipping these purification 

process steps during synthesis20. Hyperbranched polyamidoamine (HPAMAM) 
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molecules can be synthesized in a simple and economical method as a high yield of 

product is obtained over a shorter period of time is compared to pure PAMAM 

dendrimers. The importance of the compound is stressed on the functional groups more 

than the dendritic structure when looking into high capacity, blendable NO donating 

materials. The significantly reduced reaction times and purification steps make these 

highly functionalized hyperbranched polymers attractive for use as an NO delivery 

vehicle to be blended into various polymeric matrices to develop a range of NO 

releasing materials, simply by varying the amount of donor blended into the base 

polymer. 

NO releasing hyperbranched polyethers have been previously synthesized using N-

diazeniumdiolate NO donors, but have shown poor NO addition efficiency21. N-

diazeniumdiolate molecules also do not have the controllability as seen with SNAP 

based NO donors as its release mechanism is triggered when put in physiological pH 

and temperature22. The purpose of creating a SNAP-HPAMAM compound is to use to 

blend within other polymers while still maintaining all of the beneficial properties of a 

SNAP based NO donor, giving the option of either having a controlled or passive 

release of NO.  

Herein, HPAMAM was modified with the S-nitrosothiol, N-acetyl-D-penicillamine, and 

nitrosated to form a controlled NO donating compound (SNAP-HPAMAM). This 

compound was triggered to release NO by photoinitiation and ion mediated release. 

Structural analysis of a generation 1 HPAMAM molecule was done through FTIR, 1H 

NMR, and MALDI-TOF mass spectroscopy. The NO capacity of a generation 1 SNAP-

HPAMAM molecule ended up being approximately 1.90 µmol NO/mg. Quantification 

of the functional groups in the compound proved that an average of 6.40 reactive 

primary amine sites per molecule were present compared to the 8 reactive sites on a 

perfectly synthesized generation 1 dendrimer. 

3.2 Experimental Details 
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3.2.1 Materials 
 

Ethylenediamine, methyl acrylate, methanol, ethanol, toluene, pyridine, acetic 

anhydride, chloroform, hexanes, hydrochloric acid, magnesium sulfate, α-cyano-4-

hydroxycinnamic acid, Lugol’s iodine, glacial acetic acid, Ellman’s reagent were all 

purchased from Sigma Aldrich (St. Louis, MO, USA). ATTO-TAG FQ reagent was 

purchased from Invitrogen (Grand Island, NY, USA). Tert-butyl nitrite (90% technical 

grade, Acros Organics) was purchased from Fisher Scientific. 

3.2.2 Synthesis of HPAMAM 
 

Generation 1 HPAMAM molecules were synthesized following a modified procedure 

previously done23. The core molecule to initiate the hyperbranched polymer was 83 

mmol of ethylenediamine (EDA), which was dissolved in 250 mL of methanol and 

cooled in an ice bath. 340 mmol of methyl acrylate (MA) was added drop wise to the 

stirring solution of EDA and methanol. The solution was then allowed to stir at room 

temperature for 48 hours. The methanol and unreacted MA was removed by rotary 

evaporation at 45oC to yield a four armed ester terminated hyperbranched polymer. 742 

mmol of EDA was dissolved in 100 mL of methanol in a separate container and chilled 

in an ice bath. This solution was then added drop wise to the stirring ester terminated 

hyperbranched polymer and allowed to stir at room temperature for 72 hours. Rotary 

evaporation was then done to remove the most of the unreacted EDA and methanol at 

45oC. Excess EDA was removed by adding a toluene and methanol mixture with a ratio 

of 9:1 (v/v) respectively at its temperature azeotrope to yield a four armed amine 

terminated molecule (generation 0 HPAMAM).  

The same reaction process was then repeated where MA in two times molar excess is 

dissolved in 100 mL of methanol and added drop wise to the chilled generation 0 

HPAMAM and allowed to stir for 48 hours at room temperature. Repeating the EDA 

reaction step and removal method results in an eight armed amine terminated molecule 

(generation 1 HPAMAM). The solution becomes noticeably more viscous and amber in 
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color after each step. The reaction schematic and final product formed is shown in 

Figure 3.1. 
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Figure 3.1. Synthesis schematic of hyperbranched polyamidoamine (HPAMAM). 
Ethylenediamine is used as the core starting molecule, and is then propagated through 
the Michael addition of methyl acrylate. The process is then repeated until the desired 

hyperbranched structure is created. 

3.2.3 Synthesis of NAP-thiolactone 
 



61 
 

The procedure described in section 2.2.2 was used for the synthesis of NAP-thiolactone 

and its reaction scheme is seen in Figure 2.1. 

3.2.4 Nitrosation of N-acetyl-D-penicillamine modified HPAMAM  
 

There are two methods that can be employed to nitrosated HPAMAM. Using acidified 

nitrites as a nitrosation pathway was done for the first method. The synthesized 

generation 1 HPAMAM (400 mg) was dissolved in 5 mL of deionized water. 3.00 

mmol (519 mg) of NAP-thiolactone was added to the stirring solution and was allowed 

to react for 24 hours to form a NAP-HPAMAM compound. An additional 5 mL of 

deionized water may need to be added to ensure all of the NAP-thiolactone is dissolved. 

The NAP-HPAMAM solution that is formed was mixed with an equal volumetric 

amount of 1M hydrochloric acid and chilled in ice for one hour.  An abundance of 

sodium nitrite (230 mg, 3.33 mmol) was then added to the solution and allowed to react 

at 0oC for 45 minutes. As the reaction occurs, the color will change from clear/light 

yellow to a dark green. The solution was then rotary evaporated at room temperature 

until most of the solvent is removed. The resulting SNAP-HPAMAM was then 

dissolved in chilled ethanol and mixed thoroughly. The ethanol solution was filtrated of 

any excess sodium nitrite or unreacted precipitates using 0.22 µm PVDF syringe filters. 

The SNAP-HPAMAM ethanol solution was rotary evaporated at room temperature until 

a green viscous precipitate is left.  This precipitate was then placed in a vacuum oven at 

room temperature until the green viscous product is completely dried. The resulting 

crystalline product can then be recovered and stored. Shielding the compound from 

light was maintained during all processing steps whenever possible. 

The second method uses tert-butyl nitrite for nitrosating the NAP-HPAMAM. 

Generation 1 HPAMAM (400 mg) is dissolved in 5 mL of methanol and the same 

amount of NAP-thiolactone is added as was previously mentioned. The solution was 

then allowed to react for 24 hours. 1M HCl was then added to the NAP-HPAMAM until 

the pH of the solution is approximately 5.0. The resulting NAP-HPAMAM methanol 

solution is then reacted with tert-butyl nitrite in excess (500 µL, 4.84 mmol). Before 
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adding the tert-butyl nitrite, it was first cleaned by using 30 mM cyclam (1,4,8,11-

tetraazacyclotetradecane) to chelate any metal ions present that could cause RSNO 

degradation. After the addition of the cleaned tert-butyl nitrite to the NAP-HPAMAM, 

the solution should change from clear/light yellow to a deep green color over the course 

of an hour. To remove the excess solvent, it was rotary evaporated at 35oC and then 

vacuum dried at room temperature to obtain a crystalline product. For situations where 

your compound would need to be kept in the aqueous phase during reacting or blending 

with other materials, utilizing the acidified sodium nitrite method is preferred. Using 

tert-butyl nitrite to nitrosate the NAP-HPAMAM is the preferred method for when 

working with organic solvents. When isolated and dried, the tert-butyl nitrite nitrosated 

SNAP-HPAMAM looked a much deeper green color when compared to the first 

method that uses sodium nitrite. This could be due to the less steps of processing that is 

required, preventing the exhaustion of NO in the material over time. 

3.2.5 Nitric oxide release  
 

Nitric oxide released from the compound was directly measured by the 

chemiluminescent reaction of NO with ozone using a Sievers 280i Nitric Oxide 

Analyzer (GE Instruments). This was used to determine the variation of NO flux from 

polymer films containing SNAP-HPAMAM with light and for determining the total NO 

capacity of SNAP-HPAMAM. SNAP-HPAMAM was cast into films using polyvinyl 

chloride (PVC) as the base polymer. For determining photoinitiated NO release, the 

films were placed in a two armed amber glass sample holder 5 cm above a mounted 

LED. The LED was used to trigger the NO release at a variety of voltage levels at 130 

Ω to show the controllability of SNAP based NO donors. 

NO capacity quantification was achieved by tri-iodide reduction following the 

procedure from Yang et al24. An I3
- solution was first made by creating a 3% by weight 

iodine solution and mixing it with acetic acid in a 2:7 ratio by volume respectively. A 

recorded weight of SNAP-HPAMAM was first pre-treated with a 5% acidified 

sulfanilamide solution to react with any unreacted nitrites that could be. After allowing 
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the I3
- solution to stir for 30 minutes, it was added to the measured SNAP-HPAMAM 

while being stirred at room temperature. 

 

Figure 3.2. Schematic of SNAP-HPAMAM’s generic structure and triggered NO 
release methods. The hyperbranched system shows a disorganized but highly 

functionalized network capable of storing large amounts of NO by attaching SNAP to 
the reactive end groups in the HPAMAM structure. The NO can be triggered through 

light, ion interaction, and heat. 

3.2.6 Material characterization 
 

FTIR, NMR, and MALDI-TOF mass spectroscopy were done to obtain the general 

structure of the HPAMAM and NAP-HPAMAM molecules being synthesized. 

Quantification of primary amines was accomplished using by fluorescently tagging each 

site with ATTO-TAG FQ. Excitation was at 450 nm while the emission wavelength was 

at 550 nm. After each free primary amine site was reacted with NAP-thiolactone, 
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Ellman’s test for free thiols was done to quantify the conversion of amines to thiols 

within the hyperbranched structures. Optical absorbance was taken at 412 nm using a 

96-well plate reader. The quantified results were then used to further verify the 

hypothesized structures obtained from the FTIR and MALDI-TOF data. 

3.3 Results and Discussion 
 

3.3.1 Photoinitiated nitric oxide release 
 

One of the main mechanisms for controlled release of NO from RSNOs is through 

homolytic cleavage of the sulfur-nitrogen bond via the administration of light. In the 

dark, the SNAP-HPAMAM material is stable while at room temperature, but can have a 

controlled and stable release of NO when different levels of light are introduced. The 

stability translates to the NO release profiles seen in Figure 3.3, where SNAP-

HPAMAM was distributed evenly into PVC thin films and tested. The control in NO 

release is seen by photoinitiated release at various intensities of light using a 470 nm 

wavelength LED at 130Ω. Voltages are adjusted to increase or decrease the drive 

current applied to the LED and the then turned off to demonstrate the time to takes to 

reach a normal baseline release. Once the peak level of NO release is reached for each 

LED flux step, there is little to no decay. The benefit of having a controllable NO 

releasing material is the application for in vitro testing. Different cell types interact with 

specific levels of NO in different ways. Most in vitro testing of NO administration is 

usually done by adding a solution of N-diazeniumdiolates NO donor directly to cell 

media. This method only gives a short lived burst of NO before being diminished. NO 

contact with cells usually comes in the form of a flux, where a constant and steady level 

of NO is released over time. Using the light sensitive properties of RSNOs, an in vitro 

cell culture setup could have a level flux of NO sent to the cells over a long period of 

time. 
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Figure 3.3. NO release profile of SNAP-HPAMAM blended in PVC using 
photoinitiation. Samples were placed in amber, two armed vials with a nitrogen sweep 
gas where a 470 nm LED was mounted 5 cm above the polymer film being tested. The 
resistance was held constant at 130Ω while the voltage was increased and decreased in 
increments of 1.5V, starting from 3V. Before each step increase, the LED was turned 

off to demonstrate the controllability photoinitiated NO release contains. The films were 
5.5 mm in diameter and 0.1 mm thick.  

3.3.2 Ion mediated nitric oxide release 
 

The SNAP-HPAMAM that was used for photoinitiated NO release was also tested for 

its passive release from ions. SNAP has the ability to release NO from a variety of 

different ions in solution such as copper, ascorbate, and iron4. Using the SNAP-

HPAMAM that was nitrosated using the acidified sodium nitrite mechanism, multiple 

ion mediated release pathways were tested.  2.16 mg of SNAP-HPAMAM was placed 

in PBS at 37oC to give a representative NO release profile under in vivo conditions and 

is shown in Figure 3.4. In aqueous conditions, SNAP-HPAMAM tends to swell and 
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dissolve readily. The large peak of NO release seen once the PBS is added can be 

explained by the ubiquitous transition metal ions present in PBS initiating catalytic 

decomposition of the RSNOs present. 

 

Figure 3.4. Passive NO release from 2.16 mg of SNAP-HPAMAM in 2 mL of PBS at 
37oC. The material was first placed into a two armed amber reaction vessel and allowed 

to warm to temperature. PBS was added at 37oC to observe how NO is released from 
SNAP-HPAMAM while under physiological conditions. 

SNAP-HPAMAM is stable when blended into films with other hydrophobic 

polymers and is able to retain the NO donating group for longer periods of time by 

decreasing the access of transition metal ions to the RSNOs compared to directly 

administering it into solution. Figure 3.5 shows how this method increases the 

longevity of the NO donor when 6 mg of SNAP-HPAMAM were blended with a 

solution of PVC dissolved in N,N-dimethylacetamide and cast into 10 mm diameter 

films. If a hydrophilic polymer like polyvinyl alcohol was used instead, it would allow 

the uptake of water and eventually the release of the immobilized SNAP-HPAMAM 
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into the surrounding area as it swells. This would cause problems as the localized NO 

release would no longer be controllable. To prevent this, PVC was used as the polymer 

containing SNAP-HPAMAM due to its properties as a membrane for ion-selective 

electrodes25.  Other hydrophobic polymers like polydimethylsiloxane (PDMS) further 

prevent ion diffusion into the polymer compared to PVC, and would be suitable for 

situations where only thermal degradation of the RSNO is required. PVC gives the 

option of using ion mediated NO release of the SNAP functional group while still 

having the option of a more controlled release through a photolytic response. A 

characteristic seen with blending SNAP-HPAMAM within PVC is its abilty to act like a 

plasticizer. Unplasticized PVC tends to be quite brittle but still manageable when cast 

into thin films. SNAP-HPAMAM PVC is less brittle than pure PVC, and has more 

elastic properties when the concentration within the polymer matrix is high enough. 

Hyperbranched polyesters have been known to be suitable, safe plasticizers in PVC26. 

The unreacted, defected ester branches see in HPAMAM are most likely providing a 

similar plasticizer property seen in the hyperbranched polyester blends. 
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Figure 3.5. Passive NO release of 6.01 mg of SNAP-HPAMAM encapsulated in PVC 
in PBS at 37oC. When compared to Figure 3.4, the encapsulation of the material shows 

an increase in longevity as a high release of NO is able to be sustained over a longer 
period of time. Preventing the NO donor from leaching out of the polymer matrix 

allows for very long term, sustained release dependent on the amount of material loaded 
within the polymer. 

 Other hydrophobic polymers can be used as well to give off different release 

profiles of SNAP-HPAMAM while in PBS. To demonstrate this versatility, multiple 

polymers were blended with the same amount of SNAP-HPAMAM and then placed 

under physiological conditions. This comparison between the polymers is shown in 

Figure 3.5. The ion diffusion capability of PVC is proven here as it demonstrates the 

highest amount of NO release. Other materials such as RTV-3140 do not show as high 

of a release, but are able to release at a steady flux over a long period of time. 



69 
 

 

Figure 3.6. Passive NO release in PBS at 37oC from multiple polymers blended with 
SNAP-HPAMAM. 10 mg of SNAP-HPAMAM was blended into multiple films (15 
mm diameter). This shows the flexibility of SNAP-HPAMAM blended hydrophobic 

polymeric systems as the amount of NO over time can be adjusted based on the polymer 
properties it is immobilized in. PVC (orange) showed the highest passive release when 

placed in PBS along with a decent amount of release seen in PLLA (blue). SNAP-
HPAMAM blended in RTV-3140 (gray) showed the lowest amount of release due to its 
ability to prevent ion diffusion, but demonstrates a very steady release profile which can 

still be useful in specific situations. 

3.3.3 FTIR analysis 
 

Identification of the important functional groups of the HPAMAM compound was seen 

in the FTIR data collected seen in Figure 3.7. The presence of primary amines seen in 

the HPAMAM spectra is seen around the 3300 cm-1 range (N-H stretching) and 1620 

cm-1 (N-H bending), which are then removed once the attachment of NAP-thiolactone is 

added, which reacts with primary amine groups. The important note of transition from 

NAP-HPAMAM to SNAP-HPAMAM is the disappearance of the thiol peak at 2550 

cm-1 once it is nitrosated, showing an efficient addition of the NO group to the 

compound. The NO peak is difficult to see due to the presence of the large amount of 

amides in the structure, which contain carbonyl groups at roughly 1500 cm-1. Nitroso 

peaks are also commonly seen in this range. 
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Figure 3.7. FTIR spectrum of hyperbranched compounds. Demonstrates the 

progression of HPAMAM (green), NAP-HPAMAM (blue), and SNAP-HPAMAM (red) 
compounds. The N-H stretches from primary amines are visible around the 3300-3400 
cm-1 range for HPAMAM which then disappears when NAP-thiolactone is attached. 
Once NAP-HPAMAM is formed, a free thiol peak is seen at 2550. This thiol is then 

nitrosated as the peak is no longer present when it is nitrosated to form SNAP-
HPAMAM. 

 

3.3.4 NMR analysis 
 

NMR was also done on the base HPAMAM compound to verify the initial synthesis 

procedure is producing the correct dendritic structure. The important characteristic 

functional groups seen in PAMAM dendrimers were classified within the NMR 

spectrum. 1H NMR (400 MHz, CDCl3): δ 7.47 (7H, CONHCH2, t), 3.41 (4H, COOCH3, 

s) 3.23 (14H, NHCH2CH2, q), 2.70 (13H, CH3CH2N, t), 2.63 (11H, CH2CH2NH2, quin), 

2.31 (19H, CH2CH2CO, t), 1.36 (22H, CH2NH2, s). The presence of unreacted ester 

groups and non-amide containing branches are present, but the primary amine groups 

remain abundant in the overall hyperbranched structure. 

 

3.3.5 Quantification of thiols and primary amines 
 

 Quantification of the important functional groups was done by attaching the fluorescent 

tag ATTO-TAG FQ (3-(2-furoyl) quinoline-2-carboxaldehyde) to the primary amine 
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sites present on the HPAMAM molecule following the procedure developed by Liu et 

al.27. The amount of free primary amines present in the compound was calculated to be 

4.48±0.22 µmol/mg, which gives an average of 6.40±0.31 amines per HPAMAM 

molecule. A perfectly synthesized generation 1 PAMAM dendrimer would contain 8 

primary amines per molecule. Using this hyperbranched synthesis route, there was 

proven to be not a large loss of amine functionality in the compound. 

 

Ellman’s test for free thiols was then used to quantify the amount of thiols present after 

attaching the synthesized NAP-thiolactone compound to the free primary amines 

following a modified protocol developed by George Ellman28. PBS (pH = 7.4) was used 

in place of Tris-buffer for the procedure as any excess unreacted NAP-thiolactone can 

react with the primary amine functional groups present in the Tris-buffer. The amount 

of free thiols found using the assay was found to be 2.74±0.30 µmol/mg. 

 

3.3.6 Nitric oxide capacity testing 
 

Total NO capacity of SNAP-HPAMAM was done through tri-iodide reduction and was 

compared to the amine and thiol quantification values.  A perfectly synthesized 8 armed 

SNAP derivatized PAMAM dendrimer has the capability to release 5.594 µmol of NO 

per mg if every primary amine functional group was modified to a SNAP functional 

group. Hyperbranched polymers contain defects within the structure, so the amount of 

NO release will be somewhat lower. Since the average amount of free amines are 

known from the FQ test, the theoretical max conversion of primary amine sites to 

SNAP should be similar. The synthesized SNAP-HPAMAM demonstrated a capacity of 

1.90±0.12 µmol of NO/mg. Comparing the amount of NO released with the theoretical 

max gives a 69.4% molar conversion of NAP-HPAMAM to SNAP-HPAMAM, but 

only a 42.4% molar conversion of HPAMAM to SNAP-HPAMAM. Compared to the 

SNAP-PVC previously described which only had a capacity of approximately 0.0392 

µmol of NO/mg, this is a significant increase in loading potential. The conversion 

percentage is low most likely due to the processing steps for isolating the material. 
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Attaching the NAP-thiolactone to all of the free primary amine arms is quite difficult in 

a hyperbranched network as there is an abundant of steric hindrance present. During the 

nitrosation and isolation of SNAP-HPAMAM, the vacuum drying and rotary 

evaporating steps can take a lot of time. Keeping SNAP-HPAMAM in solution during 

these steps could be causing passive release, lowering the NO capacity of the final 

solid-phase product in the end. 

3.3.7 MALDI-TOF analysis 
 

Figure 3.8 and Figure 3.9 show the MALDI-TOF analysis done on the synthesized 

HPAMAM and NAP-HPAMAM compounds respectively. α-Cyano-4-hydroxycinnamic 

acid (CHCA) was the matrix used for all tests. Since MALDI-TOF is a softer ionization 

mass spectroscopy technique, there is no fragmentation occurring during testing. This 

means that the entire range of peaks seen is a specific hyperbranched molecule with its 

own branching chemistry. 

 

Figure 3.8. MALDI-TOF analysis of HPAMAM. Each labeled peak signifies the 
addition of a 229 Da amine containing branch to the polymer, where a 4 armed 

HPAMAM molecule is at 516 Da, 5 armed at 745, etc. This gives an insight into the 
distribution of hyperbranched molecules within the synthesized HPAMAM batch.  
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Figure 3.9. MALDI-TOF analysis of NAP-HPAMAM. Each labeled peak signifies the 
addition of a NAP containing branch site on the polymer, where a 4 armed NAP-
HPAMAM is at 1207 Da, 5 armed at 1606 Da, etc. The 229 Da amine containing 

branches have an extra 173 Da added to them, increasing addition of a reactive arm to 
approximately 402 Da. 

A wide range of mass peaks was seen as there are unreacted components still present as 

the synthesis process of the HPAMAM progresses. The spectra of the materials are 

characteristic of polymers, where each increment signifies a repeat unit. The spectrum 

of HPAMAM shows the molecular weight of multiple different branched polymers. The 

4 armed HPAMAM starts at a mass of 516 Da and is increased by increments of 229 Da 

with the addition of another branched functional group. Mass peaks past 1430 Da, 

which is the 8 armed HPAMAM, are most likely due to HPAMAM molecules attaching 

to each other. The second spectrum shows the attachment of NAP-thiolactone to free 

primary amine site branches in HPAMAM. The molecular weight of NAP-thiolactone is 

173.23 Da, so the 229 Da mass increments between peaks seen in figure 6 are increased 

to approximately 402 Da for each additional HPAMAM branch. An example of one of 

the NAP branched hyperbranched structures is shown in Figure 3.10. Each peak seen 

on both MALDI-TOF spectra can be used to construct some variation of the modified 

HPAMAM structure. The peak molecular weight of the HPAMAM spectrum is seen at 

the 973 Da mark, which is the weight of a 6 armed PAMAM structure. This is also 
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confirmed by the ATTO-TAG FQ results which gave an estimated 6.40 primary amine 

sites per HPAMAM molecule. 

 

 

Figure 3.10. Structure of 6 armed NAP-HPAMAM (Mw = 2413.14 Da). This specific 
molecular weight from MALDI-TOF is seen in Figure 3.7 and represents the 6 armed 

NAP branched HPAMAM. Similar structures can be constructed for each peak 
represented in the MALDI-TOF spectra. 

3.4 Conclusion 
 

N

N

HN

N N
H

H
N

NH

NN
H

H
N

HN

N
H
N

NH

HN

N

NH

HN

O

O

O

O
O

O

O

O

O

O

O

O

NH

NH

HN

HN

SH

HN O

O
HS

NH

O

O

SH

HN

O

O

O

O

HN

SH

O

O

H
N

SH

HS
NH

O

O

O

O



75 
 

SNAP-HPAMAM was able to show excellent stability and controllability when 

releasing NO. The synthesis process is shown to be much less tedious than that of 

dendrimers while still maintaining a relatively high functionality. A large NO capacity 

of 1.90 µmol/mg was demonstrated, allowing SNAP-HPAMAM to modify a variety of 

polymers to be high capacity NO donating biomaterials by simply dispersing it within a 

polymer matrix. These high capacity NO releasing polymers can then be applied to 

implantable devices and sensors to increase their longevity while measuring crucial 

analytes in vivo. 
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Chapter 4 : Subcutaneous Inflammatory Response to 
Polyvinyl Chloride Based Nitric Oxide Releasing 
Materials 
 

4.1 Introduction 
 

Implantable medical devices can be of vast importance when patients in critical care 

require constant monitoring of important analytes like glucose or oxygen. These long 

term implanted devices lose their functionality over time due to the foreign body 

response. Depending where the device is implanted, whether it is in contact with blood 

or tissue, the body will begin to reject and isolate it1. For blood contacting devices, 

proteins will immediately adhere to the surface. This then allows platelets to attach to 

the device interface and become activated. Once platelet activation occurs, the 

formation of fibrin leads to a fibrous clot, which has a risk of breaking off and causing 

an embolism.  

Tissue contacting devices have a different foreign body response. In the example of 

subcutaneous implants, mast cells will first degranulate and release histamine and other 

cytokines to allow the migration of neutrophils and blood monocytes to the area2. This 

response is fairly quick, and is done within minutes-hours of the initial implantation. 

The migrated monocytes then differentiate into macrophages to attempt to phagocytize 

the foreign material and bacteria that may be present. If the wound healing is not 

resolved, frustrated phagocytosis occurs as large implanted biomaterials cannot be 

properly phagocytized compared to bacteria. Eventually the macrophages begin to fuse 

together to form foreign body giant cells (FBGCs).  FBGCs release harsh degradative 

enzymes and reactive oxygen species as they continue to at3tempt to break down the 

implanted biomaterial3. This can be problematic for materials with delicate surface 

chemistry as a large drop in pH at the FBGC-material interface is seen4. Fibrous 

encapsulation will then begin after FBGCs are unable to phagocytize the foreign 
                                                 
3 Material in this chapter is in the process of being submitted for publication. 
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material, where a collagenous capsule is formed in an attempt to isolate it off from the 

rest of the surrounding tissue5. For an implanted sensor, this encapsulation causes 

incorrect readings in the monitored analyte. The foreign body response to implanted 

biopolymers shows poor biocompatibility when in contact with tissue or blood. 

Utilizing the anti-inflammatory properties of NO, this unwanted response from the body 

can be mediated and moved to the resolution phase of wound healing more rapidly.  

NO is a free radical signaling molecule produced in the body with a wide range of 

important functions like smooth muscle relaxation, thromboresistivity, and as an anti-

bacterial agent6-9. Macrophages are known to produce NO through inducible nitric 

oxide synthase (iNOS) as the mechanism for killing foreign bacteria10. It is also an 

important molecule for mediating and controlling the inflammatory response11. Using 

these properties, NO releasing materials have been developed to help prevent unwanted 

inflammatory responses. A popular NO donor that is able to release its NO reservoir 

under physiological conditions are N-diazeniumdiolates (NONOates)12. This type of 

NO donor is convenient when administering a short, but precise amount of NO when 

implanted. Subcutaneous implanted xerogels doped with NONOates have been 

previously reported to lower the chronic inflammatory response along with reducing the 

fibrous encapsulation thickness over a 6 week period around an implant13. This 

demonstrates how even a short term administration of NO can have long term and 

beneficial effects. Subcutaneous sensors that measure glucose are critically important 

for diabetic patients, but the in vivo longevity is shortened by the foreign body 

response14. The NO donor to be used for this study is S-nitroso-N-acetyl-D-

penicillamine (SNAP), an S-nitrosothiol capable of releasing controlled amounts of NO 

when in contact with light, specific metal ions, and heat. The passive release seen from 

SNAP donors are much lower than NONOates when placed under physiological 

conditions, but in turn are able to release for longer periods of time. 

Two different types of NO releasing SNAP based PVC materials were implanted 

subcutaneously for 1 and 15 days to observe NO’s effect on the initial stages of 

inflammation and its transition into a chronic inflammatory state. The first PVC 



81 
 

polymer covalently links an NO donating material to the backbone of the polymer 

(SNAP-PVC) while the second PVC polymer blends a nitrosated hyperbranched 

polyamidoamine NO donor within the polymer matrix (SNAP-HPAMAM). Each 

material gives its own distinct NO release profile when under physiological conditions 

to observe how the inflammatory and wound healing responses are effected by the 

presence of different administrations of NO.  

The inflammatory responses that were investigated were the quantity and phenotype of 

macrophages present, total cell count, mast cell degranulation, and the fibrous 

encapsulation around the implant area. The two macrophage phenotypes that were 

observed were M1 (classically activated) and M2 (alternatively activated) macrophages. 

M1 macrophages encourage chronic inflammation to a foreign substance while M2 

macrophages decreases the inflammatory response while encouraging tissue repair and 

remodeling15-16. Counting the number of macrophages present does not give an accurate 

representation of the state of inflammation of an implanted material. Observing the ratio 

of M1 to M2 macrophages that are around the implant site would be able to demonstrate 

if NO is able to resolve chronic inflammation around an implant. This would then be 

able to give more insight into how the administration of certain levels of NO can be 

utilized to benefit long term implanted biomedical devices.  

4.2 Experimental Details 
 

4.2.1 Materials 
 

Methanol, ethanol, methyl acrylate, ethylenediamine, polyvinyl chloride (average Mw = 

233,000, Mn = 99,000), 5, 5’-dithiobis (2-nitrobenzoic acid), triethylamine, N,N-

dimethylacetamide, goat serum, Lugol’s iodine solution, 1,4,8,11-

tetraazacyclotetradecane, N-acetyl-D-penicillamine (Fluka), Polyfreeze medium, bovine 

serum albumin in PBS,  and concentrated hydrochloric acid were obtained from Sigma-

Aldrich (St. Louis, MO, USA). Tert-butyl nitrite (90% technical grade, Acros Organics) 

was purchased from Fisher Scientific. Magnesium sulfate, copper (II) bromide, L-
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ascorbic acid sodium salt, and acetic anhydride (Alfa Aesar) were purchased from 

VWR (West Chester, PA, USA).  

For the antibodies, anti-CD11b mouse monoclonal antibody, biotinylated goat anti 

mouse IgG, endogenous avidin/biotin blocking kit, and Alex Fluor 633 streptavidin was 

purchased from Abcam (Cambridge, MA, USA). Anti-CD163 mouse monoclonal 

antibody was purchased from Santa Cruz Biotech (Dallas, TX, USA). iNOS rabbit 

polyclonal antibody (PA3-030A), ATTO-TAGTM FQ, and goat anti-Rabbit Alexa Fluor 

488 (A-11034) were purchased from Thermo Fisher Scientific (Grand Island, NY, 

USA). 

Staining reagents included Eosin Y disodium salt, acetic acid (99.7%), Toluidine Blue 

(powdered), phosphotungstic acid solution 10% w/v, phosphomolybdic acid hydrate 

solution, Biebrich scarlet acid-fuchsin solution, Analine blue solution, absolute ethanol, 

xylene substitute, Gill No. 3 hematoxylin solution, Hematoxylin (powdered), anhydrous 

Iron (III) chloride (powder 99.99%), Lugol’s iodine Solution, and Eukitt quick-

hardening mounting medium; all were obtained from Sigma Aldrich. 

4.2.2 Synthesis of self-protected N-acetyl-D-penicillamine (NAP) thiolactone 
 

The synthesis procedure of NAP-thiolactone was described in chapter 2 following the 

procedure developed by Moynihan and Robert17.  

4.2.3 Synthesis of SNAP-PVC 
 

The detailed procedure for synthesizing SNAP-PVC has been described previously in 

chapter 2. Primary amine groups are first attached to PVC to form an aminated PVC 

compound which is described by Tinkilic et al18. Briefly, PVC is suspended in methanol 

along with ethylenediamine and triethylamine and is refluxed at 60oC for 2 hours then 

filtered. The resultant aminated PVC can then be reacted with NAP-thiolactone to allow 

a free thiol group to be nitrosated by t-butyl nitrite. 
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4.2.4 Synthesis of SNAP-HPAMAM 
 

The synthesis procedure for SNAP-HPAMAM was described in more detail previously 

in chapter 3. The core hyperbranched molecule followed a modified procedure 

popularly used for developing polyamidoamine (PAMAM) dendrimers19. 

Ethylenediamine dissolved in methanol was used as the core molecule. Methyl acrylate 

was then added slowly to give a 4 armed, ester terminated molecule. The solution was 

rotary evaporated until a viscous product was yielded, and dissolved into methanol once 

again. Ethylenediamine was then added to give a 4 armed amine terminated molecule. 

The process is then repeated until a generation 1, 8 armed amine terminated molecule 

was formed. Each of the primary amine groups was then reacted with NAP-thiolactone 

and nitrosated with t-butyl nitrite to form SNAP-HPAMAM. 

4.3 Characterization 
 

Both materials, SNAP-PVC and SNAP-HPAMAM, were characterized using FTIR, 

MALDI-TOF and NMR. The nitrosated compounds were tested for total NO capacity 

using tri-iodide reduction. Further quantification was also done on the polymers to 

verify the presence of important functional groups as the synthesis steps progress. The 

two main functional groups were identified were primary amines and thiols. ATTO-

TAG FQ tested for primary amines for the HPAMAM and aminated PVC compounds, 

and Ellman’s test for free thiols once NAP-thiolactone was covalently attached to the 

amine sites. The characterization results for both of the materials have been covered 

more in depth previously in chapters 2 and 3. 

4.3.1 Nitric Oxide Release  
 

NO release was recorded continuously through a Sievers 280i nitric oxide analyzer 

(NOA) by chemiluminescence. Determining the NO capacity of the materials was done 

by tri-iodide reduction following a protocol developed by Yang et al.20.  
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4.3.2 Polymer Film Casting and Implantation Procedure 
 

The solutions used to make the polymer films contained 2 weight % PVC and SNAP-

PVC while SNAP-HPAMAM was blended into a solution of PVC at 13 mg/mL. Both 

SNAP based polymers were encapsulated with thin layers of PVC to prevent any 

unwanted diffusion of SNAP-HPAMAM into the surrounding tissue after implantation 

and to ensure the material contacting the tissue was consistent with the control polymer. 

All of the materials were dissolved in N,N-dimethylacetamide and cast into films under 

low humidity conditions. PVC, SNAP-PVC, and SNAP-HPAMAM PVC were then cut 

into 10mm diameter films with an average thickness of 0.1mm. The materials were 

implanted subcutaneously away from the initial incision site into four Sprague-Dawley 

rats. Implantation procedures were approved by Michigan Technological University’s 

Internal Animal Care and Use Committee (IACUC). 

4.3.3 Hematoxylin and Eosin  
 

Hematoxylin and eosin was used to observe the cell morphology and infiltration around 

the surrounding implants along with collagen formation. After formalin fixation, slides 

were washed with three changes PBS for 5 minutes. The slides were then rinsed with 

deionized water for 5 minutes. Gills-3 Haematoxlin solution was added onto each slide 

for approximately 2-5 minutes until overstained. Specificity of the Gills-3 staining was 

done by dipping the slides into an acidified solution of HCl and distilled water (pH = 

1.8-2.0) five times. The slides were then rinsed in 95% ethanol solution. Eosin Y 

working solution (0.25%) was used as a counter-stain and was placed onto the slides for 

45 seconds. They were then dehydrated in two changes of absolute ethanol for 5 

minutes each and cleared twice with xylene substitute for 5 minutes. The slides were 

mounted using Eukitt mounting medium and then imaged once dried.  

4.3.4 Masson’s Trichrome 
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Detection of fibrous collagen content was accomplished by using Masson’s trichrome 

stain. This stain allows for accurate measurement and recognition of the collagen 

fibrous capsule around the implant area. Weigert’s iron hematoxylin solution was first 

prepared by dissolving 1g of hematoxylin in 100 mL of 95% ethanol. A separate 

solution containing 29% w/v/ ferric chloride in deionized water was made and 4 mL 

was added to 95 mL of deionized water and 1 mL of 1M HCl. The slides were 

thoroughly rinsed with deionized water to remove any excess formalin and Polyfreeze 

medium. Once rinsed, the slides were placed in the working Weigert’s iron hematoxylin 

for 5 minutes and rinsed in running tap water for 15 minutes and then rinsed with 

deionized water. Bierbrich scarlet acid fuschin solution was placed on the slides for 10 

minutes and differentiated using an equal parts mixture of phosphomolybdic and 

phosphotungstic acid until the adventitial collagen in the tissue sections no longer 

appeared red. The slides were then placed in aniline blue solution for 10 minutes and 

rinsed in distilled water for 2 minutes. Differentiation was done by placing the slides in 

a solution of 1% acetic acid and checked microscopically to determine staining 

efficiency. A quick dehydration in 95% ethanol and absolute ethanol was done before 

clearing in xylene and mounted. 

4.3.5 Toluidine Blue 
 

Mast cells surrounding the implant area were identified by toluidine blue. Activated 

mast cells can be observed through the degree of degranulation and is stained purple. A 

stock solution was prepared by dissolving 1g of toluidine blue in 70% ethanol. The 

working solution contained 5 mL of the stock solution in 45 mL of 1% sodium chloride 

solution with an adjusted pH of 2.4 using 1M HCl to adjust. Slides were hydrated in 

three changed of deionized water for 5 minutes each and placed in the working solution 

for 5 minutes. They were then dipped 3 times in 95% ethanol and 5 times in 100% 

ethanol to dehydrate. Once dehydrated, the slides were dipped 20 times in a solution 

containing 50% acetone and 50% xylene and then followed up by dipping them 20 
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times in a solution containing pure xylene before mounted in resinous mounting 

medium. 

4.3.6 Immunofluorescence 
 

A modified protocol from Abcam was used to prepare and label the tissue sections. 

CD163 and iNOS antibody markers were used to differentiate between M2 and M1 

macrophages respectively. Total inflammatory cells were quantified by using CD11b. 

To enhance the signal, streptavidin-biotin antigen detection was employed after the 

primary antibody markers were attached to the tissue sections. DAPI was then used to 

label cell nuclei and verify the presence of macrophages.  

For CD11b and CD163 staining, frozen sections were first allowed to warm to room 

temperature from -80oC before being fixed in 10% formalin solution for 10 minutes. 

The slides were then washed in three changes of PBS for 5 minutes each and then 

placed in a solution of PBS containing 0.05% TWEEN 20 for 30 minutes. After these 

washing steps, avidin blocking solution was placed onto the sections for 15 minutes and 

then washed in 2 changes of PBS for 5 minutes each. The same procedure was then 

repeated for the biotin blocking solution. A solution of 10% goat serum in PBS was 

placed onto the slides for 30 minutes once the avidin/biotin blocking was complete. No 

PBS washing step is done after the application of the goat serum solution. The primary 

antibody was then added to the slides with a dilution of 1:500 with 5% goat serum in 

PBS and allowed to stay on the slides overnight at 4oC. The slides must be placed in a 

close container containing water to ensure the sections do not dry overnight.  The slides 

are then washed three times with PBS for 5 minutes each. The appropriate biotinylated 

IgG was placed onto the sections for 15 minutes. For the experiments described, since 

goat serum was used as the blocking buffer and the primary antibodies were mouse 

based, biotinylated goat anti-mouse IgG was used. The slides were again washed with 

PBS three times for 5 minutes each. Alex Fluor 633 streptavidin was diluted to a 1:400 

ratio in PBS and placed onto the slides for 1 hour, protected from light during the entire 

time. While still being protected from light, another set of three PBS washed for 5 
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minutes were done. A DAPI solution containing 5 mg/mL was further diluted to 0.5 

µL/mL and placed onto the slides for 1 minute. Two washed of PBS were done at 5 

minutes and then were mounted with aqueous fluorescent mounting media and allowed 

to dry for 30 minutes before imaging. 

iNOS staining used a similar procedure but did not follow the streptavidin-biotin 

staining method. The samples also used BSA as a serum buffer in place of goat serum 

and 0.01% triton X-100 was substituted for TWEEN 20, and was allowed to only rinse 

for 10 minutes. Before staining, antigen retrieval was done by placing the slides into a 

solution of citrate buffer heated at 95oC for 15 minutes. The primary antibody 

concentration was also increased to a 1:200 ratio as well. 

4.3.7 Analytical Methods 
 

Images of the stained sections were done on an Olympus BX51 microscope. For CD11b 

and CD163 labeled tissue, the images to be analyzed were taken on the 20x objective 

around the entire area of the implant. Counting cell nuclei and macrophages was done 

using CellProfiler software21,22. iNOS labeled sections were taken on the 60x objective 

around the implant and were quantified using pixel counting of the labeled cells and 

comparing it to DAPI labeled cells. 

4.4 Results and Discussion 
 

4.4.1 Polymer Functional Group Quantification 
 

Both materials had their functionality quantified as each reaction step progressed from 

their starting synthesized materials (aminated PVC, HPAMAM) to the NAP attached 

molecules (NAP-PVC, NAP-HPAMAM) to their final nitrosated product (SNAP-PVC, 

SNAP-HPAMAM). The primary amine sites were quantified by reacting 3-(2-(furoyl) 

quinoline-2-carboxaldehyde (FQ) to form a fluorescent product excited at 480 nm with 

an emission maxima at 590 nm. NAP-thiolactone is able to covalently link to primary 
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amine sites through a ring opening aminolysis mechanism. The attachment to these sites 

was quantified through Ellman’s test for free thiols. After nitrosation, the NO capacity 

of the two materials were tested through tri-iodide reduction. Table 4.1 shows the 

quantification results of the functional groups tested which was also described in 

previous chapters. 

Table 4.1. Quantification of important functional groups and NO capacity of SNAP-
PVC and SNAP-HPAMAM as each reaction step progresses.It is important to recognize 

the potential NO load amounts depending on amount of primary amine sites in a 
material. Although attaching NAP-thiolactone to every primary amine functional group 

is difficult, seeing the efficiency gives insight to the material kinetics. The low 
attachment to HPAMAM is most likely due to a large amount of steric hindrance as the 
material is a large network of multiple sized chains while the amines on the backbone of 

the PVC chains are most likely spread out and in fewer number. 

 

 Primary Amines 

(µmol/mg) 

Thiols (µmol/mg) Nitric Oxide 

Capacity 

(µmol/mg) 

SNAP-PVC 0.201±0.013 0.153±0.009 0.0392 ±0.004 

SNAP-HPAMAM 4.48±0.22 2.74±0.30 1.90±0.12 

 
4.4.2 NO Release Profile 
 

10 mm diameter films were tested for passive NO release by placing them inside 

stirring PBS solutions at 37oC. The initial NO release was recorded over a set amount of 

time to give an insight into the distinct release profile of the two NO releasing materials 

when in contact with PBS. The polymer films were then placed inside an incubator at 

37oC in PBS when not recording the NO release. Films were then taken out and tested 

again periodically to observe if the polymers were still passively releasing NO. The 

schematic for how the polymer layered system functions is shown in Figure 4.1. 
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Ion diffusion NO release

PVC
SNAP based polymer
PVC  

Figure 4.1. Layered polymer schematic for passive NO release when implanted 
subcutaneously. Since it is difficult to use the light triggering mechanisms normally 
seen with SNAP based materials, using ion and heat mediated release are the most 
convenient mechanisms for passive in vivo release. Due to PVC’s affinity for ion 

permeability, the SNAP functional groups are able to release a substantial amount of 
NO when placed in physiological conditions. 

 

Figures 4.2 and 4.3 show the NO release profiles of the two materials under 

physiological conditions. Comparing the two polymers’ NO release profiles show 

SNAP-PVC exhausting most of its passive NO release over a short period of time while 

SNAP-HPAMAM PVC sustains a higher NO release much longer. This is due to the 

higher capacity that is seen in the SNAP-HPAMAM material. Its encapsulation within 

the PVC matrix to prevent leeching also plays a large role in its persistent NO release. 

Having these two types of NO release profiles to examine in vivo is important as it can 

give insight into the future developments of long lasting subcutaneous NO releasing 

materials. If the shorter term, lower NO release from SNAP-PVC was to perform well, 

it would demonstrate the importance of having the presence of trace amounts of NO 

during the acute inflammatory stages in response to a hydrophobic implant. The SNAP-

HPAMAM PVC also releases a majority of its NO during the acute inflammation stage, 

but would have the potential NO storage to affect the transition into the chronic 

inflammation stage. Care was taken to make sure too much NO was not being released 
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as large amounts of NO can trigger apoptotic events with the cells in the surrounding 

implanted tissue. 

 

Figure 4.2. NO release profile of SNAP-PVC in PBS at 37oC.The release profile of 
SNAP-PVC was very minimal compared to other NO generating materials that have 
been implanted. Compared to the material’s release when using external triggers like 

light or metal ions, the passive release does not trigger NO release at a fairly high level 
for a long time.  
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Figure 4.3. NO release profile of SNAP-HPAMAM PVC in PBS at 37oC.Compared to 
the NO release from SNAP-PVC, SNAP-HPAMAM PVC demonstrated a much larger 
NO release over a longer period of time. This allows the comparison of two distinct NO 

release profiles in vivo.  

 

4.4.3 Masson’s Trichrome Analysis 
 

Fibrous encapsulation thickness was recorded for the 15 day implanted NO releasing 

and control PVC samples and is shown in Figure 4.4. Encapsulation was quantified 

across 8 tissue sections from 4 different rats for each material. Only the dense, 

organized collagen at the implant-tissue interface was considered for measuring the 

thickness of the encapsulation while the loose, disorganized collagen seen away from 

the interface was disregarded. NO’s effect on fibrous encapsulation showed a large 

reduction in thickness for the 15 day implants for both SNAP-PVC and SNAP-
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HPAMAM PVC when compared to controls. The collagen was also much more distinct 

in the control samples as seen in panels A and D of Figure 4.4. The individual collagen 

fibrils are much more developed and easier to identify than the collagen around the NO 

releasing implants. 

 

Figure 4.4. Trichrome analysis of 15 day subcutaneously implanted materials. Panels 
A, B, and C represent 200x images of PVC, SNAP-PVC, and SNAP-HPAMAM PVC 
implants respectively. Panels D, E, and F represent 600x images of PVC, SNAP-PVC, 
and SNAP-HPAMAM PVC implants respectively. The fibrous encapsulation thickness 

(yellow arrows) were measured from the implant location (red star) to the area of 
disorganized extracellular matrix. 
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Figure 4.5. Fibrous encapsulation thickness data for PVC, SNAP-PVC, and SNAP-
HPAMAM PVC for 15 day implants. A dramatic reduction in the fibrosis response was 

seen in the NO releasing implants compared to the control PVC samples. Using             
α = 0.05, a significant difference in encapsulation thickness was seen for both SNAP-
PVC and SNAP-HPAMAM PVC when compared to PVC (p = 0.0128 and p = 0.0004 

respectively). 

4.4.4 Toluidine Blue Analysis 
 

Mast cells play an important role in the inflammatory response as they release 

histamine, serotonin, along with other cytokines that recruit macrophage recruitment to 

a wound site23. The toluidine blue stained images are able to show degranulated mast 

cells versus quiescent mast cells. NO has been shown to help modulate the rate of 

degranulation in mast cells which can further prevent unwanted inflammatory cells 

from approaching an implant area24. This was demonstrated in the toluidine blue stains 

which showed a greater quantity of degranulated mast cells in control PVC when 

compared to the SNAP-PVC and SNAP-HPAMAM PVC 1 day implants. For the 15 

day implants, there was not a large difference between the numbers of mast cells across 

all of the samples. This could be due to the NO reservoir being exhausted from both of 

the NO donating polymers. 
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Figure 4.6. Difference between active and inactive mast cells Mast cells are labeled 
purple and are determined inactive (left) when they are granulated and active (right) as 
the degranulation begins to occur. Although all samples showed signs of degranulated 

mast cells, the NO releasing implants had the most inactive mast cell population, which 
was especially seen in the 1 day implants. 

 

4.4.5 Hematoxylin and Eosin Analysis 
 

Observing the H&E images shows a large range of different cell types present in the 

one day implants. As seen with acute inflammation, a large population of neutrophils 

and monocytes have migrated to the implant site along with the presence of eosinophils 

in the 1 day implants (not shown). The control PVC implants showed higher infiltration 

of cells to the implant area when compared to the NO releasing implants. This result 

correlates to the quantity of mast cell degranulation between the materials. It becomes 

much easier for inflammatory cells to migrate to a wound site the greater the mast cell 

activity. 

The beginning stages of fibrosis can also be seen in the 15 day implants as chronic 

inflammation begins to persist. This is seen especially in the control polymer implants. 

Compared to the control, the NO releasing polymers show a much more resolved tissue 

area around the interface. Control PVC also displays an increase of inflammatory cells 

at the implant-tissue interface and the beginning stages of fibrosis is expressed more 
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prominently. The SNAP-HPAMAM PVC implant interface has little to no 

inflammatory cells on the implant-tissue interface to the same degree as control PVC 

implants.  

 

Figure 4.7. H&E analysis of 15 day subcutaneously implanted materials. Panels A, B, 
and C represent the 200x images of PVC, SNAP-PVC, and SNAP-HPAMAM PVC 

respectively. The 600x images are then shown in panels D, E, and F for PVC, SNAP-
PVC, and SNAP-HPAMAM PVC respectively. The green arrows in panel D show the 
presence of foreign body giant cells at the tissue-implant interface. Red stars indicate 

the implant locations. 

 

4.4.6 Macrophage Immunofluorescence 
 

Quantification of the number and phenotype of macrophages was done around the 

implantation site. Total number of granulocytes like neutrophils, monocytes, and 

macrophages were identified using CD11b while M1 macrophages were specifically 

identified using iNOS antibodies. CD163 was used to quantify and locate M2 

macrophage activity around the implants. All quantification data was done for the 15 

day implants only. High expression of CD11b and iNOS in cells has been proven to be 

an indication of pro-inflammatory M1 macrophages25. CD11b expression also directly 
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relates to the release of pro-inflammatory cytokines, where high expression has 

demonstrated a release of TNF-α and IL-1β26. For any implantable device, the presence 

of M2 macrophages is highly preferred as they mediate and control inflammation along 

with tissue remodeling while the presence of the M1 phenotype encourage chronic 

inflammation. M2 macrophages also help remodel tissues by producing certain MMPs 

and produce VEGF to promote blood vessel fusion and formation27.  

A noticeable difference between the two macrophage phenotypes and total number of 

granulocytes was seen between the NO releasing implants and control implants. Along 

with the quantity present around the implant interface, the location of the specific 

macrophage phenotypes was also observed. For the 15 day PVC control implants, 

iNOS+ macrophages have a high density around the majority of the polymer-tissue 

interface area while CD163+ macrophages seem to be much less frequent overall. The 

15 day NO releasing PVC implanted materials showed a much lower concentration of 

iNOS+ macrophages near the implant. The aggregation of macrophages at the interface 

was less consistent than the aggregation around the control PVC sections. The presence 

of CD163+macrophages in the NO releasing PVC was also more prevalent overall when 

compared to the control PVC. When observing the iNOS stained sections for the NO 

releasing polymer implants, there are cells at the implant-tissue interface that stain 

negatively for iNOS while control sections have a uniform labeling of iNOS+ cells 

around the majority of the interface. This signifies a possible switch in phenotype of the 

migrating M1 macrophages due to the release of NO. There is also the possibility that 

they are still M1 macrophages but are not as active. 

There is also more polymer fragmentation present in the control PVC implants than the 

NO releasing implants. iNOS and CD11b images show a high density of macrophages 

surrounding these polymer fragments within the tissues indicating frustrated 

phagocytosis. The SNAP-PVC showed a minor amount of polymer fragmentation 

compared to the control PVC, while the SNAP-HPAMAM PVC showed none at all. 

NO in high enough concentration has the ability to decrease the amount of chronic 

inflammatory cytokine release from macrophages which then lowers the recruitment of 
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macrophages to the material interface28. In the absence of NO, these cytokines are 

upregulated to allow the migration of more macrophages to the implantation site along 

with macrophage fusion. Eventually this fusion of macrophages leads to the formation 

of foreign body giant cells (FBGCs), which will release harmful degradative enzymes to 

attempt to break apart the polymer29-30. As seen in the H&E stain in Figure 4.7, FBGCs 

and the total number of cells at the interface are much higher in control PVC. 

4.4.7 Macrophage Phenotype Quantification 
 

Observations were made on the images taken with respect to macrophage number and 

phenotype based on NO release. Images were taken at 200x magnification around the 

implant area for both CD11b+ and CD163+ sections and were counted using CellProfiler 

software. An independent samples student t-test was then done to compare the presence 

of CD11b+ and CD163+ cells in control PVC implants to SNAP-PVC and SNAP-

HPAMAM PVC implants. Quantifying the iNOS+ cells proved to be more difficult, as 

iNOS stains for cytoplasmic features within macrophages while CD11b and CD163 

both stain for membrane bound proteins, which are much easier for cell counting 

programs to identify. Pixel counting was used instead to quantify the iNOS activity 

within the tissue sections using ImageJ and Adobe Photoshop. The positive iNOS pixels 

in the green channel were compared to the DAPI pixel count in the blue channel and the 

ratio between the two was used to compare the overall iNOS activity around the implant 

sites under 600x magnification. 

For the 15 day implants, a no significant difference was seen in CD11b+ or CD163+ cells 

when comparing control PVC implants when to both the SNAP-PVC and SNAP-

HPAMAM PVC implants. Although there was no significant difference, there is an 

observable trend in a decrease of CD11b+ cells with the increased in NO delivery from 

the SNAP-PVC and SNAP-HPAMAM PVC along with a slightly increased trend in 

CD163+ cells for the SNAP-HPAMAM PVC. This increase in M2 macrophage 

population coincides with the fact that the implant area contained the lowest population 

of granulocytes and M1 macrophages, demonstrating their ability to control and 
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decrease the inflammatory response to a wound site or implant. By referring back to 

Figure 4.7, panel F, the consequences of a higher population of CD163+ cells can be 

seen from the H&E stain. There is much less matrix formation along with higher 

vasculogenesis around the implant area, which could be caused from the secretion of 

VEGF from active M2 macrophages. This trend also been proven previously using 

CD31 staining to demonstrate the angiogenesis that occurs around NO releasing 

subcutaneous implanted materials13. 

The one day implants showed nearly identical amounts of cells marked with both 

CD11b+and CD163 for all polymers (not shown). The presence of CD11b+ cells at the 

initial stages of implantation are expected to be the same as NO’s main effect is to 

hinder pro-inflammatory cytokines that further the propagation and recruitment of 

additional macrophages. The CD11b+ cells are most likely neutrophils, monocytes, and 

eosinophils along with the initial differentiating macrophages for the 1 day implants. 

This could also factor in to the lack of statistical difference between the materials as the 

stages of acute inflammation is relatively consistent and necessary part of the wound 

healing process.  

For quantification of iNOS+ cells around the implant, 600x images were taken around 

the tissue-implant interface and a pixel count ratio between iNOS stained features 

(green) and DAPI labeled cells (blue) was done. Since iNOS is labeled within the 

cytoplasm of macrophages, individual counting would prove to be difficult. Active 

macrophages will display a strong iNOS signal that can be accurately quantified. To 

observe the difference in signal, RAW 264.7 passage 13 murine macrophages were 

treated with LPS and stained with iNOS and is shown in Figure 4.8. The LPS treated 

macrophages simulate their morphology when active. When comparing the 

macrophages at the interface in PVC control implants to the NO releasing implants, 

there is a distinct difference in the macrophage morphology and is shown in Figure 4.9. 

The PVC control shows a very similar active phenotype similar to the LPS treated 

macrophages. This extreme activity is also seen around polymer fragmentation that 

occurs which is shown in Figure 4.10. The large standard deviations seen in the PVC 
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quantification is due to these fragmentation events that occurred in two of the PVC 

implants, which then greatly increased the presence of iNOS+ cells around the implant 

area. SNAP-PVC still demonstrated a region of active M1 macrophages at the interface, 

but the overall activity of them was much less than the PVC interface. When comparing 

the iNOS/DAPI ratio between PVC and SNAP-PVC, there was no significant difference 

seen. Even with less active macrophages at the interface, there were still a large number 

around the tissue area that stained positive for iNOS. This demonstrates that the passive 

NO release from SNAP-PVC was not enough to hold off the overall aggressive 

macrophage inflammation to the implant. SNAP-HPAMAM PVC implants 

demonstrated a less active interface area along with a low macrophage count in the 

surrounding tissue. In this case, a significant reduction of the iNOS/DAPI ratio was 

seen when comparing SNAP-HPAMAM to PVC. 

 

 

Figure 4.8. Cell culture of RAW 264.7 murine macrophages stained with iNOS at 
600x.LPS treated (right image) and non-LPS treated (left image) demonstrate the 

difference in iNOS staining activity. More active macrophages have a much larger 
cytoplasm filled with iNOS enzymes. 
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Figure 4.9. Immunofluorescence of iNOS+ cells (green) around 15 day implants.PVC 
control (top) displayed very active macrophages, especially at the implant interface. 

SNAP-PVC (middle) also showed a lot of activity, but with smaller iNOS+ cytoplasmic 
features. SNAP-HPAMAM PVC (bottom) had the lowest amount of iNOS activity from 

macrophages, and only showed aggregation of macrophages at the interface in rare 
occaisions. SNAP-HPAMAM stained macrophages were mostly seen away from the 

interface area. A signfiicant difference in the ratio of iNOS/DAPI was seen when 
comparing PVC to SNAP-HPAMAM PVC (p = 0.0312), but no significant difference 

was seen between SNAP-PVC and PVC (p = 0.2897). Red stars indicate the 
implantation area. Red stars denote the implant location. 
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Figure 4.10. Inflammatory response to polymer fragments seen in 15 day PVC 
implants.The aggregation of iNOS labeled cells (green) show the consequences of the 

increased, harsh inflammatory response to the control PVC implants as these tissue 
sections showed the most polymer fragmentation (red star). Image was taken at 600x 

magnification. 
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Figure 4.11. Immunofluorescence and analysis of cell nuclei, CD11b, and CD163 
marked cells for 15 day implants.Aggressive and inflammation inducing cells were 

marked with CD11b (red) for PVC (A), SNAP-PVC (B), and SNAP-HPAMAM PVC 
(C) while cell nuclei were stained with DAPI (blue). Anti-inflammatory, M2 

macrophages were marked with CD163 (red) for PVC (D), SNAP-PVC (E), and SNAP-
HPAMAM PVC (F). White stars indicate the locations of the implant. Quantification of 

the tissue around the implants shows no significant reduction in CD11b+ or CD163+ 
cells for both NO releasing implants, but a trend was observed in the quantification for 
CD11b (G) to demonstrate a reduction in the overall cell count. CD163+ macrophages 
also saw a slight increase in quantity with increased exogenous NO delivery (H) when 

compared to control PVC. Total cell count was also reduced around the SNAP-
HPAMAM implant compared to PVC (I). An alpha level of 0.05 was used for all 

statistical testing. Error bars represent one standard deviation. 

The results from these experiments demonstrate slightly different results from in vitro 

experiments that were done in the past. Human mononuclear cells have been shown to 

express pro-inflammatory cytokines such as TNF and IL-1 when incubated with 100 
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uM levels of SNAP NO donors, suggesting a phenotypical switch to an M1 state if 

concentrations are high enough31. However, these levels of NO were not released from 

the implanted materials over the time periods that are being described. The in vitro 

studies of utilizing NO donors in this manner implies all of the NO is being 

administered at once. Using an NO donating material that is able to keep a lower, more 

steady flux of NO over a period of time would elicit a different response. This suggests 

a different possible mechanism for migrating blood monocytes towards a region of 

more controlled, lower NO release rather than an entire saturated environment of SNAP 

NO donors. 

4.5 Conclusion 
 

Two different NO releasing PVC based polymers that released different total amounts 

of NO were able to elicit different immune responses compared to control PVC based 

on the level and duration of NO being emitted into the surrounding tissue. While 

SNAP-PVC and SNAP-HPAMAM PVC implants were not able to significantly reduce 

the amount CD11b+ and CD163+ cells, there was a general trend occurring for these cell 

types with the two specific NO release profiles. More rats would need to be tested in 

future studies to further verify these trends. There was a significant reduction in the 

fibrous encapsulation area around the implants for both NO releasing polymers, proving 

that even small amounts of exogenous NO release is capable of reducing fibrosis to 

implants. The passive NO release from SNAP-PVC was too low for the implantation 

duration seen to give impressive in vivo results when observing the overall presence of 

iNOS around the implants. Another external factor would have to be used to trigger the 

NO release from the SNAP-PVC polymer to elicit a more favorable anti-inflammatory 

response. However, SNAP-HPAMAM PVC was able to see a significant reduction in 

iNOS+ cell activity, demonstrating that the proper NO flux is able to lower this type of 

aggressive macrophage interaction. Future studies could be done using an even higher 

NO capacity polymer film utilizing SNAP-HPAMAM blends over longer periods of 

time.  
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Chapter 5 : Nitric Oxide Releasing Materials as 
Potential Antivirals 
 

5.1 Introduction 
 

The applications of NO as an antibacterial has been demonstrated from previous 

controlled NO releasing materials, and is the primary method for macrophages to kill 

foreign bacteria around a wound site through the formation of peroxynitrites1. This 

same mechanism can be applied to viruses as peroxynitrite byproducts will be able to 

react with viral proteins in the same manner. NO has already been proven to be a potent 

antiviral molecule, but the exact dosage over time has never been properly tested2. In 

past studies, an NO donor such as SNAP is added into solution at high concentrations to 

interact with the suspended viruses. This strategy has shown to inhibit virus replication 

by targeting viral protease in Coxsackievirus3. Specifically, NO was able to nitrosate the 

active cysteine sites on the viral protease enzymes, which reduced the overall 

functionality of the virus. Dengue virus was also observed in a separate study where the 

addition of SNAP was able to suppress viral RNA synthesis4. SNAP was added to 

culture medium at concentrations of 150 µm, which was replenished every 4 hours up to 

8 hours after infection and then incubated for 40 hours. 

Using NO as an antiviral poses the question of how it exactly is interacting with the 

viral structure as a whole – whether it is interacting with the viral envelope, the protein 

capsid, enzymatic molecules within the virus, or the actual DNA/RNA structure itself. 

NO as a radical molecule is capable of reacting with multiple types of functional groups 

to slightly alter these important structures of viruses as a method for disabling their 

ability to attach to cells and inject their genetic material to be replicated. NO has also 

been shown to alter DNA/RNA structures through nitrosative deamination of base 

pairs5. Figure 5.1 shows how an NO donating material can affect a virus from normally 

functioning and replicating. This could be another mechanism for which viruses become 
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deactivated after being exposed to NO. As there are multiple different classes of 

viruses, how NO interacts with each one of them is bound to be different.  

NO

NO Donating Material

Virus

NO + O2 ONOO
-

-Nitrosative deamination
-Oxidative damage

 

Figure 5.1. Mechanism for DNA damage within viral species from an NO donating 
material.If NO does not react with the protein capsid layer, its peroxynitrite byproduct 
will be able to diffuse through and react with the DNA structures within. This leads to 

deamination of the base pairs in the DNA structure and causes oxidative damage, 
causing the virus to become unable to infect other cells. 

The investigation of using NO as a potential antiviral was done through using controlled 

doses of NO over specific time intervals with SNAP-PDMS and SNAP-PVC. This gave 

a preliminary insight into how much NO is required to inactivate viruses from 

transfecting other vulnerable cells. The two viruses that were used were porcine 

parvovirus (PPV) and sindbis virus (SINV). PPV is a single stranded DNA (ssDNA) 
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classified virus with no viral envelope while SINV is a single stranded RNA (ssRNA) 

classified virus which contains a viral envelope.  

In these preliminary studies, SNAP-PDMS and SNAP-PVC were used as the material to 

deliver controlled amounts of NO over the course of 1 and 2 hours to PPV and SINV 

virus particles suspended in PBS. Once a threshold for the amount of NO over a specific 

time period can be identified, further experimenting can be done using higher doses 

over even shorter periods of time. For practical purposes in an environment where a 

virus is airborn, an NO releasing air filter could be developed to eliminate or deactivate 

an important viral function. This situation could require a high amount of NO being 

delivered at the interface of the filter, which the SNAP-HPAMAM material described in 

chapter 3 is more than capable of delivering. Shorter time studies can be done in the 

future using extreme amounts of NO delivery over the course of a few seconds using 

SNAP-HPAMAM once the NO threshold for deactivating a virus is discovered. 

5.2 Experimental Details 
 

5.2.1 Materials  
 

The materials used to synthesize SNAP-PDMS were Hydroxy-terminated 2000 cSt 

polydimethylsiloxane (PDMS) was purchased from Gelest, Inc. (Morrisville, PA, USA). 

3-Aminopropyl trimethyoxysilane, dibutyltin dilaurate, cyclam, and toluene were 

obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). Tert-butyl nitrite (90% 

technical grade) was purchased from Acros Organics (Geel, Belgium).  

5.2.2 Synthesis of SNAP-PDMS 
 

The synthesis procedure followed a protocol described previously6. 1.6 g of the 

hydroxyl-terminated PDMS is first dissolved in 8 mL of toluene. 0.3 g of 3-

aminopropyl trimethoxysilane and 2.4 mg of dibutyltin dilaurate are then added to the 

solution and it was allowed to stir overnight to crosslink. This exposes primary amine 
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groups that can then be reacted with NAP-thiolactone. 50 mg of NAP-thiolactone is 

mixed with 2 mL of the crosslinked PDMS to form NAP-PDMS after allowing to stir 

for 24 hours. The newly exposed thiol group can then be reacted with t-butyl nitrite as is 

mentioned in the previous chapters.  

5.2.3 Experimental design 
 

A breadboard containing six blue, 470 nm LEDs connected to 130 Ω resistors was 

constructed. PVC pipe (15 mm OD, 12 mm ID) was cut into 30 mm lengths and placed 

around the mounted LEDs. Set screws were placed 10 mm from the top of the PVC 

sections for the samples to rest on. SNAP-PVC and SNAP-PDMS were used as the NO 

releasing polymers for testing. The polymer samples were cast into films in the bottom 

of 2 mL glass vials. Due to the shape of the bottom of the vials, multiple layers were 

cast to ensure the final polymer product does not dry in a concave shape. A final layer 

of RTV-3140 (medical grade silicone rubber) was placed on top of the SNAP-PDMS 

layer to ensure no unwanted ion diffusion occurs while a layer of cellulose acetate was 

cast on the SNAP-PVC films. 

For testing, the viral solutions were suspended in PBS and placed into the vials 

containing the bottom coated polymers. The LEDs were then turned on to trigger NO 

release from the polymer films into the viral solution for 1 and 2 hours. After the NO 

treatment, the viral solutions were transferred into microcentrifuge tubes and 

refrigerated until they were used for MTT assay analysis. The cells to be infected with 

the viral solutions were PK13 (ATCC CRL-6489) pig epithelial cells. 

5.2.4 Nitric oxide measurements 
 

NO detection was recorded in real time from the nitric oxide analyzer for multiple trials 

using the same setup that was being tested in the actual virus trials to accurately 

demonstrate the NO diffusion from the polymer films to the viruses suspended in PBS. 
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This was done for both 1 and 2 hour trials. Ambient light testing was also done for 

control SNAP-PDMS samples where the LED was turned off. 

5.2.5 Virus activity measurements 
 

After being exposed to NO, cells were then administered with the treated virus solutions 

in culture. A live/dead assessment was then done on the treated and untreated cell 

cultures using an MTT assay.  

Log reduction value (LRV) of the solution was calculated to determine the percentage 

of virus particles able to still infect cells. Complete inactivation of the virus (99.99%) 

was calculated at an LRV of 4.   

5.3 Results and Discussion 
 

5.3.1 Nitric oxide profiles 
 

Identical polymers were cast into the 2 mL vials and were tested for NO release using 

the same setup used in the viral NO testing. The polymers were tested at the same time 

the virus samples were being tested to ensure the release profiles were as similar as 

possible.  

 



113 
 

 

Figure 5.2. NO release profile of SNAP-PDMS over 2 hours when LED activated. The 
total amount of NO released over the 2 hour period was 0.270 µmol, and was proven to 

be enough NO to deactivate PPV replication.  

 

Figure 5.3. NO release profile of SNAP-PDMS passively with no LED over 2 hours. 
The amount of NO in the trials with the LED off was done in the scenario where there 

was viral removal with extremely low amounts of NO. Later experiments demonstrated 
that this low, passive amount of NO release had no effect on the viruses.  
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Figure 5.4. NO release profile from SNAP-PVC over a 2 hour time period. The release 
seen in the SNAP-PVC compounds was also shown to prevent PPV from infecting 

cultured cells.  

5.3.2 Virus Functionality 
 

Exposure to NO at both 1 and 2 hour release demonstrated complete deactivation of the 

viruses for SNAP-PVC and SNAP-PDMS. Comparing these preliminary results to other 

studies that have been done in the past show that the amount of SNAP that was 

previously being put into viral solutions were much higher than what is needed. 

Although the viruses were unable to infect cells in culture after exposure to NO, a lower 

limit still needs to be discovered. Once this lower limit is determined, a more precise 

NO releasing material design can be made using materials like SNAP-HPAMAM. 

Depending on the amount of NO required over a period of time, a material can be 

tailored to have a certain amount of SNAP-HPAMAM blended in it to ensure the 

viruses are exposed to that level.  

5.3.3 Preliminary Data Collection 
 

SNAP-PVC was used as the first NO donating material to attempt to deactivate PPV in 

solution. The first trials that were done showed promising results of high viral removal 

after being exposed to both 1 and 2 hours of LED triggered SNAP-PVC. However, after 
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further investigation, it was shown that the high NO release was actually causing the 

formation of nitric acid in the viral solutions, which drastically decreased the pH. Even 

without the LED turned on, passive SNAP-PVC release from ion diffusion was causing 

a change in pH.  

 

Figure 5.5. PPV removal using SNAP-PVC as the NO releasing polymer. The LED 
was turned on for 1 and 2 hour time points. Log 4 removal of the virus shows that 

99.99% of the virus was deactivated or killed when administered to cell cultures, which 
was demonstrated for SNAP-PVC when the LED was on and off. The removal with the 

LED off was due to the pH change seen from surface nitrites on the SNAP-PVC 
diffusing into solution to form nitric acid. Control PVC with the LED on and off 

showed no removal of the virus. 

To solve the issue of passive pH change causing virus deactivation, the SNAP-PVC 

films were thoroughly rinsed with DI water before being tested with the viral solutions. 

This washes off any surface nitrites that may have lingered from the t-butyl nitrite 
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nitrosation step that end up diffusing into solution causing the formation of nitric acid. 

After washing, the SNAP-PVC was then tested for NO release and ensured no pH 

change occurred before being tested. Tests proved 99.99% removal of PPV with the 

administration of NO over a 1 hour and 2 hour period. Control PVC and SNAP-PVC 

with the LED turned off demonstrated no viral inactivation. No pH change was 

observed for any of the trials. 

 

Figure 5.6. PPV removal using pre-washed SNAP-PVC as the NO releasing polymer. 
The LED was turned on for 1 and 2 hour time points. Log 4 removal of the virus shows 
that 99.99% of the virus was deactivated or killed when administered to cell cultures. 

Control PVC and SNAP-PVC with the LED off showed no removal of the virus. There 
was no pH change as well for the trials, proving NO was causing the removal.  

5.4 Conclusion 
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The results presented show the potential of NO as a possible antiviral tool for future 

materials. The experiments described demonstrate how with enough time, a precise 

measurement on how much NO over a certain amount of time is needed to deactivate 

the infection potential of viral species. After this dose of NO is determined, it can be 

applied to real life situations where the spread of airborn viruses in closed locations is 

problematic. 
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Chapter 6 : Concluding Remarks and Future Direction 
 

6.1 Summary of Findings 
 

The utilization of NO is still a growing field and more applications are still being 

discovered. By understanding how our body synthesizes and releases NO broadens the 

potential for NO donating materials to mimic some of these beneficial effects. Whether 

it is killing off bacteria through the iNOS synthetic route of macrophages or allowing 

our vasculature to maintain a healthy blood pressure through the production of NO from 

endothelial cells, NO donors will strongly impact the medical field. 

The synthesis of a covalent bound NO donor to PVC to create a SNAP-PVC compound 

opens up a variety of opportunities for how PVC is used in the medical field. Being one 

of the most commonly used polymers in the medical industry, there is huge potential for 

replacing common PVC based devices while expanding its uses into other blood and 

tissue contacting devices such as catheters. 

Using a similar hyperbranched molecular synthesis approach that is seen in dendrimers, 

a hyperbranched SNAP based polyamidoamine was successfully synthesized and shown 

to be extremely stable when isolated as a solid. The synthesized SNAP-HPAMAM is 

one of the highest capacity NO donating materials by mass when compared to the 

variety of other NO donating materials. Although highly branched NO releasing 

dendrimers have been synthesized previously, the amount of cost and time it takes to 

reach that level is extreme. Using hyperbranched chemistry greatly cuts down on both 

of these issues while still maintaining a high NO capacity. 

These two materials were then able to demonstrate their capabilities of using the 

beneficial effects of NO by warding off unwanted inflammation when implanted 

subcutaneously. The PVC blended with SNAP-HPAMAM ended up performing better 

than SNAP-PVC due to its NO releasing longevity. Overall, both materials had less 
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aggressive macrophage infiltration, less fibrous encapsulation of the implant, and less 

FBGC fusion occurrences at the tissue-implant interface.    

Preliminary findings of NO’s effect on viruses proved to be very promising. The setup 

being used is more effective than what has previously been done when investigating the 

concentrations needed to deactivate viral compounds. Over a period of 1 and 2 hours, 

both SNAP-PVC and SNAP-PDMS polymers were able to deliver enough NO to obtain 

an LRV of 4. The method of having a polymeric system releasing NO into solution is a 

much more precise method than simply adding SNAP into a solution containing your 

target virus.  

6.2 Future directions 
 

While covalently binding SNAP to the backbone of PVC was successful, its overall 

capacity was lower than expected. This was due to the complications with attaching a 

difunctional compound to the backbone of a polymer. In this scenario, crosslinking is 

virtually unavoidable, which limits the loading capacity potential to PVC. To improve 

on this, a different strategy will need to be implemented. One possible suggestion is to 

use a diamino compound that has one of the primary amine groups protected. Once the 

free primary amine group is attached to the polymer backbone, it will be unable to 

crosslink with other polymer chains. The material can then be deprotected, exposing a 

primary amine group for NAP-thiolactone to attach to. This could greatly increase the 

NO capacity potential, but would also increase the cost to synthesize. 

Although the NO capacity in SNAP-HPAMAM was shown to be very high, there is still 

room for improvement to increase it. One of the major issues seen during the synthesis 

was attaching the NAP-thiolactone to the material efficiently. If this problem could be 

overcome, the storage capability would increase dramatically.  

Future studies for subcutaneous implants using SNAP-HPAMAM could be done where 

more of the NO donor is loaded onto other types of polymers over longer periods of 
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time. The study done in chapter 4 was to examine the acute to chronic inflammation 

transition and NO’s role in how it can slow its progress. The amount of SNAP-

HPAMAM loaded into the polymer was also fairly small, as there is a risk of releasing 

too much NO too quickly and causing cell necrosis which I wanted to avoid. For long 

term implants that last for months, it would be interesting to see how inflammation 

progresses in other hydrophobic or slow degrading polymers like PLLA. 

 By being able to accurately track the NO being released from a polymer film into a 

solution containing a target virus, we are able to pin point the exact dosage of NO over 

what period of time is necessary to deactivate viruses. This sets a new precedent for 

how NO can be administered to these types of targets suspended in solution. More 

insight into how NO is altering the viruses will need to be done in future studies. This 

could be done by observing changes in capsid proteins using western blotting 

techniques or MALDI-TOF. If the DNA or RNA structures are being altered, PCR 

could be done to prove any nitrosative deamination of base pairs that could be 

occurring.  
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Figure A.1. Calibration curve of ATTO-TAG FQ test for amines using glycine-HCl as 

a standard. 
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Figure A.2. Calibration curve of Ellman’s test for thiols using cysteine as a standard. 

 

 

Table A.1. CHN combustion analysis of the PVC-NH2 polymer based on its reaction 

time with ethylenediamine. The table shows an increase in nitrogen content, but the 

ATTO-TAG FQ results show a decreased amount of primary amine sites once it reacts 

beyond 2 hours. This shows the possibility of crosslinking occurring between polymer 

chains as the reaction progresses. The ideal time point was found to be 2 hours. 
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PVC 4 hour reaction time 0.20 

y = 2.5974x - 0.0028
R² = 0.9997

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

Ab
so

rb
an

ce

µmol of thiols



124 
 

 

Appendix B   Supporting Information for Chapter 3 

 

Figure B.1. SNAP-HPAMAM blended PVC under a 470 nm LED (3V, 150Ω). 

Demonstrates SNAP-HPAMAM’s ability to retain a controlled flux over a long period 

of time for in vitro testing. 
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Figure B.2. 1H NMR data of HPAMAM in CDCl3. 
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Figure B.3. XRD of SNAP-HPAMAM. Once nitrosated either by t-butyl nitrite or 

sodium nitrite, SNAP-HPAMAM displays unique crystalline features when isolated as 

seen in the XRD scan. 
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Appendix C   Supporting Information for Chapter 4 

 

Figure C.1. CellProfiler example for cell nuclei (DAPI) marking. DAPI stained images 

are first converted to gray scale before counting analysis begins. 
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Figure C.2. CellProfiler counting analysis of DAPI stained cells. Parameters are set for 

the program to declare what specifies as a cell nuclei and what is not. Even in clumped 

areas where counting is difficult, the CellProfiler program is able to “declump” and 

count the objects based on signal intensity. 
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Table C.1. Results and analysis of CellProfiler cell nuclei counting for Figure C.2. 

Displays the details given from the program when analyzing a specific image. 

 

 

 

 

 

 

 

 

 

 

Threshold 0.365 

# of accepted objects 1560 

10th pctile diameter 7.7 pixels 

Median diameter 

13.0 

pixels 

90th pctile diameter 

17.9 

pixels 

Area covered by objects 16.00% 

Thresholding filter size 1 

LoG threshold 0.4 

LoG filter diameter 8 

Declumping smoothing filter 

size 3.4 

Maxima suppression size 3.3 
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Figure C.3. CD163 stained SNAP-HPAMAM PVC image before CellProfiler 

processing. 
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Figure C.4. CellProfiler conversion of Figure C.3 to grayscale for macrophage 

counting. 
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Figure C.5. CellProfiler counting and analysis of CD163 stained images. Setting 

parameters for macrophage stained images proved to be more difficult as some of the 

antibodies (CD163 and CD11b) mark membrane proteins. This meant that declaring the 

macrophage size was dependent on how much of the surface proteins were actually 

positively marked. 
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Table C.2. Results and analysis of CellProfiler cell nuclei counting for Figure C.5. 

Threshold 0.093 

# of accepted objects 254 

10th pctile diameter 7.7 pixels 

Median diameter 

10.5 

pixels 

90th pctile diameter 

18.9 

pixels 

Area covered by objects 2.40% 

Thresholding filter size 1 

LoG threshold 0.4 

LoG filter diameter 10 

Declumping smoothing filter 

size 4.7 

Maxima suppression size 4.7 
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       SNAP-HPAMAM PVC             PVC 

Figure C.6. CD68 macrophage marker for SNAP-HPAMAM PVC (left column, top 

200x, bottom 600x) implanted films and PVC control (right column, top 200x, bottom 

600x). Demonstrates NO’s ability in the SNAP-HPAMAM form to lower the overall 

macrophage response to the implants along with lowering the cell density infiltration 

surrounding the implant. 
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Figure C.7. 200x image of 15 day SNAP-HPAMAM PVC section stained with CD163 

(red) and CD68 (green). This visualizes the location of M2 macrophages with respect to 

M1 macrophages. The M2 macrophages are closer to the adipose tissue, regulating the 

inflammation and migration of subsequent macrophages to the implant site. The M1 

macrophages are mainly seen at the tissue-implant interface. Implant area is labeled 

with a red star. 
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Appendix D   Supporting Information for Chapter 5 

 

 

Figure D.1. Lightboard setup used for initiating NO release from vials containing 

SNAP based polymers.  
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Figure D.2. Description of how the LED-virus setup interacts. A three layered system 

was initially used where the bottom layer (green) is the controlled NO releasing 

polymer layer, the middle layer (gray) is the control polymer layer to prevent cation 

diffusion into the SNAP polymer system, and the top layer (blue) is a cellulose layer to 

prevent the virus particles from attaching to the polymer surface. The LED’s being used 

are VAOL-5GSBY4 5GSBY4 (λ = 460nm) and will be placed approximately 16 mm 

below the virus containing vial to make sure the 30 degree cone angle covers the entire 

8.50 mm diameter film being cast. 
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	Chapter 1 : Introduction
	1.1 Discovery and Background of Nitric Oxide
	1.1.1 Background of nitric oxide
	The first role of nitric oxide (NO) as an important signaling molecule was initially demonstrated by Ferid Murad in 19771. Murad and his colleagues investigated the impact NO had on enzyme regulatory functions within the body- specifically with guanyl...

	1.1.2 Nitric oxide’s function in the body
	The production of NO is accomplished through specific enzymatic pathways based on three different isoforms depending on the location in the body: endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), and inducible nitric oxi...
	Figure 1.1. Mechanism for the production of NO from eNOS within endothelial cells.
	Acetylcholine and/or shear stress causes the upregulation of calcium ions within endothelial cells, which leads to the conversion of L-arginine to L-citrulline and NO facilitated by eNOS. NO then diffuses into the bloodstream where it causes platelet...
	Figure 1.2. Mechanism of production of NO at a neuronal synapse through nNOS.
	The production is first stimulated by the release of glutamate to cause the upregulation of calcium within the connecting neuron. This then leads the conversion of L-arginine to L-citrulline and NO facilitated by nNOS. NO then leads to the production...
	Figure 1.3. Inducible production of NO through the regulation of iNOS within macrophages.
	The only NO pathway that is not calcium-calmodulin regulated. It is triggered by the interaction of macrophages with specific cytokines (IFNγ) and bacterial products (LPS). After NO is produced, its main role in this instance is the intracellular kil...


	1.2 Biological Response to Implanted Biomaterials
	1.2.1 Response to blood contacting foreign materials
	There is huge potential to improve patient interventions by controlling the biological response toward blood and tissue contacting devices and the materials in which they are fabricated. The response from the body when a foreign material is introduced...
	Figure 1.4. Biological response to implanted blood contacting biomaterials.
	Once a foreign material comes in contact with blood, proteins will immediately adhere to the surface. This creates binding sites for circulating platelets to attach to and become activated. After platelet activation, fibrin is formed which leads to e...

	1.2.2 Response to tissue contacting foreign materials
	Medical devices that are implanted within the tissue of a patient will undergo a wound healing response. The inflammatory response is an important part of the wound healing process in the body, and work together to contain/isolate or remove foreign ma...
	The evaluation of the biocompatibility of a material is often gauged through histological analysis over a period of time. The inflammatory response is a complex series of signaling chemicals and cells that vary in quantity and type (Figure 1.5). Neutr...
	Figure 1.5. Escalation of the inflammatory response and wound healing to an implanted biomaterial.
	Time and intensity vary on the chemical and physical properties of implanted biomaterial and the degree of trauma caused during implantation. Neutrophils and blood monocytes first migrate to the injury site, then within hours, the blood monocytes are...

	1.2.3 Macrophage signaling
	Macrophage migration and adhesion to foreign biomaterials is the inevitable host response that causes the most complications for biological implants. For blood contacting materials, platelets will release a number of chemoattractants like interleukin ...

	1.2.4 Macrophage phenotyping
	Macrophage phenotype also plays a large role in the inflammatory response to biomaterials and are labeled as either classically activated macrophages, or M1 macrophages, and alternatively activated macrophages, or M2 macrophages. M1 macrophages are ac...


	1.3 Polymers Used in Biomedical Settings
	1.3.1 Parameters for designing polymeric biomaterials
	Polymers are one of the most widely used materials in medicine. Their applications are limitless due to their highly modifiable mechanical and chemical properties which allow them to be designed for specific situations. Depending on the application a ...
	Reactivity is another important parameter that must be taken into consideration for an implanted polymer. When in contact with tissue, the cells involved in the foreign body response will release harsh reactive chemicals in an attempt to degrade it. T...

	1.3.2 Biodegradable polymers
	If the implanted material is only temporary but requires reintegration and remodeling, a degradable material with nontoxic byproducts is often a good choice for materials selection. One of the most popular clinically used polymers for this type of app...

	1.3.3 Hydrogels
	Hydrogels are another class of polymer with many uses in medicine. They are described as synthetic, hydrophilic polymers that swell when exposed to water49. This property allows hydrogels to be applied to areas of controlled drug release. As water ent...

	1.3.4 Hydrophobic polymers
	Unlike the polymers used in hydrogels, hydrophobic polymers have no water uptake and have unique properties when in contact with cells and tissue. The most popular class of hydrophobic polymers used in biomedical applications are silicone rubber based...


	1.4 Background of Current Nitric Oxide Donating Materials
	1.4.1 Nitric oxide chemistry
	In order to be able to mimic the body’s range of production of NO at different physiological locations, many NO donating materials have been synthesized. Since NO is a highly reactive free radical molecule, strategies of covalently linking it to mater...

	1.4.2 S-Nitrosothiols
	For RSNO modified materials, there is a degree of control with how NO is administered to an area as can be highly stable under in vivo conditions if appropriate precautions are taken. The main mechanisms for NO to be cleaved from an RSNO system are by...
	Figure 1.6. Structure of S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-D-penicillamine (SNAP).
	GSNO is an endogenous S-nitrosothiol commonly found in the body while SNAP is used in chemical synthesis to artificially add nitric oxide donating groups to synthetic materials.

	1.4.3 N-diazeniumdiolates
	Diazeniumdiolates, also known as NONOates, are a class of zwitterionic compound that are used in the NO donating research field with different chemical properties compared to RSNO’s. The first investigation of using NONOates as a potential drug admini...
	Figure 1.7. Structure of dimethylhexanediamine diazeniumdiolates (DMHD/N2O2).
	This zwitterionic NO donating structure allows for the release of two moles of NO per molecule when placed under physiological conditions. The release is passive and very rapid – making it an excellent choice of NO donor for short term passive release.


	1.5 Applications of Nitric Oxide Donating Materials
	1.5.1. Concerns for nitric oxide concentration
	Determining the proper amount of NO to be administered to an area in the body when developing synthetic NO releasing materials is critical. Depending on the level and duration of NO generated, it can be used to mediate cell proliferation and protect t...
	Table 1.1. Effect of NO when administered at varying concentrations to certain cell types.
	The effects of NO have a large variety based on the concentration being administered, along with where in the body the release is occurring. When developing synthetic materials that are able to release NO, it is important to be aware of the concentrat...

	1.5.2 Improving biocompatibility of foreign devices
	Controlled NO releasing materials that are capable of delivering the appropriate level of NO at the appropriate time can be used to improve biocompatibility of blood and tissue contacting devices, creating safer and more effective implanted devices su...

	1.5.3 Interaction with macrophages and mast cells
	NO’s effect on macrophages is still being investigated as various levels of NO can influence them in different manners. When trying to apply an NO donating material to ward off macrophage attachment and recruitment, NO flux must be carefully considere...
	Mast cells are another large contributor to the immediate inflammatory response to a biomaterial. The primary function of mast cells is the release of histamine to cause vasopermeation between vascular endothelial cells to allow the migration of leuko...

	1.5.4 Role in vascular diseases
	Applying NO release as a treatment for vascular disorders has also been studied.  After balloon angioplasty treatment, there is damage to the endothelium which eventually leads to myointimal hyperplasia caused from the migration of smooth muscle cells...

	1.5.5 Cancer therapeutic applications
	Another application for highly controlled NO releasing materials is in drug delivery to tumors. NO in appropriate doses is known to induce apoptosis in cells and could function as an effective local cancer treatment95. NO in an oxidative environment r...

	1.5.6 Reendothelialization of vessels
	In other environments, the increase in vascularity from endothelial cells could be seen as a positive effect.  Decellularized vascular implants or biodegradable materials that need cellular infiltration and revascularization would benefit greatly from...


	1.6 Detection Methods of Nitric Oxide
	1.6.1 Griess assay
	The most important part of analyzing any NO releasing material is the methods used to determine and quantify the release into the surrounding environment. Since NO is a free radical gas, accurate detection becomes complex due to its high reactivity wi...
	Figure 1.8. Chemical detection of NO through the Griess reaction.
	NO is first converted into a nitrite product, where it then interacts with sulfanilamide and N-1-napthylethylenediamine to form a fluorescent detectable dye which is detectable at 540 nm. This can then be used to quantify the amount of NO that was re...

	1.6.2 Electrochemical
	Electrochemical detection of NO is another method for quantifying NO release from a material (Figure 1.9). There are two strategies for electrochemically identifying NO – electrooxidation and electroreduction through the use of Ag/AgCl electrodes. Ele...
	Figure 1.9. Chemical mechanisms for the electrochemical detection of NO.
	Through electrooxidation, NO undergoes a two electron reduction to form N2O22-. Electroreduction goes through a multistep oxidation path to form NO2- from NO. Concentration of NO is then measured by referring the current recorded to a known calibrati...

	1.6.3 Chemiluminescence
	The most accurate method to directly measure NO coming from a either a NO releasing sample or cells in media is through chemiluminescence (Figure 1.10). Using a system purged with nitrogen, there are no reactive side products to interfere with NO meas...
	Figure 1.10. Mechanism for the detection of NO through chemiluminescence.
	NO is initially reacted with ozone to form a nitrogen dioxide in the excited state. As this molecule relaxes, it emits a photon which can then be measured and quantified.


	1.7  Statement of Purpose
	Knowing all of the beneficial effects and applications of NO is crucial when developing a unique NO donating material. Chapter 2 describes an NO donating PVC material which utilizes covalent bound RSNOs. By covalently attaching the NO donor to the bac...
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	Chapter 2 : Controlled Nitric Oxide Release from Covalently Linked S-Nitroso-N-Acetyl-D-Penicillamine to Polyvinyl Chloride (SNAP-PVC)
	2.1 Introduction
	PVC is the most widely used polymeric material used in medical applications ranging from blood bags, heart lung bypass sets, endotracheal tubes, and many other medical related materials1. Around 25% of all biomedical devices contain some form of PVC d...
	Polymers can be synthesized to mimic the endothelium’s NO release levels to prevent unwanted foreign body response. A novel NO releasing PVC based polymer is described and shown to have tunable NO releasing properties depending on the trigger mechanis...
	When developing an NO releasing polymer, the capability of NO diffusion through a polymer matrix is important. NO permeability through PVC has been characterized using Fick’s law of diffusion where the equation is as follows:
	,     ln-,,,𝐶-𝑜.-,𝐶-𝑜.−𝐶...= ,𝐷𝐴-𝑙𝑉.𝑡                                   (1)
	Where C is the concentration of NO, D is the diffusion coefficient, A is the area being diffused through, l is the path length, V is the chamber volume, and t is the time. Although its diffusion kinetics are not as good as silicone rubber, it is great...
	Herein, a synthetic route is described where (PVC) is aminated to a specified extent and then further modified by covalently linking S-nitroso-N-acetyl-D-penicillamine (SNAP) groups to the free primary amine sites to form a nitric oxide releasing poly...

	2.2 Experimental Details
	2.2.1 Materials
	Polyvinyl chloride (average Mw = 233,000, Mn = 99,000), ethylenediamine, 5, 5’-dithiobis (2-nitrobenzoic acid), triethylamine, 1,4,8,11-tetraazacyclotetradecane, N-acetyl-D-penicillamine (Fluka),  and concentrated hydrochloric acid were obtained from ...

	2.2.2 Synthesis of NAP-thiolactone
	The procedure to synthesize a self-protected N-acetyl-D-penicillamine (NAP) thiolactone was accomplished according to the procedure from Moynihan and Robert13 (Figure 2.1). 5g of N-acetyl-D-penicillamine was dissolved in 10 mL of pyridine while 10 mL ...
	Figure 2.1. Synthesis of thiolactone self-protected N-acetyl-D-penicillamine (NAP-thiolactone).
	The base molecule N-acetyl-D-penicillamine is first dissolved into chilled pyridine and acetic anhydride where it is then allowed to stir for approximately 24 hours. The pyridine is then rotary evaporated off and the resulting viscous liquid is disso...

	2.2.3 Synthesis of SNAP-PVC
	The overall schematic to synthesize SNAP-PVC is shown below in Figure 2.2. Aminated PVC was first synthesized using a modified procedure from Tinkilic et al14.  2.5 g of PVC was suspended in 50 mL of methanol, 11 mL of triethylamine, and heated to 60˚...
	200 mg of the synthesized PVC-NH2 was dissolved in 10 mL of anhydrous N, N-dimethylacetamide (DMAC). 60 mg of NAP-thiolactone was then added to the mixture and allowed to stir overnight. 2 mL of the NAP-PVC solution was taken out and nitrosated using ...
	Figure 2.2. Synthesis route of SNAP-PVC.
	PVC is first modified to contain reactive primary amine site by suspending PVC resin in methanol, triethylamine, and ethylenediamine while refluxing at 60oC. This attaches the ethylenediamine to the PVC backbone. The free primary amine can then react...

	2.2.4 Polymer characterization
	The quantification of the degree of amination of the PVC was done by using the ATTO-TAG FQ test for primary amines. Fluorescence testing was done using a 96-well plate reader (BioTek Instruments) and the amount of primary amines was determined using a...

	2.2.5 Quantification of primary amines
	Primary amines are able to be accurately quantified through their reaction with 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ) to form a fluorescent isoindole product17 (Figure 2.3). This is an extremely sensitive method, able to detect amines in the att...
	Figure 2.3. Mechanism for the fluorescent detection of primary amines using the ATTO-TAG FQ amine derivation kit.
	3-(2-furoyl)quinoline-2-carboxaldehyde (FQ) in the presence of a potassium cyanide will react with a primary amine site to form a fluorescent product. This product has an excitation wavelength of 450 nm and an emission maximum of 550 nm, which can be ...
	For a control, glycine-HCl was used and diluted to multiple concentrations to generate a calibration curve. Each well to be tested on the 64-well fluorescent plate contained 10µL of 10mM CBQCA, 20µL of 10mM KCN, and 10 µL of sample. The reaction was a...

	2.2.6 Quantification of thiols
	Thiol quantification through the use of DTNB directly cleaves the DTNB molecule into two TNB anions, where one of the free molecules reacts with the thiol being measured (Figure 2.4). The other TNB anion is what is measured by the spectrophotometer at...
	Figure 2.4. Mechanism for the detection of free thiols using Ellman’s assay.
	5,5'-dithio-bis-2-nitrobenzoic acid (DTNB) has its disulfide bond cleaved in the presence of free thiols. The free thiol then forms another disulfide bond with one part of the DTNB while the measured product is emitted into solution and is quantifiab...

	2.2.7 Nitric oxide release by photoinitiation
	The light source used for photoinitiation of the SNAP-PVC films were 460 nm blue VAOL-5GSBY4 LEDs obtained from Mouser Electronics Inc (Mansfield, TX, USA).  A 130 Ω resistor was hooked up in series with the LED and a variable voltage source was appli...

	2.2.8 Nitric oxide measurements
	Nitric oxide release from the polymer was directly measured by the chemiluminescent reaction of NO with ozone using a Sievers 280i Nitric Oxide Analyzer (GE Instruments). SNAP-PVC films with a diameter of 5.5 mm were placed inside an amber glass sampl...


	2.3 Results and Discussion
	2.3.1 FTIR analysis
	Each step from the reaction schematic shown in the SNAP-PVC synthesis route is verified using FTIR which is seen in Figure 2.5.  After attaching ethylenediamine to the PVC backbone, primary amines and secondary amines are present in the spectrum which...
	Figure 2.5. FTIR spectrum of PVC (green), PVC-NH2 (blue), and NAP-PVC (red).
	Once ethylenediamine is attached to PVC, the presence of N-H bending is seen at 1641 cm-1. The attachment of NAP-thiolactone to the free amine shows the appearance of the amide carbonyl peak at 1750 cm-1 along with the secondary amine stretching arou...

	2.3.2 Quantification Results
	Quantification of the amination of PVC was verified through using the ATTO-TAG FQ test for amines. Once the NAP-thiolactone ring opens and reacts with the primary amine sites on the polymer backbone, free thiol groups are exposed. To identify the exte...

	2.3.3 Nitric oxide release results
	The physiological NO flux for healthy vasculature is estimated to be in the range of 0.5 – 4 x 10-10 mol cm-2 min-1, which is achieved from the SNAP-PVC films at certain intensities of light. The NO flux varies depending on the location in the body. V...
	The NO release profile from SNAP-PVC films (diameter 5.5 mm, thickness 0.1 mm) at varying drive current applied to a 470 nm wavelength LED is shown in Figure 2.6. Nitrogen sweep gas carried the NO released by photoinitiation to the NOA to give a stair...
	Figure 2.6. Controlled NO release profile of SNAP-PVC at varying LED voltages.
	A baseline is first obtained with the LED off, and is then turned on with a 3V supply at 130Ω. It is then turned off again until the baseline is reached again before being supplied with an additional 1.5V while holding the resistance constant. Once 7...
	NO release of SNAP-PVC in phosphate buffered saline (PBS) at 37oC was also tested to show the release under physiological conditions. Ions are able to penetrate the polymer film and interact with the reactive SNAP groups as PVC is a popular polymer us...
	Figure 2.7. NO release profile of SNAP-PVC placed in PBS at 37oC.
	5.5 mm diameter, 100 µm thick films were submerged in 2 mL of PBS while stirring at physiological temperature to demonstrate SNAP-PVC’s passive NO release. This profile is similar to NONOates but is able to persist a lower and more constant release.
	The NO capacity and release demonstrated by SNAP-PVC could potentially be much larger as there are many unreacted chlorine sites on the backbone of the polymer. A longer reaction time with ethylenediamine could be implemented to achieve a higher degre...
	Figure 2.8. SNAP-PVC photoinitiated NO release at 37oC in nitrogen at different synthesis reaction times.
	The reaction times with ethylenediamine (EDA) were 1 hour (red), 2 hours (green), and 4 hours (blue). The same LED and stepwise voltage increases seen in Figure 2.6 were used here. As the reaction time of EDA with PVC increases, more crosslinking bet...
	Total NO release was also determined for the polymer films with varied reaction times to ensure that the 2 hour EDA reacted SNAP-PVC was the most optimized reaction time to achieve the highest NO loading in the material. To do this, the three films we...
	Figure 2.9. SNAP-PVC compounds with varied reaction times in EDA with triggered UV light photoinitiated for total NO release.
	The SNAP-PVC films were categorized into 1 hour (blue), 2 hour (green), and 4 hour (red) reaction times with EDA. Films were rinsed with DI water beforehand and vacuum dried to get rid of any excess nitrites that could interfere with the testing. SNA...
	Table 2.1. FQ and CHN analysis on aminated PVC to observe the primary amine and nitrogen content as reaction time with ethylenediamine increases.
	As the reaction time with ethylenediamine increases, the amount of primary amines present decrease at the 4 hour reaction time point. From the CHN combustion data, there is an increase in nitrogen content, proving the crosslinking of ethylenediamine ...


	2.4 Conclusion
	The synthesis of NO releasing SNAP PVC was successful and the flux of NO obtained from the polymer was shown to release at a variety of physiological ranges. This could greatly improve the potential applications for blood and tissue contacting PVC bas...
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	Chapter 3 : High Capacity Nitric Oxide Release from S-Nitroso-N-Acetyl-D-Penicillamine Modified Hyperbranched Polyamidoamine (SNAP-HPAMAM) for Controlled Nitric Oxide Release
	3.1 Introduction
	Nitric oxide (NO) has been proven to be an important molecule with multiple functions such as maintaining vascular health, mediating inflammatory response, and preventing bacterial adhesion depending on the level of NO that is being released1-3. To fu...
	Dendrimers are highly branched, symmetrical macromolecules that can have a wide array of surface chemistry characteristics. They start with a core molecule, and from there can progress in size and functionality with stepwise reactions done in separate...
	NO releasing dendrimers have been tested before by Stasko et al. to demonstrate the NO storage capability of this type of molecular architecture19. The authors were able to fully characterize 64 armed dendrimers with the ability to deliver large, prec...
	NO releasing hyperbranched polyethers have been previously synthesized using N-diazeniumdiolate NO donors, but have shown poor NO addition efficiency21. N-diazeniumdiolate molecules also do not have the controllability as seen with SNAP based NO donor...
	Herein, HPAMAM was modified with the S-nitrosothiol, N-acetyl-D-penicillamine, and nitrosated to form a controlled NO donating compound (SNAP-HPAMAM). This compound was triggered to release NO by photoinitiation and ion mediated release. Structural an...

	3.2 Experimental Details
	3.2.1 Materials
	Ethylenediamine, methyl acrylate, methanol, ethanol, toluene, pyridine, acetic anhydride, chloroform, hexanes, hydrochloric acid, magnesium sulfate, α-cyano-4-hydroxycinnamic acid, Lugol’s iodine, glacial acetic acid, Ellman’s reagent were all purchas...

	3.2.2 Synthesis of HPAMAM
	Generation 1 HPAMAM molecules were synthesized following a modified procedure previously done23. The core molecule to initiate the hyperbranched polymer was 83 mmol of ethylenediamine (EDA), which was dissolved in 250 mL of methanol and cooled in an i...
	The same reaction process was then repeated where MA in two times molar excess is dissolved in 100 mL of methanol and added drop wise to the chilled generation 0 HPAMAM and allowed to stir for 48 hours at room temperature. Repeating the EDA reaction s...
	Figure 3.1. Synthesis schematic of hyperbranched polyamidoamine (HPAMAM).
	Ethylenediamine is used as the core starting molecule, and is then propagated through the Michael addition of methyl acrylate. The process is then repeated until the desired hyperbranched structure is created.

	3.2.3 Synthesis of NAP-thiolactone
	The procedure described in section 2.2.2 was used for the synthesis of NAP-thiolactone and its reaction scheme is seen in Figure 2.1.

	3.2.4 Nitrosation of N-acetyl-D-penicillamine modified HPAMAM
	There are two methods that can be employed to nitrosated HPAMAM. Using acidified nitrites as a nitrosation pathway was done for the first method. The synthesized generation 1 HPAMAM (400 mg) was dissolved in 5 mL of deionized water. 3.00 mmol (519 mg)...
	The second method uses tert-butyl nitrite for nitrosating the NAP-HPAMAM. Generation 1 HPAMAM (400 mg) is dissolved in 5 mL of methanol and the same amount of NAP-thiolactone is added as was previously mentioned. The solution was then allowed to react...

	3.2.5 Nitric oxide release
	Nitric oxide released from the compound was directly measured by the chemiluminescent reaction of NO with ozone using a Sievers 280i Nitric Oxide Analyzer (GE Instruments). This was used to determine the variation of NO flux from polymer films contain...
	NO capacity quantification was achieved by tri-iodide reduction following the procedure from Yang et al24. An I3- solution was first made by creating a 3% by weight iodine solution and mixing it with acetic acid in a 2:7 ratio by volume respectively. ...
	Figure 3.2. Schematic of SNAP-HPAMAM’s generic structure and triggered NO release methods.
	The hyperbranched system shows a disorganized but highly functionalized network capable of storing large amounts of NO by attaching SNAP to the reactive end groups in the HPAMAM structure. The NO can be triggered through light, ion interaction, and h...

	3.2.6 Material characterization
	FTIR, NMR, and MALDI-TOF mass spectroscopy were done to obtain the general structure of the HPAMAM and NAP-HPAMAM molecules being synthesized. Quantification of primary amines was accomplished using by fluorescently tagging each site with ATTO-TAG FQ....


	3.3 Results and Discussion
	3.3.1 Photoinitiated nitric oxide release
	One of the main mechanisms for controlled release of NO from RSNOs is through homolytic cleavage of the sulfur-nitrogen bond via the administration of light. In the dark, the SNAP-HPAMAM material is stable while at room temperature, but can have a con...
	Figure 3.3. NO release profile of SNAP-HPAMAM blended in PVC using photoinitiation.
	Samples were placed in amber, two armed vials with a nitrogen sweep gas where a 470 nm LED was mounted 5 cm above the polymer film being tested. The resistance was held constant at 130Ω while the voltage was increased and decreased in increments of 1...

	3.3.2 Ion mediated nitric oxide release
	The SNAP-HPAMAM that was used for photoinitiated NO release was also tested for its passive release from ions. SNAP has the ability to release NO from a variety of different ions in solution such as copper, ascorbate, and iron4. Using the SNAP-HPAMAM ...
	Figure 3.4. Passive NO release from 2.16 mg of SNAP-HPAMAM in 2 mL of PBS at 37oC.
	The material was first placed into a two armed amber reaction vessel and allowed to warm to temperature. PBS was added at 37oC to observe how NO is released from SNAP-HPAMAM while under physiological conditions.
	SNAP-HPAMAM is stable when blended into films with other hydrophobic polymers and is able to retain the NO donating group for longer periods of time by decreasing the access of transition metal ions to the RSNOs compared to directly administering it i...
	Figure 3.5. Passive NO release of 6.01 mg of SNAP-HPAMAM encapsulated in PVC in PBS at 37oC.
	When compared to Figure 3.4, the encapsulation of the material shows an increase in longevity as a high release of NO is able to be sustained over a longer period of time. Preventing the NO donor from leaching out of the polymer matrix allows for ver...
	Other hydrophobic polymers can be used as well to give off different release profiles of SNAP-HPAMAM while in PBS. To demonstrate this versatility, multiple polymers were blended with the same amount of SNAP-HPAMAM and then placed under physiological...
	Figure 3.6. Passive NO release in PBS at 37oC from multiple polymers blended with SNAP-HPAMAM.
	10 mg of SNAP-HPAMAM was blended into multiple films (15 mm diameter). This shows the flexibility of SNAP-HPAMAM blended hydrophobic polymeric systems as the amount of NO over time can be adjusted based on the polymer properties it is immobilized in....

	3.3.3 FTIR analysis
	Identification of the important functional groups of the HPAMAM compound was seen in the FTIR data collected seen in Figure 3.7. The presence of primary amines seen in the HPAMAM spectra is seen around the 3300 cm-1 range (N-H stretching) and 1620 cm-...
	Figure 3.7. FTIR spectrum of hyperbranched compounds.
	Demonstrates the progression of HPAMAM (green), NAP-HPAMAM (blue), and SNAP-HPAMAM (red) compounds. The N-H stretches from primary amines are visible around the 3300-3400 cm-1 range for HPAMAM which then disappears when NAP-thiolactone is attached. O...

	3.3.4 NMR analysis
	NMR was also done on the base HPAMAM compound to verify the initial synthesis procedure is producing the correct dendritic structure. The important characteristic functional groups seen in PAMAM dendrimers were classified within the NMR spectrum. 1H N...

	3.3.5 Quantification of thiols and primary amines
	Quantification of the important functional groups was done by attaching the fluorescent tag ATTO-TAG FQ (3-(2-furoyl) quinoline-2-carboxaldehyde) to the primary amine sites present on the HPAMAM molecule following the procedure developed by Liu et al...
	Ellman’s test for free thiols was then used to quantify the amount of thiols present after attaching the synthesized NAP-thiolactone compound to the free primary amines following a modified protocol developed by George Ellman28. PBS (pH = 7.4) was use...

	3.3.6 Nitric oxide capacity testing
	Total NO capacity of SNAP-HPAMAM was done through tri-iodide reduction and was compared to the amine and thiol quantification values.  A perfectly synthesized 8 armed SNAP derivatized PAMAM dendrimer has the capability to release 5.594 µmol of NO per ...

	3.3.7 MALDI-TOF analysis
	Figure 3.8 and Figure 3.9 show the MALDI-TOF analysis done on the synthesized HPAMAM and NAP-HPAMAM compounds respectively. α-Cyano-4-hydroxycinnamic acid (CHCA) was the matrix used for all tests. Since MALDI-TOF is a softer ionization mass spectrosco...
	Figure 3.8. MALDI-TOF analysis of HPAMAM.
	Each labeled peak signifies the addition of a 229 Da amine containing branch to the polymer, where a 4 armed HPAMAM molecule is at 516 Da, 5 armed at 745, etc. This gives an insight into the distribution of hyperbranched molecules within the synthesi...
	Figure 3.9. MALDI-TOF analysis of NAP-HPAMAM.
	Each labeled peak signifies the addition of a NAP containing branch site on the polymer, where a 4 armed NAP-HPAMAM is at 1207 Da, 5 armed at 1606 Da, etc. The 229 Da amine containing branches have an extra 173 Da added to them, increasing addition o...
	A wide range of mass peaks was seen as there are unreacted components still present as the synthesis process of the HPAMAM progresses. The spectra of the materials are characteristic of polymers, where each increment signifies a repeat unit. The spect...
	Figure 3.10. Structure of 6 armed NAP-HPAMAM (Mw = 2413.14 Da).
	This specific molecular weight from MALDI-TOF is seen in Figure 3.7 and represents the 6 armed NAP branched HPAMAM. Similar structures can be constructed for each peak represented in the MALDI-TOF spectra.


	3.4 Conclusion
	SNAP-HPAMAM was able to show excellent stability and controllability when releasing NO. The synthesis process is shown to be much less tedious than that of dendrimers while still maintaining a relatively high functionality. A large NO capacity of 1.90...
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	Chapter 4 : Subcutaneous Inflammatory Response to Polyvinyl Chloride Based Nitric Oxide Releasing Materials
	4.1 Introduction
	Implantable medical devices can be of vast importance when patients in critical care require constant monitoring of important analytes like glucose or oxygen. These long term implanted devices lose their functionality over time due to the foreign body...
	Tissue contacting devices have a different foreign body response. In the example of subcutaneous implants, mast cells will first degranulate and release histamine and other cytokines to allow the migration of neutrophils and blood monocytes to the are...
	NO is a free radical signaling molecule produced in the body with a wide range of important functions like smooth muscle relaxation, thromboresistivity, and as an anti-bacterial agent6-9. Macrophages are known to produce NO through inducible nitric ox...
	Two different types of NO releasing SNAP based PVC materials were implanted subcutaneously for 1 and 15 days to observe NO’s effect on the initial stages of inflammation and its transition into a chronic inflammatory state. The first PVC polymer coval...
	The inflammatory responses that were investigated were the quantity and phenotype of macrophages present, total cell count, mast cell degranulation, and the fibrous encapsulation around the implant area. The two macrophage phenotypes that were observe...

	4.2 Experimental Details
	4.2.1 Materials
	Methanol, ethanol, methyl acrylate, ethylenediamine, polyvinyl chloride (average Mw = 233,000, Mn = 99,000), 5, 5’-dithiobis (2-nitrobenzoic acid), triethylamine, N,N-dimethylacetamide, goat serum, Lugol’s iodine solution, 1,4,8,11-tetraazacyclotetrad...
	For the antibodies, anti-CD11b mouse monoclonal antibody, biotinylated goat anti mouse IgG, endogenous avidin/biotin blocking kit, and Alex Fluor 633 streptavidin was purchased from Abcam (Cambridge, MA, USA). Anti-CD163 mouse monoclonal antibody was ...
	Staining reagents included Eosin Y disodium salt, acetic acid (99.7%), Toluidine Blue (powdered), phosphotungstic acid solution 10% w/v, phosphomolybdic acid hydrate solution, Biebrich scarlet acid-fuchsin solution, Analine blue solution, absolute eth...

	4.2.2 Synthesis of self-protected N-acetyl-D-penicillamine (NAP) thiolactone
	The synthesis procedure of NAP-thiolactone was described in chapter 2 following the procedure developed by Moynihan and Robert17.

	4.2.3 Synthesis of SNAP-PVC
	The detailed procedure for synthesizing SNAP-PVC has been described previously in chapter 2. Primary amine groups are first attached to PVC to form an aminated PVC compound which is described by Tinkilic et al18. Briefly, PVC is suspended in methanol ...

	4.2.4 Synthesis of SNAP-HPAMAM
	The synthesis procedure for SNAP-HPAMAM was described in more detail previously in chapter 3. The core hyperbranched molecule followed a modified procedure popularly used for developing polyamidoamine (PAMAM) dendrimers19. Ethylenediamine dissolved in...


	4.3 Characterization
	Both materials, SNAP-PVC and SNAP-HPAMAM, were characterized using FTIR, MALDI-TOF and NMR. The nitrosated compounds were tested for total NO capacity using tri-iodide reduction. Further quantification was also done on the polymers to verify the prese...
	4.3.1 Nitric Oxide Release
	NO release was recorded continuously through a Sievers 280i nitric oxide analyzer (NOA) by chemiluminescence. Determining the NO capacity of the materials was done by tri-iodide reduction following a protocol developed by Yang et al.20.

	4.3.2 Polymer Film Casting and Implantation Procedure
	The solutions used to make the polymer films contained 2 weight % PVC and SNAP-PVC while SNAP-HPAMAM was blended into a solution of PVC at 13 mg/mL. Both SNAP based polymers were encapsulated with thin layers of PVC to prevent any unwanted diffusion o...

	4.3.3 Hematoxylin and Eosin
	Hematoxylin and eosin was used to observe the cell morphology and infiltration around the surrounding implants along with collagen formation. After formalin fixation, slides were washed with three changes PBS for 5 minutes. The slides were then rinsed...

	4.3.4 Masson’s Trichrome
	Detection of fibrous collagen content was accomplished by using Masson’s trichrome stain. This stain allows for accurate measurement and recognition of the collagen fibrous capsule around the implant area. Weigert’s iron hematoxylin solution was first...

	4.3.5 Toluidine Blue
	Mast cells surrounding the implant area were identified by toluidine blue. Activated mast cells can be observed through the degree of degranulation and is stained purple. A stock solution was prepared by dissolving 1g of toluidine blue in 70% ethanol....

	4.3.6 Immunofluorescence
	A modified protocol from Abcam was used to prepare and label the tissue sections. CD163 and iNOS antibody markers were used to differentiate between M2 and M1 macrophages respectively. Total inflammatory cells were quantified by using CD11b. To enhanc...
	For CD11b and CD163 staining, frozen sections were first allowed to warm to room temperature from -80oC before being fixed in 10% formalin solution for 10 minutes. The slides were then washed in three changes of PBS for 5 minutes each and then placed ...
	iNOS staining used a similar procedure but did not follow the streptavidin-biotin staining method. The samples also used BSA as a serum buffer in place of goat serum and 0.01% triton X-100 was substituted for TWEEN 20, and was allowed to only rinse fo...

	4.3.7 Analytical Methods
	Images of the stained sections were done on an Olympus BX51 microscope. For CD11b and CD163 labeled tissue, the images to be analyzed were taken on the 20x objective around the entire area of the implant. Counting cell nuclei and macrophages was done ...


	4.4 Results and Discussion
	4.4.1 Polymer Functional Group Quantification
	Both materials had their functionality quantified as each reaction step progressed from their starting synthesized materials (aminated PVC, HPAMAM) to the NAP attached molecules (NAP-PVC, NAP-HPAMAM) to their final nitrosated product (SNAP-PVC, SNAP-H...
	Table 4.1. Quantification of important functional groups and NO capacity of SNAP-PVC and SNAP-HPAMAM as each reaction step progresses.
	It is important to recognize the potential NO load amounts depending on amount of primary amine sites in a material. Although attaching NAP-thiolactone to every primary amine functional group is difficult, seeing the efficiency gives insight to the ma...

	4.4.2 NO Release Profile
	10 mm diameter films were tested for passive NO release by placing them inside stirring PBS solutions at 37oC. The initial NO release was recorded over a set amount of time to give an insight into the distinct release profile of the two NO releasing m...
	Figure 4.1. Layered polymer schematic for passive NO release when implanted subcutaneously.
	Since it is difficult to use the light triggering mechanisms normally seen with SNAP based materials, using ion and heat mediated release are the most convenient mechanisms for passive in vivo release. Due to PVC’s affinity for ion permeability, the ...
	Figures 4.2 and 4.3 show the NO release profiles of the two materials under physiological conditions. Comparing the two polymers’ NO release profiles show SNAP-PVC exhausting most of its passive NO release over a short period of time while SNAP-HPAMAM...
	Figure 4.2. NO release profile of SNAP-PVC in PBS at 37oC.
	The release profile of SNAP-PVC was very minimal compared to other NO generating materials that have been implanted. Compared to the material’s release when using external triggers like light or metal ions, the passive release does not trigger NO rele...
	Figure 4.3. NO release profile of SNAP-HPAMAM PVC in PBS at 37oC.
	Compared to the NO release from SNAP-PVC, SNAP-HPAMAM PVC demonstrated a much larger NO release over a longer period of time. This allows the comparison of two distinct NO release profiles in vivo.

	4.4.3 Masson’s Trichrome Analysis
	Fibrous encapsulation thickness was recorded for the 15 day implanted NO releasing and control PVC samples and is shown in Figure 4.4. Encapsulation was quantified across 8 tissue sections from 4 different rats for each material. Only the dense, organ...
	Figure 4.4. Trichrome analysis of 15 day subcutaneously implanted materials.
	Panels A, B, and C represent 200x images of PVC, SNAP-PVC, and SNAP-HPAMAM PVC implants respectively. Panels D, E, and F represent 600x images of PVC, SNAP-PVC, and SNAP-HPAMAM PVC implants respectively. The fibrous encapsulation thickness (yellow ar...
	Figure 4.5. Fibrous encapsulation thickness data for PVC, SNAP-PVC, and SNAP-HPAMAM PVC for 15 day implants.
	A dramatic reduction in the fibrosis response was seen in the NO releasing implants compared to the control PVC samples. Using             α = 0.05, a significant difference in encapsulation thickness was seen for both SNAP-PVC and SNAP-HPAMAM PVC wh...

	4.4.4 Toluidine Blue Analysis
	Mast cells play an important role in the inflammatory response as they release histamine, serotonin, along with other cytokines that recruit macrophage recruitment to a wound site23. The toluidine blue stained images are able to show degranulated mast...
	Figure 4.6. Difference between active and inactive mast cells
	Mast cells are labeled purple and are determined inactive (left) when they are granulated and active (right) as the degranulation begins to occur. Although all samples showed signs of degranulated mast cells, the NO releasing implants had the most in...

	4.4.5 Hematoxylin and Eosin Analysis
	Observing the H&E images shows a large range of different cell types present in the one day implants. As seen with acute inflammation, a large population of neutrophils and monocytes have migrated to the implant site along with the presence of eosinop...
	The beginning stages of fibrosis can also be seen in the 15 day implants as chronic inflammation begins to persist. This is seen especially in the control polymer implants. Compared to the control, the NO releasing polymers show a much more resolved t...
	Figure 4.7. H&E analysis of 15 day subcutaneously implanted materials.
	Panels A, B, and C represent the 200x images of PVC, SNAP-PVC, and SNAP-HPAMAM PVC respectively. The 600x images are then shown in panels D, E, and F for PVC, SNAP-PVC, and SNAP-HPAMAM PVC respectively. The green arrows in panel D show the presence o...

	4.4.6 Macrophage Immunofluorescence
	Quantification of the number and phenotype of macrophages was done around the implantation site. Total number of granulocytes like neutrophils, monocytes, and macrophages were identified using CD11b while M1 macrophages were specifically identified us...
	A noticeable difference between the two macrophage phenotypes and total number of granulocytes was seen between the NO releasing implants and control implants. Along with the quantity present around the implant interface, the location of the specific ...
	There is also more polymer fragmentation present in the control PVC implants than the NO releasing implants. iNOS and CD11b images show a high density of macrophages surrounding these polymer fragments within the tissues indicating frustrated phagocyt...

	4.4.7 Macrophage Phenotype Quantification
	Observations were made on the images taken with respect to macrophage number and phenotype based on NO release. Images were taken at 200x magnification around the implant area for both CD11b+ and CD163+ sections and were counted using CellProfiler sof...
	For the 15 day implants, a no significant difference was seen in CD11b+ or CD163+ cells when comparing control PVC implants when to both the SNAP-PVC and SNAP-HPAMAM PVC implants. Although there was no significant difference, there is an observable tr...
	The one day implants showed nearly identical amounts of cells marked with both CD11b+and CD163 for all polymers (not shown). The presence of CD11b+ cells at the initial stages of implantation are expected to be the same as NO’s main effect is to hinde...
	For quantification of iNOS+ cells around the implant, 600x images were taken around the tissue-implant interface and a pixel count ratio between iNOS stained features (green) and DAPI labeled cells (blue) was done. Since iNOS is labeled within the cyt...
	Figure 4.8. Cell culture of RAW 264.7 murine macrophages stained with iNOS at 600x.
	LPS treated (right image) and non-LPS treated (left image) demonstrate the difference in iNOS staining activity. More active macrophages have a much larger cytoplasm filled with iNOS enzymes.
	Figure 4.9. Immunofluorescence of iNOS+ cells (green) around 15 day implants.
	PVC control (top) displayed very active macrophages, especially at the implant interface. SNAP-PVC (middle) also showed a lot of activity, but with smaller iNOS+ cytoplasmic features. SNAP-HPAMAM PVC (bottom) had the lowest amount of iNOS activity fro...
	Figure 4.10. Inflammatory response to polymer fragments seen in 15 day PVC implants.
	The aggregation of iNOS labeled cells (green) show the consequences of the increased, harsh inflammatory response to the control PVC implants as these tissue sections showed the most polymer fragmentation (red star). Image was taken at 600x magnificat...
	Figure 4.11. Immunofluorescence and analysis of cell nuclei, CD11b, and CD163 marked cells for 15 day implants.
	Aggressive and inflammation inducing cells were marked with CD11b (red) for PVC (A), SNAP-PVC (B), and SNAP-HPAMAM PVC (C) while cell nuclei were stained with DAPI (blue). Anti-inflammatory, M2 macrophages were marked with CD163 (red) for PVC (D), SNA...
	The results from these experiments demonstrate slightly different results from in vitro experiments that were done in the past. Human mononuclear cells have been shown to express pro-inflammatory cytokines such as TNF and IL-1 when incubated with 100 ...


	4.5 Conclusion
	Two different NO releasing PVC based polymers that released different total amounts of NO were able to elicit different immune responses compared to control PVC based on the level and duration of NO being emitted into the surrounding tissue. While SNA...
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	Chapter 5 : Nitric Oxide Releasing Materials as Potential Antivirals
	5.1 Introduction
	The applications of NO as an antibacterial has been demonstrated from previous controlled NO releasing materials, and is the primary method for macrophages to kill foreign bacteria around a wound site through the formation of peroxynitrites1. This sam...
	Using NO as an antiviral poses the question of how it exactly is interacting with the viral structure as a whole – whether it is interacting with the viral envelope, the protein capsid, enzymatic molecules within the virus, or the actual DNA/RNA struc...
	Figure 5.1. Mechanism for DNA damage within viral species from an NO donating material.
	If NO does not react with the protein capsid layer, its peroxynitrite byproduct will be able to diffuse through and react with the DNA structures within. This leads to deamination of the base pairs in the DNA structure and causes oxidative damage, cau...
	The investigation of using NO as a potential antiviral was done through using controlled doses of NO over specific time intervals with SNAP-PDMS and SNAP-PVC. This gave a preliminary insight into how much NO is required to inactivate viruses from tran...
	In these preliminary studies, SNAP-PDMS and SNAP-PVC were used as the material to deliver controlled amounts of NO over the course of 1 and 2 hours to PPV and SINV virus particles suspended in PBS. Once a threshold for the amount of NO over a specific...

	5.2 Experimental Details
	5.2.1 Materials
	The materials used to synthesize SNAP-PDMS were Hydroxy-terminated 2000 cSt polydimethylsiloxane (PDMS) was purchased from Gelest, Inc. (Morrisville, PA, USA). 3-Aminopropyl trimethyoxysilane, dibutyltin dilaurate, cyclam, and toluene were obtained fr...

	5.2.2 Synthesis of SNAP-PDMS
	The synthesis procedure followed a protocol described previously6. 1.6 g of the hydroxyl-terminated PDMS is first dissolved in 8 mL of toluene. 0.3 g of 3-aminopropyl trimethoxysilane and 2.4 mg of dibutyltin dilaurate are then added to the solution a...

	5.2.3 Experimental design
	A breadboard containing six blue, 470 nm LEDs connected to 130 Ω resistors was constructed. PVC pipe (15 mm OD, 12 mm ID) was cut into 30 mm lengths and placed around the mounted LEDs. Set screws were placed 10 mm from the top of the PVC sections for ...
	For testing, the viral solutions were suspended in PBS and placed into the vials containing the bottom coated polymers. The LEDs were then turned on to trigger NO release from the polymer films into the viral solution for 1 and 2 hours. After the NO t...

	5.2.4 Nitric oxide measurements
	NO detection was recorded in real time from the nitric oxide analyzer for multiple trials using the same setup that was being tested in the actual virus trials to accurately demonstrate the NO diffusion from the polymer films to the viruses suspended ...

	5.2.5 Virus activity measurements
	After being exposed to NO, cells were then administered with the treated virus solutions in culture. A live/dead assessment was then done on the treated and untreated cell cultures using an MTT assay.
	Log reduction value (LRV) of the solution was calculated to determine the percentage of virus particles able to still infect cells. Complete inactivation of the virus (99.99%) was calculated at an LRV of 4.


	5.3 Results and Discussion
	5.3.1 Nitric oxide profiles
	Identical polymers were cast into the 2 mL vials and were tested for NO release using the same setup used in the viral NO testing. The polymers were tested at the same time the virus samples were being tested to ensure the release profiles were as sim...
	Figure 5.2. NO release profile of SNAP-PDMS over 2 hours when LED activated.
	The total amount of NO released over the 2 hour period was 0.270 µmol, and was proven to be enough NO to deactivate PPV replication.
	Figure 5.3. NO release profile of SNAP-PDMS passively with no LED over 2 hours.
	The amount of NO in the trials with the LED off was done in the scenario where there was viral removal with extremely low amounts of NO. Later experiments demonstrated that this low, passive amount of NO release had no effect on the viruses.
	Figure 5.4. NO release profile from SNAP-PVC over a 2 hour time period.
	The release seen in the SNAP-PVC compounds was also shown to prevent PPV from infecting cultured cells.

	5.3.2 Virus Functionality
	Exposure to NO at both 1 and 2 hour release demonstrated complete deactivation of the viruses for SNAP-PVC and SNAP-PDMS. Comparing these preliminary results to other studies that have been done in the past show that the amount of SNAP that was previo...

	5.3.3 Preliminary Data Collection
	SNAP-PVC was used as the first NO donating material to attempt to deactivate PPV in solution. The first trials that were done showed promising results of high viral removal after being exposed to both 1 and 2 hours of LED triggered SNAP-PVC. However, ...
	Figure 5.5. PPV removal using SNAP-PVC as the NO releasing polymer.
	The LED was turned on for 1 and 2 hour time points. Log 4 removal of the virus shows that 99.99% of the virus was deactivated or killed when administered to cell cultures, which was demonstrated for SNAP-PVC when the LED was on and off. The removal w...
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	The results presented show the potential of NO as a possible antiviral tool for future materials. The experiments described demonstrate how with enough time, a precise measurement on how much NO over a certain amount of time is needed to deactivate th...

	5.5 References
	1.   Nablo, B. J.; Rothrock, A. R.; Schoenfisch, M. H. Nitric oxide-releasing sol–gels as antibacterial coatings for orthopedic implants. Biomaterials 2005, 26 (8), 917-924.
	2.   Marletta, M. A.; Yoon, P. S.; Iyengar, R.; Leaf, C. D.; Wishnok, J. S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 1988, 27 (24), 8706-8711.
	3.   Fang, F. C. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. Journal of Clinical Investigation 1997, 99 (12), 2818.
	4.   Croen, K. D. Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. Journal of Clinical Investigation 1993, 91 (6), 2446.
	5.   Saura, M.; Zaragoza, C.; McMillan, A.; Quick, R. A.; Hohenadl, C.; Lowenstein, J. M.; Lowenstein, C. J. An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 1999, 10 (1), 21-28.
	6.   Takhampunya, R.; Padmanabhan, R.; Ubol, S. Antiviral action of nitric oxide on dengue virus type 2 replication. Journal of general virology 2006, 87 (10), 3003-3011.
	7.   Lin, Y.; Huang, Y.; Ma, S.; Yeh, C.-T.; Chiou, S.; Chen, L.; Liao, C. Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. Journal of virology 1997, 71 (7), 5227-5235.
	8.   Burney, S.; Caulfield, J. L.; Niles, J. C.; Wishnok, J. S.; Tannenbaum, S. R. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1999, 424 (1), 37-49.
	9.   Wink, D. A.; Kasprzak, K. S. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 1991, 254 (5034), 1001.
	10.   Gierke, G. E.; Nielsen, M.; Frost, M. C. S-Nitroso-N-acetyl-D-penicillamine covalently linked to polydimethylsiloxane (SNAP–PDMS) for use as a controlled photoinitiated nitric oxide release polymer. Science and Technology of Advanced Materials 2...


	Chapter 6 : Concluding Remarks and Future Direction
	6.1 Summary of Findings
	The utilization of NO is still a growing field and more applications are still being discovered. By understanding how our body synthesizes and releases NO broadens the potential for NO donating materials to mimic some of these beneficial effects. Whet...
	The synthesis of a covalent bound NO donor to PVC to create a SNAP-PVC compound opens up a variety of opportunities for how PVC is used in the medical field. Being one of the most commonly used polymers in the medical industry, there is huge potential...
	Using a similar hyperbranched molecular synthesis approach that is seen in dendrimers, a hyperbranched SNAP based polyamidoamine was successfully synthesized and shown to be extremely stable when isolated as a solid. The synthesized SNAP-HPAMAM is one...
	These two materials were then able to demonstrate their capabilities of using the beneficial effects of NO by warding off unwanted inflammation when implanted subcutaneously. The PVC blended with SNAP-HPAMAM ended up performing better than SNAP-PVC du...
	Preliminary findings of NO’s effect on viruses proved to be very promising. The setup being used is more effective than what has previously been done when investigating the concentrations needed to deactivate viral compounds. Over a period of 1 and 2 ...
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