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Abstract

There is a renewed interest in photovoltaic solar thermal (PVT) hybrid systems, which harvest 
solar energy for heat and electricity. Typically, a main focus of a PVT system is to cool the 
photovoltaic (PV) cells to improve the electrical performance, however, this causes the thermal 
component to under-perform compared to a solar thermal collector. The low temperature 
coefficients of amorphous silicon (a-Si:H) allow for the PV cells to be operated at higher 
temperatures and are a potential candidate for a more symbiotic PVT system. The fundamental 
challenge of a-Si:H PV is light-induced degradation known as the Staebler-Wronski effect 
(SWE). Fortunately, SWE is reversible and the a-Si:H PV efficiency can be returned to its initial 
state if the cell is annealed. Thus an opportunity exists to deposit a-Si:H directly on the solar 
thermal absorber plate where the cells could reach the high temperatures required for annealing. 

In this study, this opportunity is explored experimentally. First a-Si:H PV cells were annealed for 
1 hour at 100˚C on a 12 hour cycle and for the remaining time the cells were degraded at 50˚C in 
order to simulate stagnation of a PVT system for 1 hour once a day. It was found that, when 
comparing the cells after stabilization at normal 50˚C degradation, this annealing sequence 
resulted in a 10.6% energy gain when compared to a cell that was only degraded at 50˚C.

Keywords: hydrogenated amorphous silicon; a-Si; annealing; Photovoltaic Thermal Hybrid; 
PVT; PV/T

1. Introduction

Photovoltaic solar thermal (PVT) hybrid systems have been shown to be more efficient at 
solar energy collection on the basis of exergy, energy and cost [1-7]. Most current PVT systems 
are based on crystalline silicon (c-Si) photovoltaic (PV) materials, whose performance declines 
with increasing temperature by 0.04%/oC [8]. Thus, these PVT system designs are primarily 
focused on cooling the c-Si PV cells to maximize the electrical gain, while the extracted thermal 
energy is viewed as a secondary benefit [7]. The result of this design focus is that the thermal 
component of the PVT system significantly under-performs when compared to standard solar 
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thermal collectors [9-12]. Focusing the design on only maximizing solar electrical output thus 
prevents the PVT system from being optimized. 

A potential solution to this challenge is to use a PV material that can operate at higher 
temperatures without substantial performance losses. One such promising material is 
hydrogenated amorphous silicon (a-Si:H), which has a temperature coefficient of only -0.01%/ 
oC [8], a quarter that of c-Si. A fundamental challenge recognized shortly after the discovery of 
the  a-Si:H PV cell, was light-induced degradation of the a-Si:H PV performance known as the 
Staebler-Wronski effect (SWE) [13-17]. SWE causes defect states to form in the a-Si:H material 
when exposed to sunlight, which lower the efficiency of the PV cell. For commercial high-
quality a-Si:H materials, these defects saturate after a long (~100 hours of continuous 1 sun) 
illumination and the efficiency of the cell is considered stabilized at this point [18-20]. This is 
stabilized state is known as the degraded steady-state (DSS). Fortunately, SWE is reversible and 
the a-Si:H PV cell efficiency can be returned to its initial state if the cell is heated to 150oC for 
four hours as the defect states are annealed [13, 21-23] . Various schemes have been devised to 
take advantage of thermal annealing in a-Si:H, such as removing the entire PV array and 
annealing them in an air oven at lower temperatures (e.g. at 80oC) over extended times [24]. In 
addition, it has been found that a-Si:H PV performs better at higher temperatures since the 
optoelectronic properties of a-Si:H materials [25-27] stabilize at a higher efficiency [18,28]. In a 
solar thermal flat plate collector the temperature can easily reach over 100oC and even climb 
higher than 200oC if the system is stagnated [29]. Thus an opportunity exists to deposit a-Si:H 
directly on the solar thermal absorber plate [30,31] where the cells could reach the high 
temperatures required for annealing. This suggests that a-Si:H would be an excellent choice of 
PV material for a PVT system and that careful control of the temperature of the thermal side of 
the PVT could be used to introduce thermal annealing pulse cycles to raise the overall PV 
electrical conversion performance.

This paper explores this potential and reports on a series of experiments in which a-Si:H 
based PV cells were exposed to high temperature pulse annealing cycles for which the 
temperature and duration were determined by the potential stagnation conditions in a PVT 
system. The results are discussed to determine the value of utilizing a scheme of thermal cycling 
in PVT systems to maximize the overall solar energy harvested.

2. Materials and Methods

The a-Si:H PV cells used in this study were fabricated by an AKT plasma enhanced 
chemical vapour deposition (PECVD) chamber. The i-layer thicknesses of 210, 420, 630 and 840 
nm were deposited by ThinSilicon in the following bottom up structure as can be seen in Figure 
1: AGC float glass (3mm)/SnO2:F (700 nm) - textured fluorinated tin oxide/ Ag (200nm)/ AZO 
(100nm)/ n-a-Si:H (25nm)/ i-a:Si:H (210nm to 840 nm)/ p-a-Si:H (15nm)/ ITO (70nm). 

{Insert Figure 1 Here}

The following sections describe the various methodologies required to complete and acquire the 
data for this study. 
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2.1 Light-Induced Degradation 

A Newport class AAA solar simulator was used to apply AM1.5 1 sun illumination to the 
PV cells until a DSS was reached. Degradation temperatures were maintained with a Chemat 
Technology Inc. hot plate attached to a Cole Parmer Digi-Sense k-Type temperature controller. 
A k-type thermocouple was placed beside the cell to monitor and maintain surface temperature at 
the desired temperatures of 25oC (standard testing conditions for PV), 50oC (representative 
operating temperature for PV) or 90oC (representative of operating temperatures for solar 
thermal systems) during the degradation. PV Measurements I-V Curve software K2400 I-V was 
used with a Keithley 2000 multimeter and  a Keithley 2400 source meter to measure the current-
voltage output of the cells. An AutoIt macro was implemented to run the program to take the 
measurements at desired intervals. 

2.2 Spike Annealing at the DSS

After reaching the DSS, the cells were exposed to a thermal annealing cycle (spike 
annealing) with a set point of 100oC for one hour. This test was to simulate stagnation of the 
thermal component of the PVT system. The 100 oC was determined as feasible by experimentally 
simulating stagnation using a test rig containing the PV cell array used in this study. It should be 
noted that this value is conservative due to the nature of the areas around the test cells, which 
were highly reflective.  The 1 hour annealing time was considered a short enough period of time 
to not greatly affect the thermal system performance, but long enough to ensure a substantial 
annealing of the SWE defect states in the PV cell. The PV cell was then allowed to cool to its 
degraded temperatures of 90, 50 and 25oC, respectively and remained at these temperatures for at 
least 10 minutes to obtain an accurate temperature correlation.

2.3 Spike Annealing Cycle

Following the methods outlined in Section 2.1 and 2.2, a spike annealing cycle test was 
completed on a 12 hour cycle. The cell was degraded at 50oC for 10 hours and 45 minutes, at 
which time the surface temperature of the cell was raised to 100oC over approximately 15 
minutes and was maintained at that temperature for 1 hour and then allowed to cool naturally to 
50oC. It should be noted that the typical operating temperature for a PV module is 50oC [32].

3. Results and Discussion

It is known that a-Si:H PV when degraded at higher temperatures will stabilize at higher 
efficiencies, as can be seen in Figure 2 showing the normalized maximum power (Pmax) with a 
630 nm i-layer thick a-Si:H cell degraded at 25, 50 and 90oC [19].

{Insert Figure 2 Here}

From Figure 2, it can be easily determined that running an a-Si:H cell at higher temperatures 
will increase the energy output of the cell due to the earlier occurrence of the DSS. This 
supports the concept of using a-Si:H in PVT systems as a-Si:H cells stabilize at higher 
efficiencies at higher operating temperatures. However, it would be more beneficial to the 
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overall energy conversion if the cell could retain its initial efficiency rather than operate at the 
DSS lower efficiency. In order to test if this was possible, high-temperature annealing pulses (or 
spike annealing) were investigated. The spike annealing process was applied to the stabilized 
cells of the temperature series found in Figure 2 and the results are shown for degradation 
temperatures of 25, 50 and 90oC, respectively, in Figures 3-5. In each graph, the fill factor (FF), 
maximum power and annealing temperature profile are plotted as a function of time. The FF 
indicates the quality of the cell performance as the ratio of actual power output to theoretical 
power output .The annealing temperature profile displays the change in temperature over time 
applied to the cell. It should be noted that the end points of each line segment are known, but 
changes between them are not displayed for clarity.

{Insert Figure 3 Here}

{Insert Figure 4 Here}

{Insert Figure 5 Here}

As can be seen in Figures 3-5, there are some interesting patterns that arise at all degradation 
temperatures investigated. During the ramp up in temperature, the power drops initially, but then 
slowly increases thereafter. This may be because the cell initially suffers from the rapid increase 
in the temperature during the ramp until it is closer to achieving surface cell temperatures of 100 
oC required for the annealing process to take a significant effect [24]. Although a-Si:H PV do 
perform better at higher temperatures to a point, cells are also very sensitive to fluctuations in 
temperature. This can clearly be seen in Figures 4-5 at the 100 oC plateau, where the temperature 
fluctuated by a couple degrees resulting in a wavelike scattered pattern during this period. In all 
three annealing tests, the FF spiked at around 80 oC whereas the power reaches its maximum at 
temperatures lower than 50 oC. These findings can be explained by understanding the 
temperature relationships between the short circuit current (Isc) and open circuit voltage (Voc).  Isc 

increases with temperature slightly, whereas the Voc decreases significantly with temperature, 
typically 3-4 times as fast. Therefore, at 80 oC the conditions are set such that the Isc has only 
dropped a little while the Voc has increased significantly with the result being a greatly increased 
FF. At 50 oC, the Voc has increased dramatically allowing for a larger maximum voltage and 
therefore greatly increasing the Pmax output. 

Reconsidering Figure 2, it is clear that the starting points for cycles shown in Figures 3-5 
are dependent on what temperature the cells are degraded. As mentioned before, the higher the 
temperature, the faster the DSS and higher the corresponding Pmax. At the lower degraded 
temperatures in Figures 3-4, the annealing has a larger effect on the power increase compared to 
the higher temperature in Figure 5. This is expected given that the DSS Pmax is highest at 90 oC, 
such that the power gain is smaller when being annealed at increase in temperature of only 10 
degrees. To compare the relative regeneration of the cells, the final Pmax in Figures 3-5 were 
divided by the initial Pmax in Figure 2, which resulted in percentage regenerations of 84.1%, 
86.2% and 96.8% for the 25 oC, 50 oC and 90 oC degradations respectively. Thus, at the highest 
degradation temperature, the cell is almost fully regenerated in the spike annealing, even though 
the gain is the smallest. This can be understood again by noting that the cell stabilizes at a higher 
Pmax at higher temperature.
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The degradation at 50 oC and relevant spike annealing cycles were completed for 
different i-layer thicknesses (i.e., 210, 420, 630 and 840 nm) to determine if there was a potential 
to use spike annealing to enable thicker cells (with higher efficiencies) than those currently used 
in industry. It was found that the patterns of response were consistent for all PV cells with 
different i-layer thicknesses as seen in Figure 6. Figure 6 shows the maximum power of 4 cell 
thickness PV devices as a function of time. The different shades of the symbols indicate the 
different temperature stages of the pulse annealing test: i) ramp up, ii) 100 oC plateau, iii) cooling 
down, iv) 50 oC plateau and v) cooling down again. The darker regions indicate the temperature 
plateaus of the spike annealing. 

{Insert Figure 6 Here}

For the thinner the cell, the effect of a one hour spike anneal on the power of the cell is greatest. 
This is by virtue of the thicker cells having more material, which means they have more defect 
states that require a greater annealing time [33, 34]. Therefore, after the 1 hour of annealing, the 
thicker cells will have more defects remaining, which negatively impact their relative 
performance. It is clear that all a-Si:H PV devices, regardless of thickness between 200nm and 
800nm i-layers benefited from the spike annealing cycle.  

A realistic application of the spike annealing concept would be to apply it once a day in a 
PVT system using stagnation for a short time period (1 hour). This is necessary to minimize the 
detrimental impact on the thermal component of the system (e.g. any thermal energy used to 
anneal the PV is not collected as useful thermal energy).  This daily thermal annealing pulse 
sequence was simulated and the results are shown in Figure 7 for a 630 nm i-layer thick PV cell. 
Figure 7 compares the same cell degraded at 50 oC with and without spike annealed at 100 oC in 
a 12 hour cycle period for a duration of just over 1 week described in Section 2.3.

{Insert Figure 7 Here}

From Figure 7, the comparison between a normal 50 oC degradation to a 12 hour degradation and 
spike annealing cycle reveals that, over the course of just over 1 week, the spike anneal cycle test 
produces 8.5% more energy if both were run for 192 hours. When comparing the two tests from 
the point where the normal 50 oC degradation test stabilized (140 hours) to the end of the test 
(192 hours), it was found that the spike annealing cycle test produced 10.6% more energy. Since 
there is very little change in the spike annealing cycle test from 140 hours onwards, this would 
imply that over the course of the lifetime of the PVT system, applying the spike annealing once a 
day would produce 10.6% more energy than if the system was not annealed at all. If the a-Si:H 
cell was 10% efficient this would mean the cell’s overall effective efficiency would increase to 
just over 11%. These results are extremely promising as the improved performance of a-S:H PV 
in PVT systems using a spike annealing sequence would substantially improve the levelized cost 
of electricity from the devices [35].  

4. Future work

In this study, relatively low-efficiency single junction a-Si:H devices were investigated, 
however,  the use of a micromorph or multi-junction a-Si:H-based cells may increase the impact 
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of thermal annealing cycles even further because of their overall improved performance [36].  In 
addition, it is suggested that an i-layer thickness series study be completed utilizing spike 
annealing cycles at higher temperatures for a shorter period of time might also produce the same 
effects, but have less of a negative effect on the thermal component. Future work is needed to 
assess the feasibility of stagnating the PVT system to determine if the gain in exergy from the 
solar PV cells exceeds the losses in thermal energy output due to the stagnation period. It would 
also be interesting to determine the best time during a day to implement the stagnation, which 
would produce the required annealing temperature while minimizing the stagnation thermal 
losses. For example, in the middle of the day where the irradiance is highest, a high stagnation 
temperature can be achieved but the thermal losses would be greater than if this was completed 
at the end of the day.

Finally, in recent years the use of Feed-In-Tariffs (FIT) programs has been introduced to 
various countries to promote green technologies. In Ontario, Canada, the FIT program offers a 
substantial financial benefit for each kWh of solar electricity provided to the grid [37, 38]. Future 
work is needed to investigate both the optimal dispatch strategy of thermal annealing in PVT 
devices to maximize income under different FIT structures, but also can be used to encourage 
energy policy formation that maximizes exergy for a given technology.  For example, it may 
therefore be more beneficial from an economic perspective to spike anneal even in the middle of 
the day since the electricity gained greatly exceeds the cost of purchasing it even though from an 
exergy or greenhouse gas mitigation standpoint later thermal cycling may be optimal. Another 
concept that can be explored is utilizing dispatch strategies that only allow spike annealing at 
times when the thermal demand is zero or when the occupants will not be using the hot water for 
a while, such as when the occupants of a home are on vacation. This would then have no 
negative impact on the performance of the thermal component while improving the electrical 
efficiency.

5. Conclusions

This paper explored the potential of thermal annealing cycles (spike annealing) of a-Si:H 
based PV cells by simulating high temperature sequences that would occur during  imposed 
stagnation conditions in hybrid PVT solar collectors.  Through simulating the stagnation of an a-
Si:H PVT system for 1 hour where the cell was maintained at 100 ˚C, it was found that there was 
10.6% gain in solar electricity production compared to running a cell only at 50 ˚C once both had 
reached the normal 50˚C stabilized state. Assuming the rates of degradation were maintained 
throughout their lifetime, the relative gain would be maintained for the cells with spike 
annealing. With the prospects of producing substantially more energy due to spike annealing, 
PVT systems have the technical potential to become a much larger fraction of the burgeoning 
solar market.
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Figures

Figure 1: The composition and structure of the a-Si:H solar photovoltaic cells used in this study.

Figure 2: A normalized temperature series of 25, 50 and 90 oC degradation under 1 sun for a PV 
cell with an i-layer thickness of 630 nm.
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Figure 3: High-temperature annealing pulses (spike annealing) results for 25 oC degradation 
showing the fill factor, maximum power and temperature (A: 80 oC, B: 50 oC, C: fan turned on, 
D: 25 oC) as a function of time.
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Figure 4: High-temperature annealing pulses (spike annealing) results for 50 oC degradation 
showing the fill factor, maximum power and temperature (A: 80 oC, B: 50 oC) as a function of 
time.

Figure 5: High-temperature annealing pulses (spike annealing) results for 90 oC degradation 
showing the fill factor, maximum power and temperature (A: 90 oC, B: 80 oC, C: 50 oC) as a 
function of time.
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Figure 6: High-temperature annealing pulses (spike annealing) thickness series showing the 
maximum power as a function of time using a-Si:H cells with i-layer thicknesses of 210, 420, 
630 and 840nm degraded at 50 oC under 1 sun. The color of the symbols indicates the stage of 
the temperature cycle.

Figure 7: Comparison of the same 630 nm i-layer thick a-Si:H PV cell degraded at 50 oC under 
1 sun (Normal Degradation) to results obtained for degradation at 50 oC under 1 sun coupled 
with spike annealing at 100oC on a 12 hour cycle for 192 hours (Spike Annealing).
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