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Abstract

Spectrum sensing is currently one of the most challenging design problems in cognitive

radio. A robust spectrum sensing technique is important in allowing implementation of a

practical dynamic spectrum access in noisy and interference uncertain environments. In

addition, it is desired to minimize the sensing time, while meeting the stringent cognitive

radio application requirements. To cope with this challenge, cyclic spectrum sensing tech-

niques have been proposed. However, such techniques require very high sampling rates

in the wideband regime and thus are costly in hardware implementation and power con-

sumption. In this thesis the concept of compressed sensing is applied to circumvent this

problem by utilizing the sparsity of the two-dimensional cyclic spectrum. Compressive

sampling is used to reduce the sampling rate and a recovery method is developed for re-

constructing the sparse cyclic spectrum from the compressed samples. The reconstruction

solution used, exploits the sparsity structure in the two-dimensional cyclic spectrum do-

main which is different from conventional compressed sensing techniques for vector-form

sparse signals. The entire wideband cyclic spectrum is reconstructed from sub-Nyquist-rate

samples for simultaneous detection of multiple signal sources. After the cyclic spectrum

recovery two methods are proposed to make spectral occupancy decisions from the recov-

ered cyclic spectrum: a band-by-band multi-cycle detector which works for all modulation

schemes, and a fast and simple thresholding method that works for Binary Phase Shift

Keying (BPSK) signals only. In addition a method for recovering the power spectrum

of stationary signals is developed as a special case. Simulation results demonstrate that

the proposed spectrum sensing algorithms can significantly reduce sampling rate without

sacrificing performance. The robustness of the algorithms to the noise uncertainty of the

wireless channel is also shown.

xi



Chapter 1

Introduction

1.1 Cognitive Radio

The electromagnetic radio frequency (RF) spectrum is the most valuable resource of wire-

less communication systems. Driven by the ever increasing spectrum demand from dif-

ferent applications, the radio frequency spectrum has come to be a scarce resource. A

closer investigation of this issue reveals that, even though there appears to be spectrum

shortage, the radio frequency band is in fact underutilized. According to the Federal Com-

munication Commission (FCC), currently almost all RF spectrum is allocated, but most of

it is underutilized or not used at all. The spectrum usage survey conducted by the FCC

reveals that utilization of the RF spectrum ranges from 15% to 85% depending on popula-

tion density [1]. To reinforce this fact Figure 1.1 shows the results of spectrum occupancy

measurements conducted in Chicago and New York cities [2]. According to the statistics,

Chicago and New York in fact have two of the highest spectrum occupancies of the RF band

ranging from 30MHz to 3GHz. In other regions this spectrum is even less utilized [3].

To alleviate this spectrum underutilization problem, cognitive radio (CR) proposed in [6],

[7], has emerged as a promising solution. Cognitive radio is a notion that is based on dy-

namic spectrum sharing. In CR framework, a cognitive radio, usually referred to as the

secondary user, searches for and uses unoccupied spectrum bands that are already licensed
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to a primary user (PU). These unused frequency bands are known as spectrum holes. A

definition of a spectrum hole as given in [4] is: “a band of frequencies assigned to a pri-

mary user, but at a particular time and specific geographic location, is not being utilized by

that user”. One promising application of the concept of CR is IEEE 802.22 standard for

Wireless Regional Area Network (WRAN). The aim of this standard is developing spec-

ifications that allow CRs to utilize unused spectrum allocated to the Television Broadcast

Service [8].

Figure 1.1: Measured Spectrum Occupancy in Chicago and New York, [2]

A cognitive radio is an intelligent wireless communication system that is capable of sens-

ing its surrounding RF environment and adapting its transmission parameters including

transmit power and frequency accordingly [4]. There are three fundamental tasks that need

to be performed by a CR [4]. The first is radio-scene analysis, which involves spectrum

sensing to detect spectrum holes. The second task is channel identification which includes
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estimation of channel-state information (CSI) and channel capacity prediction. The third

task is transmit-power control and dynamic spectrum management. Accordingly spectrum

sensing is the foremost task that needs to be performed by a CR. To achieve good spectrum

utilization and support the required quality of service, CRs need to sense a wide spectrum

and utilize unoccupied bands while avoiding interference to any PU. To accomplish these

tasks, efficient spectrum sensing is a key enabler [5]. The following section provides a

brief introduction of spectrum sensing and reviews the main spectrum sensing approaches

proposed in the literature.

1.2 Spectrum Sensing in Cognitive Radio

The RF environment of a CR can be classified in to three categories based on the power

detected at a particular band [4].

1. Black spaces: These are spectrum bands occupied by a high power signal some of

the time.

2. Gray spaces: These are bands that are partially occupied by low-power interferers.

3. White spaces: These are spectrum bands that are unoccupied and are free except for

the presence of ambient noise.

Obviously white spaces are the best candidates to be used by unlicensed secondary users.

Gray spectral bands also present a good opportunity for CRs as long as the interference

from the CR to PUs stays below a certain threshold. The black spaces are to be avoided

whenever they are being used by the licensed primary user. Simply put spectrum sensing in

CR refers to the task of sensing the RF environment and categorizing RF bands in to one of
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these groups. In general, spectrum sensing boils down to deciding the presence or absence

of a PU signal in a given frequency band. The basic hypothesis model for such a detection

problem is

x(t) =



















w(t), H0

hs(t) + w(t), H1

(1.1)

where w(t) is additive noise, s(t) is the signal transmitted by the primary user, h is the

channel gain and x(t) is the signal received by the CR. H1 is the alternative hypothesis

that stands for the presence of a PU signal whereas H0, the null hypothesis, states there

is no licensed PU signal in the monitored band. In the literature there are three main

approaches to this spectrum detection problem; matched filter detection, energy detection

and cyclostationary feature detection. A brief review of each follows.

1.2.1 Matched Filter Spectrum Detection

When the signal of the primary user is known to the CR, the matched filter is the best de-

tector for the presence of the PU signal. The matched filter is the optimal linear filter that

maximizes the Signal to Noise ratio (SNR) at the receiver of the CR in the presence of addi-

tive Gaussian noise [5]. In time domain, this is equivalent to convolving the received signal

with the time-reversed version of the PU transmitted signal. The biggest advantage of the

matched filter is the short sensing time it requires to achieve a certain required probability

of detection. However, in a dynamic radio environment this method is highly impractical

since it requires a perfect knowledge of the PU signal. In most practical situations a CR

may not even know the existing PUs let alone their signal waveforms.
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1.2.2 Energy Detector

Unlike the matched filter, the energy detector does not require prior knowledge of PU

signals and is easy to implement. Energy detector measures the energy of the received

signal by squaring and integrating the output of a band pass filter of bandwidth W in a time

interval T [5]. Then the output of the integrator, YE, is compared with a threshold ηE to

decide the presence of a PU signal. Assuming a non-fading environment the probability of

detection Pd and false alarm P f are given by [9]:

Pd = PYE > ηE |H1 = Qm(
√

2γ,
√
ηE) (1.2)

P f = PYE > ηE |H0 =
Γ(m, ηE/2)
Γ(m)

(1.3)

Where γ is the SNR, Qm(.) is the generalized Marcum Q-function, and Γ(.) and Γ(., .) are

complete and incomplete gamma functions.

Owing to its easy implementation the energy detector is the most widely adopted spectrum

sensing scheme in CR. However, energy detector suffers significantly from noise and in-

terference uncertainty and does not provide any means of differentiating between different

PU signals [11], [12].

1.2.3 Cyclostationary Feature Detection

Cyclostationary feature detection utilizes the cyclostationary property of communication

signals that arises due to the periodicities of sine wave carriers, pulse trains, spreading

codes, etc. The cyclic features of communication signals are exploited using spectral cor-
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relation analysis as a method for spectrum sensing. The major advantage of this scheme is

its ability to differentiate between noise and modulated signals. This is possible because

unlike communication signals, noise is a stationary process with no correlation and does

not give rise to cyclic features. As a result, cyclic feature detection is robust to noise and

interference uncertainty problems. On the other hand this method is computationally com-

plex and requires longer sensing time in comparison with the energy detector [14], [17].

Cyclic feature detection is the spectrum sensing approach used in this thesis and will be

discussed in more detail in later chapters.

1.3 Motivation

Spectrum sensing is the foremost task that needs to be performed by cognitive radio net-

works to utilize spectrum holes efficiently. The traditional spectrum sensing techniques

discussed in the previous chapter have major limitations for wideband spectrum sensing

applications. The matched filter is optimal for signal detection under Gaussian noise, but

requires prior knowledge of all the possible PU signals in the wide band, which is infeasible

in practice. An energy detector, although popular because of its easy implementation, is

highly susceptible to noise uncertainty and has unacceptable performance under low signal

to noise ratio (SNR) conditions. Cyclic feature detectors can suppress the stationary noise

and thus are quite robust to noise uncertainty [13]–[15]. They can also differentiate vari-

ous modulation types and hence potentially separate PUs from CRs and categorize signals

based on the interference level they can tolerate. However, they typically require sampling

at a higher-than-Nyquist rate in order to induce cyclostationarity, and generally take long

sensing time to acquire the cyclic statistics. Due to the high sampling rate requirements, all

these techniques are typically carried out on a channel-by-channel basis over small band-

width, in combination with a frequency shifter that scans one channel at a time over the

6



wide band, or using a bank of filters followed by narrowband processors , each of which

sense only a narrow bandwidth [10]. However, for fast and reliable adaptation to the highly

dynamic wideband fading channels, it is desired to perform wideband spectrum sensing

that simultaneously detects all signal sources over a wide band of interest. In this thesis

wideband radio architecture is adopted in order to detect multiple sources over the entire

band of interest.

The focus of this thesis is development of wideband spectrum sensing techniques that take

advantage of the capabilities of cyclic feature detectors, while resolving the high sampling

rate requirements. The main goal is to resolve the high sampling rate issue of cyclic feature

detectors, by exploiting the two-dimensional sparsity of a signal’s cyclic spectrum. To

achieve this, the unique sparsity property of the two-dimensional (2D) cyclic spectrum of

communication signals is exploited to alleviate the sampling rate requirements. The main

contribution of this work is the reconstruction of the two dimensional cyclic spectrum from

reduced number of samples.

According to the theory of compressed sensing a signal which is sparse in a certain do-

main can be recovered using computationally feasible algorithms from a reduced number

of samples [18], [19]. Since the whole concept of CR is based on the fact that the frequency

spectrum of interest is sparse (underutilized), it is an ideal problem to which compressed

sensing (CS) is a natural solution. Accordingly, compressive sampling techniques have

been developed for wideband sensing in CR networks [27]–[30], which effectively recon-

struct the sparse frequency spectrum from sub-Nyquist-rate samples collected from random

linear samplers [18], [19], [22], [24]–[26]. Afterwards, spectrum occupancy is estimated

based on the recovered frequency or power spectrum, which are still prone to estimation

errors caused by noise variations. In this work, apart from the sparsity of the frequency

spectrum, we take advantage of an additional dimension of sparsity which appears due to

the modulation-dependent structure of the cyclic spectrum. This work exploits the signal

7



sparsity in both dimensions to extract second-order statistics, which departs from existing

compressed sensing techniques for recovering one-dimensional sparse signals. Accord-

ingly the 2D cyclic spectrum recovery problem is reformulated so that it can be feasibly

solved via convex `1-norm minimization. The proposed compressive cyclic spectrum es-

timator can simultaneously capture all communication signals over a very wide band, and

meanwhile remove non-cyclic noise and interference. Power spectral density (PSD) esti-

mation for stationary signals from reduced samples is also presented as a special case of

cyclic spectrum estimation [32]. This formulation process also reveals that we can use

compressive sampling to recover the PSD from reduced samples even when the PSD is not

sparse. This is due to the utilization of all the time-varying cross-correlation terms of com-

pressed samples. Motivated by this phenomenon, we investigate the minimum number of

measurements needed for adequate performance of the proposed cyclic spectrum and PSD

recovery algorithms according to the principles of compressed sensing. We also compare

these values with the number of measurements that are needed for the frequency response

recovery algorithm proposed in [27].

This thesis also contributes to estimating the spectrum occupancy of wideband signals from

the cyclic spectrum when multiple signal sources are present. On a single channel, binary

signal detection based on the cyclic spectrum has been extensively studied. Subject to un-

known noise levels, a family of cyclic feature detectors have been developed and compared

based on various design principles [13], [14]. The maximum-SNR single cycle detector has

been described in [14]. However, it is little studied and remains a challenge to use the cyclic

spectrum for simultaneous estimation of the spectrum occupancy states of multiple signals

spreading on a wide band. In this work a band-by-band detection approach is proposed,

where a multi-cycle generalized likelihood ratio test (GLRT) is used on each channel to

detect PU presence [34]. To obtain the noise statistics used in the GLRT detector, a blind

estimator is derived to estimate the noise variance from the available compressive samples.

Further, when the spectrum is occupied by (multiple) BPSK signals, a fast and effective

8



method is developed to detect the presence of BPSK signals and estimate their bandwidth

using cyclic features that contain useful information about their carrier frequencies and

transmission rates. The next section presents the organization of the rest of this thesis.

1.4 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 gives the theoretical background

of cyclic spectral analysis and compressed sensing, which are used to develop the desired

spectrum sensing techniques. The first part of chapter 3 introduces the problem statement

and describes the signal model used in this thesis. The proposed cyclic spectrum estimation

and power spectral density estimation techniques are also presented in this chapter. The last

section of chapter 3 presents comparisons of the minimum number of measurements needed

among the proposed cyclic spectrum recovery algorithm, PSD recovery algorithm and fre-

quency response recovery algorithm found in [27]. Chapter 4 presents two cyclic-based

spectrum occupancy estimation techniques. Chapter 5 presents the simulation setups and

simulation results used to demonstrate the effectiveness of the proposed spectrum sensing

methods. The last chapter, chapter 6, gives concluding remarks and potential future work.
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Chapter 2

Theoretical Background

2.1 Second-order cyclostationarity

In this section a high level introduction of second-order cyclostationarity and definition of

related terminologies are presented. Traditionally communication signals are assumed to

be stationary processes; specifically wide sense stationarity (WSS) is assumed most of the

time. A random process is said to be WSS if its first moment (mean) is constant and its

second moment is a function of the time difference only. Even if these two conditions do

not hold true for the entire time duration of the signal, small segments of the signal can

have a constant mean and time invariant second moment. The principle of cyclostationarity

on the other hand states that most manmade signals are better modeled as cyclostationary

random processes whose statistical parameters vary periodically with time [13]. Although

the message contained in a communication signal is unknown and is appropriately mod-

eled as a stationary random process, the periodicity arises from the carrier sine wave, the

symbol period, repeating spreading codes etc. If there is more than one periodicity with

periods that are not integer multiples of each other, the process is called almost cyclosta-

tionary. Cyclostationary modeling is very advantageous for signal interception and related

low power signal detection problems. Most of the background material presented in this

section is referred from [13] and [14].

10



A signal is said to be cyclostationary (in the wide sense) if and only if a certain nonlinear

transformation of the signal generates a spectral line [13]. Here the focus is on second

order cyclostationarity where a quadratic transformation of the signal yields spectral lines

in the power spectral density (PSD). For a real time signal x(t) a linear combination of the

delay products is a generalization of time invariant quadratic transformation. A real signal

x(t) is second order cyclostationary if and only if the PSD of the delay product signal

x(t − τ1)x(t − τ2) contains spectral lines at some nonzero frequency α. The fundamental

parameter of second order periodicity is the cyclic autocorrelation function (CAF), which

is given by:

Rα
x (τ) , Ê

{

x(t)x∗(t − τ)e− j2πα(t−τ)
}

(2.1)

Where Ê {.} denotes the time averaging operation given by

Ê {.} , lim
T→∞

1
T

T/2
∫

−T/2

(.)dt

α is called cyclic frequency and is a discrete quantity unlike spectral frequency. It shows

the spectral correlation between the frequency shifted versions of x(t) and is drawn on a

separate axis. For α = 0, the CAF reduces to the conventional autocorrelation function

R0
x = Ê {x(t)x∗(t − τ)} . (2.2)

A useful interpretation of the CAF is to see, Rα
x (τ) as a conventional crosscorrelation func-

tion of frequency translates of x(t). That is, if u(t) and v(t) are frequency translates of x(t)

as:

11



u(t) = x(t)e− jπαt

v(t) = x(t)e− jπαt
(2.3)

Then Rα
x (τ) is

Rα
uv(τ) , Ê {u(t)v∗(t − τ)} = Rα

x (τ) (2.4)

The PSDs of u(t) and v(t) are given by

S u( f ) = S x( f +
α

2
)

S v( f ) = S x( f − α
2

)
(2.5)

From this it follows that x(t) exhibits second-order periodicity if and only if there is a

correlation between the frequency translates of x(t), i.e. (2.4) is not identically zero as

a function of τ for some α , 0. The Fourier transform of the CAF is called the Cyclic

Spectral Correlation Density function (SCD) and is denoted by S α
x ( f ).

S α
x ( f ) =

∞
∫

−∞

Rα
x (τ)e− j2π f τdτ (2.6)

For α , 0, S α
x ( f ) is the density of the spectral correlation between the spectral components

of x(t) at the frequencies f − α
2 and f + α

2 . For α = 0 the cyclic spectral correlation density

function reduces to the conventional power spectral density function. As an example, the

derivation of the cyclic spectrum of an Amplitude modulated (AM) signal is shown from

[13]. Let s(t) be a noise free AM signal given by:

s(t) = a(t)cos(2π fct + φ0) (2.7)

From the definition of CAF it can be shown that

Rα
s (τ) =



































1
2 R0

a(τ)cos(2π fcτ), α = 0

1
4 R0

a(τ)e j2φ0 , α = ±2 fc

0, otherwise

(2.8)
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Fourier transforming (2.8) results in the cyclic spectral density function:

S α
s ( f ) =



































1
4 [S 0

a( f − fc) + S 0
a( f + fc)], α = 0

1
4S 0

a( f )e j2φ0 , α = ±2 fc

0, otherwise

(2.9)

The magnitude plot for the SCF of such an AM signal is shown in figure 2.1.

Figure 2.1: Surface plot of the SCD magnitude for an AM signal

As part of the introduction of second-order cyclostationarity we briefly mention some of

the major advantages of cyclic spectral analysis. The first and the one most relevant to

this thesis is, its discriminatory capabilities. Different signals have different cyclic features

which can be used to separate one from the other. Hence signals with overlapping PSDs

can be separated in the cyclic frequency domain. The second advantage, which is related to

the first one, is suppression of background Gaussian and non-Gaussian noise with symmet-

ric PDFs. Consider a signal (non-Gaussian) received along with additive Gaussian noise;

according to the principles of cyclostationary processing, the background noise will not

have any features at non-zero cycle frequencies. Therefore there will be no background

noise effect, except process noise, at the cyclic frequencies where the cyclic features of

the signal are expected to appear. Hence cyclostationary signal processing provides detec-
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tion and parameter estimation advantages over the conventional stationary processing. As

an example of this advantage of cyclic spectrum, figure 2.1 shows the Spectral Coherence

function SCF of white Gaussian noise and figure 2.1 shows the SCF of a BPSK signal. As

can be seen from the respective figures the SCF of white Gaussian noise is zero for α , 0

while BPSK has non zero spectral values at non-zero cyclic frequency values.

Figure 2.2: Surface plot of the SCF magnitude of WGN

In general the performance of cyclic feature detectors depends on the strength of the fea-

tures they are trying to detect. Among these features the most exploited for signal detection

are related to the carrier frequency and symbol period of signals. Symbol rate related fea-

tures can be exploited after RF-to-baseband conversion. Whereas Features related to the

carrier frequency are exploited in the RF domain before conversion to baseband. An ex-

ample of such a feature that is widely exploited is the spectral correlation associated with

a carrier frequency fc of a communication signal, at α = ±2 fc + K/T0. Here T0 stands for

symbol period and K is an integer. This feature appears in modulation schemes like BPSK,

that do not have quadrature components .
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Figure 2.3: Surface plot of the SCF magnitude of a BPSK signal

2.2 Compressed Sensing

The well known Shannon’s sampling theorem for signal acquisition states that the sam-

pling rate must be at least twice the maximum frequency present for correct representation

(reconstruction of the signal). This sampling rate is known as the Nyquist sampling rate.

It is easy to see how this principle poses a challenge for a cognitive radio which needs to

perform spectrum sensing over a wide frequency bandwidth of potentially up to several

gigahertzes. The traditional radio architecture uses a method of sweeping a single nar-

rowband filter over the entire wideband of concern or uses multiple narrowband filters in

parallel. These narrowband solutions are slow, require a lot of additional circuitry and are

not responsive to practical environments. Another method is to use a wideband RF front-

end followed by digital signal processing (DSP) blocks; but this method requires a very

high speed Analog to digital converter (ADC) which may be very costly if not infeasible.

This is where compressed sensing (CS) becomes a very useful solution. According to the

theory of CS, a signal representing the whole wideband of interest can be recovered from
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far fewer samples than required by the traditional Nyquist sampling theorem, given the

signal of interest meets certain sparsity requirements. In order to show how CS is used for

wideband spectrum sensing, this section gives a brief review of the theory of compressed

sensing.

The concept of compressed sensing is one that takes the concept of data compression one

step further. The high compression rates achieved by various data compression techniques

have demonstrated that, most of the data we acquire can be thrown away without a sig-

nificant loss. CS is a method by which just the important information about the signal of

interest is acquired to begin with instead of collecting a lot of data and then compressing it.

To make this work there are two main criteria that need to be met, sparsity and incoherence.

Sparsity addresses the fact that the information rate of a signal is lower than its bandwidth.

This means, representation of the signal in some domain has few non-zero elements. Ac-

cording to CS most natural signals fulfill this criterion. An example is a digital image

which when acquired using Nyquist rate sampling has many samples, but remains convinc-

ingly unchanged after throwing away many of the samples using different compression

techniques [20]. Of course cognitive radio is another example which works on the princi-

ple that at any given time there are fewer number of frequency bands occupied in the RF

spectrum, making the signal sparse in the frequency domain.

Let’s explain the concept of sparsity mathematically. Let x be a real-valued, finite length,

one-dimensional, discrete-time signal of size N × 1 in RN. This vector x can be represented

in terms of an N × N orthonormal basis matrix Ψ = [ψ1ψ2...ψN], which is formed by

stacking the vectors {ψi} as columns.

x =

N
∑

i=1

βiψi (2.10)
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where {βi}Ni=1 are weighting coefficients with βi = 〈x, ψi〉 = ψT
i x. Here .T denotes transpose

operation. x and β are representations of the same signal in different domains. we say that

x has a sparse representation when it is a linear combination of only K basis vectors, with

K � N, i.e, only K of βi are non-zero. In CS a linear measurement process is used to

acquire M < N measurements as:

y = Φx (2.11)

Where y is the compressed M × 1 measurement and Φ is a measurement matrix. Here,

the measurement matrix Φ does not depend on the signal x in any way, making (2.11) a

non-adaptive measurement process.

The incoherence criterion is the property which must be satisfied between the measurement

matrix Φ and the signal’s representation matrix Ψ. It addresses the idea that objects with

sparse representation in Ψ must be spread in the domain in which they are acquired [21].

In other words we want the largest correlation between any two elements ofΦ and Ψ to be

small, or for Φ and Ψ to have maximum incoherence between each other. Equation (2.11)

can be re-written as

y = Φx = ΦΨβ = Θβ (2.12)

where Θ = ΦΨ is an M × N matrix. The goal is to design a measurement matrix Φ

and a reconstruction algorithm that allow us to require only M ≈ K measurements of a

K sparse compressible signal in order to capture all the needed information content of the

signal. To achieve these goals, two tasks need to be performed. First we need to design a

measurement matrix Φ that preserves the needed information content in x while acquiring

a reduced vector y. In order to realize this for a given sparsifying basis Ψ, we need to
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construct a measurement matrix Φ such that Θ = ΦΨ satisfies the so-called restricted

isometry property (RIP). Without going in to too much detail, in CS we obtain a matrix that

meets these conditions by choosing Φ as a random matrix. An example of such a matrix

can be constructed by drawing its elements from independent and identically distributed

(iid) Gaussian random variables [20]. For such a GaussianΦ, the matrixΘ = ΦΨ is iid for

any sparsifying basis matrix Ψ, making Gaussian measurements Φ universal in the sense

that Θ has the RIP with high probability for any Ψ.

The second task is development of a reconstruction algorithm to recover x from y. Since

M < N in (2.12), this is an ill posed problem. This is because there are infinitly many β′

that satisfy Θβ′ = y. However the assumption of the sparsity of the signal in the basis Ψ

makes the recovery possible. Under the sparsity assumption the goal is to find the signal

with l0-sparsest coefficients β that agree with the observed measurement y [22]. lp stands

for the p-th norm of a vector, say x, defined as

‖x‖p = (
∑n

i=1 |xi|p)1/p. (2.13)

Unfortunately solving this l0 optimization problem is NP-hard but for M ≥ cKlog(N/K)

iid Gaussian measurements we need only solve the l1-sparsest coefficients β that agree with

the observed measurement y [20].

β̂ =arg min‖β‖1

s.t. y = ΦΨβ
(2.14)

This is a convex optimization problem, also known as Basis Pursuit [22]. Another algo-

rithm known as Orthogonal Matching Pursuit (OPM) can also be applied to the recovery

problem [23].
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Chapter 3

Compressive Cyclic Spectrum Sensing

3.1 Signal Model and Problem Statement

Consider a CR monitoring a wide band of interest in the frequency range [− fmax, fmax],

where fmax is very large. There are I active PU signals emitting over this wide band, where

the i-th signal is denoted by xi(t), i ∈ {1, 2, . . . , I}. We have no information regarding

the number of signals present. The waveform, bandwidth and carrier frequency of each

signal is not known either. The CR is assumed to be equipped with an (ideal) wideband an-

tenna that passes all signal components within the frequency range of interest, [− fmax, fmax].

Hence, the received signal is given by

x(t) =
∑I

i=1 xi(t) + w(t) (3.1)

where w(t) is the additive ambient noise. The cyclic spectrum S (α, f ) of x(t), where f is

the frequency and α is the cyclic frequency is nonzero only for | f | + |α|2 ≤ fmax [14].

In a traditional analog-to-digital conversion (ADC) process, x(t) is sampled uniformly ev-

ery Ts =
1
fs

seconds, where fs is the sampling rate in Hz. The cyclic spectrum of the digital

samples becomes (Eq. (62) in [14]):

S̃ (α, f ) =
1
Ts

∞
∑

m,n=−∞
S (α +

m

Ts

, f − m

2Ts

− n

Ts

). (3.2)
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As shown in Fig. 3.1, replicas of the original cyclic spectrum show up due to spectrum

folding. Accordingly to avoid any aliasing in the cyclic spectrum, the minimum sampling

rate should be 2 fmax [13]:

fs =
1
Ts

≥ 2 fmax. (3.3)

Because fmax is very large in our CR sensing task, the required sampling rate fs has to be

very high, causing high energy consumption and high hardware costs of ADC. On the other

hand, we observe that the cyclic spectrum of the signal is in fact sparse, which motivates

us to utilize the compressive sampling (CS) approach to reduce the sampling rate.

Figure 3.1: Cyclic spectrum of digital samples
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In CS, x(t) is not directly sampled, but is passed through a set of properly designed analog

filters {am(t)}m before sampling at a reduced rate fs,c =
1

Ts,c
, yielding z[m] = am(t)∗x(t)|t=mTs,c

(∗ denotes convolution). Advances in CS assert that x(t) can be recovered error free with

high probability even when fs,c is lower than the Nyquist rate, as long as {am(t)}m satisfy

certain restricted isometric property [18], [19]. Essentially these sampling filters need to

be broadband and mutually incoherent, and the number of samples needed (hence the sam-

pling rate) is determined by the sparsity order of the signal of interest. Examples include the

parallel compressive samplers in [24]–[26] and the serial analog-to-information converter

(AIC) in [22].

For a sensing time-block of TB seconds, the traditional Nyquist-rate ADC would yield N

samples as xt = [x[0], ..., x[N − 1]]T , for N = TB/Ts and Ts ≤ 1/(2 fmax). Whereas a

compressive sampler would yield M samples, which we collect into zt = [z[0], ..., z[M−1]]T

for M = TB/Ts,c ≤ N. Apparently the actual sampling rate fs,c =
1

Ts,c
is a fraction of fs, with

fs,c = (M/N) fs. Also, zt is related to xt through a linear sampling matrix A ∈ RM×N , whose

rows are given by the digital representations of the sampling filters {am(t)}m respectively. In

discrete-time domain, the compressive sampling process is described by

zt = Axt. (3.4)

Note that we directly collect samples zt from x(t) at a sub-Nyquist rate fs,c = (M/N) fs,

without having to generate Nyquist-rate samples xt first. The first challenge after collecting

the compressive samples is to reconstruct the 2D cyclic spectrum S (α, f ) for | f | + α

2 ≤

fmax, directly from the compressive measurements zt. Then, based on the recovered cyclic

spectrum, we extract useful features to estimate the spectrum occupancy of the wide band

of interest.
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3.2 Recovery of Sparse Cyclic Spectrum

Consider a real-valued communication signal x(t). The digital sequence xt is zero-mean

cyclostationary, which means that its time-varying covariance rx(n, ν) = E{x(nTs)x(nTs +

νTs)} = E{xt(n)xt(n + ν)} is periodic in n with some integer P as the cyclic period (E{·}

denotes expectation), that is, rx(n, ν) = rx(n + kP, ν), ∀n, k, ν being integers. The cyclic

period reveals the hidden periodicity in the signal, as discussed in chapter 2. When multiple

signal components are present in x(t), P is the least common multiple of the cyclic periods

of all components, and N is set to be an integer multiple of P.

The cyclic covariance function of x(t) is given by the Fourier series of rx(n, ν) with respect

to time n. Since xt has a finite length N, its cyclic covariance can be estimated as

r̃(c)
x (a, ν) =















1
N

N−1−ν
∑

n=0

rx(n, ν)e
− j 2π

N
an















e− j π
N

aν (3.5)

where a ∈ [0,N − 1] indicates the cyclic frequency α = 1
NTs

a, and the adjustment term

e− j πN aν makes the sequence symmetric with respect to a. This is a biased estimate, but its

estimation variance is smaller than that of an unbiased one [17]. It is assumed that all

the cyclic periods of all the signal components of x(t) belong to a set of allowable cyclic

periods {NT s
a
}N−1
a=0 corresponding to cyclic frequencies { a

NT s
}N−1
a=0 . That is for any component

xi(t) it shall satisfy, rxi
(n, ν) = rxi

(n + Ti, ν), where Ti =
NTs

a
for some integer a.

The cyclic spectrum is the Fourier transform of the cyclic covariance with respect to time-

delay ν, given by

s(c)
x (a, b) =

∑N−1
ν=0 r̃

(c)
x (a, ν)e− j 2π

N bν (3.6)

where b ∈ [0,N −1] indicates the frequency f = 1
NTs

b. The problem of cyclic spectrum

recovery amounts to estimating {s(c)
x (a, b)}N−1

a,b=0 from compressive samples zt.

To facilitate analysis, we represent those 2D quantities {rx(n, ν)}N−1
n,ν=0, {r̃(c)

x (a, ν)}N−1
a,ν=0 and
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{s(c)
x (a, b)}N−1

a,b=0 as matrices Rx, R̃
(c)
x and S

(c)
x respectively, each of size N × N. The nonzero

support region of the 2D cyclic spectrum S
(c)
x is shown in Fig. 3.2(b), which corresponds to

the folded cyclic spectrum within the square region α, f ∈ [0, fs]. Once S
(c)
x is acquired, it

can be wrapped into the original cyclic spectrum S (α, f ) in the diamond-shaped region of

Fig. 3.2(a), by properly mapping the three subregions marked by I, II and III. Further, for

real signals, since the cyclic spectrum is conjugate symmetric about the origin, all the useful

information is contained in the sub region I of the cyclic spectrum plots in Fig. 3.2. As a

result only the shaded region in Fig. 3.2(b) needs to be recovered in order to reconstruct the

original complex valued cyclic spectrum of real valued signals. Let S
(c)
xT

denote the cyclic

spectrum matrix for this region, which is of size N × ( N
2 + 1) for N even, and N × ( N+1

2 ) for

N odd. In the remainder of this thesis N is assumed to be even. It is straight forward to

show that S
(c)
x is related to S

(c)
xT

as:

S(c)
x = S

(c)
xT

D (3.7)

where D = [I( N
2
+1) J]. Here I( N

2
+1) is an identity matrix of size N

2 + 1 and J is formed by

removing the first and last columns of an N
2 + 1 reverse identity matrix.

3.2.1 Vector Relationship

The time-varying covariance matrix Rx = E{xtx
T
t } has the form:

Rx=



































































rx(0, 0) rx(0, 1) rx(0, 2) · · · rx(0,N−1)

rx(0, 1) rx(1, 0) rx(1, 1) · · · rx(1,N−2)

rx(0, 2) rx(1, 1) rx(2, 0) · · · rx(2,N−3)
...

. . .
...

rx(0,N−1) · · · · · · · · · rx(N−1, 0)



































































(3.8)
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(a) Original cyclic spectrum S (α, f ) of the analog sig-

nal x(t).

(b) The folded cyclic spectrum {s(c)
x (a, b)}N−1

a,b=0 of digital

samples xt, shown within 0 ≤ α, f ≤ fs.

Figure 3.2: Original and folded cyclic spectrums of a signal
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which is symmetric for real-valued signals. Due to the symmetry, there are N(N+1)
2 degrees

of freedom in {rx(n, ν)}n,ν for n + ν < N, which can be arranged into the vector:

rx = [rx(0, 0), rx(1, 0), · · · , rx(N − 1, 0), rx(0, 1), rx(1, 1),

· · · , rx(N − 2, 1), · · · · · · , rx(0,N − 1)]T .

To relate rx with Rx, we inspect vec{Rx} ∈ RN2
, where the operator vec{·} stacks all

the columns into a vector. Evidently, vec{Rx} contains the same N(N+1)
2 elements of rx,

and hence can be related to rx using mapping matrices PN ∈ {0, 1}N
2× N(N+1)

2 and QN ∈

{0, 1
2 , 1}

N(N+1)
2 ×N2

(shown in Appendix A) that map the entries of rx with corresponding ones

in vec{Rx}:

rx = QNvec{Rx} and vec{Rx} = PNrx. (3.9)

Alternatively, to facilitate the representation of (3.5), we form another covariance-related

matrix R:

R =



































































rx(0, 0) rx(0, 1) rx(0, 2) · · · rx(0,N−1)

rx(1, 0) rx(1, 1) rx(1, 2) · · · 0

rx(2, 0) rx(2, 1) rx(2, 2) · · · 0
...

...
...

...

rx(N−1, 0) 0 0 · · · 0



































































(3.10)

which contains the same N(N+1)
2 elements of rx besides zeros. Thus, vec{R} ∈ RN2

can be

mapped to rx as:

vec{R} = Brx (3.11)

where B ∈ {0, 1}N2× N(N+1)
2 is the binary-valued mapping matrix that maps the entries of

rx with corresponding ones in vec{R}. Specifically, it is constructed by removing N(N−1)
2

columns of the N2 × N2 identity matrix, for any column index q = νN + n satisfying

n + ν ≥ N, ∀n, ν ∈ [0,N − 1], or equivalently satisfying bq/Nc + (q − bq/NcN) ≥ N.
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Following (3.5) and (3.6), the cyclic covariance matrix R̃
(c)
x and the cyclic spectrum matrix

S
(c)
x are related to R through Fourier series transformation, as follows:

R̃(c)
x =

∑N−1
ν=0 GνRDν (3.12)

S(c)
x = R̃(c)

x F (3.13)

where F =
[

e− j 2π
N
ν(b)
]

(ν,b)
is the N-point DFT matrix, Gν =

[

1
N

e− j 2π
N

a(n+ ν2 )
]

(a,n)
∈ CN×N , and Dν

is an N × N matrix with only its (ν, ν)-th diagonal element being 1 and all other elements

being 0.

The cyclic spectrum of interest can be fully represented in a vector form as s
(c)
x = vec

{

S
(c)
x

}

.

From (3.7), s
(c)
x can also be expressed as:

s(c)
x = (DT ⊗ IN)vec

{

S
(c)
xT

}

= Ks
(c)
xT

(3.14)

where K = (DT ⊗ IN) and s
(c)
xT
= vec

{

S
(c)
xT

}

is of size N( N
2 + 1). ⊗ represents Kronecker

product. Similarly we can vectorize the cyclic covariance matrix and express it in terms of

s
(c)
xT

using (3.13) and (3.14) as follows:

vec
{

R̃(c)
x

}

= vec
{

S(c)
x F−1

}

= (F−T ⊗ IN)Ks
(c)
xT
=Ws

(c)
xT

(3.15)

where W = (F−T ⊗ IN)K is of size N2 × N( N
2 + 1), F−1 is the inverse DFT matrix and F−T

is its transpose. Meanwhile, we can also express vec
{

R̃
(c)
x

}

in terms of rx from (3.11) and

(3.12), as follows:

vec
{

R̃(c)
x

}

=
∑N−1
ν=0 GνRDν =

∑N−1
ν=0 (DT

ν ⊗Gν)Brx = Hrx (3.16)

where H =
∑N−1
ν=0 (DT

ν ⊗ Gν)B is of size N2 × N(N + 1)/2. From (3.15) and (3.16), it holds

that

rx = H†Ws
(c)
xT

(3.17)

where H† is the pseudo inverse of H. H is left invertible since its rank is N(N+1)
2 , which is

also the rank of B.
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Next, we aim to relate the unknown s
(c)
xT

with the data vector zt by deriving the relationship

between rx and the time-varying data covariance matrix Rz = E{ztz
T
t } ∈ RM×M. Similar to

Rx in (3.8), Rz is symmetric with M(M+1)
2 degrees of freedom, which can be organized into

the vector:

rz = [rz(0, 0), rz(1, 0), · · · , rz(M − 1, 0), rx(0, 1), rz(1, 1),

· · · , rz(M − 2, 1), · · · · · · , rz(0, M − 1)]T .

Similar to (3.9), it holds that rz = QMvec{Rz}, where QM of size M(M+1)
2 × M2 is defined

similarly as QN in (3.9) and given in Appendix A. Meanwhile, it holds from (3.4) that

Rz = ARxA
T . Thus, it can be derived from (3.9) that

rz = QMvec{ARxA
T } = QM(A ⊗ A)vec{Rx} = Φrx (3.18)

where Φ = QM(A ⊗ A)PN is of size M(M+1)
2 × N(N+1)

2 .

Now we can relate the measurements rz and the vector form cyclic spectrum s
(c)
x using

(3.17) and (3.18) as:

rz = ΦH†Ws
(c)
xT
= Ψs

(c)
xT

(3.19)

whereΨ = ΦH†W is of size M(M+1)
2 ×N( N

2 +1). Utilizing the conjugate symmetric property,

only the shaded region in Figure 3.2 is recovered, which reduces the number of complex-

valued unknowns in (3.19) to N( N
2 + 1).

3.2.2 Problem Formulation

Given the available data covariance vector rz, the cyclic spectrum recovery problem boils

down to solving s
(c)
x from (3.19), which is an under-determined linear system. To accurately

solve this problem, we make use of the prior knowledge about wideband communication

signals. We observe that the 2D cyclic spectrum is highly sparse, which can be incorporated
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into the spectrum estimator by penalizing the `1-norm of the vector s
(c)
x to induce a sparse

solution. Hence, we formulate an unconstrained `1-norm regularized least squares (LR-LS)

problem for reconstructing s
(c)
x , as follows:

min
s

(c)
x

∥

∥

∥rz −Ψs
(c)
xT

∥

∥

∥

2

2
+ λ
∥

∥

∥s
(c)
xT

∥

∥

∥

1
(3.20)

In (3.20), λ > 0 is a weighting scalar that balances between the sparsity of the solution

induced by the `1-norm term and the data reconstruction error reflected by the `2-norm LS

term.

The optimization formulation in (3.20) is attractive since it addresses the sparsity of the

cyclic spectrum and is a convex problem, which can be solved by convex solvers such as

cvx [37].

3.2.3 Implementation

In practical implementations with finite data samples, the data vector rz in (3.20) is replaced

by its finite-sample estimate r̂z. Specifically, the steps for sparse cyclic spectrum recovery

are:

1. Observe the received analog signal x(t) for a total time of T , which is chosen accord-

ing to the desired sensing time and the time needed to produce reliable statistics;

2. Divide the total time into L blocks, each of time-block length TB = T/L. Within

each block l, the same random sampler A (e.g., the AIC [22]) is used to obtain a

compressive sample vector zt(l) ∈ RM directly from x(t) at a reduced rate of fs,c =

M/TB = (M/N) fs, where fs = 1/Ts ≥ 2 fmax and N = TB/Ts, with a compression

ratio M/N < 1. Estimate the covariance matrix Rz of the compressive samples by
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the finite-sample average across all blocks as R̂z =
1
L

∑L−1
l=0 zt(l)zT

t (l), and form r̂z =

QMvec{R̂z}.

3. Use r̂z to replace rz, and solve (3.20) to recover ŝ
(c)
xT

.

The choice of L reflects the design tradeoff, via L = T fs/N for given T and fs. As L

increases, the estimation variance of r̂z is reduced and the finite-sample effect is allevi-

ated, but the frequency resolution of the recovered s
(c)
xT

also suffers, because the resolution

increases linearly in N.

3.3 Recovery of Power Spectrum for Stationary Signals

Besides cyclic spectrum estimation, the developed formulations can be used to efficiently

estimate the power spectrum (PSD) in the one-dimensional frequency domain, which is a

special case of the 2D cyclic spectrum when the signal x(t) is (treated as) stationary. Power

spectrum estimation is useful in many well-known spectral estimators, such as energy de-

tectors.

When x(t) is stationary, the covariance function rx(n, ν) becomes time invariant, which

means that

rx(n, ν) = r̄x(ν), ∀n. (3.21)

Let s̄x(b) denote the discrete power spectrum with respect to frequency b. It is given by the

Fourier series of {r̄x(ν)}N−1
ν=0 , in the form

s̄x(b) =
N−1
∑

ν=0

r̄x(ν)e
− j 2π

N
bν, b ∈ [0,N − 1]. (3.22)
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Defining s̄x = [s̄x(0), . . . , s̄x(N − 1)]T and r̄x = [r̄x(0), . . . , r̄x(N − 1)]T results in

s̄x = Fr̄x (3.23)

where F is the N-point DFT matrix.

Because of the stationarity property in (3.21), the time-varying covariance matrix in (3.8)

reduced to a stationary one as follows:

Rx=



































































r̄x(0) r̄x(1) r̄x(2) · · · r̄x(N−1)

r̄x(1) r̄x(0) r̄x(1) · · · r̄x(N−2)

r̄x(2) r̄x(1) r̄x(0) · · · r̄x(N−3)
...

. . .
...

r̄x(N−1) · · · · · · · · · r̄x(0)



































































. (3.24)

Mapping between (3.8) and (3.24) reveals that

[

vec{Rx}
]

(n−ν)N+n = [Rx](n,n−ν) = r̄x(ν)
[

vec{Rx}
]

nN+n−ν = [Rx](n−ν,n) = r̄x(ν)

ν ∈ [0,N − 1], n ∈ [ν,N − 1].

(3.25)

Apparently, vec{Rx} can be represented linearly by r̄x through a binary-valued mapping

matrix P̄N ∈ {0, 1}N
2×N as follows:

vec{Rx} = P̄N r̄x (3.26)

where P̄N can be deduced from (3.25) as: for any column ν ∈ [1,N − 1], there are 2(N − ν)

elements of 1’s at row indices ((n − ν)N + n) and (nN + n − ν), n = ν, . . . ,N − 1, while all

the rest elements are zero; for the column ν = 0, there are N elements of 1’s at row indices

(nN + n),∀n ∈ [0,N − 1], while the rest elements on this column are zero.

Although x(t) is stationary, zt is not, because each element z[m] is generated by filtering

x(t) with an individual filter am(t) indicated by the corresponding row of A, and {am(t)}m are
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mutually incoherent as explained for (3.4). Therefore, there are still M(M + 1)/2 degree of

freedom in Rz, represented by rz. Using Rz = ARxA
T deduced from (3.4), and replacing

the expression of vec{Rx} in (3.9) by the stationary version in (3.26), (3.18) becomes

rz = QM(A ⊗ A)vec{Rx} = Φ̄r̄x (3.27)

where Φ̄ = QM(A ⊗ A)P̄N is of size M(M+1)
2 × N.

Putting together (3.23) and (3.27), we reach

rz = Φ̄F−1s̄x. (3.28)

In (3.28), there are M(M+1)/2 linear equations and N unknowns. As long as M(M+1)/2 >

N, this is an over-determined system that can be solved using simple LS. This is a revealing

observation, suggesting that sub-Nyquist-rate sampling with M/N < 1 can be employed to

permit a unique LS solution to the PSD vector s̄x, even when s̄x is non-sparse. This is due to

the use of all cross-correlations of the compressive samples in recovering the second-order

statistics, which is also exploited in [31], [32]. With (3.28), the PSD can be estimated as

ˆ̄sx = arg min
s̄x

‖rz − Φ̄F−1s̄x‖22 + λ‖s̄x‖1. (3.29)

By setting λ = 0, (3.29) reduces to a sparsity-agnostic LS estimator that can be used when

the PSD is non-sparse and M(M + 1)/2 > N; on the other hand, adopting λ > 0 results

in a sparsity-aware LR-LS estimator useful when the PSD is sparse, as in CR sensing

applications.

3.4 Comparison of Spectrum, PSD and Cyclic Spectrum

Estimation Techniques

In this chapter we have presented cyclic spectrum and as a special case PSD estimation

techniques using compressive sensing. The PSD reconstruction problem has revealed that
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M < N compressive samples can be used to recover not only a parse but also non-sparse

PSD. In this section we compare the minimum number of measurements needed to solve

the cyclic spectrum and PSD recovery problems. In the literature compressive sensing has

also been applied for estimating the frequency response of sparse signals [27], [29], [30]. In

this section we also compare the frequency spectrum and edge spectrum (derivative of the

PSD) recovery formulations found in [27] with the PSD and cyclic spectrum recovery for-

mulations proposed in this paper in terms of the number of known and unknown variables

found in the inverse problems of the respective optimization problem formulations. These

comparisons reveal the needed reduced number of measurements M for each method.

Consider our wideband signal xt which is sparse in the frequency domain and has a total

bandwidth of BT . Let BO stand for the actual occupied bandwidth of the signal. Then the

sparsity ratio of the signal in the frequency domain is given by Kp = BO/BT . Kp represents

the one dimensional frequency domain sparsity ratio of the signal. The cyclic spectrum of

xt on the other hand adds an additional dimension of sparsity, the cyclic frequency. Thus

the cyclic spectrum domain sparsity of xt is different from Kp and is dependent on the

modulation schemes of the signal components found in xt. Lets denote the cyclic domain

sparsity ration of xt by Kc. Kc and Kp can be related through a constant αc for a give

signal as Kc = αcKP. Since the cyclic domain is sparser than the frequency domain, 0 <

αc < 1 and Kc < Kp. For example a frequency band of 300MHz containing two BPSK

signals of symbol period T0 = 0.04µs has a spectral occupancy of 33.3% and cyclic domain

occupancy of 3.125%.

Let,

ỹ = Ãx̃ (3.30)

represent a general inverse problem presented in a compressed sensing recovery formula-

tion. Where ỹ denotes a vector of known measurements of size M̃ × 1, x̃ denotes the vector

of unknowns of size Ñ × 1 that need to be estimated and Ã is a measurement matrix of size
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M̃ × Ñ. Note that M̃ < Ñ. According to the principles of compressed sensing we need

M̃ ≥ cKlog(Ñ/K) (3.31)

knowns to solve this under determined inverse problem using minimum l1 norm recon-

struction. Here c is a small constant which depends on the measurement matrix Ã and

K represents the sparsity of the signal. In our cyclic spectrum recovery formulation the

inverse problem presented in (3.20) is

rz = Ψs
(c)
xT

(3.32)

where rz is known and is of size M(M+1)
2 × 1 and s

(c)
xT

is the unknown cyclic spectrum of size
N(N+1)

2 × 1. Substituting M̃ =
M(M+1)

2 , Ñ =
N(N+1)

2 and K = Kc = αcKp in (3.31), we find that

M ≥

√

1 + 8c1αcKplog( N(N+1)
2Kc

) − 1

2
(3.33)

time domain measurements are required.

Similarly, in the PSD recovery formulation presented in (3.28), the inverse problem is

rz = Φ̄F−1s̄x = Θ̄s̄x (3.34)

where s̄x represents the unknown PSD of interest which of size N×1. Again substituting the

number of knowns, M̃, by M(M+1)
2 , using Ñ = N and K = Kp, the number of measurements

needed for the PSD recovery is

M ≥

√

1 + 8c2Kplog( N
Kp

) − 1

2
. (3.35)

In [27], compressive sensing is used to recover the frequency response as well as edge spec-

trum of a signal. In the frequency spectrum recovery, first compressed random sampling

is used to generate reduced M × 1 measurements zt from the discrete sequence xt of size

N × 1 (taken at the Nyquist sampling rate), using a sampling matrix Vz. zt are then used
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for the reconstruction of the frequency response of the signal x f . The spectrum recovery

formulation in this approach is given as

x̂ f = arg min
x f

‖x f ‖1, s.t. (VT
z F−1

N )x f = zt (3.36)

where x f is the frequency response of xt and FN is N point discrete Fourier transform

matrix. The linear transformation equality (VT
z F−N1)x f = zt in equation (3.36) is an inverse

problem with M knowns and N unknowns. Hence, to solve this recovery problem M ≥

c3Klog(N/Kp) measurements are required.

In the edge spectrum recovery approach proposed in [27], the N × 1 discrete vector hs,

representing the edge spectrum is recovered directly from the reduced measurements xt.

First the discrete wavelet transform, ys, is found as

ys = FNdiag {Φs} xt. (3.37)

where Φs is the discrete representation of the inverse transform of a wavelet function. The

edge spectrum, hs, which is the derivative of the wavelet of x f is related to ys as hs = Γys,

where Γ is a differentiation matrix of size N × N given by

Γ=



















































1 0 · · · 0

−1 1 · · · 0

0
. . .

. . .

0 · · · −1 1



















































(3.38)

Accordingly xt and hs are related as:

xt = (FNdiagΦs)
−1ys = (FNdiagΦs)

−1 · Γ−1 · hs. (3.39)

Then noting the sparsity of hs, defining G = (FNdiagΦs)−1 · Γ−1 and using zt = VT
z xt, the

following formulation is given

ĥs = arg min
h f

‖h f ‖1, s.t. xT
z = (VT

z )hs. (3.40)
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Table 3.1

Frequency spectrum, Cyclic spectrum and PSD recovery comparison summary

Recovered

Quantity

Sparsity # Knowns # Unknowns Minimum # Measurements

Cyclic Spec-

trum

Kc = αcKp
M(M+1)

2
N(N+1)

2 M ≥
√

1+8c1Kclog( N(N+1)
2Kc

)−1

2

PSD Kp
M(M+1)

2 N M ≥
√

1+8c2Kplog( N
2Kp

)−1

2

Frequency

Spectrum

Kp M N M ≥ c3Kplog(N/Kp)

Afterwards, hs is used to detect and estimate frequency band locations. The inverse prob-

lem in the optimization formulation of (3.40) also has M knowns and N unknowns.

Table 3.1 gives a summary of the comparisons of the frequency spectrum, cyclic spec-

trum and PSD recovery formulations presented in this section. It should be noted that the

constants c1, c2 and c3 are different from each other since they depend on the respective

measurement matrix Ã even when the sampling matrix A (in zt = Axt) is the same for each

of them. An example of the comparison presented here is shown in figure 3.4. The figure

shows the minimum number of required measurements for the three estimation techniques

corresponding to different values of N. For this example, c1 = c2 = c3 = 1 is used, fre-

quency sparsity ratio, Kp = 0.5 and αc = 0.1. As can be seen from the plot for a reasonably

large enough N, the minimum number of required measurements for the cyclic spectrum

estimation is the least.

35



10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3

3.5

N

M
 m

in

 

 

cyclic
PSD
Frequency response

Figure 3.3: Comparison of Spectrum, PSD and Cyclic Spectrum Estimation Techniques
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Chapter 4

Cyclic-based Spectrum Occupancy

Estimation

After recovering the sparse 2D cyclic spectrum S (α, f ) in its vectorized form ŝ
(c)
x , we now

want to simultaneously estimate the spectrum occupancy of all frequency sub-bands within

the monitored wide band. We develop two spectrum detection algorithms: one adopts a

band-by-band multi-cycle generalized likelihood ratio test (GLRT) framework that works

for all types of modulation and waveform patterns, and the other is a simple and fast ap-

proach tailored for BPSK signals.

4.1 Multi-cycle GLRT Based Band-by-Band Approach

The goal of spectrum occupancy estimation is to decide whether a specific frequency lo-

cation f (n) is occupied or not. We set f (n)
=

n
N

fs, ∀n ∈ [0, N
2 ], according to the frequency

resolution of the discrete cyclic spectrum s
(c)
x (a, b) in (3.6 ). The sensing task amounts

to a band-by-band inspection of the spectrum occupancy over the entire frequency range

| f | ≤ fs/2, with fs/2 ≥ fmax. It is important to note that such a band-by-band inspection is a

computational approach for processing the data collected simultaneously from a wideband

antenna, which is fundamentally different from a narrowband approach in which narrow-
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band antennas scan the wide spectrum one by one using frequency shifters and narrowband

processors.

We now focus on the occupancy decision on a single band f (n). An active signal on this band

would occupy a region I(n) of the 2D cyclic spectrum map defined by the cyclic-frequency

and frequency pairs (α, f ) [14]:

f +
α

2
= f (n) and | f | + |α|

2
≤ fmax, ∀(α, f ) ∈ I(n). (4.1)

In discrete-time domain, this region is represented by discrete points (αi, fi) ∈ I(n), which

correspond to a set of integer-valued indices (ai, bi), that is, S (αi, fi) = s
(c)
x (ai, bi), ∀i ∈ I(n)

d
.

Because αi =
1

NTs
ai and fi =

1
NTs

bi by definition, the index set I(n)
d

can be deduced from

(4.1) as:

bi +
ai

2
= n, and |bi| +

|ai|
2
≤ fmaxN

fs

≤ N

2
, ∀i ∈ I(n)

d
. (4.2)

We stack the estimated {ŝ(c)
x (ai, bi)}i∈I(n)

d

into a vector ĉ(n) of size |I(n)
d
| , which is formed by

selected entries of the vectorized cyclic spectrum ŝ
(c)
x from (3.20):

ĉ(n)[i] = ŝ(c)
x (ai, bi), i ∈ I(n)

d
. (4.3)

To test for the presence of a PU signal at the frequency f (n), the following binary hypothesis

test is formulated:

H1 : ĉ(n)
= c(n)

+ ε,

H0 : ĉ(n)
= ε,

(4.4)

where c(n) is the non-random true vector of cyclic spectrum values, and ε is asymptotically

Gaussian distributed, i.e., limLN→∞
√

LNε ∼ N(0,Σ(n)), where Σ(n) is the asymptotic co-

variance matrix. Because Σ(n) is not readily available, we derive a blind estimator for Σ̂(n)

using the available reduced-rate measurements {zt(l)}Ll=0, shown in Appendix B. Replacing

Σ
(n) by Σ̂(n) results in a data-adaptive GLRT detector.
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Treating c(n) as an unknown nuisance parameter, the adaptive GLRT can be derived for

(4.4), which yields the following test statistic:

T (n)
= (ĉ(n))T (Σ̂(n))−1ĉ(n). (4.5)

Next, T (n) is compared with a threshold η(n) to make decisions on the occupancy at fre-

quency f (n), where η(n) is chosen to meet a certain constant false alarm rate (CFAR). This

is a multi-cycle GRLT, because ĉ(n) contains multiple cyclic frequencies αi for i ∈ I(n)
d

.

Putting together all the occupied bands, we are able to draw the spectrum occupancy map

over the entire wide band. Overall, the proposed spectrum occupancy estimation algorithm

is implemented by the following steps:

1. Set n = 0. Form the cyclic spectrum matrix Ŝc
x from vec{Ŝ(c)

x } = Kŝc
xT

;

2. Let f (n)
=

n
N

fs. Find the cyclic spectrum values of interest from (4.1), and calculate

ĉ(n) from (4.3);

3. Calculate the test statistic in (4.5) using Σ̂(n) calculated from (B.1) and (B.3). If it is

larger than a pre-determined threshold η(n), then a PU is declared present at frequency

f (n), otherwise PU absence is declared.

4. If n < N
2 , increase n by 1 and go to step (2).

4.2 A Fast Algorithm for BPSK Signals

For a BPSK signal with carrier frequency fc and symbol rate 1
T0

, the major cyclic feature

is a lobe at α = 2 fc, ranging from f = − 1
T0

to f = 1
T0

(Fig. 14 (a) in [14]). The non-zero

region of support for such signal is shown in Fig. 4.2.

39



Figure 4.1: Non-zero region of support for the cyclic spectrum of BPSK.
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Our idea is to identify the modulation-dependent parameters T0 and fc by finding the lobe

locations on the estimated 2D cyclic spectrum. First, we can simply search over the cyclic

frequency α along the axis f = 0. If |Ŝ (α, 0)| > η (η is a preset threshold), then we claim

that there is a BPSK signal with estimated carrier frequency f̂c = α/2.

Next, we let A = {α| |S (α, 0)| > η}. For each α̃ ∈ A, we search along the line α = α̃ to

find the double-sided width of the lobe, denoted by 2w, such that all the points in the lobe

have absolute values equal to or greater than η. The bandwidth of the corresponding BPSK

signal is also 2w, and hence we can claim that the frequency band [α̃/2 − w, α̃/2 + w] is

occupied, and the estimated symbol period is T̂0 = 1/w.

By now, we have rapidly identified not only the carrier frequency fc but also the bandwidth

1/T0 of a BPSK signal. The procedure is applicable to the entire wide band to identify

all BPSK signals. Combining all the occupied frequency bands, we are able to draw the

spectrum occupancy map.

The details of this approach are:

1. Choose a threshold η for the recovered cyclic spectrum.

2. Search over α along the axis f = 0. If |S (α, 0)| > η, we claim that there is a BPSK

signal with carrier frequency α/2. LetA = {α| |S (α, 0)| > η}.

3. For each α̃ ∈ A, search along the line α = α̃ to find the double-sided width of the

lobe, denoted by 2w, such that all the points in the lobe have absolute values equal to

or greater than η. The bandwidth of the corresponding BPSK signal will then be 2w,

and we claim that the frequency band [α̃/2 − w, α̃/2 + w] is occupied by a PU.

4. Combining all the occupied frequency bands, we draw the spectrum occupancy map.
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The fast approach can be extended to other modulation types using their respective cyclic

spectrum features. For instance, an SQPSK signal [14] with carrier frequency fc and sym-

bol rate 1
T

, two peaks with similar heights will appear at α = 2 fc − 1
T

and α = 2 fc +
1
T

, and

this feature can be used for fast detection.
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Chapter 5

Simulations

5.1 Simulation Setup

In this chapter Monte Carlo simulation setups and results are presented that testify the ef-

fectiveness of the proposed algorithms under sampling rate reduction and noise uncertainty.

In the simulations the frequency band monitored has fmax = 500MHz, in which two signal

sources PU1 and PU2 appear at the center frequencies 187.5MHz and 375MHz respectively.

Two separate simulation setups are considered:

a) Both PU1 and PU2 are BPSK signals.

b) PU1 is BPSK and PU2 is QPSK.

The symbol period for each source is fixed at T0 = 0.1 µs. The reference (Nyquist) sam-

pling rate is fs = 1GHz, and the non-compressed discrete-time representation xt is of length

N = 32 in each time block. Although both setups a) and b) have the same nonzero spectral

occupancy of 8%, their nonzero cyclic spectral occupancies are not the same, due to the

different cyclic features of BPSK and QPSK signals. In fact, Setup a) has a 0.75% cyclic

spectral occupancy, and Setup b) has a cyclic spectral occupancy of 0.625%. These oc-

cupancy ratios also demonstrate that the 2D cyclic spectrum is much sparser than the 1D
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power spectrum.

5.2 Robustness to Rate Reduction

A key parameter of interest is the compression ratio M/N for sampling rate reduction. Its

impact on the performance of the proposed cyclic spectrum recovery algorithm is tested on

Setup b) with a mixture of BPSK and QPSK signals, in a noise-free case. The performance

metric is the normalized mean-square error (MSE) of the reconstructed cyclic spectrum,

ŝ
(M/N)
x , for a given compression ratio M/N compared with the uncompressed one, ŝ

(c)
x . That

is,

MSE = E















‖
ŝ

(M/N)
x − s

(c)
x ‖22

‖s(c)
x ‖22















. (5.1)

Similarly the MSE performance for the proposed PSD reconstruction is also evaluated as:

MSE = E















‖
ˆ̄s(M/N)

x − s̄x‖22
‖s̄x‖22















(5.2)

where ˆ̄s(M/N)
x represents the power spectrum reconstructed from compressive samples with

compression ratio of M/N and s̄x stands for the uncompressed one. Figure 5.2 depicts the

MSE versus the compression ratio curves, for L = 40, 200 and 400 data blocks of the cyclic

spectrum reconstruction. The MSE performance of the PSD reconstruction algorithm is

also shown in the same figure for L = 200. The figure shows that the MSE curves start

to flatten out when M/N ≥ 0.4 for all cases, which is the rate-reduction region that the

PSD and cyclic spectrum recovery algorithm are robust. It can be seen that there is some

MSE improvement achieved by using L = 200 instead of L = 40 in the cyclic spectrum

reconstruction. However, the estimation performance for L = 400 is very close to the

one for L = 200. This suggests that the additional averaging does not offer significant
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improvement. Since L = 200 corresponds to a much shorter sensing time than L = 400, it

is a more reasonable choice whenever the performance loss can be tolerated.
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Figure 5.1: Normalized MSE of reconstruction versus compression ratio M/N.

After cyclic spectrum recovery, the GLRT-based approach is utilized to estimate the fre-

quency occupancy. Figure 5.2 depicts the probability of detection Pd versus M/N, com-

puted using L = 200 for CFAR = 0.01. It shows that the compression ratio can go as

low as 0.25 while keeping Pd ≥ 0.9. As a result, when the frequency occupancy is 8%,

the sampling rate can be reduced by three-quarter, while still maintaining good estimation

performance. When the frequency occupancy is sparser, the effective sampling rate can be

reduced even further.
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Figure 5.2: Probability of detection at a constant false alarm ratio of 0.01.
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5.3 Robustness to Noise Uncertainty

To testify the robustness of spectrum sensing under noise uncertainty, we compare the re-

ceiver operating characteristic (ROC) of the proposed compressive cyclic feature detector to

that of an energy detector (ED). A traditional ED can be combined with existing compres-

sive sampling techniques through a two-step procedure. First, within each data block l, the

frequency response x f (l) = Fxt(l) is reconstructed from compressive samples zt(l) = Axt(l)

using the LR-LS formulation as

x̂ f (l) = arg min
x f (l)

∥

∥

∥zt(l) − AF−1x f (l)
∥

∥

∥

2

2
+ λ
∥

∥

∥x f (l)
∥

∥

∥

1
. (5.3)

Then, the estimated x̂ f (l) over all L blocks are used to compute the power spectrum s̄x as

ˆ̄sx =
1
L

L
∑

l=1

diag
{

x̂ f (l)x̂
H
f (l)
}

where diag{·} returns the diagonal of a matrix and H denotes conjugate transpose. In energy

detection, each element of ˆ̄sx serves as the energy-related test statistic for the signal com-

ponent at the corresponding frequency band, which is passed through a decision threshold

to detect the frequency occupancy band by band.

In spectrum detection, the noise power level is varying and never known exactly, due to

thermal noise change, amplifier gain change, calibration error, and fluctuating interference

levels in CR networks. This lack of accurate knowledge is known as noise uncertainty

[12]. In the simulation, noise uncertainty is modeled using the method of robust statistics

[35]. In this method, the upper limit of the noise PSD level that corresponds to the lower

limit of the SNR is used to calculate the probability of false alarm, whereas the lower

limit of the noise PSD corresponding to the upper limit of the SNR is used to calculate

the probability of detection. Such robust statistics assess the detection performance under

worst-case scenarios. We use a nominal SNR of −3dB with noise uncertainty levels of

0, 1, 2 and 3 dB. A total of L = 200 data blocks are used for noise averaging, and the number
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of compressive measurements in a block is M = 16, which corresponds to a compression

ratio of 0.5. Fig. 5.3 depicts the ROCs of the proposed compressive cyclic feature detector

and PSD detector, compared with ED. The figure shows that the proposed cyclic feature

detector is quite insensitive to noise uncertainty, because the varying yet non-cyclic noise

does not appear at α , 0. The ROC performance considerably outperforms that of energy

detection, while the latter degrades noticeably as the noise uncertainty level increases.
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Figure 5.3:
ROC of the cyclic feature approach (“Cyclo”), PSD approach (“PSD”) and
energy detection (“ED”).
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5.4 Comparison of Spectrum Occupancy Estimation Tech-

niques

Here the GLRT based and the fast cyclic-based spectrum occupancy estimation techniques

are compared, using Setup a) where both PUs are BPSK signals. The test parameters are:

the SNR is −5dB without uncertainty, M = 16 (i.e., M/N = 50%) and L = 200. Figure

5.4 shows the ROC curves for both algorithms. From the figure we learn that the GLRT

approach provides a slightly better performance. Considering that the GLRT-based ap-

proach applies to general modulation types, it is preferred whenever enough computational

resources are available.
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Figure 5.4: ROC of the two spectrum occupancy estimation approaches.
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5.5 The Effect of The Number of Blocks Used

The last parameter we investigate is the total sensing time. When the block size N and

the sampling rate fs are fixed, the total sensing time depends on the number of blocks

L. Increasing L means more sensing time and less time for transmission, but it could

also lead to improved sensing performance. Figure 5.5 shows the impact of L on sensing

performance, for SNR = −6dB without uncertainty, and 50% rate compression with M = 16

using setup (b). Compared are tested values of L = 40, L = 200 and L = 400. The figure

shows that L = 200 has better performance than L = 40, but increasing L further to 400

does not bring significant additional performance improvement. The same conclusion was

drawn from MSE performance comparison presented in section 5.2.
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Figure 5.5: ROC of proposed sensing method for different L. M = 16, N = 32.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has presented a wideband spectrum sensing technique that alleviates the high

sampling cost of cognitive radios utilizing the concepts of Cyclostationary processing and

compressive sampling. A method of recovering the sparse 2-D cyclic spectrum from a

reduced number of time-domain samples has been developed using the concept of com-

pressed sensing. The cyclic spectrum is vectorized and reformulated to take linear rela-

tionship with the covariance function of the compressive samples, which enables an effec-

tive recovery of the 2D cyclic spectrum via convex `1-norm minimization. Accordingly,

a practical algorithm is developed that reduces computational complexity and accounts

for process noise effect. As a special case of the compressive cyclic spectrum estimator,

a power spectrum estimator for stationary signals is also developed. With the recovered

cyclic spectrum, two techniques have been developed to estimate the spectrum occupancy

of a wide band with an unknown number of active sources: a band-by-band multi-cycle

GLRT detector, and a fast thresholding technique for BPSK signals. The proposed spec-

trum occupancy estimation techniques demonstrate robustness to sampling rate reduction

and noise uncertainty.
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6.2 Future Work

This thesis has addressed the basic development of wideband spectrum sensing model for

cognitive radios. Some further improvements and possible future work directions are given

below.

1. The spectrum sensing model developed in this thesis considers an additive Gaussian

noise operating environment, whereas in practice one has to consider other factors

including multipath effect and shadowing. So in the future, algorithm modifications

can be made to account for these issues.

2. The developed PSD estimation technique has revealed that we can compress signals

even when they are not sparse. Motivated by this future work can be conducted to

evaluate the developed spectrum sensing models in non-sparse RF environments.

3. It is known that cognitive radios have to abide by stringent spectrum sensing and ac-

cess requirements in order to minimize interference with primary users. For example

the first CR standard under development, 802.22, requires that CRs operating in the

TV white spectrum be able to sense primary user transmissions as low as -114dBm.

In addition CRs should have very short sensing times in order to make efficient use

of the spectrum and provide significant data rates. These requirements suggest that

spectrum sensing algorithms should be adaptive to the RF environment. Accordingly,

the developed spectrum sensing algorithms should be evaluated with respect to op-

erational requirements including operating characteristics in low SNR environments.

Implementation complexity of the algorithms should also be evaluated. Based on the

results of the evaluation modifications can be made to make the model more efficient

and practical. Such modifications may include the integration of modulation clas-

sification with the spectrum sensing. Additional parameters or features that can be

identified from the cyclic spectrum should also be investigated in order to make the
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CR "smarter". In the developed algorithms the block size N, the number of blocks

L and the compression ratio M/N determine the sensing time, frequency resolution

and the test statistics estimation errors. Additional tests should be performed to find

out the detailed tradeoffs of these factors in various environments. The proposed

algorithms can also be made self adaptive in choosing these values online during

spectrum sensing based on the specific parameters of the RF environment at hand

including the spectrum occupancy ratio.

4. The proposed spectrum sensing algorithms could also be enhanced to perform spread

spectrum signal detection in low SNR conditions. It has been found that DSSS sig-

nals give rise to unique cyclic spectrum features that are not found in cyclic spectrums

of narrowband signals. These features can be exploited to perform DSSS signal de-

tection in low SNR environments. The detection enhancement techniques will allow

identification of the spreading gain in DSSS signals, without having to perform dis-

preading using the spreading codes. The proposed wideband monitoring scheme, the

unique features found in DSSS signals and the ability of cyclic statistics to remove

Gaussian noise create a very ideal setup for identifying DSSS signals hidden in noise.

5. After the discussed high level implementation issues are evaluated more detailed im-

plementation analysis needs to be done. This would require understanding of the

specific purpose and intended operating environment of the CRs. Even though cog-

nitive radios are required to be adaptive and dynamic in their operating characteristics

their design requires knowledge of expected operating conditions in order to make

optimum resource allocation.
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Appendix A

Mapping Matrices

The appendix shows the mapping matrices PN and QN used in (3.9). The results apply for

any value of N.

Let us consider the (n, ν)-th element of R in (3.10), denoted as [R](n,ν), and is nonzero

∀n ∈ [0,N − 1], ν ∈ [0,N − 1 − n]. Its value rx(n, ν) appears at two symmetric locations

inside Rx of (3.8) for ν > 0, and appears at one location on the diagonal of Rx when ν = 0.

Specifically,

[R](n,ν) = [Rx](n,n+ν) = [Rx](n+ν,n) = rx(n, ν), ν > 0;

[R](n,ν) = [Rx](n,n) = rx(n, 0), ν = 0.
(A.1)

Since rx stacks all the vectors of R after removing those zero entries at the lower-right

triangle, the (n, ν)-th element of R shows up as the p-th element of rx with p(n, ν) =
∑ν−1

l=0 (N − l) + n. That is, [R](n,ν) = [rx]p(n,ν), where

p(n, ν) = νN − ν(ν − 1)
2

+ n. (A.2)

Meanwhile, [Rx](n,n+ν) and [Rx](n+ν,n) in (A.1) appear at the q1-th and q2-th rows of vec{Rx}

respectively, where

q1(n, ν) = (n + ν)N + n,

q2(n, ν) = nN + n + ν.

(A.3)
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Linking the above relationships among R,Rx, rx and vec{Rx}, we now summarize the ex-

pressions for PN and QN used in (3.9). For vec{Rx} = PNrx to hold, PN has only two

nonzero entries of value one at the q1(n, ν)-th and q2(n, ν)-th rows while the rest rows are

zero, for a given column indexed by p(n, ν). When ν = 0, the two nonzero row locations

collide into one location at q1(n, 0) = q2(n, 0) = nN + n, on the column p(n, 0) = n. In

mathematical form, PN ∈ {0, 1}N
2× N(N+1)

2 can be expressed as



















[PN](q1(n,ν),p(n,ν)) = [PN](q2(n,ν),p(n,ν)) = 1

[PN](q,p(n,ν)) = 0, ∀q ∈ [0,N2−1]\{q1(n, ν), q2(n, ν)}
(A.4)

n ∈ [0,N − 1], ν ∈ [0,N − 1 − n].

To construct rx = QNvec{Rx}, we note from (A.1) that given (n, ν), the p(n, ν)-th entry of rx

is equal to both the q1(n, ν)-th and q2(n, ν)-th entries of vec{Rx}, and hence can be computed

by the averaged sum of these two entries. When ν = 0, these two entries degenerate

to one entry at q1(n, 0) = q2(n, 0) = nN + n. Letting δi, j denote the Kronecker delta,

QN ∈
{

0, 1
2 , 1
}

N(N+1)
2 ×N2

is given by



















[QN](p(n,ν),q1(n,ν)) = [QN](p(n,ν),q2(n,ν)) =
1
2 +

1
2δν,0

[QN](p(n,ν),q) = 0, ∀q ∈ [0,N2−1]\{q1(n, ν), q2(n, ν)}
(A.5)

n ∈ [0,N − 1], ν ∈ [1,N − 1 − n].
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Appendix B

Noise Covariance Matrix Estimation

This appendix derives a non-data-aided estimator for the noise covariance matrix Σ(n) used

in the cyclic feature detector in (4.4).

First, we evaluate the error covarianceΣz = E{(r̂z−rz)(r̂z−rz)H} of the finite-sample estimate

r̂z obtained from {zt}L−1
l=0 . Define R̂z(l) = zt(l)zT

t (l) and form r̂z(l) = QMvec{R̂z(l)} for each

block l, l = 0, 1, . . . , L − 1. Then, the true covariance vector rz of the compressive samples

can be estimated as r̂z =
1
L

∑L−1
l=0 r̂z(l). Each summand can be expressed as r̂z(l) = r̂z + εz(l),

where εz(l) is the estimation error from the l-th block. An unbiased estimate of Σz can be

obtained from {εz(l) = rz(l) − r̂z} as follows [38]:

Σ̂z =
1

L − 1

L−1
∑

l=0

(rz(l) − r̂z)(rz(l) − r̂z)
H. (B.1)

Next, we estimate the error covariance Σs = E
{

(ŝ(c)
x − s

(c)
x )(ŝ(c)

x − s
(c)
x )H
}

where the estimate

ŝ
(c)
x results from r̂z via (3.19). The inverse problem for (3.19) is solved by (3.20), but it is

not convenient for performance analysis. Alternatively, we relax the `1-norm term in (3.20)

by its `2-norm, which yields ŝ
(c)
x = (ΨH

Ψ+ λI)−1
Ψ

Hr̂z. Defining T = (ΨH
Ψ+ λI)−1

Ψ
H, the

estimation error covariance of ŝ
(c)
x can be obtained from that of r̂z as

Σ̂s = TΣ̂zT
H . (B.2)

Finally, we note from (4.3) that the cyclic spectrum vector of interest ĉ(n) is given by se-
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lecting |I(n)
d
| rows from ŝ

(c)
x , for row-indices ∀i ∈ I(n)

d
. This row selection operation can

be expressed as ĉ(n)
= Jnŝ

(c)
x , where the binary-valued selection matrix Jn ∈ {0, 1}|I

(n)
d
|×N2

is

obtained from the N2 × N2 identity matrix by retaining its rows with indices ∀i ∈ I(n)
d

only.

With this linear relationship, the error covariance Σ(n) of ĉ(n) can be estimated as

Σ̂
(n)
= JnΣ̂sJ

T
n = JnTΣ̂zT

HJT
n . (B.3)

With (B.1) and (B.3), we have found the error covariance estimate Σ̂(n) that can be computed

from the available compressive sample vectors {zt(l)}L−1
l=0 .
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