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Abstract 
The molecular interactions between the host molecule, perthiolated beta-cyclodextrin 

(CD), and the guest molecules, adamantaneacetic acid (AD) and ferroceneacetic acid 

(FC), have been investigated theoretically in both the gas and aqueous phases. The major 

computations have been carried out at the theoretical levels, RHF/6-31G and B3LYP/6-

31G. MP2 electronic energies were also computed based at the geometries optimized by 

both the RHF and B3LYP methods in the gas phase to establish a better estimate of the 

correlation effect. 

The solvent phase computations were completed at the RHF/6-31G and B3LYP/6-31G 

levels using the PCM model. The most stable structures optimized in gas phase by both 

the RHF and B3LYP methods were used for the computations in solution. 

A method to systematically manipulate the relative position and orientation between the 

interacting molecules is proposed. In the gas phase, six trials with different host-guest 

relative positions and orientations were completed successfully with the B3LYP method 

for both the CD-AD and CD-FC complexes. Only four trials were completed with RHF 

method. 

In the gas phase, the best results from the RHF method gives for the association Gibbs 

free energy (ΔG0) values equal to -32.21kj/mol for CD-AD and -25.73kj/mol for CD-FC. 

And the best results from the B3LYP method have ΔG0 equal to -47.57kj/mol for CD-AD 

and -41.09kj/mol for CD-FC. The MP2 correction significantly lowers ΔG0 based on the 

geometries from both methods. For the RHF structure, the MP2 computations lowered 

ΔG0  to -60.64kj/mol for CD-AD and -54.10 for CD-FC. For the structure from the 

B3LYP method, it was reduced to -59.87 kj/mol for CD-AD and -54.84 kj/mol for CD-

FC. The RHF solvent phase calculations yielded following results: ΔG0(aq) equals 

107.2kj/mol for CD-AD and 111.4kj/mol for CD-FC. Compared with the results from the 

RHF method, the B3LYP method provided clearly better solvent phase results with 

ΔG0(aq) equal to 38.64kj/mol for CD-AD and 39.61kj/mol for CD-FC.  These results 
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qualitatively explain the experimental observations. However quantitatively they are in 

poor  agreement with the experimental values available in the literature and those 

recently published by Liu et al.1 And the reason is believed to be omission of 

hydrophobic contribution to the association. Determining the global geometrical minima 

for these very large systems was very difficult and computationally time consuming, but 

after a very thorough search, these were identified.  A relevant result of this search is that 

when the complexes, CD-AD and CD-FC, are formed, the AD and FC molecules are only 

partially embedded inside the CD cavity.  The totally embedded complexes were found to 

have significantly higher energies. 

The semiempirical method, ZINDO, was employed to investigate the effect of 

complexation on the first electronic excitation of CD anchored to a metal nano-particle. 

The computational results revealed that after complexation to FC, the transition intensity 

declines to about 25% of the original value, and after  complexation with AD, the 

intensity drops almost 50%.  The tighter binding and transition intensity of CD-AD 

qualitatively agrees with the experimental result that the addition of AD to a solution of 

CD and FC restores the fluorescence of CD that was quenched by the addition of FC. 

A method to evaluate the “hydrophobic force” effect is proposed for future work. 
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1. Introduction 
 

1.1. Origin of this project 
 

This project originated from work in Dr. Jian Liu’s group. This group had 

successfully synthesized water soluble perthiolated β-cyclodextrin modified 

Cadmium Sulfide Quantum dots (β-CD/CdS-QDs), whose fluorescence can be 

reversibly tuned by binding to different guest molecules.1 Their intention was to 

prove that they could make fluorescence sensors, whose fluorescence emission 

can be controlled reversibly by complexation with neutral molecules in contrast to 

the approach of direct physical adsorption or chelation of metal ions.1 The 

structure of β-CD used in their lab is shown in Figure 1 below.   

 

O

O
*

SH

HO OH
7

HS SH

 
Fig 1.1. Structure of β-CD used for synthesizing quantum dots 

 

The β-CD present above is a polycyclic molecule consisting of seven six-member 

monomer rings. The six-member monomer ring is monothiolated D-glucose. On 

the right hand side of Figure 1 is the conceptual diagram commonly used to 

describe the cone-shape of CD. 

 

Dr. Liu’s group believes that in the quantum dots, CD molecules are anchored to 

the CdS substrate by a bond between the sulfur atom in CD and the CdS 

molecule. 1H NMR spectra for the free β-CD and the β-CD modified quantum 
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dots confirm that the CD molecules are immobilized on the surface of the 

quantum particles.2,3 The TEM (transmission electron microscopy) measurements 

revealed that the average particle size is about 4 nm in diameter.1 From an 

elemental analysis, approximately 80% of the surface of the quantum particles 

was estimated to be covered by β-CD.1 

 

Two sets of molecules were employed to tune the fluorescence emission of these 

β-CD/CdS-QDs through the host-guest binding interaction. CD acts as the host 

molecule. One set is 1-Adamantaneacetic acid (AD), and another set consists of 

three Ferrocene derivatives (FC). Those molecules are shown in Figure 1.2. 

 

COOH

AD

Fe
COOH

Fe
OH

FC1 FC2

Fe
N

FC3
 

Fig 1.2. Structures of the guest molecules 

 

From square wave voltammogram (SWV) experiments, it was concluded that CD 

exhibits its binding capability1,2 to a variety of molecules including those of the 

two sets mentioned above.  

 

According to the cited work1, the β-CD/CdS-QDs have a typical two-band 

fluorescence emission. A sharp band-edge emission is centered around 410 nm 

followed by a broad trap-state emission ranging from 430 to 630 nm. However 

this fluorescence activity can be tuned by introducing different molecules from 

the two sets shown in Figure 2 to the aqueous solution containing β-CD/CdS-

QDs. It has been demonstrated that by adding 1mM of FC3 to the solution, the 

intensity of the band-edge peak decreases significantly; however adding AD alone 

does not affect the fluorescence emission; but adding AD after FC3 can recover 

the emission intensity by as much as 90%. Clearly FC3 acts as a “fluorescence 
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quencher” and AD can offset this quenching effect from FC3. Also FC1 and FC2 

have similar effects as a “fluorescence quencher”. The authors here claimed that 

by doing such, they have successfully for the first time set up a conceptual model 

of a fluorescence sensor whose fluorescence emission can be reversibly 

manipulated using neutral molecules unlike other approaches which involve direct 

physical adsorption or chelation of a metal ion. 

 

Since CD is an excellent receptor for all of these molecules, AD, FC1, FC2 and 

FC3, a model has been proposed to attribute this quenching and recovery effect of 

the fluorescence to CD binding the two different types of molecules. A 

straightforward explanation is that the fluorescence emission was first diminished 

because of the binding to FC1, FC2 or FC3. Then the AD molecules bind more 

strongly to CD and replaces FC1, FC2 or FC3 to recover the emission. If so, how 

much more strongly does AD bind to CD than FC1, FC2 and FC3 and how is the 

fluorescence emission quenched and recovered?  

 

In order to answer the first question, we need to investigate the binding of CD to 

AD and the quenchers. Apparently, some thermodynamic quantities such as the 

binding enthalpy (∆H), binding entropy (∆S) and binding Gibbs free energy (∆G) 

can provide helpful information, especially ∆G since the binding takes place 

under constant pressure and temperature. As for the mechanism of quenching and 

recovery of the fluorescence, electronic excited states must be studied for free β-

CD/CdS-QDs as well as the complexes with AD, FC1, FC2 and FC3. First we 

need to determine the specific excitation in free QDS corresponding to the 

fluorescence (HOMO to LUMO), and then to locate the relevant excitation states 

in the complexes. By comparing the correlated excitations in free QDS and the 

complexes, we may be able to reveal what causes the fluorescence quenching and 

recovery. 
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1.2. The structural features of cyclodextrins 
Naturally occurring α, β and γ cyclodextrins have the following general structure 

as illustrated in Figure 3 below. 

O

HO OH

OH

O
*

n

1

4

2
3

5

6

(O1)
(O5)

(O3) (O2)

(O6)

 
 

Figure 1.3. Structure of the natural cyclodextrins, n = 6, 7 and 8 for α, β and γ CDs, where the 

monomers are α-D-glucoses 

 

The geometries of these macrocyclic molecules are usually described with the 

cone shape as illustrated in Figure 4 below. 

 
Figure 1.4. The conceptual cone shape structure of the cyclodextrins 

 

It is widely accepted that the narrower opening is formed by the primary hydroxyl 

groups, O6H, bonded to C6, and the wider opening is formed by the secondary 

hydroxyl groups, O3H or O2H, which are directly bonded to carbons on the 

monomer ring. 

 

Apparently, the cyclodextrins are molecules with considerable size, which means 

that many geometry parameters are required to characterize the structure. In his 

review, Lipkowitz4 depicted several important geometry descriptors. They are the 

intersaccharidic bond angle φ defined as the angle for C1-O1-C4
’ (C4 on adjacent 

monomer ring), the torsional angles Φ and Ψ about the glycosidic linkages 



5 
 

defined as C5-C1-O1-C4
’ and C1-O1-C4

’-C3
’, the two torsional angles,  Θ1 and Θ2 

around C4 for the C1-C2-C3-C4 and C3-C4-C5-O5 linkages, and the exocyclic 

torsional angle ω defined as O5-C5-C6-O6. These angles are listed in Table 1.0  

 

  Table 1.0 The definition of some important angle descriptors:*  

Angle Defining Atoms 

φ C1-O1-C4
’ 

Φ C5-C1-O1-C4
’ 

Ψ C1-O1-C4
’-C3

’ 

Θ1 C1-C2-C3-C4 

Θ2 C3-C4-C5-O5 

ω O5-C5-C6-O6 

* Atoms with an apostrophe are located on an adjacent monomer ring 

 

Besides X-ray structural data for crystalline cyclodextrin, an enormous amount of 

theoretical work has been carried out to study the free, gaseous CDs4. Most of 

them employed MM (Molecular Mechanics) or MD (Molecular Dynamics) 

simulations using various force fields. A few have tried semiempirical methods 

like the AM1 and PM3 methods. Most of those works aimed to find as many 

stable conformers as possible and determine the most stable conformation 

(exploring the potential energy surface (PES)) which has the lowest energy. This 

work focused on determining the geometry of those conformers, revealing the 

electrostatic potential and lipophilicity (hydrophilicity) outside and inside the 

cavity. 

 

Although the structures of native CDs in most crystalline forms are symmetric 

possessing the Cn symmetry, asymmetric or distorted structures were obtained 

from some early theoretical studies for derivatized CDs5 and for those with 

included guest molecules6. Kostense et al.6 had carried out a conformation search 

for β-CDs to evaluate the best structure (cavity shape) for holding different guest 
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molecules. They started with 18 CD structures retrieved from the Cambridge 

Structural Database (CSD). They concluded their analysis by claiming that the O4 

atoms (the acetal linker oxygens) sometimes have to relocate to form an ellipse 

instead of circle to better fit some classes of guest molecules such as some 

benzene derivatives. 

 

Two correlated works worth discussing are from Lipkowitz.7, 8 Lipkowitz7 started 

questioning the notion that CD molecules are inherently symmetric in their most 

stable state by arguing that the symmetric structures might be the consequence of 

crystal packing, water hydration and interaction from guest molecules. In order to 

prove his point, he carried out molecular mechanics optimizations on a large 

number of initial cyclodextrin conformations, some of which are related to those 

reported in the CSD. And some of his conclusions are:  

1) Those conformers with Cn symmetry are not the most stable; and the 

symmetry must be broken to lower the energy. 

2) Both gauche (-) and gauche (+) orientations for primary hydroxyl group 

are energetically accessible with the former one being more favorable.  

3) The acetal linker oxygen atoms (O4) do not have to be in one plane all the 

time.  

4) Significant buckling can be achieved. The author concluded that the CDs 

as a class of compounds are remarkably more flexible than people had 

thought and the symmetric structures are likely due to time-averaged 

results of measurements. 

 

In order to further support his argument, Lipkowitz, Green and Yang8 carried out 

another investigation to evaluate the solid state structure of the cyclodextrins from 

the CSD. A total of 121 structures of cyclodextrins (43 α-, 70 β- and 8 γ-CD) 

were extracted from the 1990 Cambridge Structural Database (CSD). Those 

authors then employed MM using the MM2, CHARMM and AMBER force fields 

to energy minimize (geometry optimize) those 121 structures. The final results 

turned out to favor Lipkowitz’s assumption. All 121 optimized structures are less 
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stable than those from Liptowitz’s earlier work.7 This further enhances 

Lipkowitz’s point that the most stable CDs are not symmetric.4,7 Those authors 

concluded that most CDs like those in the CSD are in high-energy states because 

of environmental effects like solid state packing, guest interaction, etc. 

The work from Frieder Lichtenthaler and his coworkers had focused on analyzing 

cyclodextrin structures and properties, which led to a series of papers on the topic 

of Molecular Modeling of Saccharides. One highlight of one of these papers9 is 

that they mapped the molecules’ lipophilic surface and generated beautiful 

molecular graphics which are very easy to interpret and reveal those regions that 

are more or less hydrophilic than others. For native cyclodextrins the wide rim of 

the secondary hydroxyl groups is distinctly hydrophilic while the narrow rim of 

the primary hydroxyl groups is extensively hydrophobic. However a later work 

from Immel and Lichtenthaler10 concerning the hydrophobic/hydrophilic nature of 

the peralkylated cyclodextrins has revealed that for permethylated cyclodextins, 

the area around both rims turn out to be hydrophobic since both are now covered 

by almost equally dense layers of alkyl groups. Actually the whole exterior region 

is enclosed by a hydrophobic band and one hydrophilic region remains in the 

cavity of the permethylated cyclodextrins. This helps to explain why some guest 

molecules would have to reverse their orientations when binding to native CDs vs 

peralkylated ones. 

 

Besides these native cyclodextrins, a good number of investigations were carried 

out on the derivatized CDs. Reinhardt, Richter and Mager11 have applied both 

MM and semiempirical methods to investigate the structural changes for α-, β- 

and γ-cyclodextrins before and after being permethylated. And some of their 

conclusions are:4 

1) Alkylation always causes an increase in both the cavity openings and the 

ring formed by the acetal linker oxygens (O4).  

2) The increase in the opening of secondary hydroxyl groups is greater than 

that for the opening of the primary hydroxyl groups (except for α-

Cyclodextrins).  
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3) However, the increase in the primary opening is often greater than that 

from the ring formed by the acetal linker oxygens. 

 

We need to point out that for identifying the most important conformers, the most 

stable one and those near the global minimum, MD (Molecular Dynamics) 

methods have unique advantages over the MM, semiempirical and ab initio 

methods especially for large systems like the cyclodextrins. MD runs are dynamic 

simulations. The system can reach the many minima by meandering over a large 

part of potential energy surface (PES), given that the kinetic energy is high 

enough (the temperature is set high enough). On the other side, a geometry 

minimization using the MM, semiempirical and ab initio methods can only have 

the system fall into the minimum adjacent to the starting point. New initial 

structures are needed to seek new minima. And it is possible that the optimization 

from the new starting points may fall into the same minimum as the one already 

identified. 

 

Many MD studies have been used to investigate the structure of the cyclodextrins 

in order to discover the global and near-global minima with the least number of 

constraints possible on the geometrical parameters. Please refer to Table 2 in 

Lipkowitz’s review4 for information about those investigations. 

   

1.3. Inclusion activity of the cyclodextrins 
 

The most noticeable nature of the cyclodextrins is the capability to bind guest 

molecules as the host molecule. In fact, β-cyclodextrin is a common organic 

solubilizing agent. The contributing driving forces have long been believed to be 

the following:4  

1) Non-covalent Van der Waals interactions, which usually include dipole-

dipole (permanent or induced) and dispersion forces. Van der Waals 

interactions by nature are electrostatic interactions. 
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2) Hydrogen bonding, which can be significant given the many hydroxyl 

groups in the cyclodextrin molecules and whose magnitude is 

considerable. 

3) Energy from the relief of conformational strain, which means that either 

the cyclodextrin or the guest molecule adapts a conformationally preferred 

structure upon complexing. 

4) Relief of hydrophobic forces where the guest molecules transfer to a more 

compatible environment inside the cavity. 

5) Relief of high-energy water, which is displaced from the hydrophobic 

cavity to the hydrophilic bulk water. 

 

The overall contribution from all of the driving forces listed above can be 

represented by the enthalpy change (∆H), entropy change (∆S) and Gibbs free 

energy change (∆G) of the inclusion process. Apparently the ∆G is of special 

significance since the process takes place under constant pressure (P) and constant 

temperature (T). Many experiments have been carried out to measure those 

thermodynamics quantities. In their review, Rekharsky and Inoue12 have reviewed 

most experimental methods for measuring the thermodynamic quantities of the 

inclusion process of the cyclodextrins and guest molecules. These include 

microcalorimetry (including batch microcalorimetry, flow microcalorimetry, 

titration “macro” calorimetry and titration microcalorimetry), electronic 

absorption (UV-vis), circular dichroism (CD), fluorescence (steady-state and 

time-resolve) spectroscopy, nuclear magnetic resonance (NMR), electron spin 

resonance (ESR), gas and liquid phase chromatography, capillary electrophoresis, 

pH potentiometry, ion selective electrodes (ISE), kinetic experiments, and 

solubility determinations. In rare cases, measurements of vapor pressure, 

conductivity and surface tension were applied to help to determine those 

quantities. In this review, the authors tabulated the experimental value of those 

thermodynamic quantities for a large number of complexes of different 

cyclodextrins and guest molecules. This data includes the solvents (mainly water) 

and measurement methods. In Table 1.1 are some data related to this project. 
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Much theoretical research has also been carried out to study the binding 

energetics. One early approach, Quantitative-Structure-Activity-Relations 

(QSAR), has been employed to investigate the binding interaction between 

cyclodextrins and guest molecules. For QSAR a mathematical model must be 

constructed to relate different interactions. Then experimental data are applied to 

parameterize the model. QSAR mathematical models do not contain information 

at the atomistic level. For a detailed description please refer to those references 

cited in Lipkowitz’s review.4 

 

Table 1.1: Experimental thermodynamic quantities for some β-CD inclusion   

complex at 298 K determined from calorimetry methods 
Guest solvent ∆G0 

(kj/mol) 

∆H0 

(kj/mol) 

T∆S0 

(kj/mol) 

1-adamantanecarboxylic acid H2O -32.4 -42.1 -9.7 

Ferrocenecarboxylate H2O(pH8.6) -19.0 ± 0.3 -15.3± 0.4 3.7± 0.7 

Ferrocenecarboxylate H2O(pH8.6, 8Murea) -16.2 ± 0.3 -11.1± 0.6 5.1± 1.0 

Ferrocenylalkyldimethylammonium H2O(0.05 M NaCl) -19.7 ± 0.4 -28.5± 0.8 -8.8± 1.3 

Ferrocenylalkyldimethylammonium H2O(0.1 M NaCl; 2M urea) -18.3 ± 0.4 -25.5± 2.5 -7.1± 2.9 

Ferrocenylalkyldimethylammonium H2O(0.1 M NaCl; 4M urea) -17.9 ± 0.4 -24.3± 2.1 -6.3± 2.5 

Ferrocenylalkyldimethylammonium H2O(0.1 M NaCl; 6M urea) -17.1 ± 0.4 -21.3± 2.5 -4.2± 2.9 

Ferrocenylalkyldimethylammonium H2O(0.1 M NaCl; 8M urea) -16.3 ± 0.4 -20.5± 2.9 -4.2± 3.3 

Ferrocenylalkyldimethylammonium H2O(pH 2.6-6.5) -19.4 ± 0.4 -23.8± 0.4 -4.6± 0.8 

Ferrocenylalkyldimethylammonium H2O(pH2.6) -21.0 ± 0.4 -23.0± 0.4 -2.1± 0.8 

Ferrocenylalkyldimethylammonium H2O(pH6.5) -19.4 ± 0.4 -25.5± 0.4 -6.3± 0.8 

 

There are many research groups who have intended to compute the inclusion free 

energy using methods at the atomistic level. Lukovits13 had tried to investigate the 

energetics of alcohols binding to β-cyclodextrin. In this research, the geometry of 

both the host and guest were held fixed throughout the inclusion process (treated 

as rigid bodies). Only those geometry parameters, which dictate the relative 

position of the host and guest, were minimized using an empirical force field. The 

first derivatives of the computed intermolecular force (second derivative of 

energy) were used to guarantee the minimum. The result of this research shows 

that for the simplest alcohol, methanol, the van der Waals forces account for 
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about 50% of the total interaction energy and this percentage rises for heavier 

alcohols. 

 

 Because of the difficulty for evaluating the entropy, some groups have tried to 

study the inclusion energetics by only computing the enthalpy. One of interest is 

from Madrid et al.14 In that study, a molecular mechanics computation using the 

Tripos force field was employed to investigate the energetics of methyl- 2-

naphthoate binding to α- and β-Cyclodextrin with explicit water present. Periodic 

boundary conditions were applied to fully immerse the host and the guest both in 

the free and complexed states. The guest molecule was inserted into the cavity of 

the CD molecule incrementally and energy minimization was carried out at each 

step. These computations were carried out in both the gas and solution phases. For 

both cases the authors concluded that the van der Waals forces are the dominating 

stabilizing factor. 

 

There are works from other groups such as Dong15, Sato16, Kuroda17, Lipkowitz18, 

Berg19, Köhler20, and Jursic21, in which the guest molecules are gradually pushed 

through the cyclodextrin torus. The energy change associated with the relative 

position (distance) between the host and the guest was studied using MM 

methods. In order to define the distance, a mean plane was defined for those 

acetal linker oxygens (O4) and the origin of the Cartesian coordinate system was 

place in the centroid of the mean plane, and the Z-axis was chosen to be 

perpendicular to the mean plane. Then for another reference point, a centroid was 

arbitrarily chosen on the guest molecule and it was moved along the Z-axis 

stepwise in small increments. In some cases the system was allowed to relax to 

different degrees. And the energy as the function of the distance between the two 

centroid points was computed using MM with the chosen empirical force field. 

 

Besides the binding energy, a lot of effort was devoted to study the structure of 

included complex, especially the relative orientation between the host molecule 

and the guest molecule.  
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In his early computational study, Matsui22 intended to relate the structures, 

stability and reactivity of some α-cyclodextrin inclusion complexes by computing 

the energy using MM. But only van der Waals energy was computed because the 

author assumed that the van der Waals forces and hydrophobic forces are the only 

types of significant interactions. As a result his calculation was not able to predict 

the correct structure for small guest molecules like Kr and MeOH. The author 

concluded that there was a need for considering more interactions besides the van 

der Waals and hydrophobic forces. 

 

With the assumption in mind that the dipole-dipole interactions should be 

primarily important for stabilizing the complexes, Kitagawa et al.23 applied the 

CNDO/2 semiempirical method to compute the dipole moments for both α-

cyclodextrin and several other guest molecules and investigated the role of dipole-

dipole interactions on stabilizing the complexes. Those guest molecules under 

study are some simple substituted benzenes: benzoic acid (BA), p-

hydroxybenzoic acid (PHBA ) and p-nitrophenol (PNP). These authors developed 

several angle parameters to relate the dipole moments vectors from both the host 

and guest molecules. At the stable conformation in the complexes, these two 

dipole moment vectors are almost antiparallel to each other, which enhances the 

assumption that the dipole-dipole interactions are the primary contributors for 

stabilizing the inclusion complex. The authors proposed that before inclusion, the 

host molecule changes its geometry to decrease the magnitude of its own dipole 

moment in order to reduce the energy barrier that would prevent the guest dipole 

moment from approaching the host. After the guest enters into the host cavity, the 

host varies its geometry again to raise the magnitude of its dipole moment so as to 

enhance the dipole-dipole interaction that stabilizes the complex.  

 

The group of Rüdiger24 has also used the CHARMM force field to deduce the 

favorable orientation of simple dipolar guest molecules in cyclodextrin cavities. 
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They compared their computed results from those from calorimetry and NMR 

experiments. Most interestingly, they have studied the inclusion between β-

cyclodextrin and 1-adamantane carboxylic acid (which is quite close to one of our 

systems). And one interesting result they found for the complex of β-cyclodextrin 

and 1-adamantanecarboxylic acid is that the carboxyl group from 1-

adamantanecarboxylic acid forms a hydrogen bond to the secondary hydroxyl 

group in β-cyclodextrin. 

 

 In the work from Pang and Whitehead25, the binding of several highly symmetric 

guests (benzene and p-dihalobenzenes), to different cyclodextrins was studied. 

The author only considered two orientations. In one case, the cavity axis of the 

host (the axis perpendicular to the mean plane of the acetal linker oxygen atoms) 

coincides with the symmetry axis of the guest molecules (the C2 axis lying in the 

benzene plane). In the other case these two axes are perpendicular to each other. 

The authors indicated that the optimal structure has the maximum contact surface 

between the host and guest molecules. 

 

Tran, Delage and Buléon26 have proposed a systematic way for docking the guest 

molecule inside the cyclodextrins. Unlike those docking methods used before, in 

which the guest molecules are placed in and around the host randomly or based on 

the researcher’s intuition, these authors first invented six parameters (geometry 

descriptors) for dictating the relative position and orientation between the host 

and the guest. These six parameters are one distance, one angle, and four dihedral 

angles (it is different from the method proposed in this work). Then the authors 

could vary these six parameters systematically followed by minimization using 

the Tripos force field. By doing this one can search as much of the PES as 

possible by assigning values to as many sets of the six parameters as possible. 

 

Another interesting subject on the inclusion complex structure is that 

cyclodextrins could form complexes with some guests with a stoichiometry other 
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than 1:1; in another words, the ratio of guest molecules to cyclodextrin molecules 

in the complex can be different from 1:1. Myles, Barlow, France and Lawrence27 

reported that the structure having a 2:1 ratio of β-CD to the drug, indomethacin, 

agrees with NMR data. Sato et al28 reported in their paper that some cyanine dyes 

prefer a 2:1 ratio (dye to cyclodextrin) when binding to the cyclodextrins. They 

used MM to study the inclusion interaction between two types of  cyclodextrins 

(β, and γ) and the monomers and dimers of three different dyes, 3,3’-

diethyloxacarbocyanine iodide (DOC), 3,3’-diethyloxadicarbocyanine iodide 

(DODC), and 3,3’-diethylocatricarbocyanine iodide (DOTC). Through the 

calculations, they found that except for DOC and β-CD, the other two dyes bind 

to cyclodextrin with the dye to CD ratio of 2:1, D2-CD. The authors attributed this 

mainly to van der Waals interactions. 

 

Jaime and his coworkers made an extensive study into the structure of 

cyclodextrin inclusion complexes. In one of their studies29 they have reported a1:1 

ratio complex of 1-bromoadamantane binding with β-cyclodextrin determined 

with the aid of NMR and NOE (Nuclear Overhauser Effect). MM computations 

using the MM2 force field were carried out to study the complex structure 

theoretically. Their calculations made them believe that no significant hydrogen 

bonding and electrostatic forces are present between the host and the guest and 

only in the solvent phase is the formation of the complex energetically favorable. 

This particular system differs from the one studied here in that those guests do not 

have any carboxylic acid groups and that might prevent a hydrogen bond from 

forming between the host and the guest. 

 

In another work published a little later, Ivanov, Salvatiera and Jaime30 employed 

NMR and MD simulations to study the inclusion complex of 1-bromoadmantane 

with α-, β-, and γ-cyclodextrin. The NMR results indicated that the host 

(CD)/guest ratios were 2:1, 1:1 and 1:1 for the α-, β-, and γ-cyclodextrin 

complexes respectively. 
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In their 2000 paper, Estrada, Perdomo-López and Torres-Labandeira31 reported 

the results from their investigation on the inclusion complex of salbutamol (see 

figure 1.5) with β-cyclodextrin using both theoretical methods (MM2 and PM3) 

and experimental means (NMR and 2D ROESY). A 1:1 stoichiometry was 

determined by 1H NMR studies. The theoretical computations indicated that two 

different orientations exist for the complex in both vacuo and aqueous solution. 

One orientation has the aromatic ring inside the CD cavity (I) and another one has 

the tert-butyl group in the cavity (II). The computational results show that the gas 

phase orientation (I) is energetically favored however, and in solution orientation 

(II) is more favorable. The reverse was confirmed by a 2D ROESY (rotating-

frame Overhauser enhancement spectroscopy) experiment. The 2D ROESY 

results in solution showed no cross-peaks between the aromatic group protons and 

the protons of β-CD, but clear cross-peaks for the protons in the tert-butyl 

group and the protons inside β-CD.  
OH

H
NHO

HO  
Figure 1.5. Structure of Salbutamol 

Varady, Wu and Wang32 have studied the binding interaction between benzyl 

alcohol and β-cyclodextrin in aqueous solution using molecular dynamics (MD) 

simulations. Simulations were achieved by using the CHARMM force field. Two 

types of simulations were tried; one is self-guided molecular dynamics (SGMD) 

and the other is conventional MD. Their results show an orientation with the 

phenyl group inside the cavity of β-CD but no hydrogen bond between the guest 

and the host was found. They concluded that the hydrophobic force is the main 

driving force. 

 

Another MD simulation is from the work of Consonni and his coworkers33. The 

structure of the imazalil/β-cyclodextrin inclusion complex was investigated using 
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1H and 13C NMR and MD simulations. Their MD results indicate a complex 

structure in which the aromatic ring of the guest (imazalil) is deeply inserted into 

the cavity of the cyclodextrin withthe allyl and imidazole groups left outside. 

Hydrogen bond formation was observed between the hydroxyl groups of the 

cyclodextrin and the nitrogen atoms of the guest.  

Cl

Cl

O

N
N

 
Figure 1.6. Structure of imazalil 

It appears that very few investigations have been completed using ab initio 

methods. Most researchers are inclined to investigate the structure of cyclodextrin 

inclusion complexes using MM, MD and occasionally semiempirical methods. So 

inevitably the dispersion interactions are either completely ignored or poorly 

estimated. By employing both HF and those beyond like the DFT and MP2 

methods, we might be able to reveal the role of dispersion interactions on 

stabilizing the complexes. And it seems that van der Waals forces (without 

dispersion) and hydrophobic forces are widely believed to be the primary 

contributions for binding. Relatively less attention has been paid to hydrogen 

bonding, which could be important. 
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2. Computational methods and theoretical 

background 
 

2.1. Computational methods 

 
2.1.1. Method outline 

Consider the generic chemical reaction given in equation 1.1: 

)1.1(dDcCbBaA +→+   

Experimentally we would use the following relations for calculating the 

thermodynamical quantities of the reaction such as the enthalpy (∆ rH), entropy 

(∆rS) and gibbs free energy (∆ rG) changes under the condition of constant 

pressure (P) and temperature (T). 

)2.1()]()([)]()([ BHbAHaDHdCHcH ffffr ∆+∆−∆+∆=∆  

)3.1()]()([)]()([ BSbASaDSdCScS ffffr ∆+∆−∆+∆=∆  

)4.1()]()([)]()([ BGbAGaDGdCGcG ffffr ∆+∆−∆+∆=∆  

And for ∆rH, ∆rS and ∆rG, we have following relation under constant temperature: 

)5.1(STHG rrr ∆−∆=∆  

Those symbols like ∆rH, ∆rS and ∆rG, with the subscript, r, refer to the change for 

the reaction. And those with the subscript, f, like ∆fH, ∆fS and ∆fG are the so 

called “molar quantity of formation”. So ∆fH(A) is the “molar enthalpy of 

formation for compound A”. Please note that here we omit the temperature and 

the symbol indicating standard state. We imply that the temperature (T) is 

298.15K and the standard state throughout this chapter unless we indicate 

otherwise. 
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The definition of these molar quantities of formation is the change associated with 

forming one mole of the compound of interest from all the pure elements in their 

most stable form. So here we set up a convention assigning a zero value to these 

thermodynamical quantities for elements in their most stable form under the 

standard state. For example, the most stable form for some elements are:34 

hydrogen gas (diatomic), helium gas (monatomic), solid lithium, solid beryllium, 

solid boron, solid carbon as graphite, nitrogen gas (diatomic), oxygen gas 

(diatomic), fluorine gas (diatomic), and neon gas (monatomic). According to this 

definition and convention, the ∆fHo, ∆fSo and ∆fGo for Carbon Dioxide (CO2) at 

298.15K are the enthalpy change, entropy change and free energy change 

associated with following chemical reaction: 

)()()( 22 gasCOgasOsolidC →+  

The superscript of o indicates the standard state. For the above reaction both C 

and O2 are in their most stable form according the convention, in which C is in its 

graphite form, not diamond or others. For more information, please refer to any 

general Physical Chemistry textbook for a detailed discussion.  

 

In a theoretical study, the direct computation of those thermodynamical quantities 

(∆rH, ∆rS and ∆rG) for a reaction like 1.1 can be achieved by evaluating the 

following equations: 

)6.1()]()([)]()([ BbHAaHDdHCcHHr +−+=∆  

)7.1()]()([)]()([ BbSAaSDdSCcSSr +−+=∆  

)8.1()]()([)]()([ BbGAaGDdGCcGGr +−+=∆  

In equations 1.6, 1.7 and 1.8, the quantities for H, S and G for compounds A, B, C 

and D are the value relative to the zero point of the state, in which all nuclei and 

electrons are infinitely far apart and at rest. 

 

Before we move on to discuss how to evaluate H, S and G theoretically, we need 

to point out here that because the electronic correlation energies in different 
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molecules can be enormously different, the direct computation illustrated in 

equation 1.6-1.8 can yield very inaccurate results. However, identical bonds or 

lone pairs in different molecules have similar correlation energies and are 

calculated with similar error when using the same level of theory. If in chemical 

reaction 1.1, the number of various bonds and lone pairs on both sides are exactly 

identical, and then we would expect those errors in correlation energies to largely 

cancel out. So equation 1.6-1.8 can offer reasonably good results.35 Such type of 

reaction is called “isodesmic”. And this is the case for the system in our project; 

we expect that no chemical bonds are made or broken throughout the process of 

CD complexing to both AD and FC. So the complexation process that we will 

investigate is indeed isodesmic. 

 

Actually, this technique has been often used for computing quantities such as ∆ fH. 

For instance, if we know ∆fH for all compounds except one, we can solve for it by 

using equation 1.2 and 1.6.  

 

The internal energy (U) and entropy (S) can be directly computed by making use 

of statistical mechanical principles. Then, H and G can be obtained according to 

relations listed below: 

)9.1(PVUH +=  

)10.1(TSHG −=  

P, V and T are the pressure, volume and temperature respectively. For an ideal 

gas PV equals nRT, in which R is the gas constant (8.314J mol-1 K-1) and n is the 

number of moles of the gas. U and S can be evaluated according to the following 

equations based on statistical mechanics assuming a canonical ensemble: 

)11.1()ln( ,
2

VNb T
QTkU

∂
∂

=  

)12.1()ln(ln ,
2

VNbb T
QTkQkS

∂
∂

+=  
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In equation 1.11 and 1.12, kb is Boltzmann constant, which is the gas constant R 

divided by Avogadro’s number, NA. And Q is the partition function for the system 

containing N molecules. If these N molecules do not interact with one another 

(ideal gas assumption), we can then relate Q to the single molecular partition 

function q (V, T) as following: 

)13.1(
!

)],([),,(
N

TVqTVNQ
N

=  

Here, we assume that all N molecules are indistinguishable. If we break the 

molecular energy down to the electronic, translational, rotational and vibrational 

components, we can further reduce q(V, T) to a product of partition functions for 

the electronic, translational, rotational and vibrational components. That is, if the 

energy is separable sum-wise, the partition function is separable product-wise due 

the exponential dependence of the partition function on the energy.   
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In equation 1.14, gm and εm are the degeneracy and energy for the mth level. Other 

g and ε (gi and εi, gj and εj, gk and εk, gl and εl) are the degeneracy and energy for 

the separable electronic, translational, rotational and vibrational levels 

respectively. From equation 1.11 and 1.12, it is clear that lnQ instead of Q plays 

an important role on computing U and S. So we need first to analyze lnQ. By 

combining equations 1.13 and 1.14, we have: 

 

( )15.1)lnln(lnln

]
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[lnln
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         Here, we make use of Stirling’s approximation for ln(N!) that when N is 

sufficiently large, ln(N!) is very close to NlnN-N. It is apparently valid for any 

system of chemical interest since it always involves approximately Avogadro’s 

number (1023) of particles. And note that we collect the term of NlnN-N, which 

comes from N! in the denominator, with the translational part. 

 

So we have reduced the system partition function, lnQ, into individual 

contributions from the electronic, translational, rotational and vibrational 

components, each of which can provide its own contribution for U and S by 

making use of equations 1.11 and 1.12. Now the problem left is how to evaluate 

those individual partition functions. Next we will briefly discuss how to compute 

those individual contributions, but for details, please refer to any standard 

Physical Chemistry textbook or Statistical Mechanics textbook.   

 

2.1.2. Electronic contribution to U and S 
  

Due to the significant energy gap between the electronic ground state and the 

lowest excited state for the vast majority of molecular systems, the occupancy of 

electronic excited states are negligible unless the temperature is extremely high. 

For a close-shell singlet molecule (g=1), the electronic partition function can be 

greatly simplified as following: 

( )16.1)( Tk
E

ele b
eleEXPq −=  

Eele is the electronic energy for the ground state. Then by making use of equation 

1.11 and 1.12, we have the following electronic internal energy and entropy 

contributions: 

( )17.1eleele EU =  

( )18.10=eleS  
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Please note that the above equations are only valid for a singlet molecular state 

which the systems of interest in this work satisfy. 

 

2.1.3. Translational contribution to U and S 
 

For the model of “a particle in a box”, the quantum mechanical energy levels for 

translation are given by: 

)19.1(,.......)3,2,1,,()(
8 3212

2
3

2

2
2

2

2
1

2

=++= nnn
c
n

b
n

a
n

m
h

tranε  

Integers n1, n2, n3 are the quantum numbers for the energy level, h is the plank 

constant, m is the mass of a single molecule, and a, b and c are the dimensions of 

the box. Because of the close spacing between the energy levels, by 

approximating the sum with an integral, we get the following result: 

)20.1(])2([
3

2
3

h
TmkVq b

tran

π
=  

 

V is the volume of the box (a×b×c). Then the molar translation contributions to U 

and S are: 

)21.1(
2
3 RTUtran =  
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NA is Avogadro’s number (6.02×1023), and e is the base of the natural log. Here 

we assume one mole of molecules and included the NlnN-N part in the 

translational term (eq 1.15). 

 

2.1.4. Rotational contributions to U and S 
 

For the model of a rigid rotor, the rotational energy level for a linear molecule is: 

)23.1(12

,......)3,2,1,0()1(
2

2

+=

=+=

Jg

JJJ
Irot

ε
 

 

I is the principal moment of inertia, g is the degeneracy, ħ is Planck’s constant h 

divided by 2π, and J is the quantum number. As with the approximation carried 

out for computing the partition function for translation, we can replace the 

summation with an integral because of the close spacing between the rotational 

energy levels. The rotational partition function for a linear molecule is given by: 

)24.1(2
2σ
TIkq blinear

rot =
 

 

σ is the so called “symmetry number”. But for a non-linear molecule with three 

principal moments of inertia IA, IB, and IC, the rotational partition function 

becomes:36 

)25.1(2 2
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So, we have the following rotational contributions to U and S: 



24 
 

)26.1(
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For the systems that we study, the symmetry number σ equals 1. 

 

2.1.5. Vibrational contributions to U and S 
 

Under the model for the harmonic oscillator, a non-linear molecule has 3N-6 

vibrational modes which means that there are 3N-6 harmonic oscillators. N here is 

the number of atoms in the molecule. For linear molecules, the number of modes 

reduces to 3N-5. Here we only discuss non-linear molecules since none of the 

systems studied here are linear. The total vibrational energy is the sum of energies 

from these 3N-6 modes. And the overall vibrational partition function is the 

product of the partition functions from those individual modes. For the ith mode, 

we have: 

)28.1(,....)2,1,0(
2
1

=




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 += nhn i

i
n ωε  

 

( ) )29.1(2
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εi
n is the nth energy level for the ith vibration mode, ωi is the frequency for the ith 

mode and qi
vib is the partition function for the ith mode. Equation 1.29 is a 

convergent series. It can be expressed as a closed form: 
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The overall partition function for vibration is given as follows: 
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The molar vibrational contributions to U and S are: 
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Now, we can get the total internal energy and entropy by summing up all 

individual contributions: 

( )34.1vibrottraneletotal UUUUU +++=  

( )35.1vibrottraneletotal SSSSS +++=  

By making use of equations 1.9 and 1.10, we can get the value of H and G for the 

molecule of interest. 

 

For the translational and rotational parts, no more information about the structure 

of the molecule is needed to compute the U and S (hence H and G), but for the 

electronic and vibrational parts, quantum mechanical calculations are needed in 
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order to obtain the electronic energy levels and vibrational frequencies. The 

vibrational frequencies can only be computed after the geometry of the molecule 

is optimized to the global minimum, which means that the electronic energy is the 

lowest at that specific nuclear arrangement (geometry). 

 

The free energy change in solution is evaluated under the aid of following cycle: 

( ) ( ) ( )

( ) )()()()(

)()(

21

aqDaqCaqBaqA
GG
gDgCgBgA

solG

gG

+ →+
∆↑∆↓

+ →+

∆

∆

 

Figure 2.1: cycle for computing free energy change in solution 

 

In the above diagram, ΔG(g) and ΔG(sol) are the gibbs free energy change for the 

reaction in gas phase and solvent phase respectively. ΔG1 is the solvation free 

energy for the reactants and ΔG2 is the negative of the solvation free energy for 

the products. From figure 1, we have: 

( ) ( ) )36.1(21 GGgGsolG ∆−∆−∆=∆  

ΔG(g) can be computed using the methods discussed above. We need to carry out 

solvent phase calculations to obtain ΔG1 and ΔG2 in order to compute ΔG(sol) 

using the relation shown in equation 1.36. 

 

There are many quantum mechanical methods for computing the electronic wave 

function and energy such as the HF, MPn (n=1, 2, 3,….) and DFT methods. Since 

the HF self-consistent-field method is the basis for other higher level methods, we 

present it in a fairly detailed way here. For the details of the other methods, please 

refer to the references. While reading these theories, please refer to section 2.3 for 

a discussion of the variation theorem. 
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2.2. Quantum mechanics background. 
 

2.2.1. Hartree-Fock SCF method for 

computing electronic wave functions 
 

Here we adopt the methods developed by Roothaan.37 A molecule with N nuclei 

and m electrons would have a Hamiltonian, the energy operator, like the one 

below: 
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On the right hand side of equation 2.1, we have the terms in the order given for 

the kinetic energy for the m electrons, kinetic energy for N nuclei, nuclear-

electron attraction, electron-electron repulsion and nuclear-nuclear repulsion. MK 

is the mass of kth nucleus, me is the electronic mass, RμK is the distance between 

the μth electron and Kth nucleus, Rμν is the distance between the μth and νth 

electrons, and RKL is the distance between the Kth and Lth nuclei. And e is the 

electronic charge and ZK and ZL are the atomic numbers for Kth and Lth nuclei. 

 

The first thing we need to do is to separate the electronic and nuclear motions. 

This is achieved by invoking the so called “Born-Oppenheimer Approximation”. 

Given the fact that protons and neutrons are about 1800 times heavier than 

electrons38, the nuclei move much more slowly than electrons, we can assume at 

any moment, the electrons move in an environment where all nuclear positions 

are fixed. In other words, each time the nuclei adapt a new configuration, the 

electrons have plenty of time to adjust to reach an equilibrium state before the 

nuclei adopt another configuration. The electrons appear to move in a field of 
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frozen or fixed nuclei. This makes it possible to separate the motion of the 

electrons from that of the nuclei. The Hamiltonian for the electronic part after 

separation is given below: 
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In equation 2.2, we move most subscripts to superscripts in order to be consistent 

with those in the Roothaan paper. The subscripts e in He indicates that it is the 

electronic Hamiltonian. On the first line of equation 2.2, we multiply the electron 

repulsion term by ½ to avoid double-counting, which has the same effect as using 

μ<ν as specified in equation 2.1. In equation 2.2, we introduce a new operator, hμ, 

which is the Hamiltonian for the μth electron moving in the field of the frozen 

nuclei; and this operator is linear and Hermitian.37  

 

Here, we are trying to solve for the electronic wave function for a closed-shell 

system with an even number of electrons, 2n, all of which are paired (S=0). For 

the HF method, we assume that the solution for the N=2n electron wave function 

has the structure of a product of 2n one electron wave functions. This simple 

product allows the wavefunction to satisfy some necessary boundary equations. 

These one electron wave functions are defined as Molecular Orbitals (MO), 

where each only depends on the space coordinates of the electron occupying it: 

)3.2(),,( µµµµ ϕϕ zyxii =  

Above xμ, yμ, zμ are the Cartesian coordinates for electron μ. The subscript i 

indicates that it is the ith MO. The Pauli exclusion principle dictates that one MO 

can only hold two electrons with different spin, α and β. So for one MO we can 

define two so called Molecular Spinorbitals (MSO):  
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So for a N (N=2n) electron wave function, we need N MSO’s constructed from n 

MO’s. As we mentioned above, the N electron wave function has the structure of 

the product of the N MSO’s. Because electronic wave functions have to be 

antisymmetric, the N electron wave function is constructed as an antisymmetrized 

product (AP) of MSO in the form of a Slater determinant: 
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We require that all MO’s be orthonomalized. Thus all MSO’s are also 

orthnormalized since the α spin orbital is orthogonal to the β spin orbital: 
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With the traditional delta notation, these integrals equal zero when i ≠ j and equal 

unity when i = j. With all of the MSO orthonormalized, the N electron 

wavefunction as defined above in equation 2.5 is also normalized.  

 

And the energy of this N electron wave function is:  

∫ ΦΦ= )7.2(τdHE e  
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The operator He is the electronic Hamiltonian defined in equation 2.2. The 

overbar on Ф implies that it is the complex conjugate of Ф. And this notation will 

be used for all equations that follow. By substituting Ф as defined in equation 2.5 

into equation 2.7, we get: 
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Where the nuclear-field energy hi, the coulomb integral Jij, and the exchange 

integral Kij are defined as follows: 
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And apparently we have: 

)12.2(iiii KJ =  

It is useful to define two extra operators, the coulomb operator Ji and the exchange 

operator Ki: 
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Therefore, by making use of the coulomb operator Ji and exchange operator Ki, we can 

rewrite Jij and Kij,  
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The goal of the HF-SCF procedure is to determine the best MO’s or MSO’s that give the 

lowest possible energy. Mathematically we need to locate the minimum of E defined in 

equation 2.8 by varying the φi’s. By taking the total differential of E with respect to φi 

while applying the constraints of orthonormality (the first line of 2.6), Roothaan37 

demonstrated that the best MO’s have to satisfy following equations in order to minimize 

E: 
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In equation 2.15, operator h is the operator hμ defined in equation 2.2. The coefficients, 

εij, were introduced to facilitate the constraints defined by equation 2.6. It was proven that 

the two equations in 2.15 are actually equivalent and: 

)16.2(ijji εε =  

So the matrix of ε which has εij as elements is Hermitian, which can be diagonalized by a 

unitary transformation. We define now two additional operators, the total electron 

interaction operator G and the Hartree-Fock Hamiltonian operator F to make the 

expressions in 2.15 more concise. 

( ) )17.2(2∑ −=
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)18.2(GhF +=  

Again the operator h in equation 2.18 is the hμ defined in equation 2.2. Then we can 

rewrite equation of 2.15 as: 

)19.2(∑=
j

jijiF εϕϕ
 

Or in matrix notation: 

)20.2(φεφ =F  

Ø is the matrix having the MO’s φi as column vectors and ε is the matrix with εij as an 

element. As we mentioned above, matrix ε is Hermitian, therefore it can be transformed 

to a diagonal matrix ε' by a unitary matrix. When transforming equation 2.20 to diagonal 

form, the MO’s, φi also undergo a transformation by the same unitary matrix to form a 

new set of MO’s, φi
'. We need point out here that the operator of F in equation 2.20 

depends on these MO’s. It can be seen in equation 2.13, which defines the operators, J 

and K are needed to construct F. But as demonstrated by Roothaan in his paper37, the 

operator F remains unchanged under such a unitary transformation. Hence the equation 

of 2.20 is still valid after the diagonalization of ε. So without losing generality, we can 

conclude that the set of best MO’s satisfies the following simple equation: 

)21.2('''
iiiF ϕεϕ =  

Where we can drop the new notation and just use the equation 2.20, but the matrix, ε, 

would be a diagonal one. The εi eigenvalues are interpreted as the energy levels of the 

MO’s, φi.  

So those best MO’s are eigenfunctions of operator F. We need n such functions with 

lowest eigenvalues to construct the ground state close-shell wave function for the system 

with 2n electrons as the form of a Slater determinant. All eigenvalues are real. Any two 

eigenfunctions having different eigenvalues are orthogonal to each other automatically. 
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But for those functions having the same eigenvalue (degenerate orbitals), 

orthonormalization is still needed to make them orthonormal. 

 

But solving equation 2.21 is quite tricky. First we want to solve for the φi’s from it, 

however, the operator F depends on the φi’s. The general procedure is one of trial and 

error. One first makes a guess at a set of φi’s, then constructs the Fock operator, F based 

on the guessed functions, solve the equation 2.21 to get a new set of functions, compare 

them to the guessed set. The new set is then used to construct the new Fock operator. 

This procedure is repeated until the new set and energy equal to previous values within 

certain tolerance limits. That is why it is called the iterative “self-consistent” method. 

 

2.2.2.Constructing MO’s using basis sets 
 

For ab inito computations, we construct the MO’s using so called basis sets (basis 

functions). Basis sets are a set of mathematical functions (theoretically an infinite set), of 

which any arbitrary mathematical function can be constructed as a linear combination. In 

practice, computers are not able to deal with sets with an infinite number of functions. 

We always use finite sets. The underlying idea is that we can represent the MO’s as a 

linear combination of some known, conventional and effective set of functions. Then by 

solving for the coefficients in the linear combination through a specified algorithm, we 

can construct all the MO’s needed. For MO’s, a natural choice for basis sets would be 

atomic orbitals from atoms in the molecule. And it is called a Linear Combination of 

Atomic Orbitals (LCAO). In his paper, Roothaan37 derived a mathematically rigorous 

way to solve for those coefficients through the variation method, which is quite similar to 

the method we described above for deriving the HF SCF solution. And this is also 

applicable for solving the problem with other general basis sets. So here we try to present 

the general procedures to construct the MO’s from general basis sets. 

Suppose, we try to construct the set of MO’s, { }n
jj 1=

φ ,, from the set of basis functions, 

{ }m

pp 1=
χ . 
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The goal of the LCAO treatment is to determine the best coefficient matrix C, with which 

the energy E reaches the minimum. By applying the variational method in a manner 

similar to that used in deriving HF SCF MO’s mentioned above, Roothaan37 illustrated 

that the best matrix, C, satisfies following equation: 

)24.2(iii SCFC ε=  

F is the Fock operator, Ci is the column vector in the matrix C, εi is a real number, S is 

the overlap matrix, whose element Spq is defined as below: 

)25.2(∫= τχχ dS qppq  

The eigenvalue, εi, is called the LCAO orbital energy for MO φi. We rewrite equation 

2.24 to get Ci: 

( ) )26.2(0=− iCSF ε  

 

Please note ε in above equation is a number not a matrix. And we need to solve the 

secular equation below for ε: 
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For the secular equation and the following discussions, we adopt some notations from 

Cramer’s book.39 The elements, Sμν, are from the overlap matrix S; ε is the eigenvalue 

that we need to solve from the secular equation above; Fμν is defined as below as: 

∫= )28.2(τνµµν dFF  

F is the Fock operator defined in 2.18. But here it is defined based on the basis sets since 

the MO’s are constructed through the basis sets. Here we use the subscripts μ and ν to 

refer to basis functions χμ and χν and we will use this notation below. 

 

In detail, Fμν includes following terms: 
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The first two terms on the right side of equation 2.29 are straightforward, but we need to 

explain a little more for the third term. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) )30.2(2122111
12

drrd
r∫∫= σλνµ χχχχλσµν  

The number 1 and 2 in 2.30 refer to the position coordinates for electron 1 and electron 2, 

and r12 is the distance between the two electrons (the relative distance between the two 
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positions indicated by the two coordinates). The integral in 2.30 is often referred to as the 

“two electron integral” or “four-index integral”, which is probably the most time-

consuming part for evaluating the Fock matrix. Pλσ is the element from the so called 

“density matrix” P. Pλσ is given as: 

)31.2(2 ∑=
occupied

i
iiCCP σλλσ  

The sum in 2.31 is over all occupied MO’s (the n MO’s with lowest energy or 

eigenvalue). Cλi is the coefficient for the λth basis function (χλ) in the ith MO (φi). 

 

In summary, we need to solve the secular equation 2.27 to obtain the eigenvalues ε and 

eigenvector Ci (surely quite many). By using matrix methods, all m εi and Ci can be 

obtained in one matrix transformation and diagonalization. Then the n MO’s with lowest 

energy can be constructed from the n coefficient column vectors with the lowest 

eigenvalues. 

 

2.2.3. Variation principle 
The variation theorem is the principle behind most quantum mechanical approximation 

methods. It simply states: the expectation value of a system Hamiltonian, H, for any trial 

wavefunction (approximate solution) is higher than the exact system ground-state energy 

level. The expectation value of the approximate wavefunction sometimes is also called 

“average energy” of the wavefunction. A brief proof is presented below. 

 

 Suppose, we have an arbitrary normalized function, ψ, which could be obtained from a 

guess, or any other approximation method. Let the set of functions,  {ui },(i = 0,1, 2, 

3….) be the set of exact  eigenfunctions of H which is a complete orthonormal set. Then 

the function of ψ can be expanded in terms of these eigenfunctions as shown below: 

)32.2(iii
i

ii uEHuwhereuA == ∑ψ  
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In equation 2.32, ui is the eigenfunction of H with eigenvalue Ei (energy level i). And u0 

and E0 are the ground state function and ground state energy respectively. 

 

The expectation value of H for ψ is given: 

)33.2(2

∑∫ ==
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ii AEdHH τψψ  

Since E0 is the ground state energy, which is the lowest, we can easily get the following 

inequality: 
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Since ψ is normalized, we have: 

)35.2(12
=∑

i
iA  

So we end up with following relation: 

)36.2(0 ∫≤ τψψ dHE  

That is what the variation theorem states. 

 

The variation principle provides a method to solve for the wavefunction approximately. If 

the trial function ψ has a number of unknown parameters, the best wavefunction from it 

can be obtained by varying those parameters in order to minimize the expectation value. 

For details, please refer to any quantum mechanics textbook such as the one by Schiff40. 

 

2.2.4. A brief introduction to the STO and GTO basis 

sets 
We gave a very brief definition for a basis set in Section 2.2 without mentioning any 

details. Here we will be discussing more about basis sets by describing two specific 

types, the STO and GTO sets. 

 

STO is the abbreviation for Slater-type of orbital, which is a set of functions with the 

following form: 
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In equation 2.37, n is the principle quantum number; Yl
m(θ, Ø) is the spherical harmonic 

functions with dependence on angular momentum quantum numbers l and m, which are 

identical to those from the Schrodinger equation solution for Hydrogen atom. The 

exponent, ζ, can be decided according to a simple set of rules developed by Slater41 or by 

optimization and can be interpreted as a screened nuclear charge. 

 

Since the STOs bear a lot of resemblance with and originate from the hydrogen atomic 

orbitals, they are a natural choice as an atomic centered basis set in molecular 

calculations.42 They possess the correct exponential decay with increasing r, have a well 

known and separable angular part,  and have the correct cusp at the nucleus for the 1s 

orbital.43,44  

 

Despites all these attractive merits, STOs do have shortcomings. The exponential term 

makes it very difficult to calculate the “four-index integral” shown in equation 2.30. This 

difficulty would be solved if the exponential term in the STOs is changed from EXP (-r) 

to EXP (-r2), which has the form of a Gaussian function. So Gaussian-type orbitals 

(GTO) were proposed as an alternative. GTOs have following general function form: 
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Where α is the factor controlling the width of the GTO, and i, j, and k are positive or zero 

integers that dictate the nature of the orbitals. And these functions are also called 

“primitive GTOs” 

 

When i, j, and k are all zero, we have a s type orbital; when one of i, j, and k equals 1 and 

other two are zero, we have a p type orbital, and apparently we have three types of p 

orbitals, px, py, and pz, depending on which one equals 1. When the sum of i, j, and k 
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equals 2, we have a d type orbital and there are six of these, x2, y2, z2, xy, xz, and yz, 

which is different from the d orbitals resulting from the Schrodinger equation solution for 

the hydrogen atom. 

 

Although GTOs have the advantage with the “two-electron integral problem”, they are 

not as atomic-orbital like as STOs.45 For instance GTOs do not have the cusp at the 

nucleus and the radial decay in a GTO is exponential in r2 instead of r. In this aspect 

STOs have the advantage over the GTOs. So in order to keep the best features of both the 

STO and GTO sets, a new strategy for developing basis sets was proposed.  Instead of 

using individual GTOs, linear combinations of GTOs are built up to best fit the STOs. 

And these new linear combination of GTOs serves as the basis functions (basis set)45: 
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Where φ is the basis function (STO like) and Ø is the GTO, the building block. These 

new linear combinations of GTOs are called “contracted GTOs”. And basis functions 

constructed in this way are often referred to as “contracted basis functions”. The basis 

function is characterized by the exponents, αa, the coefficients, ca and the number M, i.e., 

how many GTOs are used in the combination. 

 
Hehre, Stewart, and Pople46 were the first to form a library of the STO-MG basis sets, 

“Slater-Type Orbital approximated by M Gaussians” by systematically determining the 

exponents and coefficients in each of these basis sets.  

 

For example, a STO-3G basis set for a carbon atom will have each basis function for 

carbon: 1s, 2s, 2px, 2py and 2pz atomic orbitals. Each basis function is a linear 

combination of three GTOs of corresponding type, like a 1s from three GTOs of s type 

with fixed coefficients and exponents from the library. 

 

The basis set 6-31G used in this work is a “split valence shell” basis. For the inner shell, 

each atomic orbital (simulated STO) is represented as a linear combination of six GTOs. 

But for the valence shell, each atomic orbital is represented by two independent basis 
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functions, one constructed with three GTOs and another consisting of one GTO. Many 

more complete and complex libraries of basis sets have been developed, and the reader is 

referred to the literature for the details on these.39 

 

2.2.5. Methods for including electron Correlation 
 

The fundamental assumption of the HF theory is that each electron moves in the average 

static electric field generated by nuclei and other electrons. And Fock operators are very 

much one electron operators, so electron correlation is completely ignored. From 

mathematical point of view, HF solutions have the structure of a single product and use a 

single determinant. This kind of constraint contributes to the failing to account for the 

correlation effect mathematically. One apparent way to improve it is to incorporate more 

determinants in the solution, constructing it as linear combination of multiple 

determinants, which is what the MP2 method does. DFT methods try to address this issue 

differently by changing the Hamiltonian with correlation functionals to correct the non-

interacting wavefunction. Next we will briefly discuss how the MP2 and DFT methods 

work, but for the details please refer to the references.  
 

2.2.5.1. The MP2 method 
 

The MPn (n=1, 2, 3,……) method is the perturbation method proposed by Møller and 

Plesset47, where n is the term after which the perturbation series is terminated. So for the 

MP2 method, the series is terminated after the term with a second power.  

 

The perturbation method is an approximation method for solving the Schrodinger 

equation when the system Hamiltonian, H, can be broken down into two parts, H0 and H ', 

where the Schrodinger equation constructed from H0 can be solved exactly, and the 

perturbation term, H '
, is small compared to H0. So for H0, the eigenfunctions, uk with 

eigenvalues Ek, are available. And for the system we have48: 

)40.2(,, 0
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In the above, H is the system Hamiltonian with eigenfunction ψ and eigenvalue W. 

Because H ' is small, we can expand ψ and W as power series in terms of the 

eigenfunctions and eigenvalues of Ho. This would be more conveniently accomplished by 

introducing a new parameter λ and expanding the power series in λ. For that we rewrite 

the second equation in 2.40 as follows:48 

)41.2('
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We can then expand the system wavefunction ψ and eigenvalue W as follows:48 
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After substituting 2.41 and 2.42 into the system Schrodinger equation, we have: 
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Equation 2.43 is supposed to be valid for any λ ranging from 0 to 1, so the coefficients 

for the collected terms for the identical powers of λ on both sides of 2.43 must be equal.  

We get upon collecting the terms, 
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From the first equation in 2.44, we can conclude that the ψ0 can be any of the 

eigenfunctions of the unperturbed Hamiltonian H0, and W0 is the corresponding 

eigenvalue (i.e., ψ0 and Wo correspond to any um and Em). 

)45.2(,.......2,1,0, 00 === mEWu mmψ  

Before we move on, we need to point out two facts. First, from those equations in 2.44, it 

is clear that any ψs (s≠0) can have an arbitrary multiple of ψ0 added to it and still obey the 

relations shown in equation 2.44. In order to simplify the situation, we choose ψs in such 

a way that all ψs’s are orthogonal to ψ0: 
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Second, because of the Hermitian nature of H0, if we multiply the left side of any 

equation in 2.44 by ψ0 and take the integral over the whole space (inner product), the 

integral vanishes. By making use of the orthogonality shown in equation 2.46, we can 

immediately get following relation: 
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In equation 2.47, we assumed that ψ0 (um) is normalized. 

 

From the first equation in 2.44, we can solve for ψ0 and W0, which are um and Em, 

substitute ψ0 and W0 to the second equation we can solve for ψ1 and W1 and so on. 

Because the set of um is a complete orthonormal set, ψs can be expanded as linear 

combination of um. 
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Here, we will only demonstrate how to solve for ψ1, ψ2, W1 and W2. We designate um as 

the reference wavefunction, which means ψ0=um. By substituting equation 2.48 for ψ1 

and ψ2 into equation 2.44 we can get: 
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We have adopted the following notation for the equations above: 

)50.2('' ∫= τduHunHk nk  

The MP2 method is a many-body perturbation method. The reference functions are the 

set of Slater determinants, which are the solutions for the HF SCF method discussed in 

Section 2.1 in this chapter. The unperturbed Hamiltonian H0 is the sum of the one-

electron Fock operators:47,49 
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The perturbation operator is defined as follows:49 
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Jij and Kij are the coulomb and exchange integral respectively, and these summations 

cover all occupied MO’s. In other words, the perturbation is just the difference between 

the exact and Hartree Fock Hamiltonians. For the MP2 method, we need to substitute the 

unperturbed operator H0 defined in equation 2.51, the perturbation operator defined in 

equation 2.52 and the Slater determinants from HF solution into those equations from 

2.40 to 2.49. So the solutions for the MP2 method are linear combination of multiple 

determinants. 

 

2.2.5.2. The DFT method 
Density Functional Theory (DFT) is based the fact that the system Hamiltonian can be 

sufficiently determined by the electron density, ρ, and thus so are the wavefunction and 

energy.50, 51 In order to facilitate the calculations, Kohn and Sham52 proposed a new 

procedure to construct the electronic energy as a function of the density. They first started 

with a fictitious system with only non-interacting electrons. For the fictitious system, the 

energy is broken down to non-interacting electronic kinetic energy, nuclear-electron 

attraction energy and electron-electron repulsion energy. Then an exchange and 

correlation correction term is added to those non-interacting energy components to 
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correct for the correlation from electron interaction and the non-classical electron 

repulsion energy. With the basis set, χi, the electronic energy consisting of those 

components can be described as follows:53 

 

[ ] )53.2()()(
2
1

2
1)]([

'

'

'

2

rEdr
rr

r

rr
ZrE

XC

N

i
i

i

i

N

i

nuclei

k
i

ki

k
iiii

ρχρχ

χχχχρ

+
−

+









−

−∇−=

∑ ∫

∑ ∑
 

The four terms on the right side of equation 2.53 are the kinetic energy for non-

interacting electrons, the nuclear-electron attraction energy, and the electronic repulsion 

energy and exchange-correlation correction, respectively. N is the number of electrons, 

Zk is the nuclear charge of the kth atom and the electronic density, ρ(r) is constructed as 

follows:53 
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A great number of research efforts has been carried out to find the function to 

approximate EXC such as the Local Density Approximation (LDA) and Generalized 

Gradient Approximation (GGA). A widely used one is the B3LYP hybrid functional, 

which is defined as:54 
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where a=0.1161, b=0.9262, and c=0.8133. The 5 terms on the right side of 2.55 are the 

LSDA exchange, the HF exchange, the B exchange, the LSDA correlation and the LYP 

correlation functionals. Please refer to the references for a detailed discussion. 

 

2.2.6. Solvent phase computations and the PCM model 
 
The computational methods used in this work for the solvent phase is the Polarized 

Continuum Medium model (PCM) developed by Tomasi and coworkers.55 It is an 
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implicit solvent model because no explicit solvent molecules are present. In the PCM 

model, the statistically averaged solvent effect is directly addressed by describing the 

solvent macroscopically as continuum medium with suitable properties (dielectric 

constant, thermal expansion coefficient, etc) instead of a microscopic description.  

 

The solute molecule (or ion) is placed in a cavity embedded in the infinite polarizable 

dielectric medium of the solvent. In the PCM method the cavity is represented as a 

system of interlocking spheres. Those individual spheres are centered on appropriate 

nuclei in the solute molecule with radii R1, R2, R3…….. The number of spheres and the 

values of the radii are introduced into the computational procedures as empirical 

parameters. 

 

 The solute is represented by a charge distribution ρ(r) inside the cavity. The initial 

distribution, ρ0(r), is usually taken as the one from gas phase calculations (with the 

geometry optimization, population analysis etc in gas phase). Through electrostatic 

interaction, net charges will be induced on the cavity surface. The induced surface 

charges will act back and change the charge distribution in the solute. This mutual 

interaction goes on until equilibrium is reached. Then we have a stable electrical field in 

the cavity with contributions from both solute charge distribution and induced surface 

charges. The potential built by the induced surface charges, Vσ(r), will act on the solute 

as an additional potential. In the computation this potential is treated as a perturbation 

term. 

)56.2()(0 rVHH σ+=  

where H is the Hamiltonian including the solvent effect, H0 is Hamiltonian without the 

solvent effect (gas phase Hamiltonian), and Vσ(r) is the potential generated by the surface 

charges. The computation is carried out using perturbation theory.   
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3. Computations and results 
 

3.1. Preparation of individual molecules and 

complexes 
 

3.1.1. Construction of perthiolated beta-cyclodextrin 
 

The perthiolated beta-cyclodextrin (CD) molecule was constructed using the Hyperchem 

graphical facility as shown in Figure 5.1 in Appendix.  
 

3.1.1.1. Conformational search for CD 
 

With seven inter-linked glucose rings (see Figure 3.1 and 3.2 for the monomer structure), 

the cyclodextrin molecule is a very large molecule and thus has many conformers, 

especially those with different torsional angles. The conformational search was carried 

out using the PM3 method available in HyperChem 7.5. 

 
Figure 3.1. The monomer ring in cyclodextrin shown with atom symbols 
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Figure 3.2. The monomer ring in cyclodextrin shown with atom numbers. 

 

 

I. Choosing torsional angles: 

 
Before the conformational search was started, 56 torsional angles were selected, eight of 

which were located in each unit ring. The way, by which those eight torsion angles in 

each unit ring were chosen, is described in Table 1 with the atoms and numbering given 

in Figures 3.1 and 3.2. 

 

Terms like “torXY” are used to identify the torsional angles. The X (1-7) specifies on 

which ring the torsional angle resides. The Y (1-8) specifies one of eight angles in the 

ring specified by the X. Since those seven rings are identical to each other, the way to 

choose the torsional angle is the same for all rings. Table 3.1 lists all eight torsional 

angles for the ring shown above. 
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Table 3.1. The seven torsional angles from the ring shown in Figures 3.2 and 3.3 

Torsion name Illustrated in Fig 2 Illustrated in Fig 3 

Tor11 H-C-O-H 15-4-9-18 

Tor12 H-C-O-H 17-6-10-19 

Tor13 H-C-C-H 13-1-11-20 

Tor14 H-C-C-H 13-1-11-21 

Tor15 H-C-C-S 13-1-11-12 

Tor16 C-C-S-H 1-11-12-22 

Tor17 H-C-S-H 20-11-12-22 

Tor18 H-C-S-H 21-11-12-22 

 

II. The results of the conformational search: 
 

The conformational search was completed using the PM3 method built into HyperChem 

7.5. The first ten conformers with the lowest energy were chosen for further 

computations at a higher level of theory. Table 3.2 lists the energy levels for these 10 

conformers. The geometries are illustrated in Figures 5.2 through 5.11 in the Appendix. 

 
Table 3.2. The energy levels for the first ten conformers with lowest energy 

conformer Energy (kcal/mol) 

1 109.3676 

2 109.5789 

3 109.734 

4 109.8334 

5 109.9717 

6 109.9761 

7 109.9802 

8 110.0331 

9 110.0749 

10 110.1093 

 

III. Re-optimization of all 10 conformers at the RHF/6-31G(d) level 
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From the conformational search results shown above, it is apparent that the energy gaps 

among those conformers are not significant; the difference between the conformer with 

highest energy and the one with lowest energy is 0.7417 kcal/mol (about 3.103 kj/mol). 

Hence re-optimization with a higher level method is necessary. All ten above conformers 

were re-optimized at the RHF/6-31G(d) level of theory. The energies of these optimized 

conformers are listed in Table 3.3. Please refer to Figures 5.12 to 5.21 in the Appendix 

for the geometries optimized at RHF/6-31G(d). 
 

In order to consider the correlation effect on the energy level of these conformers, single 

point calculations at the B3LYP/ 6-31G level were carried out on four conformers with 

lowest energy from the RHF optimization, namely the 9th, 6th, 8th and 5th, based on the 

geometries minimized at the RHF/6-31G level. The energies obtained from the B3LYP 

calculations are listed in Table 3.4. Both calculations have indicated that the 9th 

conformer is the most stable one with energies equal to -6509.70422au and -6535.8694au 

with the RHF and B3LYP methods, respectively, as shown in Tables 3.3 and 3.4. 
 

Table 3.3. Energy levels of the first ten conformers with the RHF/6-31G(d) method 

Conformer Energy (Hartrees/molecule) 

1 -6509.69414 

2 -6509.68942 

3 -6509.68747 

4 -6509.69469 

5 -6509.69579 

6 -6509.70246 

7 -6509.69317 

8 -6509.69835 

9 -6509.704224 

10 -6509.69096 

 
Table 3.4. B3LYP/6-31g(d) energy for four conformers with lowest RHF/6-31g(d) energy 

Conformer 9th 6th 8th 5th 

Energy (Hartree) -6535.86941 -6535.86789 -6535.86718 -6535.86023 
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3.1.2. Construction of the two Guest molecules 
No conformational searches were carried out for the molecules of adamantaneacetic acid 

(AD) and ferroceneacetic acid (FC), partially because they are much smaller and have 

fixed or rigid conformations compared to the CD molecule. The structures for them are 

illustrated in Figures 5.22 and 5.23 in the Appendix respectively. 

 

3.1.3. Construction of the complexes 
 

There are many ways to construct the complexes formed by cyclodextrin (CD) and 

admantaneacetic acid (AD), and cyclodextrin and ferroceneaceticacid (FC). We first did 

it by carefully inserting the molecules of AD and FC into the center of the optimized CD 

molecule (referred as the “direct method”). In 3.2.3, we illustrate how to combine the Z-

matrices of two individual molecules together by generating six more geometry 

parameters (controlling parameters). By varying these parameters, we can manipulate the 

relative orientation between the host molecule and the guest molecule systematically. The 

structures of the complexes constructed by the direct method are illustrated in Figures 

5.24 and 5.25 in the Appendix. 

 

  
3.2. Computations of the association free energy 

and binding constant 
 

3.2.1. Background 
For a more detailed discussion about theoretically computing the Gibbs free energy 

change for chemical reactions, please refer to chapter 2 (Computational methods and 

Theoretical Background).  
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The binding constant K for forming a binary complex, AB, from molecules A and B is 

defined as below: 

)1.3(ABBA ⇔+               
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∆rG0 is the Gibbs free energy change for the complexation reaction, which by most 

definitions, is the Gibbs free energy of formation of product, AB minus the sum of Gibbs 

free energy of formation of the two reactants, A and B. But here we replace the Gibbs 

free energy of formation ∆ fG0 with the Gibbs free energy G at 298.15K relative to that of 

the completely separated nuclei and electron at rest at 0K. Please refer to the 

Computational Methods and Theoretical Background section for more discussions.   

)4.3()()()(0 BGAGABGGr −−=∆  

In Equation 3.4 G(AB), G(A) and G(B) are the Gibbs free energy at 298.15K relative to 

that of the state of nuclei and electrons infinitely far apart, which can be computed 

through the vibrational analysis for AB, A and B respectively, as discussed in chapter 2. 

For the systems we study, AB represents the complexes, CD-AD and CD-FC. For 

complex CD-AD, A and B are CD and AD. For complex CD-FC A and B are CD and 

FC. So for the systems under study, we have: 
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From the two equations above, if we assume at equilibrium (the system with all three 

species CD, AD and FC), that the concentration of AD and FC are equal, which is 



52 
 

experimentally achievable, then we can derive that the concentrations of the CD-AD and 

CD-FC complexes are related according to following equation: 
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And also we have the following relationships: 

( ) ( ) ( ) )8.3()(0 ADGCDGADCDGADCDGr −−−=−∆  

( ) ( ) ( ) )9.3()(0 FCGCDGFCCDGFCCDGr −−−=−∆  

For the above species, CD, AD, FC, CD-AD and CD-FC, we optimized all the         

geometries followed by vibrational analyses. By doing so we can obtain electronic 

energies plus those thermodynamic quantities such as zero point energy, internal energy 

(U), enthalpy (H), entropy (S) and gibbs free energy (G) for all species. So in all tables 

listing those absolute quantities in this chapter, we include values both with and without 

electronic contribution. For instance for those entries only labeled “zero point”, 

“internal”, “enthalpy”, etc we refer to those without electronic contributions; but for those 

presented as “elec + zero point”, “elec + enthalpy”, “elec + internal” etc indicate that 

those are the quantities including electronic energy. With all this data, we can then 

calculate 0Gr∆  (at 298.15K) for both complexes CD-AD and CD-FC. We intend to 

determine the energetically most favorable structures for the complexes of CD-AD and 

CD-FC in the gas phase, which thermodynamically are those yielding minimum 0Gr∆  

(most negative). And we use the geometries for solvent phase calculations to determine 

the Gibbs free energy change in solution. 

 

From the paper of Rekharsky and Inoue12, we have the following thermodynamic data for 

complexes formed between β cyclodextrin and some guest molecules: 
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Table 3.5. Thermodynamic data for complexes of CD and various guest molecules 

Host Guest solvent ∆G0 (kj/mol) 

β-CD 1-adamantanecarboxylic acid H2O -32.4 

β-CD ferrocenecarboxylate H2O(pH8.6) -19.0 ± 0.3 

β-CD ferrocenecarboxylate H2O(pH8.6, 8M urea) -16.2 ± 0.3 

β-CD ferrocenylalkyldimethylammonium H2O(0.05 M NaCl) -19.7 ± 0.4 

β-CD ferrocenylalkyldimethylammonium H2O(0.1 M NaCl; 2M urea) -18.3 ± 0.4 

β-CD ferrocenylalkyldimethylammonium H2O(0.1 M NaCl; 4M urea) -17.9 ± 0.4 

β-CD ferrocenylalkyldimethylammonium H2O(0.1 M NaCl; 6M urea) -17.1 ± 0.4 

β-CD ferrocenylalkyldimethylammonium H2O(0.1 M NaCl; 8M urea) -16.3 ± 0.4 

β-CD ferrocenylalkyldimethylammonium H2O(pH 2.6-6.5) -19.4 ± 0.4 

β-CD ferrocenylalkyldimethylammonium H2O(pH2.6) -21.0 ± 0.4 

β-CD ferrocenylalkyldimethylammonium H2O(pH6.5) -19.4 ± 0.4 

 

We note that the β-cyclodextrin used by Rekharsky and Inoue is the natural one12 not the 

thiolated one that we are using in this work and that the guest molecules are very similar, 

but not exactally the same as ours. However, since our systems are structurally very 

similar to those listed in Table 3.5, we expect that our calculated values to be comparable 

to those on the table. But we must keep in mind that all the data shown in Table 3.5 are 

those in aqueous solution, so we need to be careful when comparing those values to the 

results for the gas phase. 

 

We have carried out calculations for the individual molecules and complexes using 

different theoretical models in both the vacuum and aqueous phases.  The MP2 and DFT 

(B3LYP) methods can be applied to provide better electronic energies based on the HF 

optimized geometries. Both methods account for the effects of dispersion interactions and 

electronic correlation which the HF method omits. Experimental work implies that the 

binding between CD and AD is stronger than that between CD and FC, which means the 

∆G0 for the formation of the CD-AD complex would be more negative than that for the 

CD-FC complex. In section 3.2.3.1, we describe how we systematically control the 

relative position and orientation between the host molecule (CD) and guest molecules 
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(AD or FC) by making use of the z-matrix. The z-matrix or internal coordinates is a way 

to describe the molecular geometry. It specifies the position of an atom in the molecule 

relative to other atoms through parameters like bond distance, bond angle and torsional 

angle. These parameters determine the relative position of atoms in the molecule and they 

are independent with the choice of the origin (reference) 

 

A ZINDO56-58 semiempirical method was used along with a rough population analysis in 

order to study the origin (or lack thereof) the fluorescence in these species. This allowed 

us to decipher the relationship between the excited states of free cyclodextrin and the two 

complexes that it forms with adamantaneacetic acid and ferroceneacetic acid. The 

detailed results are presented in next section. 

 

3.2.2. Computational results for complexes 

constructed by direct insertion 
 

3.2.2.1. Results from molecular mechanics 
  

Due to the size of our system, we started our computing task with the molecular 

mechanics method  (MM) to get some rough idea about how resource-consuming this 

project is.  We also intended to get an initial estimate of the energies to obtain some 

reasonably good starting structures for later computations at a higher theoretical level. 

We used two different MM models with two different force fields (the Dreiding and UFF 

parameterizations). The results from the MM methods are shown in Tables 3.6 through 

3.8. 
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Table 3.6. Dreiding force field energies for all species 

 (Hartrees/particle) CD AD FC CD-AD CD-FC 

Zero point 1.1982 0.2976 0.2300 1.5006 1.4322 

Internal 1.2771 0.3085 0.2408 1.5922 1.5235 

Enthalpy 1.2781 0.3095 0.2417 1.5932 1.5244 

Free energy 1.0784 0.2605 0.1920 1.3675 1.2999 

Entropy(cal/mol*K-1) 420.188 103.126 104.770 474.944 472.583 

 

 
Table 3.7. UFF force field energies for all species 

 (Hartrees/particle) CD AD FC CD-AD CD-FC 

Zero point 1.3251 0.3065 0.2552 1.6378 1.5668 

Internal 1.3930 0.3158 0.2643 1.7162 1.6456 

Enthalpy 1.3939 0.3167 0.2653 1.7171 1.6465 

Free energy 1.2198 0.2708 0.2181 1.5211 1.4496 

Entropy(cal/mol*K-1) 366.496 96.599 99.289 412.620 414.525 

 

. 
Table 3.8. Association energies for CD-AD and CD-FC from MM calculations  

 CD-AD (dreiding) CD-FC (dreiding) CD-AD (uff) CD-FC (uff) 

ΔU0(kj/mol) 17.22 14.64 19.60 -30.74 

ΔH0(kj/mol) 14.74 12.16 17.12 -33.22 

ΔG0(kj/mol) 75.09 77.51 80.10 30.74 

ΔS0(kj/mol*K-1) -0.202 -0.219 -0.211 -0.214 

Keq 6.99E-14 2.63E-14 2.48E-31 1.79E-12 

 

Note: 

 For the MM calculations with the UFF force field, the individual ferrocene molecule 

could only be completed by using the Newton Raphson optimization algorithm instead of 

the default RFO (Rational Optimization step) algorithm.  

 Because the electronic energies given by MM calculations are suspicious (force fields do 

not have terms for the electronic energy), we exclude the electronic contribution from all 

energetic terms. 
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These force fields are obviously too crude for predicting accurate thermodynamical 

properties.  However, they can be used to quickly generate a set of initial or test 

conformations that can be studied at higher levels of theory. 

 

3.2.2.2. Results from ab initio methods 
 

I. Results at the RHF/3-21G level 

 
A. Gas phase calculation 

 
Table 3.9. RHF/3-21G energies for all species 

(Hartrees/particle) CD AD FC CD-AD CD-FC 

Zero point 1.2609 0.3076 0.2270 1.5709 1.4904 

Internal 1.3367 0.3181 0.2398 1.6590 1.5807 

Enthalpy 1.3377 0.3190 0.2408 1.6599 1.5817 

Free energy 1.1464 0.2709 0.1841 1.4408 1.3581 

Elec+Zero point -6474.2410 -610.9681 -1863.7494 -7085.2287 -8338.0179 

Elec+Internal -6474.1651 -610.9577 -1863.7366 -7085.1406 -8337.9276 

Elec+Enthalpy -6474.1642 -610.9567 -1863.7356 -7085.1397 -8337.9266 

Elec+Free energy -6474.3554 -611.0049 -1863.7923 -7085.3588 -8338.1501 

Eelectronic -6475.5018 -611.2757 -1863.9764 -7086.7996 -8339.5083 

Entropy(cal/mol*K-1) 402.605 101.345 119.305 461.266 470.509 

 
Table 3.10. Association energies for CD-AD and CD-FC from RHF/3-21G calculations 

 CD-AD CD-FC 

ΔEele(kj/mol) -57.87 -78.97 

ΔU0(kj/mol) -46.87 -68.00 

ΔH0(kj/mol) -49.36 -70.48 

ΔS0(kj/mol*K-1) -0.179 -0.215 

∆G0(kj/mol) 3.90 -6.34 

Keq
 0.207 12.93 
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B. Solvent phase calculation at the RHF/3-21G level 

In order to get a rough idea how the value of ΔG would change when the system is 

moved from the gas phase to the solvent phase (water as solvent), we carried out solvent 

phase calculations at the RHF/3-21G level. The calculations were completed at the 

RHF/3-21G level using the SCRF(PCM) solvation model.  For all species, only single 

point calculations were completed based on the geometries optimized in gas phase at the 

RHF/3-21G level, and thus the gas phase vibrational analyses were used since no solvent 

phase optimizations have taken place. 
Table 3.11. Solvation energy of each individual species at the RHF/3-21G level 

Species CD AD FC CD-AD CD-FC 

ΔGsol(kj/mol) -36.58 -7.19 -15.38 -14.62 -34.47 

 
Table 3.12. Solvent phase association Gibbs free energy and equilibrium constant of CD-AD and  

CD-FC at the RHF/6-31G level 

 CD-AD CD-FC 

∆G0(aq) (kj/mol) 33.05 11.15 

Keq(aq) 1.62E-6 0.0111 

 

The results to indicate that as we move from the gas phase to the solvent phase, the ΔG 

tends to turn more positive because the combined ΔG of two individual molecules (CD, 

AD or CD, FC) switch to more negative values than that of the complexes (CD-AD or 

CD-FC). 

 

Those results shown in Table 3.10 appear to be much better than those from the MM 

methods. However the ∆rG values still compare poorly to the experimental values shown 

in Table 3.5 and CD-FC is predicted to have a higher binding constant than that for CD-

AD, which does not agree with experimental observations. 

 

To improve the results, we may change the binding sites for CD-AD and CD-FC and use 

larger basis sets and higher levels of theory. Before we find a way to systematically 

maneuver the relative orientation of the monomer molecules in the complexes, we 

decided to try some higher level models. We first tried MP2 single point calculations on 
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the geometries optimized with the RHF/3-21G method. Then the MP2 and B3LYP (and 

the RHF method) methods were employed with larger basis sets such as the 6-31G and 6-

31G(d) sets.   

 

II. MP2 correction for the RHF/3-21G calculation 
The MP2 single point calculations were completed at the RHF/3-21g optimized 

geometries, and the thermal energy corrections are from the RHF/3-21g vibrational 

analysis.  
Table 3.13. MP2 energies for all species after RHF/3-21G optimization 

(Hartrees/particle) CD AD FC CD-AD CD-FC 

Zero point 1.2609 0.3076 0.2270 1.5709 1.4904 

Internal 1.3367 0.3181 0.2398 1.6590 1.5807 

Enthalpy 1.3377 0.3190 0.2408 1.6599 1.5817 

Free energy 1.1464 0.2709 0.1841 1.4408 1.3581 

Mp2elec+Zero point -6481.6861 -612.2900 -1865.2051 -7094.0142 -8346.9421 

Mp2elec+Internal -6481.6102 -612.2796 -1865.1922 -7093.9262 -8346.8518 

Mp2elec+Enthalpy -6481.6093 -612.2786 -1865.1913 -7093.9252 -8346.8509 

Mp2elec+Free energy -6481.8006 -612.3268 -1865.2480 -7094.1444 -8347.0744 

Eelectronic(mp2) -6482.9469 -612.5976 -1865.4321 -7095.5852 -8348.4325 

Entropy(cal/mol*K-1) 402.605 101.345 119.305 461.266 470.509 

 
Table 3.14. Association energies for CD-AD and CD-FC with MP2 corrections 

 CD-AD CD-FC 

ΔEele(kj/mol) -106.53 -140.55 

ΔU0(kj/mol) -95.53 -129.57 

ΔH0(kj/mol) -98.01 -132.05 

ΔS0(kj/mol*K-1) -0.179 -0.215 

∆G0(kj/mol) -44.76 -67.91 

Keq
 6.95E+7 7.92E+11 

 

These results imply tighter binding, but the value for ∆G0(CD-FC) is still more negative 

than ∆G0(CD-AD). But those values are greatly improved from those from the MM 
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methods, so we can carry those geometries of CD-AD and CD-FC to the higher level 

computations. We first tried using a larger basis set (6-31G) followed by computations 

using the B3LYP method. 

 

III. Results at the RHF/6-31G level 
Table 3.15. RHF/6-31G energies for all species 

(Hartrees/particle) CD AD FC CD-AD CD-FC 

Zero point 1.2657 0.3082 0.2282 1.5774 1.4972 

Internal 1.3430 0.3186 0.2411 1.6660 1.5886 

Enthalpy 1.3440 0.3195 0.2421 1.6669 1.5896 

Free energy 1.1467 0.2714 0.1849 1.4422 1.3569 

Elec+Zero point -6506.5634 -614.0970 -1872.7908 -7120.6603 -8379.3826 

Elec+Internal -6506.4861 -614.0866 -1872.7779 -7120.5717 -8379.2911 

Elec+Enthalpy -6506.4852 -614.0857 -1872.7769 -7120.5708 -8379.2902 

Elec+Free energy -6506.6824 -614.1338 -1872.8341 -7120.7954 -8379.5228 

Eelectronic -6507.8291 -614.4052 -1873.0190 -7122.2377 -8380.8798 

Entropy(cal/mol*K-1) 415.161 101.332 120.345 472.880 489.641 

 
Table 3.16. Association energies for CD-AD and CD-FC from RHF/6-31G 

 CD-AD CD-FC 

ΔEele(kj/mol) -8.69 -83.05 

ΔU0(kj/mol) 2.80 -71.22 

ΔH0(kj/mol) 0.32 -73.70 

ΔS0(kj/mol*K-1) -0.182 -0.192 

∆G0(kj/mol) 54.74 -16.47 

Keq
 2.54E-10 771.86 

 

These results show no improvement over those from the RHF/3-21G method in that they 

show even less bonding for the CD-AD complex which does not agree with experimental 

observations. 

 
Because the practical counter-parts of our systems are those with cyclodextrin attached to 

a nano-particle through sulfur atoms on cyclodextrin, we use the redundant coordinate 
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option in Gaussian to fix the coordinates of these hydrogen atoms. Thus these chosen 

hydrogen atoms were not allowed to move throughout the optimization process to 

simulate the situation that the cyclodextrin is anchored to the nano-particle substrate. 

 

IV. Results from the RHF/6-31G with redundant coordinates 
Table 3.17. Energies for all species at the RHF/6-31G level with redundant coordinates 

(Hartrees/particle) CD AD FC CD-AD CD-FC 

Zero point 1.2656 0.3082 0.2282 1.5774 1.4972 

Internal 1.3433 0.3186 0.2411 1.6660 1.5886 

Enthalpy 1.3443 0.3195 0.2421 1.6669 1.5896 

Free energy 1.1426 0.2714 0.1849 1.4423 1.3569 

Elec+Zero point -6506.5556 -614.0970 -1872.7908 -7120.6603 -8379.3826 

Elec+Internal -6506.4779 -614.0866 -1872.7779 -7120.5717 -8379.2911 

Elec+Enthalpy -6506.4770 -614.0857 -1872.7769 -7120.5708 -8379.2902 

Elec+Free energy -6506.6786 -614.1338 -1872.8341 -7120.7954 -8379.5228 

Eelectronic -6507.8212 -614.4052 -1873.0190 -7122.2377 -8380.8798 

Entropy(cal/mol*K-1) 424.356 101.332 120.345 472.840 489.674 

 
Table 3.18. Association energies for CD-AD and CD-FC from RHF/6-31G calculations with redundant 

coordinates 

 CD-AD CD-FC 

ΔEele(kj/mol) -29.46 -103.81 

ΔU0(kj/mol) -18.80 -92.81 

ΔH0(kj/mol) -21.28 -95.29 

ΔS0(kj/mol*K-1) -0.221 -0.230 

∆G0(kj/mol) 44.66 -26.64 

Keq
 1.50E-8 4.64E+4 

 

It is clear that this gives little improvement, since with a ΔrG of +44.66 kj/mol for 

CD-AD, we have a much weaker interaction between CD and AD compared to that 

between CD and FC with ΔrG equal to -26.64kj/mol. And since we know that the RHF 

method does not include dispersion and correlation effects, we decided to try the DFT 

method using the B3LYP method.  
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V. Results at the B3LYP/6-31G level 
Table 3.19. B3LYP energies for all species 

(Hartrees/particle) CD AD FC CD-AD CD-FC 

Zero point 1.1677 0.2884 0.2133 1.4591 1.3830 

Internal 1.2493 0.2996 0.2255 1.5529 1.4779 

Enthalpy 1.2503 0.3005 0.2265 1.5539 1.4789 

Free energy 1.0444 0.2509 0.1728 1.3213 1.2452 

Elec+Zero point -6533.3808 -618.1412 -1878.1713 -7151.5361 -8411.5697 

Elec+Internal -6533.2991 -618.1301 -1878.1591 -7151.4423 -8411.4748 

Elec+Enthalpy -6533.2982 -618.1291 -1878.1581 -7151.4414 -8411.4738 

Elec+Free energy -6533.5041 -618.1788 -1878.2118 -7151.6740 -8411.7075 

Eelectronic -6534.5485 -618.4297 -1878.3846 -7152.9952 -8412.9527 

Entropy(cal/mol*K-1) 433.274 104.438 113.024 489.549 491.815 

 
Table 3.20. Energy changes for CD-AD and CD-FC from B3LYP/6-31G calculations 

 CD-AD CD-FC 

ΔEele(kj/mol) -44.97 -51.58 

ΔU0(kj/mol) -34.41 -43.49 

ΔH0(kj/mol) -36.88 -45.97 

ΔS0(kj/mol*K-1) -0.202 -0.228 

∆G0(kj/mol) 23.21 22.01 

Keq
 8.55E-5 1.39E-4 

 

And once again this method predicts no binding. It was becoming clear that cyclodextrin 

may be interacting with AD and FC at different sites and that a more thorough 

conformational search will be necessary. Each conformation could be trapped in a local 

minimum, but not the global minimum.  It would be ideal if we can systematically 

change the binding site at which the host molecule (CD) and guest molecules (AD and 

FC) interact and also adjust the relative orientation of the host molecule and guest 

molecule. Then we can figure out the optimum site and orientation which combine to 

produce the best results. The detailed procedures are discussed in next section. 
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3.2.3. Results for the systematic construction of the 

complexes 
 

3.2.3.1. Systematic procedure for constructing the 

binary complexes 
 

A new approach was used to build the two complexes between cyclodextrin and AD and 

between cyclodextrin and FC under which we can systematically adjust the binding site 

and the relative orientation between the host molecule (cyclodextrin) and the guest 

molecules (AD and FC). The method to achieve this follows: 
 

First generate the z-matrices for the optimized CD, AD, and FC respectively; then attach 

the optimized z-matrices of AD and FC to the optimized z-matrix of CD respectively; in 

this process, we need to create six new internal coordinates, namely one bond length, two 

bond angles and three torsional angles in order to combine the two z-matrices into a 

single whole one. These six parameters dictate the binding site and the relative 

orientation of cyclodextrin to AD and FC. So we refer them as the six controlling 

parameters. Special care is needed for re-numbering the atoms and re-naming the 

symbols in the z-matrices of AD and FC before they are attached to the z-matrix of 

cyclodextrin.  All of the six new internal coordinates involve at least on atom from each 

of the two molecules in the binary complex. 
 

In order to illustrate the whole process better, we demonstrate here with graphics how we 

built up the single z-matrix for the complexes by putting together two z-matrices, one 

from the host molecule (CD) and another from one of the two guest molecules (AD and 

FC). 
 

First, we optimized all individual molecules with the method of choice (RHF, MP2 and 

B3LYP). Then for the final optimized geometries, we need to generate the z-matrix for 

the complex for which the program, MOLDEN, can greatly facilitate the process. We 
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change the order of how atoms are arranged in the z-matrices for molecules of AD and 

FC such that those atoms involved in the new controlling parameters occur first. Next, we 

illustrate the whole process using an example from the RHF calculations. Only a part of 

each z-matix is shown below with part of the connectivity section and all of the variable-

value section excluded. 
 

The partial z-matrix of CD: 
 h  52 hc144     45 hcc144      44 dih144  

 h  53 hs145     52 hsc145      45 dih145  

 h  50 ho146     47 hoc146      48 dih146  

 h  49 ho147     48 hoc147      43 dih147  

The partial z-matrix of AD (Represented by the top): 
 c 

 c   1 cc2      

 c   1 cc3        2 ccc3       

 h   1 hc4        2 hcc4         3 dih4 

The partial z-matrix of FC (Represented by the top): 
 c 

 c   1 cc2      

 c   1 cc3        2 ccc3       

 o   2 oc4        1 occ4         3 dih4 

 

Now, if we attach the z-matrix from AD and FC to the end of the z-matrix of CD 

respectively in order to form the two z-matrices for the two complexes, they would 

appear as follows: 
 

CD-AD: 
  h  52 hc144     45 hcc144      44 dih144  

  h  53 hs145     52 hsc145      45 dih145  

  h  50 ho146     47 hoc146      48 dih146  

  h  49 ho147     48 hoc147      43 dih147  

    c 
  c   1 cc2      

  c   1 cc3        2 ccc3       

  h   1 hc4        2 hcc4         3 dih4 
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 CD-FC: 
  h  52 hc144     45 hcc144      44 dih144  

  h  53 hs145     52 hsc145      45 dih145  

  h  50 ho146     47 hoc146      48 dih146  

  h  49 ho147     48 hoc147      43 dih147  

    c 
  c   1 cc2      

  c   1 cc3        2 ccc3       

  o   2 oc4        1 occ4         3 dih4 

 

Apparently, in order to make them a whole z-matrix, we need to use six more internal 

coordinates (referred to as controlling parameters) for each new z-matrix, namely one 

bond length, two bond angles and three torsional angles. The completed matrices are 

shown below. 

 

CD-AD: 
      h  52 hc144     45 hcc144      44 dih144  
   h  53 hs145     52 hsc145      45 dih145  

   h  50 ho146     47 hoc146      48 dih146  

   h  49 ho147     48 hoc147      43 dih147  

   c     7 oc148         14 ooc148          21 dih148 

   c   148 adcc2          7 cco149          14 dih149 

   c   148 adcc3        149 adccc3           7 dih150 

   h   148 adhc4        149 adhcc4         150 addih4 

CD-FC: 
   h  52 hc144     45 hcc144      44 dih144  

   h  53 hs145     52 hsc145      45 dih145  

   h  50 ho146     47 hoc146      48 dih146  

   h  49 ho147     48 hoc147      43 dih147 

   c     7 oc148         14 ooc148          21 dih148 

   c   148 fecc2          7 cco149          14 dih149 

   c   148 fecc3        149 feccc3           7 dih150 

   o   149 feoc4        148 feocc4         150 fedih4 
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Those highlighted six parameters are those constructed for completing the large z-matrix 

for the complexes. These are oc148 (bond length), ooc148 and cco149 (bond angles) and 

dih148, dih149 and dih150 (torsional angles). As for these six controlling parameters, one 

worth special mentioning here is the dih148. It turns out that the magnitude of dih148 

governs the distance between the overall guest molecule and the mean plane of 

cyclodextrin such that the smaller the magnitude, the closer the distance; and the sign of 

dih148 dictates which side of cyclodextrin the guest molecule is on with a positive sign 

for one side and a negative sign for the other side. 

 

The following precautions must be taken when generating the new larger z-matrix: 

1. Because AD and FC have far less atoms than CD does (32 and 27 atoms compared 

to 147 atoms), it is better attaching the z-matrices from AD and FC to the one for 

CD. By doing so, we reduce the changes needed in the renumbering.  

2. Due to the 147 atoms in CD, the atom sequence number in the z-matrices of AD 

and FC start from 148. We add 147 to the sequence number in the original 

individual matrices of AD and FC in order to get the right sequence number for the 

corresponding atoms in the large z-matrix for the complex. But those in the z-

matrix of CD are kept unchanged. 

3. In order to avoid having the same acronym used for more than one coordinate, all 

the variable names for the z-matrices of AD and FC have an extra “AD” and “FC” 

added as a prefix. 

4. Three oxygen atoms (7, 14, 21) from CD, three Carbon atoms from both AD and 

FC are chosen to construct the six new internal coordinates.   All these atoms are 

circled in yellow in the two figures below. The three carbon atoms chosen from 

AD and FC are the first three atoms in the original AD and FC z-matrices but they 

are numbered 148, 149 and 150 in the final large z-matrices for the complexes. 

 

By accident, the three carbon atoms chosen from AD for the B3LYP calculations are 

different from those of AD for the RHF calculations. They are also circled in yellow 

in the figure for AD for the B3LYP calculations. Certainly it does not affect the 
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results.  The choices for the three carbon atoms in FC are the same for both the RHF 

and B3LYP calculations.  

 
Figure 3.3. CD unit for constructing complexes for all calculations 

 
Figure 3.4. AD unit for constructing CD-AD complex for the RHF calculation 
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Figure 3.5. FC unit for constructing CD-FC complex for all calculations 

 

 
Figure 3.6. AD unit for constructing CD-AD complex for the B3LYP calculation 
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After constructing the z-matrices for the complexes, we are then able to adjust the 

binding site and the relative orientation between the host molecule (CD) and the guest 

molecules (AD or FC) by varying these six controlling parameters. Theoretically we can 

obtain all possible conformations, and we would need a mechanism to explore all 

possible combinations of these six quantities. However, from a practical point of view 

due to the size of these complexes, we are only able to investigate a smaller set of initial 

geometries. Details of computational results are discussed in next section. 

 

3.2.3.2. Computational results in vacuum 
 

I. Results from partial optimizations 
We first carried out a partial optimization using both the RHF/6-31g and B3LYP/6-31g 

methods, in which only the six controlling parameters are optimized with the remainder 

left unchanged. The initial values are assigned as reasonable guesses and given below. 

And we used the same set of initial values for CD-AD and CD-FC for both the RHF and 

B3LYP calculations. Those initial values were chosen intuitively. 
Table 3.21. Initial values of the controlling parameters for CD-AD 

oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

7.30 75.00 -45.00 35.00 135.00 95.00 

 
Table 3.22. Initial values of the controlling parameters for CD-FC 

oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

7.30 75.00 -45.00 35.00 135.00 95.00 

 
Table 3.23. Final values of the controlling parameters for CD-AD from RHF partial optimization 

oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

8.17 105.95 -24.11 18.58 91.12 58.22 

 
Table 3.24. Final values of the controlling parameters for CD-FC from RHF partial optimization 

oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

7.40 93.35 -37.39 24.82 95.12 86.97 
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Table 3.25. Energies for all species from RHF partial optimization 

(Hartrees/particle) CD AD FC CD-AD CD-FC 

Zero point 1.2657 0.3082 0.2282 1.5770 1.4969 

Internal 1.3430 0.3186 0.2411 1.6658 1.5885 

Enthalpy 1.3440 0.3195 0.2421 1.6668 1.5894 

Free energy 1.1467 0.2714 0.1849 1.4398 1.3537 

Elec+Zero point -6506.5634 -614.0970 -1872.7908 -7120.6914 -8379.3832 

Elec+Internal -6506.4861 -614.0866 -1872.7779 -7120.6025 -8379.2915 

Elec+Enthalpy -6506.4852 -614.0857 -1872.7769 -7120.6016 -8379.2906 

Elec+Free energy -6506.6824 -614.1338 -1872.8341 -7120.8286 -8379.5264 

Eelectronic -6507.8291 -614.4052 -1873.0190 -7122.2683 -8380.8800 

Entropy(cal/mol*K-1) 415.161 101.332 120.345 477.752 496.206 

 

 
Table 3.26. Association energies for CD-AD and CD-FC from RHF partial optimization 

 CD-AD CD-FC 

ΔEele(kj/mol) -89.17 -83.67 

ΔU0(kj/mol) -78.07 -72.26 

ΔH0(kj/mol) -80.54 -74.74 

ΔS0(kj/mol*K-1) -0.162 -0.164 

∆G0(kj/mol) -32.21 -25.71 

Keq
 4.42E+5 3.21E+4 

 
 

 
Table 3.27. Final values of controlling parameters for CD-AD from B3LYP partial optimization 

oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

7.29 76.11 -22.93 56.30 103.45 133.72 

 
 

 

Table 3.28. Final values of the controlling parameters for CD-FC from B3LYP partial optimization 

oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

7.74 88.96 -37.94 38.51 131.23 82.19 
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Table 3.29. Energies for all species from B3LYP partial optimization 

(Hartrees/particle) CD AD FC CD-AD CD-FC 

Zero point 1.1677 0.2884 0.2134 1.4576 1.3843 

Internal 1.2493 0.2996 0.2266 1.5520 1.4803 

Enthalpy 1.2503 0.3005 0.2275 1.5530 1.4813 

Free energy 1.0444 0.2509 0.1711 1.3187 1.2438 

Elec+Zero point -6533.3808 -618.1412 -1878.1715 -7151.5431 -8411.5848 

Elec+Internal -6533.2991 -618.1301 -1878.1583 -7151.4487 -8411.4887 

Elec+Enthalpy -6533.2982 -618.1291 -1878.1574 -7151.4477 -8411.4878 

Elec+Free energy -6533.5041 -618.1788 -1878.2138 -7151.6820 -8411.7252 

Eelectronic -6534.5485 -618.4297 -1878.3849 -7153.0007 -8412.9690 

Entropy(cal/mol*K-1) 433.274 104.438 118.777 493.135 499.787 

 

 
Table 3.30. Association energies from B3LYP partial optimization 

 CD-AD CD-FC 

ΔEele(kj/mol) -59.32 -93.71 

ΔU0(kj/mol) -51.10 -82.00 

ΔH0(kj/mol) -53.58 -84.48 

ΔS0(kj/mol) -0.187 -0.219 

∆G0(kj/mol) 2.04 -19.28 

Keq
 0.439 2.39E+3 

 

The RHF/6-31G results look much better in that it gives rise to more negative ∆G0. 

However we had expected that B3LYP would yield more favorable results since it takes 

into account the correlation effect which is not included in the RHF method, which 

should result in stronger binding (∆G0 of more negative value). 

 

In order to reveal the cause of this unexpected result, we examine the final structures 

from the RHF and B3LYP partial optimizations, which are shown in Figures 3.7 through 

3.10 below. 
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Figure 3.7. Final geometry of the RHF partially optimized CD-AD 

 
Figure 3.8. Final geometry of the RHF partially optimized CD-FC 
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Figure 3.9. Final geometry of the B3LYP partially optimized CD-AD 

 

 
Figure 3.10. Final geometry of the B3LYP partially optimized CD-FC 

 

From these figures, the most notable fact is that each of these two structures partially 

optimized by the RHF method has two hydrogen bonds present, but those partially 
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optimized by the B3LYP method have none for CD-AD or only one for CD-FC. This 

finding implies that the formation of multiple hydrogen bonds may play a critical role 

here. We must next complete the full optimization of all internal coordinates.  We can 

take the final RHF partially optimized geometries as initial structures or we can 

intentionally generate two hydrogen bonds by varying the six controlling parameters in 

the partially optimized B3LYP z-matrices. In order to be more cautious, we tried both. 

Totally we have six different initial structures for the B3LYP optimizations and four for 

the RHF optimizations. And clearly all these different initial structures are dictated by 

different sets of the six controlling parameters. 

 

II. Results of the full optimizations 
 

A. RHF/6-31G 

 
Four full RHF optimizations were completed for the complexes of CD-AD and two for 

CD-FC using RHF different starting geometries, which can be controlled by varying the 

six parameters. The values assigned for those six controlling parameters were decided by 

varying them in order to get the guest molecule as deep as possible in to the CD cavity 

but avoid any chemical bond formation between the host and the guest molecules. And 

those successful sets were chosen for the computations. 

  

         The first RHF full optimization used the final geometry from the RHF partial 

optimization as the initial structure; values for those six parameters are listed in Table 

3.31. The results are shown in Tables below. 

 
Table 3.31. Initial values of the controlling parameters for CD-AD 

 oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

I 8.17 105.95 -24.11 18.58 91.12 58.22 

II 7.70 60.00 14.00 130.00 -15.00 -109.00 

III 9.50 75.00 -17.00 85.00 35.00 95.00 

IV 6.50 125.00 -51.00 35.00 25.00 90.00 
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Table 3.32. Initial values of the controlling parameters for CD-FC 

 oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

I 7.40 93.35 -37.39 24.82 95.12 86.97 

II 6.00 60.00 14.00 20.00 -2.00 -90.00 

 

 

Table 3.33. Final RHF/6-31G values of the controlling parameters for CD-AD  

 oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

I 8.17 105.96 -24.12 18.58 91.11 58.22 

II 7.46 60.92 37.49 114.92 -45.53 -176.64 

III 9.97 62.19 -15.36 88.57 63.17 136.66 

IV 6.27 61.30 -77.39 32.90 92.08 126.41 

 

 
Table 3.34. Final RHF/6-31G values of the controlling parameters for CD-FC  

 oc148(angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

I 7.40 93.35 -37.38 24.82 95.12 86.97 

II 7.70 70.75 36.39 54.49 -34.61 -89.88 

 

 
Table 3.35. RHF/6-31G energies for CD, AD and FC 

(Hartrees/particle) CD AD FC 

Zero point 1.2657 0.3082 0.2282 

Internal 1.3430 0.3186 0.2411 

Enthalpy 1.3440 0.3195 0.2421 

Free energy 1.1467 0.2714 0.1849 

Elec+Zero point -6506.5634 -614.0970 -1872.7908 

Elec+Internal -6506.4861 -614.0866 -1872.7779 

Elec+Enthalpy -6506.4852 -614.0857 -1872.7769 

Elec+Free energy -6506.6824 -614.1338 -1872.8341 

Eelectronic -6507.8291 -614.4052 -1873.0190 

Entropy(cal/mol*K-1) 415.161 101.332 120.345 
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Table 3.36. RHF/6-31G energies for CD-AD complexes at various orientations 

(Hartrees/particle) CD-AD I CD-AD II Cyclo-Ad III Cyclo-Ad 
IV 

Zero point 1.5770 1.5759 1.5763 1.5765 

Internal 1.6658 1.6655 1.6657 1.6657 

Enthalpy 1.6668 1.6665 1.6666 1.6666 

Free energy 1.4398 1.4409 1.4409 1.4416 

Elec+Zero point -7120.6914 -7120.6787 -7120.6719 -7120.6811 

Elec+Internal -7120.6025 -7120.5890 -7120.5826 -7120.5919 

Elec+Enthalpy -7120.6016 -7120.5881 -7120.5816 -7120.5909 

Elec+Free energy -7120.8286 -7120.8137 -7120.8074 -7120.8159 

Eelectronic -7122.2683 -7122.2545 -7122.2482 -7122.2576 

Entropy(cal/mol*K-1) 477.752 474.824 475.117 473.526 

 
Table 3.37. RHF/6-31G energies for CD-FC complexes at various orientations 

(Hartrees/particle) CD-FC I CD-FC II 

Zero point 1.4969 1.4965 

Internal 1.5885 1.5880 

Enthalpy 1.5894 1.5890 

Free energy 1.3537 1.3565 

Elec+Zero point -8379.3832 -8379.3691 

Elec+Internal -8379.2915 -8379.2775 

Elec+Enthalpy -8379.2906 -8379.27656 

Elec+Free energy -8379.5264 -8379.5090 

Eelectronic -8380.8800 -8380.8656 

Entropy(cal/mol*K-1) 496.224 489.228 

 
Table 3.38. RHF/6-31G association energies for CD-AD at various orientations  

CD-AD I II III IV 

ΔEele(kj/mol) -89.17 -52.94 -36.34 -60.89 

ΔU0(kj/mol) -78.07 -42.68 -25.70 -50.18 

ΔH0(kj/mol) -80.54 -45.15 -28.18 -52.66 

ΔS0(kj/mol*K-1) -0.162 -0.174 -0.173 -0.180 

∆G0(kj/mol) -32.21 6.84 23.45 0.953 

Keq
 4.42E+5 0.0633 7.76E-5 0.681 



76 
 

Table 3.39. RHF/6-31G association energies for CD-FC at various orientations. 

CD-FC I II 

ΔEele(kj/mol) -83.67 -45.77 

ΔU0(kj/mol) -72.26 -35.51 

ΔH0(kj/mol) -74.74 -37.99 

ΔS0(kj/mol*K-1) -0.164 -0.194 

∆G0(kj/mol) -25.73 19.75 

Keq
 3.24E+4 3.46E-4 

 

These results from the first full optimization are almost identical to those from the RHF 

partial optimization, which indicates that throughout the first full optimization, the 

structures of the individual molecules in the complexes (CD, AD and FC) change very 

little, which can be easily noted from the similarity between geometries before and after 

optimization as shown from Figures 5.26 through 5.29 in the Appendix. 

 

The results from the second full optimization are not as good as those from the first one 

in that the second one results in much more positive value for ΔG0 for both CD-AD and 

CD-FC compared to those values obtained from the first optimization. So the best results 

from the RHF full optimizations are those from the first.  

 

Figures 5.30 through 5.33 in the Appendix give the geometries for CD-AD and CD-FC 

before and after the second full optimization. And Figures 5.34 to 5.37 in the Appendix 

illustrate the geometries of CD-AD before and after the third and fourth optimizations. 

Clearly the co-occurrence of double hydrogen bonds and very negative ΔG from the first 

full optimization for both of the CD-AD and CD-FC complexes makes us further believe 

that the two hydrogen bonds are the main contribution for stabilizing the complexes.  

 

B. B3LYP/6-31G full optimization 
Six trial B3LYP calculations have been carried out on different initial structures for the 

complexes of CD-AD and CD-FC with different values for the controlling parameters. 

Like those for the RHF full optimization calculations, values used for the B3LYP method 
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were chosen by carefully varying all six parameters to move the guest molecules into the 

CD cavity but to avoid the formation of chemical bonds between the host molecule and 

the guest molecule. The fifth one used the corresponding final geometries from the RHF 

partial optimizations as the initial structures for both CD-AD and CD-FC. But because of 

the different way used to set up complexes for the B3LYP computations from those for 

the RHF computations, those values for the fifth CD-AD and CD-FC are not identical 

from those final values from the corresponding RHF computations. These values are 

listed below. 
Table 3.40. Initial values assigned for the controlling parameters for CD-AD 

 oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

I 7.60 100.00 55.44 70.00 -107.97 23.00 

II 8.10 78.00 29.00 35.00 -50.00 65.00 

III 8.10 78.00 -29.00 15.00 35.00 65.00 

IV 6.00 45.00 -50.00 15.00 35.00 65.00 

V 8.30 109.41 46.21 62.33 -107.97 31.87 

VI 13.50 70.00 -34.00 85.00 100.00 120.00 

 

Table 3.41. Initial values assigned for the controlling parameters for CD-FC 

 oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

I 6.00 80.00 54.00 65.00 220.00 80.00 

II 7.50 80.00 30.00 50.00 20.00 -90.00 

III 6.80 57.50 -30.00 50.00 20.00 -80.00 

IV 7.74 88.96 -37.94 38.51 131.23 82.19 

V 9.63 99.79 35.86 51.27 -112.64 -92.79 

VI 13.00 60.00 -30.00 95.00 135.00 100.00 

 

Table 3.42. Final B3LYP/6-31G values of the controlling parameters for CD-AD  

 oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

I 7.96 99.44 58.93 59.55 -114.53 -0.28 

II 9.80 91.47 37.05 13.58 -17.64 48.14 

III 4.96 75.81 -62.11 19.54 27.50 164.25 

IV 6.11 53.94 -89.00 42.67 17.76 82.13 

V 8.28 102.89 45.61 62.85 -112.10 42.53 

VI 16.75 74.38 -22.00 28.24 85.32 63.79 
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Table 3.43. Final B3LYP/6-31G values of the controlling parameters for CD-FC  

 oc148 (angs) ooc148(deg) dih148(deg) cco149(deg) dih149(deg) dih150(deg) 

I 7.12 81.03 41.64 48.73 13.92 -19.14 

II 7.11 81.24 41.56 49.20 14.00 -21.16 

III 7.47 64.36 -40.47 21.37 -29.72 16.62 

IV 7.70 92.74 -31.40 39.44 126.39 83.17 

V 9.55 96.25 35.09 52.51 -113.00 -105.16 

VI 16.45 55.34 -10.84 38.78 174.70 -36.41 

 

Table 3.44. B3LYP/6-31G energies for CD, AD and FC 

(Hartrees/particle) CD AD FC 

Zero point 1.1677 0.2884 0.2134 

Internal 1.2493 0.2996 0.2266 

Enthalpy 1.2503 0.3005 0.2275 

Free energy 1.0444 0.2509 0.1711 

Elec+Zero point -6533.3808 -618.1412 -1878.1715 

Elec+Internal -6533.2991 -618.1301 -1878.1583 

Elec+Enthalpy -6533.2982 -618.1291 -1878.1574 

Elec+Free energy -6533.5041 -618.1788 -1878.2138 

Eelectronic -6534.5485 -618.4297 -1878.3849 

Entropy(cal/mol*K-1) 433.274 104.438 118.777 

 
Table 3.45. B3LYP/6-31G energies for CD-AD at various orientations 

(Hartrees/particle) CD-AD I CD-AD II CD-AD III CD-AD IV CD-AD V CD-AD VI 

Zero point 1.4581 1.4583 1.4584 1.4583 1.4592 1.4584 

Internal 1.5522 1.5524 1.5525 1.5527 1.5528 1.5524 

Enthalpy 1.5532 1.5534 1.5535 1.5537 1.5537 1.5533 

Free energy 1.3191 1.3199 1.3200 1.3191 1.3199 1.3185 

Elec+Zero point -7151.5468 -7151.5393 -7151.5466 -7151.5378 -7151.5616 -7151.5482 

Elec+Internal -7151.4527 -7151.4452 -7151.4525 -7151.4434 -7151.4680 -7151.4543 

Elec+Enthalpy -7151.4517 -7151.4443 -7151.4515 -7151.4424 -7151.4671 -7151.4533 

Elec+Free energy -7151.6858 -7151.6778 -7151.6850 -7151.6770 -7151.7009 -7151.6882 

Eelectronic -7153.0049 -7152.9977 -7153.0050 -7152.9961 -7153.0208 -7153.0067 

Entropy(cal/mol*K-1) 492.694 491.442 491.495 493.738 492.215 494.227 
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Table 3.46. B3LYP/6-31G association energies for CD-AD at various orientations  

CD-AD I II III IV V VI 

ΔEele(kj/mol) -70.29 -51.31 -70.60 -47.15 -112.07 -74.96 

ΔU0(kj/mol) -61.56 -42.04 -61.04 -37.14 -101.85 -65.80 

ΔH0(kj/mol) -64.04 -44.52 -63.52 -39.62 -104.33 -68.28 

ΔS0(kj/mol*K-1) -0.188 -0.194 -0.193 -0.184 -0.190 -0.182 

∆G0(kj/mol) -7.873 13.211 -5.859 15.241 -47.567 -14.025 

Keq
 23.951 0.00484 10.628 0.00214 2.1573E+8 286.610 

 
Table 3.47. B3LYP/6-31G energies for CD-FC 

(Hartrees/particle) CD-FC I CD-FC II CD-FC III CD-FC IV CD-FC V CD-FC VI 

Zero point 1.3840 1.3838 1.3832 1.3836 1.3840 1.3845 

Internal 1.4799 1.4798 1.4789 1.4790 1.4800 1.4800 

Enthalpy 1.4809 1.4807 1.4798 1.4799 1.4810 1.4810 

Free energy 1.2422 1.2420 1.2421 1.2438 1.2394 1.2406 

Elec+Zero point -8411.5759 -8411.5760 -8411.5652 -8411.5839 -8411.5889 -8411.5825 

Elec+Internal -8411.4800 -8411.4800 -8411.4695 -8411.4886 -8411.4929 -8411.4869 

Elec+Enthalpy -8411.4790 -8411.4791 -8411.4686 -8411.4876 -8411.4920 -8411.4860 

Elec+Free energy -8411.7177 -8411.7178 -8411.7063 -8411.7237 -8411.7335 -8411.7263 

Eelectronic -8412.9599 -8412.9598 -8412.9484 -8412.9675 -8412.9729 -8412.9669 

Entropy(cal/mol*K-1) 502.317 502.399 500.367 496.855 508.448 505.845 

 

Table 3.48. B3LYP/6-31G association energies for CD-FC at various orientations  

CD-FC I II III IV V VI 

ΔEele(kj/mol) -69.66 -69.46 -39.47 -89.76 -103.92 -88.21 

ΔU0(kj/mol) -59.03 -59.18 -31.62 -81.67 -93.01 -77.31 

ΔH0(kj/mol) -61.51 -61.66 -34.10 -84.15 -95.49 -79.79 

ΔS0(kj/mol*K-1) -0.208 -0.208 -0.216 -0.231 -0.182 -0.193 

∆G0(kj/mol) 0.541 0.294 30.383 -15.281 -41.086 -22.145 

Keq
 0.804 0.888 4.75E-6 475.566 1.5792E+7 7583.369 

 

From the results above, it is apparent that for both CD-AD and CD-FC, the fifth and sixth 

complexes have the best structure given that they have the most negative ∆G0 values. 

From Tables of 3.42 and 3.43, and Figures 5.38 through 5.61 in the Appendix, we note 

that for both CD-AD and CD-FC, the first, second and fifth complexes have the guest 

molecule (AD or FC) on the same side of CD, and the third, fourth and sixth have the 
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guest molecule on the other side of CD. The 1st, 2nd and 5th complexes have positive 

dih148 and the 3rd,4th and 6th complexes have negative dih148. 

 

III. MP2 corrections 
 

MP2 single point calculations were carried out to obtain a better description of the 

electronic and correlation energies for those structures from the first RHF full 

optimization as well as for the fifth and sixth B3LYP full optimizations since these give 

the lowest ΔG values. 

A. MP2 correction to the RHF results 
Table 3.49. MP2/6-31G energies for the RHF optimized species 

(Hartrees/particle) CD AD FC CD-AD CD-FC 

Zero point 1.2657 0.3082 0.2282 1.5770 1.4969 

Internal 1.3430 0.3186 0.2411 1.6658 1.5885 

Enthalpy 1.3440 0.3195 0.2421 1.6668 1.5894 

Free energy 1.1467 0.2714 0.1849 1.4398 1.3537 

Elec+Zero point -6514.0647 -615.4247 -1874.2646 -7129.5312 -8388.3690 

Elec+Internal -6513.9874 -615.4144 -1874.2516 -7129.4424 -8388.2774 

Elec+Enthalpy -6513.9865 -615.4134 -1874.2507 -7129.4414 -8388.2764 

Elec+Free energy -6514.1838 -615.4616 -1874.3078 -7129.6684 -8388.5122 

Eelectronic -6515.3305 -615.7330 -1874.4927 -7131.1082 -8389.8658 

Entropy(cal/mol*K-1) 415.161 101.332 120.345 477.752 496.224 

 
Table 3.50. Association energies for CD-AD and CD-FC from the MP2 corrections to the RHF results 

 CD-AD CD-FC 

ΔEele(kj/mol) -117.61 -112.04 

ΔU0(kj/mol) -106.50 -100.63 

ΔH0(kj/mol) -108.98 -103.11 

ΔS0(kj/mol*K-1) -0.162 -0.164 

∆G0(kj/mol) -60.64 -54.10 

Keq
 4.26E+10 3.04E+9 

 

B. MP2 correction to the B3LYP results 
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Table 3.51. MP2/6-31G energies for the B3LYP optimized CD, AD and FC 

(Hartrees/particle) CD AD FC 

Zero point 1.1677 0.2884 0.2134 

Internal 1.2493 0.2996 0.2266 

Enthalpy 1.2503 0.3005 0.2275 

Free energy 1.0444 0.2509 0.1711 

Elec+Zero point -6514.2389 -615.4534 -1874.3353 

Elec+Internal -6514.1573 -615.4423 -1874.3221 

Elec+Enthalpy -6514.1564 -615.4413 -1874.3212 

Elec+Free energy -6514.3622 -615.4909 -1874.3776 

Eelectronic -6515.4066 -615.7418 -1874.5487 

Entropy(cal/mol*K-1) 433.274 104.438 118.777 

 
Table 3.52. MP2/6-31G energies for B3LYP optimized CD-AD and CD-FC 

(Hartrees/particle) CD-AD (V) CD-AD (VI) CD-FC (V) CD-FC (VI) 

Zero point 1.4592 1.4584 1.3840 1.3845 

Internal 1.5528 1.5524 1.4800 1.4800 

Enthalpy 1.5537 1.5533 1.4810 1.4810 

Free energy 1.3199 1.3185 1.2394 1.2406 

Elec+Zero point -7129.7366 -7129.7154 -8388.6161 -8388.6014 

Elec+Internal -7129.6430 -7129.6215 -8388.5201 -8388.5058 

Elec+Enthalpy -7129.6421 -7129.6205 -8388.5192 -8388.5049 

Elec+Free energy -7129.8760 -7129.8553 -8388.7607 -8388.7452 

Eelectronic -7131.1958 -7131.1738 -8390.0001 -8389.9859 

Entropy(cal/mol*K-1) 492.694 494.227 508.448 505.845 

 
Table 3.53. Association energies for CD-AD and CD-FC from the MP2 corrections to the B3LYP 

results 

 CD-AD V CD-AD VI CD-FC V CD-FC VI 

ΔEele(kj/mol) -124.36 -66.64 -117.67 -80.22 

ΔU0(kj/mol) -114.15 -57.48 -106.76 -69.32 

ΔH0(kj/mol) -116.63 -59.96 -109.24 -71.81 

ΔS0(kj/mol*K-1) -0.190 -0.182 -0.182 -0.193 

∆G0(kj/mol) -59.87 -5.70 -54.84 -14.16 

Keq
 3.08E+10 9.98 4.05E+9 302.0 
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3.2.3.3.  Solvation energy  

 
The following diagram represents the cycle we use to determine the solvation effects for 

the reaction that forms a binary complex, A + B  →  A-B. 

 

A(aq) + B(aq)
∆rG0(aq)

A-B(aq)

A(g) + B(g) A-B(g)

∆rG0(g)

∆Gsol−∆Gsol −∆Gsol

 
 

 

From the above diagram, we get: 

        ∆rG0(CD-AD)(aq) = -∆Gsol(CD) + [-∆Gsol(AD)] + ∆rG0(CD-AD)(g) + ∆Gsol(CD-AD)  (3.10) 

 
        ∆rG0(CD-FC)(aq) = -∆Gsol(CD) + [-∆Gsol(FC)] + ∆rG0(CD-FC)(g) + ∆Gsol(CD-FC)  (3.11) 

 

In the above, ∆rG0(CD-AD)(aq) and ∆rG0(CD-FC)(aq) are the Gibbs free energies of 

association for CD-AD and CD-FC respectively in water solution. In turn, ∆Gsol(CD), 

∆Gsol(AD), ∆Gsol(FC), ∆Gsol(CD-AD) and ∆Gsol(CD-FC) are the solvation Gibbs free 

energies for CD, AD, FC, CD-AD and CD-FC.   ∆rG0(CD-AD)(g) and  ∆rG0(CD-FC)(g) 

are the Gibbs free energies of association for CD-AD and CD-FC in the gas phase. 

 

As with the MP2 calculations, the solvent phase calculations have only been carried out 

on the first RHF optimized complexes and the fifth and sixth B3LYP optimized 

complexes because those ΔG values were the lowest. The model used is the PCM/SCRF 
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method. Only single point calculations were applied. The following results were 

obtained. 

 
Table 3.54. The RHF/6-31G solvation energies for the 1st fully optimized set 

Species CD AD FC CD-AD CD-FC 

ΔGsol(kal/mol) -58.81 -8.260 -14.86 -33.77 -40.89 

ΔGsol(kj/mol) -246.1 -34.56 -62.17 -141.3 -171.1 

 
Table 3.55. The RHF/6-31G solvent phase association Gibbs free energies and equilibrium 

constants of CD-AD and CD-FC 

 CD-AD CD-FC 

∆G0(aq) (kj/mol) 107.2 111.4 

Keq(aq) 1.691E-19 2.997E-20 

 
Table 3.56. B3LYP/6-31G solvation energies for CD-AD 

Species CD AD FC CD-AD(V) CD-AD(VI) 

ΔGsol (kal/mol) -38.25 -6.660 -11.89 -22.62 -32.31 

ΔGsol (kj/mol) -160.0 -27.86 -49.75 -94.64 -135.2 

 
Table 3.57. B3LYP/6-31G solvation energies for CD-FC 

Species CD AD FC CD-FC(V) CD-FC(VI) 

ΔGsol (kal/mol) -38.25 -6.66 -11.89 -25.42 -35.37 

ΔGsol (kj/mol) -160.0 -27.86 -49.75 -106.4 -148.0 

 
Table 3.58. B3LYP/6-31G solvent phase association Gibbs free energies and equilibrium 

constants for CD-AD and CD-FC 

 CD-AD V CD-AD VI CD-FC V CD-FC VI 

∆G0(aq) (kj/mol) 45.65 38.64 62.26 39.61 

Keq(aq) 1.005E-8 1.704E-7 1.236E-11 1.152E-7 

 

So, the best results in solvent phase are 38.64 kj/mol for CD-AD and 39.61 kj/mol for 

CD-FC complexes respectively. Interestingly, for the complex of CD-FC, the best result 

is from the sixth complex, different from the gas phase results, in which the fifth one has 

the best association Gibbs free energy. Furthermore, those solvent phase results are in 
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very poor agreement with experimental data in Table 3.3. We believe the reason behind 

this is that we have completely ignored the hydrophobic (hydrophilic) contribution to the 

association process.  See discussion part for detail. 

 

3.3.  The excited state calculations 
 

3.3.1. Method 
 

In order to study the electron absorption and fluorescence behavior of these metal nano-

particles anchored to individual cyclodextrin molecules and the complexes of CD-AD 

and CD-FC, the ZINDO method was applied to study the excited states. The nano-

particles of the metal (M) are linked to the CD component through one or more sulfur 

linkages, -M-S-C- where the carbon atom resides in one of the CD rings. This is modeled 

here by inserting one metal atom into the thiol H-S- bond to give a   H-M-S-C- motif.   

For these calculations, Zn is used as the metal since the ZINDO method is well 

parameterized for this transition metal element. These structures of Zn-CD, Zn-(CD-AD) 

and Zn-(CD-FC) are presented in Figure 5.62, 5.63 and 5.64 respectively in the 

Appendix. 

 

These three structures were then optimized using the semiempirical PM3 method before a 

ZINDO single point calculation was completed on each of the three optimized structures. 

The ZINDO method calculates for the excited states the transition energies, the molecular 

orbitals involved in each transition and the major contributing atomic orbitals making up 

each molecular orbital through a Mulliken Population analysis.  

 

Our goal is to decipher what kind of change is brought to the first excitation transition 

(HOMO to LUMO) in the nano-particle-CD system after AD and FC are complexed to 

the CD moiety. First we determine the first excitation transition in the metal-CD unit, and 

then locate the corresponding excitation in the metal-CD-AD and the metal-CD-FC 
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complexes by comparing the excitation energy, the energy level of the associated 

molecular orbitals and the major atomic orbitals making up these molecular orbitals. 

 

We obtained the following results. Only those atomic orbitals with a MO coefficient 

greater than 0.1, are listed. 

 

3.3.2. The ZINDO Results 
 

3.3.2.1. Results for a nano-particle with only CD 
 

The first excitation transition occurs as an electron is excited from orbital 225 (HOMO) 

to orbital 226 (LUMO). The excitation energy is 7.0151 eV (about 176.74 nm) with an 

oscillator strength f equal to 0.0103. The major components for orbital 225 and 226 are 

listed in Table 3.59 and 3.60 respectively. 

 
Table 3.59. The atomic orbital composition for molecular orbital 225 (Eigenvalue = -0.36480 eV) 

O #13 C  #72 S #73 Zn #74 H #124 H #125 

2Px 2Py 3Px 3Py 3Pz 3Py 1S 1S 

0.12 -0.17 -0.18 0.89 0.22 0.14 -0.17 0.12 

 
Table 3.60. The atomic orbital composition for molecular orbital 226 (Eigenvlue = 0.06449 eV) 

C #11 C#12 C#72 S#73 Zn #74 H#121 H#122 H#148 

2S 2S 2S 3S 3Px 4S 3Px 3Pz 1S 1S 1S 

0.21 -0.30 0.26 -0.14 0.18 0.41 0.23 0.58 -0.10 0.12 -0.25 

 

The first orbital (225) is mainly centered on the sulfur atom (#73) and the second orbital 

(226) is very much concentrated on the Zn atom (#74), which is bonded to the sulfur 

atom. So for particles with CD-AD and CD-FC, the corresponding excitation has to 

involve two molecular orbitals mostly centered on the bonded S and Zn atoms. 
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3.3.2.2. Results for a nano-particle with the CD-AD complex 
 
The corresponding excitation in the nano-particle with CD-AD complex is the one from 

MO 264 to MO 266 at an excitation energy of 6.9410 eV (178.63 nm) with an oscillator 

strength f equal to 0.0074. Orbital 264 is mainly localized on the sulfur atom (#85) and 

MO 266 mostly involves Zn (#86) which is bonded to the sulfur atom. The major 

components for orbital 264 and 266 are listed in Table 3.61 and 3.62 respectively. 

 
Table 3.61. The atomic composition for molecular orbital 264 (Eigenvalue = -0.36361 eV) 

C#84 S#85 S#88 H#139 

2Px 2Py 3Px 3Py 3Pz 3Px 1S 

0.10 -0.12 -0.56 0.59 -0.45 0.10 0.16 

 
Table 3.62. The atomic composition for molecular orbital 266 (Eigenvalue = 0.06338 eV) 

S#85 Zn #86 

3S 3Px 3Py 4S 3Px 3Pz 

0.15 0.16 0.12 -0.41 0.37 0.46 

 

Table 3.62 (continued) 

H#135 H#136 H#180 C #32 C#33 C#34 C#35 C#84 

1S 1S 1S 1S 1S 1S 1S 1S 

0.11 -0.11 -0.25 -0.11 0.13 -0.22 0.28 -0.27 

 

3.3.2.3. Results for a nano-particle with the CD-FC complex 
 

The excitation of the nano-particle with the CD-FC complex of that corresponds to the 

first excitation for the nano-particle with CD only is the one from MO 259 to orbital MO 

270. The excitation energy is 6.9164 eV (179.26 nm) with an oscillator strength of 

0.0052. And orbital 259 is mainly centered on the sulfur atom (#78) and MO 270 mainly 

involves the Zn atom (#132), which is bonded to the sulfur atom. Table 3.63 and 3.64 

lists the major components for orbital 259 and 270 respectively. 
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Table 3.63. The atomic orbital composition for molecular orbital 259 (Eigenvalue = -0.35871 eV). 

C#77 S#78 H#130 H#131 Zn#132 

2Px 3Px 3Py 1S 1S 3Px 

-0.15 0.80 -0.48 -0.16 0.13 0.12 

 
Table 3.64. The atomic orbital composition for molecular orbital 270 (Eigenvalue = 0.06286 eV) 

S#78 Zn#132 C#166 C#170 

3S 3Py 4S 3Px 3Py 3Pz 2Px 2Py 2Px 2Py 

0.12 -0.15 -0.37 -0.11 -0.12 0.51 0.17 -0.12 -0.13 0.11 

 
Table 3.64 (continued) 

C#7 C#8 C#9 C#10 C#11 C#77 H#129 H#148 C#167 

2S 2S 3S 2S 2S 2S 1S 1S 2Px 

0.28 -0.24 0.21 -0.16 0.13 -0.21 -0.12 0.22 -0.10 

 

Figures 3.11 through 3.16 give the density plots for the oribtals discussed above. The MO 

illustrated in Figures 3.11, 3.13 and 3.15 are very similar, and those illustrated in Figures 

3.12, 3.14 and 3.16 are also very similar. These similarities in density, energy level and 

orbital composition assure us that these orbitals are related to one another, as are the three 

corresponding transitions.    
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Figure 3.11. The HOMO (225) of CD-ZnS 

 
Figure 3.12. LUMO (226) for CD-ZnS 
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Figure 3.13. Orbital 264 for CD-AD-ZnS. 

 

 
Figure 3.14. Orbital 266 for CD-AD-ZnS 
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Figure 3.15. Orbital 259 of CD-FC-ZnS. 

 
Figure 3.16. Orbital 270 of CD-FC-ZnS 
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4. Discussion 

4.1. The structure and energy levels of CD  

The CD structure with the lowest computed energy from the RHF/6-31G(d) 

optimizations and confirmed by B3LYP/6-31G(d) single point calculations is the 9th 

conformer. It is illustrated below. 

 

Figure 4.1. Structure of the ninth CD conformer 

In Table 4.1, the ten conformers with the lowest energy from RHF/6-31G(d) 

optimizations are listed. The B3LYP/6-31G(d) method was employed to calculate the 

energy on the RHF-optimized geometries of the four conformers with lowest energy, and 

these results are listed in Table 4.1b. These calculations have revealed that the ninth 

conformer is the most stable one, and it will be used for all inclusion complexes. 
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A qualitative analysis of the geometries leads us to believe that the repulsive interactions 

among the sulfur atoms plays an important role on the relative stability of the conformers, 

perhaps even more than the intra-molecular hydrogen bonds. The 2nd, 3rd and 4th 

conformers have two intramolecular hydrogen bonds formed at their optimized 

geometries and the rest have only one (see Figures 5.12-5.21 in the Appendix). But those 

with two hydrogen bonds are not those with the lowest energy; instead the 2nd and 3rd are 

the two with highest energy. In Table 4.2 we list these distances between all seven sulfur 

atoms (21 pairs) in these ten conformers. 

Table 4.1. Energy level of the first ten conformers at the RHF/6-31G(d) level 

Conformer Energy (Hartree/molecule) 

1 -6509.6941 

2 -6509.6894 

3 -6509.6875 

4 -6509.6947 

5 -6509.6958 

6 -6509.7025 

7 -6509.6932 

8 -6509.6984 

9 -6509.7042 

10 -6509.6910 

(Note: the order from the lowest to highest is 9, 6, 8, 5, 4, 1, 7, 10, 2, 3.) 

Table 4.1b. B3LYP/6-31G(d) energies for the four conformers with lowest RHF/6-31G(d) energy 

Conformer 9th 6th 8th 5th 

Energy (Hartree) -6535.8694 -6535.8679 -6535.8672 -6535.8602 

Actually based on our qualitative analysis we have concluded that not all sulfur-sulfur 

interactions have a significant effect on the energy. The further the sulfur pair is apart, the 
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weaker the interaction would be. It seems that only interactions from those pairs within 5 

Å are significant. For instance the sum of all pair distances reaches the maximum for the 

3rd conformer, which is 185.136 Å, but the 3rd conformer has the highest energy. 

However, both the 3rd and 2nd conformers have four pair distances shorter than 5 Å, the 

highest among all ten conformers. So the 3rd and 2nd conformers are the two with the 

highest energy. On the other hand, the 9th and 6th conformers have only 1, the lowest 

number of pair distance shorter than 5 Å, which makes them the two with the lowest 

energy. But this is only a qualitative analysis. The 7th conformer is an exception. It only 

has two pairs of sulfur atoms falling within 5 Å, but it has an energy level higher than 

conformers 4 and 1, both of which have 3 pairs of sulfur atoms with distances less than 5 

Å. This can be explained partially by counting the number of distances shorter than 6 Å 

but higher than 5 Å. For that, the 7th conformer has 4 pairs but both the 1st and the 4th 

have only 3 pairs. And also it may be explained by the strength of the intramolecular 

hydrogen bonds. The 4th one has two intramolecular hydrogen bonds. Both the 1st and the 

7th only have one, but the one from the 1st conformer has a shorter O-H distance and a 

more linear O-H-O angle (closer 180 degrees) than those in the hydrogen bond for 7th 

conformer (see Table 4.3).   

But a more precise quantitative analysis is needed to reveal the subtle relation between 

the structure and energy. For example, the 9th and 6th conformers both have only one 

sulfur atom pair with a distance shorter than 5Å and comparable hydrogen bonds. So why 

is the 9th one more stable than the 6th one energetically?  

In Table 4.4 are listed the nonbonded interaction energies from MM calculations for the 

ten conformers. They are ordered from the lowest to the highest. 

From the data in Table 4.4, the nonbonded interactions (sometimes it is termed the van 

der Waals interactions including the nuclear repulsion) play an important role in 

determining the relative energy levels of the conformers, especially for making the 9th 

and the 6th the two most stable ones. But for the rest of the conformers, other effects 

such as the electronic contributions including the electron-electron repulsion and 

nuclear-electron attraction surpass the inter-nuclear interactions. For example, the 2nd 
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and the 3rd conformers both have double intramolecular hydrogen bonds and very low 

nonbonded energy terms (ranked the third and the fourth), but after the electronic energy 

is taken into account, they become the two with the highest energy levels. 

Table 4.2. Distance between the sulfur atoms in the first ten conformers (Angstroms) 

1 2 3 4 5 6 7 8 9 10 
8.45 6.40 8.44 5.80 7.32 6.67 6.29 6.22 6.93 6.36 
4.64 4.62 4.65 4.37 5.12 4.62 4.78 4.41 4.58 4.67 
4.62 6.67 6.79 5.27 6.27 6.19 4.79 4.58 6.26 4.84 
7.84 7.31 7.27 6.54 7.56 7.62 7.67 7.57 7.63 7.75 
4.68 4.59 4.58 4.80 4.68 5.91 5.20 5.68 5.61 5.02 
6.98 6.89 7.08 5.68 7.03 7.55 6.90 7.94 7.56 6.64 
9.92 10.73 10.75 9.83 9.92 10.84 10.20 10.82 10.87 10.16 
8.98 11.24 11.28 9.50 11.33 10.72 9.53 8.90 10.78 9.46 
7.81 6.64 7.33 8.13 7.58 6.99 7.25 6.57 6.94 6.97 
5.65 4.60 4.67 5.22 5.47 5.34 5.37 5.52 5.20 5.12 
5.02 4.46 4.45 4.70 4.76 5.19 5.26 7.01 5.12 6.06 
7.10 8.10 7.94 7.58 7.78 7.55 7.92 7.44 6.96 6.83 

12.32 12.53 13.41 12.58 12.44 11.50 12.11 11.47 11.22 10.92 
11.24 12.67 12.74 12.39 12.23 11.21 11.23 11.84 10.74 9.87 
13.30 14.64 14.65 15.51 13.80 12.60 12.93 13.63 12.28 11.91 
5.68 8.31 8.35 10.31 6.94 6.00 5.88 6.43 5.65 4.79 
9.03 8.39 8.22 7.20 8.59 9.78 10.40 9.29 9.32 9.78 

14.67 12.69 13.32 12.04 13.62 14.22 14.85 13.86 14.17 14.68 
12.02 11.20 11.30 10.27 11.50 12.31 12.34 12.55 12.14 12.02 
12.26 11.24 11.26 12.04 10.84 11.02 12.04 12.14 10.95 11.83 
6.87 6.65 6.68 7.85 6.25 7.64 7.78 8.32 7.58 8.18 

 

 
Table 4.3. The O-H distance and O-H-O angle in the intramolecular bonds in the RHF/6-31G(d) optimized 

conformers (Note: in the second  and third rows, the distance and angle are listed for the first and the 

second hydrogen bond (if it exists). 

1 2 3 4 5 6 7 8 9 10 

2.00Å 

160.40 

2.122Å 

158.90 

2.00 Å 

162.80 

1.98 Å 

153.80 

2.00Å 

165.70 

1.97Å 

150.50 

2.122Å 

153.90 

2.00 Å 

152.90 

1.99 Å 

150.70 

2.14 Å 

152.70 

NA 2.18Å 

146.60 

2.17Å 

146.60 

2.07Å 

145.60 

NA NA NA NA NA NA 
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Table 4.4. MM Nonbonded energy terms 

Conformer Nonbonded energy (Hartrees) 

9th 0.3506 

6th 0.3593 

2nd 0.3679 

3rd 0.3679 

8th 0.3681 

5th 0.3691 

10th 0.3704 

1st 0.3752 

7th 0.3800 

4th 0.3878 

 

 

4.2. The structures and association energies of the 

complexes 
The most stable structures for the CD-AD and CD-FC complexes in the gas phase are 

illustrated below for the RHF/6-31G and B3LYP/6-31G levels of theory respectively. 

 
Figure 4.2. The most stable RHF/6-31G structure of CD-AD  
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Figure 4.3. The most stable RHF/6-31G structure of CD-FC  

 
Figure 4.4. The most stable B3LYP/6-31G structure of CD-AD  
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Figure 4.5. The most stable B3LYP/6-31G structure of CD-FC  

A noticeable feature of the above structures is the double intermolecular hydrogen bonds. 

In Tables 4.3 and 4.4 are listed the O-H length and O-H-O angle of the double hydrogen 

bonds in CD-AD and CD-FC complexes at the RHF and B3LYP levels respectively. 
Table 4.5. The RHF/6-31G O-H length and O-H-O angle of the double hydrogen bonds in CD-AD and CD-

FC 

 CD-AD CD-FC 

O-H O-H-O O-H O-H-O 

Bond #1 1.73769Å 171.9950 1.70188 Å 170.1460 

Bond #2 1.86231 Å 163.2780 1.82117 Å 169.8430 

  
Table 4.6. The B3LYP/6-31G O-H length and O-H-O angle of the double hydrogen bonds in CD-AD and 

CD-FC 

 CD-AD CD-FC 

O-H O-H-O O-H O-H-O 

Bond #1 1.61070Å 175.6870 1.56055Å 175.7050 

Bond #2 1.69535Å 164.5420 1.74543Å 168.2630 
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The data in the above tables indicates strong hydrogen bond interactions. The lengths are 

quite short (1.56 – 1.86 Å) and the O-H-O angles are quite linear (163.3o – 175.7o).  

The gas phase association Gibbs free energy (∆G), enthalpy (∆H), entropy (∆S), and 

electronic energy (∆Eelectron) for the most stable CD-AD and CD-FC complexes are listed 

in Tables 4.7 and 4.8 
Table 4.7. The RHF/6-31G association energies for the most stable complexes 

kj/mol ∆G0 ∆H0 ∆S0 ∆Eelectron 

CD-AD -32.205 -80.542 -0.162 -89.175 

CD-FC -25.730 -74.741 -0.164 -83.673 

 

Table 4.8. The B3LYP/6-31G association energies for the most stable complexes 

kj/mol ∆G ∆H ∆S ∆Eelectron 

CD-AD -47.567 -104.334 -0.190 -112.066 

CD-FC -41.086 -95.487 -0.182 -103.923 

 

The solvation Gibbs free energy for all species were calculated with the PCM model at 

both the RHF/6-31G and B3LYP/6-31G levels. These gas phase optimized geometries 

were used for the solvent phase calculations. For calculations with RHF methods, only 

CD-AD, CD-FC complexes with the most stable gas structures were used in solvent 

phase calculations; but for B3LYP methods, the second most stable structures from gas 

phase were also tried in solvent phase along with the most stable ones.  

 
Table 4.9. The RHF/6-31G solvation Gibbs free energies 

Species CD AD FC CD-AD CD-FC 

ΔGsol (kj/mol) -58.81 -8.26 -14.86 -33.77 -40.89 

 
Table 4.10. The B3LYP/6-31G solvation Gibbs free energies 

Species CD AD FC CD-AD CD-FC 

ΔGsol (kj/mol) -38.25 -6.66 -11.89 -22.62 -25.42 

  

 

From equations 3.10 and 3.11, we calculated the solvent phase association Gibbs free 

energy [∆G0(aq)] for CD-AD and CD-FC as follows (also see tables 3.55 and 3.58): 
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Table 4.11a. Solvent phase association Gibbs free energy ∆G0(aq) for the CD-AD and CD-FC complexes 

 CD-AD CD-FC 

∆G0(aq)(RHF/6-31G)(kj/mol) 107.2 111.4 

∆G0(aq)(B3LYP/6-31G)(kj/mol) 38.64 39.61 

 

Table 4.11b. Solvent phase association equilibrium constant for the CD-AD and CD-FC complexes 

 CD-AD CD-FC 

Keq(aq)(RHF/6-31G) 1.691E-19 2.997E-20 

Keq(aq)(B3LYP/6-31G) 1.704E-7 1.152E-7 

 

In the gas phase, the most stable structures of the CD-AD and CD-FC complexes are not 

those having the guest molecule deep inside the cavity of the host molecule. As we 

discussed in Chapter III, the magnitude of the parameter, dih148, among the six 

controlling parameters, indicates how close the guest molecule is to the mean plane of the 

CD molecule (the sign indicates which side of CD the guest is on). The smaller the 

magnitude is, the closer the guest is to CD. As shown in Table 3.37 and 3.38, for the RHF 

method, we have dih148 equal to -24.12 for the most stable CD-AD complex and -37.38 

for the most stable CD-FC. These two values are not the smallest in magnitude compared 

to other available ones. We have one with dih148 equal -15.36 for CD-AD and 36.39 for 

CD-FC. For the B3LYP method, the values of dih148 for the most stable complexes are 

45.61 for CD-AD and 35.09 for CD-FC according to Tables 3.46 and 3.47. Other 

conformations have smaller values for this angle.  For example at the B3LYP/6-31G 

level, we have -22.00 and 37.05 for CD-AD and -31.40 and -10.84 for CD-FC, all of 

which have smaller magnitude than those of the two most stable complexes. For both the 

RHF and B3LYP models, all of the most stable complexes for CD-AD and CD-FC have 

the double intermolecular hydrogen bonds present. So it seems that in the gas phase the 

hydrogen bond interaction is the main driving force for inclusion. 

From the data in Tables 4.11a and 4.11b, it is clear that the B3LYP method provides 

better results in terms of giving the lowest ∆G0(aq) values which are also closer to those 

experimental measurements shown in Table 3.5. If we accept the B3LYP solvent phase 

results as the most reliable. According to equation 3.7 the ratio of the CD-AD complex to 

the CD-FC complex in the solution can be estimated as follows: 
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According to the result from equation 5.1, given that we have equal amounts of free AD 

and FC in the solution mixture at equilibrium, we have about 40% of the complex as CD-

FC and 60% as CD-AD. Of course here we assume we have excess AD and FC in 

solution for complexing with CD. This results indicates that after enough AD is added to 

the solution composed of the CD-FC complex and excess FC, we have most of the CD-

FC complex convert to the CD-AD complex. This explains why most of the fluorescence 

emission was recovered by adding AD to a solution mixture of CD and FC (With a large 

Keq and FC in excess, most of the CD is complexed with FC before the addition of AD).1 

The electronic contribution plays a critical role in stabilizing the complexes. In Table 

4.12 through 4.15, are listed the energy changes without the electronic contribution. For 

comparison we still keep the electronic energy changes in these tables. 
 

Table4.12. The RHF/6-31G energy changes for CD-AD without electronic contribution 

CD-AD I II III IV 

ΔEele(kj/mol) -89.17 -52.94 -36.34 -60.89 

ΔU(kj/mol) 11.11 10.27 10.64 10.71 

ΔH(kj/mol) 8.63 7.79 8.16 8.23 

ΔS(kj/mol) -0.162 -0.174 -0.173 -0.180 

∆G0(kj/mol) 56.97 59.78 59.79 61.84 

  
Table 4.13. The RHF/6-31G energy changes for CD-FC without electronic contribution 

CD-FC I II 

ΔEele(kj/mol) -83.67 -45.77 

ΔU(kj/mol) 11.41 10.26 

ΔH(kj/mol) 8.93 7.78 

ΔS(kj/mol) -0.164 -0.194 

∆G0(kj/mol) 57.94 65.52 
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Table 4.14. The B3LYP/6-31G energy changes for CD-AD without electronic contribution 

CD-AD I II III IV V VI 

ΔEele(kj/mol) -70.29 -51.31 -70.60 -47.15 -112.07 -74.96 

ΔU(kj/mol) 8.73 9.27 9.56 10.01 10.21 9.16 

ΔH(kj/mol) 6.25 6.79 7.08 7.53 7.73 6.68 

ΔS(kj/mol) -0.188 -0.194 -0.193 -0.184 -0.190 -0.182 

∆G0(kj/mol) 62.42 64.52 64.74 62.39 64.50 60.94 

 
Table 4.15. The B3LYP/6-31G energy changes for CD-FC without electronic contribution 

CD-FC I II III IV V VI 

ΔEele(kj/mol) -69.66 -69.46 -39.47 -89.76 -103.92 -88.21 

ΔU(kj/mol) 10.63 10.29 7.85 8.09 10.91 10.90 

ΔH(kj/mol) 8.15 7.81 5.37 5.61 8.43 8.41 

ΔS(kj/mol) -0.208 -0.208 -0.216 -0.231 -0.182 -0.193 

∆G0(kj/mol) 70.20 69.76 69.86 74.48 62.83 66.06 

 

The entropy change, ΔS, for all the complexes always has a negative value, which is what 

we expect since we have two individual molecules combine into one single molecule. 

And this is an unfavorable factor thermodynamically. All the enthalpy changes, ΔH, are 

positive when the electronic component is omitted which also thermodynamically inhibits 

the complexing process. And the combined the effect of a negative ΔS and positive ΔH 

leads to a positive Gibbs free energy change, ΔG, with a quite significant magnitude 

around 60~70 kj/mol when the electronic contributions are omitted.  

The ΔS values are not sensitive to the complex structure and the computational method. It 

remains relatively stable around -0.2 kj/mol. But the electronic energy change greatly 

depends on the complex structure and the computational method. We have observed as 

much as 64.92 kj/mol electronic energy difference for the CD-AD complex at B3LYP/6-

31G level arising from different conformations (the fifth vs the fourth). A similar 

difference, 64.45 kj/mol, has been obtained for the CD-FC complex (the fifth vs the third) 

at the B3LYP/6-31G level for different conformations. At the RHF level, the largest 

electronic energy changes were 52.83 kj/mol for CD-AD and 37.90 kj/mol for CD-FC. . 
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In order to assess the dependence of the electronic energy change on the method of 

computation, we need to compare the results from different methods on a similar 

structure for the complex. So it is only meaningful to compare the results from the first 

RHF and the fifth B3LYP calculations, since the final geometry from these calculations 

are very similar.  Both methods started the optimization from the structure partially 

optimized at the RHF/6-31G level, and very little geometrical changes were observed 

during these optimizations. The MP2 calculations help to give more reliable estimates of 

the correlation effect. 

The differences in the electronic energy changes from the RHF and B3LYP methods are 

basically due to the correlation effect. In the gas phase, the B3LYP method estimates the 

association electronic energy for CD-AD to be -112.066 kj/mol , which is about 22.891 

kj/mol lower (more negative) than the one estimated from the RHF method, which is 

-89.175 kj/mol. Similar trends can be found for CD-FC with the results equal to -103.923 

kj/mol and -83.673 kj/mol for the B3LYP and RHF methods respectively. The results 

from the MP2 method also exhibit the importance of the correlation effect. The MP2 

electronic energy for the complexes from the first RHF optimization and the fifth B3LYP 

optimization are listed below. 

 
Table 4.16. MP2 association electronic energies for CD-AD and CD-FC  

 CD-AD CD-FC 

∆Eele (RHF/6-31G geometry) (kj/mol)  -117.610 -112.043 

∆Eele (B3LYP/6-31G geometry)(kj/mol) -124.363 -117.672 

 

It is clear that for the same geometries, compared to results from the RHF method, the 

MP2 result is 28.435 kj/mol less for CD-AD and 28.370 kj/mol less for CD-FC. And the 

MP2 electronic energy is much closer to those from the B3LYP method: -124.363 

kj/mol(MP2) vs -112.066 kj/mol (B3LYP) for CD-AD and -117.672 kj/mol (MP2) vs -

103.923kj/mol (B3LYP) for CD-FC. It is clear that the electron correlation effect and 

hence the dispersion interactions play an important role on stabilizing these complexes.  

The association Gibbs free energy for the most stable CD-AD and CD-FC complexes in 

aqueous solution, are -25.28kj/mol for CD-AD and -16.37kj/mol for CD-FC as shown in 
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Table 3.62. These results were obtained from the computation with the PCM model at the 

B3LYP level and the complex geometries were taken from the fifth B3LYP optimization 

in the gas phase. Compared to the gas phase association Gibbs free energy, the solvent 

phase values are more positive (or less negative). The reason for that is that the sum of the  

solvation Gibbs free energies from the two monomers is always more negative than the 

one from the corresponding complex formed by them. As indicated in Table 3.58, 3.60 

and 3.61, the combined solvation Gibbs free energy of CD and AD is always more 

negative than the solvation Gibbs free energy of the complex of CD-AD. And that is also 

true for CD, FC and the complex of CD-FC.  There appears to be a loss of total polarity 

upon complexation. 

Due to the implicit model for the solvent phase computations, there are no solvent 

molecules (water) present. So the so called “hydrophobic forces” are ignored. That is what 

we believe contribute to the poor solvent phase results compared to the experimental data. 

The “hydrophobic force” contribution includes guest molecules being released from the 

hydrated state to the free state, and guest molecules pushing out the water molecules 

residing in the cavity of the host molecule into the bulk water. A better model may be one, 

in which the CD molecules have several water molecules inside the cavity before 

complexation. For future study, we propose the following algorithm to re-calculate the 

association Gibbs free energy in solution. 

)()()()(

)()()()(

2)(2

21

2
)(

2

lOnHlGuestCDlOnHCDlGuest
GG

gOnHgGuestCDgOnHCDgGuest

aqG

gG

+• →•+
∆↑∆↓

+• →•+

∆

∆

 

Figure 4.6. Cycle for calculating association Gibbs free energy  

From the above cycle, the association Gibbs free energy in solution ΔG(aq) can be 

calculated according to the equation below. 

)2.4()()( 21 GGgGaqG ∆−∆−∆=∆  

ΔG1 is the sum of the solvation Gibbs free energies for the Guest and CD·nH2O. The way 

to compute ΔG1 has already been discussed before. ΔG2 can also be calculated in a similar 

way, but it is the Gibbs free energy change for a process opposite to solvation. So ΔG2 is 
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the negative of the sum of the solvation Gibbs free energy for CD·Guest and nH2O. ΔG2 

includes two parts:  the solvation Gibbs free energy for CD·Guest and the Gibbs free 

energy change for turning liquid water to gaseous water at 298.15K and 1atm (ΔGvap). The 

experimental data for ΔGvap are available for a wide range of temperatures and pressures. 

We can also evaluate it in the way demonstrated below. 
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Figure 4.7. Cycle for calculating ΔGvap for water 

 

With the help from the above cycle, the vaporization Gibbs free energy, ΔGvap,  at 

298.15K and one atmosphere pressure can be evaluated as follows: 
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ΔHb is the heat of vaporization for water at 398.15K and 1atm, Cl
p, and Cg

p are the 

constant pressure heat capacity for liquid and gaseous water respectively. Experimental 

values for ΔHb, Cl
p, and Cg

p are readily available in the literature. So we have several ways 

involving theoretical and experimental data to calculate a reliable estimate of ΔG2 in 

equation 4.1.  
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In order to estimate the contribution from the “hydrophobic force”, we propose the 

following procedures. 
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Figure 4.8. Cycle for estimating the hydrophobic contribution to the association energy 

The Gibbs free energy contribution for the “hydrophobic force”, ΔG(aq) in Figure 4.8, is 

evaluated according to the equation below. 

)7.4()()( 43 GGgGaqG ∆−∆−∆=∆  

ΔG(g), ΔG3 and ΔG4 can be calculated in the way discussed before. As with ΔG2 in Figure 

4.6, we also have several ways to estimate ΔG4. 

Investigating the “hydrophobic forces” will probably be a difficult problem since the 

number of included waters is not known and the complexation enforced expulsion of the 

water molecules may not be complete.  Since the most stable complexes found here appear 

to be predominantly surface complexes rather than internal or encapsulated complexes, it 

is not clear how many embedded water molecules, if any, will be expelled. 

 

4.3. Excited state calculations 
Based on the orbital composition and the orbital shapes, we conclude that the following 

three excitations are correlated: transition from MO’s 225 to 226 for the isolated CD, the 

transition from MO’s 264 to 266 for the CD-AD complex and the one from MO’s 259 to 

270 for the  CD-FC complex. From the data in Tables 3.63, 3.65 and 3.67, it is clear that 

the largest contributions to the three lower states in these three transitions, (MO 225 for 

CD, MO 264 for CD-AD and MO 259 for CD-FC), are from the 3Px, 3Py and 3Pz orbitals 

of the sulfur atom bonded to the Zn metal atom. And from the data in Tables 3.64, 3.66 

and 3.68, we can conclude that the major contributions to the higher states in these three 

transitions, (MO 226 for CD, MO 266 for CD-AD and MO 270 for CD-FC), are from the 

4s and 3p orbitals of the Zn atom. There are two differences in the results which are 
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worth discussion. One is that the lower state for the transition from CD-AD, MO 264, 

does not have the minor contribution from the Zn atom, as its counterparts, CD and CD-

FC. Another is that the higher state for the transition for CD-FC includes a minor 

contribution from a carbon atom (#170) in the FC molecule, the guest molecule. But for 

CD and CD-AD, this does not happen.  

The calculated oscillator strengths for the three transitions are 0.0103, 0.0074 and 0.0052 

respectively. Since the probability of an excitation transition is proportional to the square 

of the oscillator strength and the transition energy, and here all three transition energies 

are very close to one another (7.02ev, 6.94ev and 6.92ev), the transition for the CD-FC 

complex is about 25% as intense as the transition for CD; and the transition for the CD-

AD complex is about 52% as intense as that for CD. Although these results give the 

correct qualitative ordering of the effect of the guest molecules on the fluorescence 

spectrum of CD, they are actually a little disappointing. We expect to see higher intensity 

from the particle with CD-AD since according to the work of Liu1, adding AD to the 

solution mixture of CD and FC can bring back more than 90% of fluorescence emission. 

However we note here that the transition process that is under study here is in some ways 

the opposite process of the fluorescence emission. In fluorescence emission, the electron 

transits from the singular excited state with a higher energy level to the singular lower 

state with less energy. Although here we could make an argument that a lower transition 

probability caused by a weaker oscillator strength indicates that fewer electrons were able 

to be excited to the higher state and hence we have a smaller excited population to feed 

the fluorescence. But the fluorescence emission is a very complicated process as 

evidenced by the fact that there has been little predictive theoretical work devoted to this 

area. After the electron is excited to the higher state, the molecule can undergo various 

decay and kinetic processes that can dramatically affect the fluorescence emission. 

Furthermore, in the experimental work from Liu1, the metal in the nano-particle is 

Cadmium instead of Zinc that we used in this work. And in order to make the task 

quantum mechanically treatable, we simply have the one single metal atom attached to 

one arbitrarily chosen sulfur atom in CD (in either free CD, CD-AD or CD-FC ). 

Apparently this simple model is not able to represent all of the interactions between the 

nano-particles and the anchored complexes (either CD, CD-AD or CD-FC). So in order 
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to have a better understanding of the mechanism for fluorescence quenching and 

recovery1, we need: 

1. A proper method to predict the probability or intensity of electrons transiting from 

the excited state to lower state that includes the effect of the various decay and 

rearrangement processes that occur between the absorption and emission. 

2. A better model to simulate the presence of the metal nano-particles (or the metal 

atoms) and a better method to describe the interaction between the nano-particle 

and the species CD, CD-AD and CD-FC. 

These will be topics for future work.       
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5. Appendix 
 

Figures 

 
Figure 5.1. The structure of perthiolated beta-cyclodextrin (CD) 

 
Figure 5.2. 1st conformer with energy of 109.3676 kcal/mol 
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Figure 5.3. 2nd conformer with energy of 109.5789 kcal/mol 

 

 

 
Figure 5.4. 3rd conformer with energy of 109.734 kcal/mol 
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Figure 5.5. 4th conformer with energy of 109.8334 kcal/mol 

 
Figure 5.6. 5th conformer with energy of 109.9717 kcal/mol 
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Figure 5.7. 6th conformer with energy of 109.9761 kcal/mol 

 
Figure 5.8. 7th conformer with energy of 109.9802 kcal/mol 
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Figure 5.9. 8th conformer with energy of 110.0331 kcal/mol 

 

 
Figure 5.10. 9th conformer with energy of 110.0749 kcal/mol 
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Figure 5.11. 10th conformer with energy of 110.1093 kcal /mol 

 

 
Figure 5.12. The 1st conformer optimized with the RHF/6-31G(d) method 
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Figure 5.13. The 2nd conformer optimized with the RHF/6-31G(d) method 

 
Figure 5.14. The 3rd conformer optimized with the RHF/6-31G(d) method 
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Figure 5.15. The 4th conformer optimized with the RHF/6-31G(d) method 

 
Figure 5.16. The 5th conformer optimized by with the RHF/6-31G(d) method 
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Figure 5.17. The 6th conformer optimized with the RHF/6-31G(d) method 

 
Figure 5.18. The 7th conformer optimized with the RHF/6-31G(d) method 
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Figure 5.19. The 8th conformer optimized with the RHF/6-31G(d) method 

 
Figure 5.20. The 9th conformer optimized with the RHF/6-31G(d) method 
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Figure 5.21. The 10th conformer optimized with the RHF/6-31G(d) method 

 

 

 
Figure 5.22. Structure of admantane carboxylic acid (AD) 
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Figure 5.23. Structure of ferrocene carboxylic acid (FC) 

 
Figure 5.24. Structure of the complex of CD-AD 
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Figure 5.25. Structure of the complex of CD-FC 

 
Figure 5.26. The initial geometry of CD-AD for the 1st RHF full optimization 
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Figure 5.27. The 1st fully RHF optimized geometry of the CD-AD 

 

 
Figure 5.28. The initial geometry of the CD-FC for the 1st RHF full optimization 



122 
 

 
Figure 5.29. The 1st fully RHF optimized geometry of the CD-FC  

 

 

 
Figure 5.30. The initial geometry of CD-AD for the 2nd RHF full optimization 
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Figure 5.31. The 2nd fully RHF optimized geometry of the CD-AD 

 

 

 
Figure 5.32. The initial geometry of the CD-FC for the 2nd RHF full optimization 
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Figure 5.33. The 2nd fully RHF optimized geometry of the CD-FC 

 

 
Figure 5.34. The initial geometry of CD-AD for the 3rd RHF full optimization 
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Figure 5.35. The 3rd fully RHF optimized geometry the 3rd CD-AD 

 

 
Figure 5.36. The initial geometry of CD-AD for the 4th RHF optimization 
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Figure 5.37. The 4th fully RHF optimized geometry of the CD-AD 

 

 
Figure 5.38. Initial CD-AD geometry for the 1st B3LYP full optimization 
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Figure 5.39. The optimized CD-AD geometry from the 1st B3LYP full optimization 

 

 
Figure 5.40. Initial CD-AD geometry for the 2nd B3LYP full optimization 
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Figure 5.41. The optimized CD-AD geometry from the 2nd B3LYP optimization 

 

 
Figure 5.42. Initial CD-AD geometry for the 3rd B3LYP full optimization 
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Figure 5.43. The optimized CD-AD geometry from the 3rd B3LYP optimization 

 

 
Figure 5.44. Initial CD-AD geometry for the 4th B3LYP full optimization 
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Figure 5.45. The optimized CD-AD geometry from the 4th B3LYP optimization 

 

 
Figure 5.46. Initial CD-AD geometry for the 5th B3LYP optimization 
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Figure 5.47. The optimized CD-AD geometry from the 5th B3LYP full optimization 

 
Figure 5.48. Initial CD-AD geometry for the 6th B3LYP full optimization 
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Figure 5.49. The optimized CD-AD geometry from the 6th B3LYP full optimization 

 
Figure 5.50. Initial CD-FC geometry for the 1st B3LYP full optimization 
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Figure 5.51. The optimized CD-FC geometry from the 1st B3LYP optimization 

 
Figure 5.52. Initial CD-FC geometry for the 2nd B3LYP optimization 
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Figure 5.53. The optimized CD-FC geometry from the 2nd B3LYP full optimization 

 

 
Figure 5.54. Initial CD-FC geometry for the 3rd B3LYP full optimization 
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Figure 5.55. The optimized CD-FC geometry from the 3rd B3LYP full optimization 

 
Figure 5.56. Initial CD-FC geometry for the 4th B3LYP full optimization 
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Figure 5.57. The optimized CD-FC geometry from the 4th B3LYP full optimization 

 
Figure 5.58. Initial CD-FC geometry for the 5th B3LYP full optimization 
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Figure 5.59. The optimized CD-FC geometry from 5th B3LYP full optimization 

 

 
Figure 5.60. Initial CD-FC geometry for the 6th B3LYP full optimization 
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Figure 5.61. The optimized CD-FC geometry from the 6th B3LYP full optimization 

 

 

 
Figure 5.62. Structure of the model of a Zn nano-particle attached to CD 



139 
 

 
Figure 5.63. Structure of the model of a Zn nanoparticle attached to CD-AD 

 

 

 
Figure 5.64. Structure of the model of a Zn nanoparticle attached to CD-FC 
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