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Abstract 
 

In this research, a modification to initiation aid ignition in bomb calorimetry that involves 

systemically blending levels of boron and potassium nitrate initiation aids with a bulk 

structural energetic elemental power blend is developed. A regression is used to estimate 

the nominal heat of reaction for the primary reaction.  The technique is first applied to the 

synthesis of TiB2 as a validation study to see if close proximity to literature values can be 

achieved.  The technique is then applied to two systems of interest, Al-Ti-B, and Al-Ti-

B4C.  In all three investigations, x-ray diffraction is used to characterize the product 

phases of the reactions to determine the extent and identity of the product phases and any 

by-products that may have formed as a result of adding the initiation aid.  The 

experimental data indicates the technique approximates the heat of reaction value for the 

synthesis of TiB2 from Ti-B powder blends and the formation of TiB2 is supported by 

volume fraction analysis by x-ray diffraction.  Application to the Al-Ti-B and Al-Ti-B4C 

blends show some correlation with variation of the initiation aid, with x-ray diffraction 

showing the formation of equilibrium products.  However, these blends require further 

investigation to resolve more complex interactions and rule out extraneous variables.
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1 Introduction 

1.1 Structural Reactive Materials 

Structural reactive materials, also called structural energetic materials, are a class of 

structurally viable materials, currently under development, that can store chemical energy 

and release that energy rapidly upon overcoming the kinetic barriers to its release.  

Structural reactive materials are an example of a multifunctional material, in that both 

primary functionalities (energy storage and structural viability) are enabled by a single 

microstructural design that simultaneously achieves both, thus eliminating the need to 

assemble multiple materials to achieve the same set of attributes [1].      

Three primary constraints guide the selection of materials appropriate to creating an 

effective structural reactive material.  First, the materials involved must have the potential 

to release large magnitudes of energy quickly, whether in the form of an enthalpy 

reduction and/or a pressure pulse.  Second, the materials must have adequate kinetic 

hindrances so as not to react too easily or spontaneously.  Finally, in their pre-reacted 

state, the materials must have mechanical properties appropriate for high-strength 

engineering applications. Because of the latter requirement, most candidate SRM 

formulations presently under development are comprised of reaction-capable powder-

based blends of elemental structural metallics (e.g., Al and/or Ni) and an elemental 

metalloid (e.g., B, C, or Si).   

Fortuitously, the reactivity of such blends has been studied and utilized for many decades 

within a complementing technology area known as self-propagating high temperature 

synthesis (SHS), a process methodology used extensively by the ceramics discipline as a 

means to produce monolithic (stoichiometric) borides, carbides, and silicides.  SHS, and 

its subsequent non-stoichiometric variations, thus provides a basis for the design and 

understanding of structurally-reactive materials. 
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1.2 Self-Propagating High Temperature Synthesis (SHS) 

Also referred to as reaction synthesis or combustion synthesis, SHS occurs when a

thermodynamically-favored reaction is initiated with sufficient energy (heat) being 

liberated from a localized conversion of reactants to product to sustain the reaction 

throughout the material until completion [2]. SHS reactions have been utilized and 

characterized for many systems as a means to produce high purity ceramics, as a means 

to facilitate elevated temperature processing of a ceramic by utilizing the inherent 

exothermicity of the SHS reaction, for the production of non-equilibrium and metastable 

phases of ceramics, and for production of in-situ ceramic-, metallic-, and intermetallic-

matrix composites [2-8]. 

SHS is typically categorized in one of two ways: propagating and volumetric (sometimes 

referred to as “thermal explosion”), depending how the exothermic reaction is initiated 

and proceeds, Figure 1.1.  In the directionally propagating mode, initiation occurs at a 

point heat source and the reaction propagates through the material as a “combustion 

wave,” generally proceeding until the unreacted material is consumed.  

 

Figure 1.1 Modes of SHS initiation, (a) propagating (b) volumetric
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In contrast, the volumetric propagating mode involves heating the reactants uniformly 

until initiation of the reaction.  In this mode, there are many sites of initiation of the 

reaction throughout the sample. The nature and propagation of the wave within both 

modes is a topic of study in the literature [2-5, 7, 9-11]. 

In SHS, the total enthalpy change over the entire reaction consists of three critical terms: 

HReac-Ig, the heat required to bring the reactants to their ignition temperature (Tig) from the 

standard temperature (T0), Hreac-Stand, the standard enthalpy of the reactants with respect to 

T0, and Hprod, the standard enthalpy of the products with respect to T0.  

HReac = (HReac-Ig + HReac-Standard) 

H = HReac + HProd 

The adiabatic temperature, Tad, is the maximum possible temperature achieved by the 

reaction.  The actual maximum combustion temperature achieved, Tc, will depend on the 

heat required to raise the reactant temperature from the initial temperature to ignition 

temperature.  Figure 1.2 provides an illustration of the enthalpy and temperature 

relationship between products and reactants. 

 

Figure 1.2 Enthalpy vs. temperature with respect to reactants and products in SHS 
(reprinted with permission) [2] 
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Heating to an arbitrary value, T1, shows the effect on the Tad.  In the volumetric heating 

mode, Tc will very closely approximate Tad since the entire sample is preheated to the 

ignition temperature.  In the propagating initiation mode, Tc will be slightly lower since 

the reactants must be brought to the ignition temperature at the wave front as the wave 

propagates. 

The time scale over which the reaction occurs is typically relatively short (micro-seconds 

in many cases), Figure 1.3; the self sustenance of the reaction relies on its ability evolve 

the heat quickly enough to transfer it to the unreacted material before it extinguishes itself 

due to dissipation of heat. 

SHS offers unique flexibility when attempting to adhere to the constraints of a structural 

reactive material.  By the very necessity of a large enthalpy reduction and high adiabatic 

reaction temperature being required for a self-propagating state, the reactants inherently 

have the large chemical energy potential and most instances release the energy in a short 

enough timeframe required to be a viable structural reactive material.   

 

 

Figure 1.3  Temperature vs. time in a SHS reaction (reprinted with permission) [2] 
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Additionally, SHS as applied to metallic and metalloid reactant blends creates the 

opportunity to design effective and structurally capable composite architectures from 

these reactants.  Since metallic/metalloid SHS reactions are further distinguished as being 

entirely of a solid thermochemical nature, once initiated, they offer a potential additional 

benefit of not relying on reactants from the environment (such as oxygen from the air) to 

sustain and complete the reaction. 

While the use of published thermodynamic data can guide in the prediction of high 

enthalpy release candidates for structural reactive materials, actual heat values for a 

particular formulation may vary depending on several intrinsic and extrinsic 

characteristics of the pre-reacted powder blend.  These include a variety of 

thermodynamic and kinetic relevant variables, including the magnitude of the heat of 

reaction, the temperature of the reaction, the time scale over which the reaction occurs, 

particle size of the reactants [2, 3, 6, 11-13], degree of homogeneity and density of the 

powder blend [2, 3, 6, 13], rapid cooling and thermal gradients, and interdiffisional 

characteristics among the reactants. The presence or degree of influence of these 

variables on the release of heat is reactant system dependent.  Manifestation of these 

effects often include incomplete or sequential reactions, and non-equilibrium or 

metastable products [2]. Furthermore, there are occasionally large inconsistencies among 

published thermodynamic data, such as that which exists for the formation of TiB2 [14-

16].  

Therefore, a need exists to experimentally determine “working” heats of reaction of bulk 

unreacted powder blends, particularly in the propagating mode, of structural energetic 

material candidates.  Post-reaction characterization of the phase composition of the 

products would also assist in determining the degree to which the measured heats can be 

associated with the predicted (equilibrium) reactions. 
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2 Approach and Hypotheses 

In this work, an attempt to measure the heat of reaction of a model SRM formulation 

using a modified bomb calorimetry technique is made.  The reactant formulation is based 

on blends containing aluminum, titanium, and boron (Al-Ti-B), which in elemental form 

have been previously demonstrated to respond to SHS processing to form product 

mixtures comprised of Al3Ti and TiB2 [12, 17].  However, inherent (but desired) kinetic 

hindrances to the initiation of this reaction prevent the use of traditional bomb 

calorimetry initiation methods.  This research seeks to qualify a novel modification to the 

traditional initiation approaches used in bomb calorimetry.  The technique will be 

initially applied to a validation study synthesizing monolithic TiB2 followed by an 

investigation into the use of the technique to determine heats of reactions for 

formulations that result in mixtures of Al3Ti/TiB2.   

The synthesis of TiB2 within titanium aluminide matrices to create in-situ intermetallic 

composites from elemental powders has been studied previously [12, 17-19], which make 

them good candidates for attempting to apply the new initiation approach using bomb 

calorimetry.  In addition, there is practical interest in the alternative use of B4C as a 

reactant replacement for B due to certain manufacturing advantages of using B4C in a 

pre-reacted densified compact.  In this instance, the SHS reaction proceeds in a similar 

manner, but differs in that presumably the reduction of B4C is required as part of the 

overall reaction, and that the product mixture will include TiC in addition to the Al3Ti 

and TiB2. 

The synthesis of monolithic TiB2 through SHS from raw elemental powders has been 

shown to proceed with relative ease to completion, leaving little to no trace of reactant 

remaining and is insensitive to particle size of the reactants [11].  Thus, the use of this 

reaction system is consequently an ideal one to validate the initiation technique since 

deviation from close to complete synthesis of TiB2 would indicate an artifact introduced 

by the method.  Furthermore, the use of only two constituents reduces the likelihood of 

other extraneous variables not related to the validation of the technique. 
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The overarching goal of this research is to develop a technique to accurately measure 

heats of reaction for candidate structural reactive material formulations using bomb 

calorimetric techniques.  Explicit within this goal will be an assessment of the 

implications of using an active initiation aid to assist in the ignition of the reaction. In this 

instance, an initiation aid refers to a set of independent reactants that have very low 

kinetic hindrance to initiation and produce a large heat of reaction upon ignition.  

Initiation aids will be introduced in two ways: 1) internally, where the initiation aid is 

blended directly into the SRM powder formulation, and 2.) externally, where the 

initiation aid is introduced adjacent to the SRM formulation.   

A comparison of the measured heats to predicted heats of reaction as computed from 

literature-provided thermodynamic data will provide a means to evaluate the deviation of 

the heats of reaction of formulation products and those of products at complete 

equilibrium.  Therefore, the experimental objectives of this research are to: (1) validate 

the technique using a reaction that is known to go to equilibrium (SHS of TiB2) and (2) 

Apply the technique to measure the heats of reaction of various stoichiometric bulk 

powder blends of a structural reactive material candidate (Al-Ti-B formulated to form a 

Al3Ti/TiB2 product, or Al-Ti- B4C formulated to form Al3Ti/TiB2/TiC product. 

The specific hypotheses of this research are: 

(1) If external and internal initiation aids are systematically varied with a nominal Ti 

+ B bulk powder blend formulated to form TiB2 via SHS reaction: 

a. The nominal literature heat of reaction of TiB2 can be reproduced using an 

estimation of zero initiation aid from a regression model using heats of 

reaction values from bomb calorimetry. 

b. As initiation aid decreases, the regression of the volume fraction of the 

products determined by x-ray diffraction will estimate monolithic TiB2 as 

the only phase present. 

(2) If external and internal initiation aids are systematically varied with Al-Ti-B bulk 

powder blends formulated to form various volume proportions of Al3Ti/TiB2: 
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a. The nominal heat of reaction values for the Al-Ti-B blends can be 

determined using an estimation of zero initiation aid from a regression 

model using heats of reaction values from bomb calorimetry. 

b. As initiation aid decreases, the regression of the volume fraction of the 

products determined by x-ray diffraction will estimate the nominal phase 

composition. 

c. A thermodynamic model derived from (b) should resemble the 

experimental model derived in (a). 

(3) If external and internal initiation aids are systematically varied with Al-Ti-B4C 

bulk powder blends formulated to form various volume proportions of 

Al3Ti/TiB2/TiC: 

a. The nominal heat of reaction values for the Al-Ti-B4C blends can be 

determined using an estimation of zero initiation aid from a regression 

model using heats of reaction values from bomb calorimetry. 

b. As initiation aid decreases, the regression of the volume fraction of the 

products determined by x-ray diffraction will estimate the nominal phase 

composition. 

c. A thermodynamic model derived from (b) should resemble the 

experimental model derived in (a). 
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3 Experimental Background & Procedures 

3.1 Outline of Testing 

Three reactant systems of interest were investigated in this study.  Experimental testing 

and analysis treatments, which include process screening, bomb calorimetry, qualitative 

and quantitative x-ray diffraction (XRD) for each reactant system are specified in Table 

3.1. 

3.2 Reactant Formulations 

100 g master batches of reactant powders (Table 3.2) from Atlantic Equipment Engineers 

(AEE; Bergenfield, NJ) were formulated by weight for the three reactant systems listed in 

Table 3.3.  The formulations were created for various volume percents of the presumptive 

products by converting the nominal volume fractions of product to a weight fraction 

using the products’ density and subsequently a molar fraction using the products’ molar 

masses. The correct molar proportions of the reactants could be ascertained and 

converted to a weight fraction for producing the 100 g master batches (Table 3.3).  The 

blends were sealed in a container with cylindrical zirconia media under high purity 

(99.999%) argon in a glove box and allowed to mix overnight.  

Table 3.1  
Summary of experiments for each reactant system 

 
Reactant 

System 

Process 

Screening? 

Bomb 

Calorimetry? 

Qualitative 

XRD? 

Quantitative 

XRD? 

Ti-B Yes Yes Yes Yes 

Al-Ti-B Yes Yes Yes Yes 

Al-Ti-B4C No Yes Yes No 
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Table 3.2   
Reactant powder sizes and purity 

 

Reaction Powders 
Average Powder 

Si e m  

Purity 

(%  

Al 
44 99.9 

149 99.8 

Ti 
44 99.7 

149 99.7 

B 

(commercially 

amorphous) 

<1 95-97 

B4C 33 99.7 

 

Table 3.3  
Formulations of reactant powders for blends 

 

Reaction 

Powders 

Presumptive 

Products 

Formulated 

Volume Percent of 

TiB2 or TiB2/TiC 

Wt % 

Al 

Wt% 

Ti 

Wt% B 

or B4C 

Ti-B TiB2 100 0 68.9 31.1 

Al-Ti-B Al3Ti/TiB2 

0 62.8 37.2 0 

20 47.0 45.2 7.8 

40 33.2 52.1 14.7 

60 20.8 58.4 20.9 

80 9.9 63.9 26.2 

Al-Ti-B4C Al3Ti/TiB2/TiC 

20 46.7 46.2 7.1 

40 32.7 53.9 13.3 

60 20.4 60.8 18.7 
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3.3 Initiation Aid Formulations 

The initiation aid formulations contained mixtures of B and KNO3, also known as BPN.  

For a preliminary study of the initiation aids, weight percents of 50, 70, and 85% KNO3 

(balance B) were used.  Initiation aid compositions for the Ti-B blends included weight 

percents of 70 and 85% KNO3.  For the Al-Ti-B and Al-Ti-B4C blends, only initiation 

aids with a 70 wt. % KNO3 was used.  The KNO3, from Fischer Scientific (99% purity), 

was crushed to a fine powder using a silica mortar and pestle and the B was then hand 

blended with the KNO3 to form the initiation aid blend. 

3.4 Sample Compactions 

Preparation of 10 g samples for the calorimetry experiments utilized a portion of the 

master batch of the nominal reactant blend as the B-KNO3 initiation aid which were 

weighed and hand blended. To create green compacts, the powders were placed in 12.7 

mm diameter natural latex bags from Trexler Industries, Inc. (Bethlehem, PA) and 

densified in a cold isostatic press at 240-270 MPa. Green compacts of the external 

initiation aid, consisting of the specified blend of B and KNO3, were processed under the 

same procedure. 

3.5 Bomb Calorimetry 

3.5.1 General Procedure 

For an individual bomb calorimetry experiment, a small piece (1-4 g) of the 10 g sample 

compact was broken off and a corollary amount of compacted external initiation aid were 

both placed in a fused silica crucible, loosely touching each other in the bomb. A Ni-Cr 

fuse wire was set in contact with the external initiation aid.   The bomb in the calorimeter 

was charged with argon (99.998% purity) to seal it and provide an inert environment for 

the reaction.  The charged bomb pressure was set at 414 kPa (60 psi) and 828 kPa (120 

psi) for the Ti-B blends, but in all subsequent experiments, only the 828 kPa pressure 
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level was used.  The bomb was then placed in 2001 mL of deionized water in a stainless 

steel jacket.  

The sample was then reacted in a Parr 1341 Plain Jacket Bomb Calorimeter and evaluated 

utilizing the calorimeter model’s standard operating procedure where heat loss 

corrections conform to ASTM standards D240 and D3286.  The calorimeter was closed 

and the temperature of the water allowed to equilibrate for 5 minutes.  At such time, the 

recording of the change in temperature of the water was recorded by hand every minute 

for 5 minutes to determine the rate of heat loss or gain due to the imperfect adiabacity of 

the calorimeter.  After the 5 minutes, ignition by way of a 1.5A current through the Ni-Cr 

resistive wire in contact with the initiation aid was initiated.  This current brings the wire 

to its melting point of 1350-1450oC.  After 45 seconds, temperature measurements were 

recorded by hand every 15 seconds over a period of 2 minutes to determine the slope of 

the heat rise during the reaction.   

After this period, temperature measurements were then taken by hand every minute until 

five identical change in temperature observations were recorded consecutively, or the 

average magnitude over five recordings repeated twice or the average magnitude over 

give recordings decreased after reaching a maximum.  After the reaction was complete, 

the products (a dense solid from the reacted sample and a powder residue from jettisoned 

particles on the side of the bomb) were collected and saved for subsequent analyses. 

3.5.2 Initiation in Bomb Calorimetry 

Typical initiation in bomb calorimetry occurs via heat produced by current running 

through a resistive wire which is placed in contact with the sample.  In cases where this 

heat is insufficient for ignition, an additional source of heat can be added by way of an 

initiation aid.  The amount of heat liberated per mass of the initiation aid is determined 

beforehand.  Usually, a small known mass of initiation aid is placed next to the primary 

sample and the heat from the current run through the resistive wire ignites the initiation 

aid, which in turn ignites the primary sample.  The heat contribution of the initiation aid 

is then subtracted in post-analysis to determine the heat produced by the primary sample. 
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Both the standard resistive wire method and the traditional initiation aid method (Figures 

3.1 and 3.2 respectively) were unsuccessful in consistently initiating the SHS synthesis of 

TiB2 and Al3Ti/TiB2 from their elemental reactant powder blends.  In order to promote 

the ignition of these reactions, initiation aid was blended within the nominal reactant

formulations of TiB2 and Al3Ti/TiB2 in addition to having an external initiation aid 

(Figure 3.3).  

 

Figure 3.1 Standard ignition setup for bomb calorimetry (applied for Al-Ti-B) 
 

 

Figure 3.2 Standard initiation aid setup for bomb calorimetry (applied using a BPN 
external initiation aid and a primary sample of Al-Ti-B) 
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Introducing initiation aid into the sample assures a large interaction between the primary 

reaction and the initiation aid.  It is proposed that if the amount of initiation aid, both 

internally and externally, is systematically varied, a regression can be developed to 

estimate the nominal heat of reaction of the primary sample and phase composition of the 

products.   

3.5.3 Bomb Calorimetry Assumptions 

Bomb calorimetry is proposed in these experiments to measure net enthalpy change 

during reactions.  However, the general measurements actually measure the change in 

internal energy for individual bomb calorimetry experiments and are given by the 

equation: 

dU = cbombdT 

Where dU is the change in internal energy, c is the heat capacity of the bomb, and dT is 

the change in temperature of the bomb.   

 

Figure 3.3 Modified setup for initiation in bomb calorimetry (blending of BPN initiation 
aid into primary powder blend) 
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Enthalpy can be related to internal energy by: 

dH = dU + d(PV) 

Where dH is the change in enthalpy and d(PV) refers to the change in pressure and 

temperature which expands to: 

d(PV) = PdV + VdP 

Hence, the change and enthalpy is only equal to the change in internal energy when the 

d(PV) term is zero.  The d(PV) contribution from solids and liquids in the bomb can 

assumed to be negligible.  If it is assumed that the gaseous phase behaves ideally, we can 

use the ideal gas law to rewrite d(PV): 

d(PV) = RndT + RTdn 

Where R is the ideal gas constant, n is moles of gas, and T is temperature.  The change in 

temperature of the bomb during these experiments is usually only 1-2 oC; therefore the 

RndT term is negligible.  The final equation shows change of enthalpy as: 

dH = dU + RTdn 

Introduction of KNO3 as a constituent will liberate nitrogen and oxygen in the gaseous 

state.  The amount of moles of gas produced from experiment to experiment is unknown.  

However, the moles of gas produced will be directly related to the amount of KNO3 (PN) 

by: 

ngas  nPN 

Since the bomb is filled with an inert gas, argon, KNO3 is the only source of gas other 

than contamination of oxides on the metal powders which is inherent to all the samples. 

As the initiation aid approaches zero, so should the amount of moles of gas produced.   
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Therefore, the regressed output data of the bomb calorimeter should adhere to the 

assumption: 

dH = dU 

More complete treatments of these derivations can be found in the literature [20, 21]. 

3.6 X-Ray Diffraction 

3.6.1 General Procedure 

A sampling of the collected reaction products was used for x-ray diffraction analysis. The 

porous solid was crushed using a uniaxial load frame to apply approximately 9kN of 

compressive force.  The products were then milled into a fine powder in a SPEX mill, 

using a steel jar and steel ball media.  The media and products in the jar were submerged 

in liquid nitrogen prior to milling to facilitate communition; this also served to decrease 

the required milling time.  The milling was conducted in 3-4 five minute intervals, where 

liquid nitrogen would be reintroduced after each interval to bring the temperature of the 

products and jar back down.  The milled product was then evaluated for phase 

constituency using a Scintag XDS 2000 x-ray diffractometer and scanned with 

monochromatic CuK  radiation. 

Identification of phases present in the product was determined by matching the 

diffraction patterns to literature patterns in the ICDD database and in Pearsons Crystal 

Database [22].  Quantitative analysis to determine the relative volume fractions of the 

products was conducted using the direct comparison method [23]. Here, VOLFRACT 

[24] software was utilized along with Cromer’s method [25] for calculating the atomic 

scattering factors, to calculate volume fractions.  Characteristic peaks and relevant crystal 

data for calculation from the ICDD database and Pearsons Crystal data were from the 

following entries: [26-36]. Peak fitting of the raw diffraction data used Pearson VII and 

Lorenzian fitting models for the peaks and were generated along with background 

subtraction using Origin (OriginLab Corp., Northampton, MA) software. 
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Selected samples of total initiation aid fractions of 0.125, 0.25, 0.50, all with 0.80 internal 

fraction of IA and 0.85 KNO3 fraction of IA were analyzed to determine the volume 

fractions of the product phases in the Ti-B system. 

For the Al-Ti-B reactant system, product formulations based on 0, 20, and 40 vol. % 

TiB2with 0.80 internal initiation aid fraction samples were chosen at 3 different total 

initiation aid levels were evaluated for x-ray phase analysis. The peaks analyzed to 

determine the relative volume fractions of the products were the (001) and (100) peaks of 

TiB2, the (112) peak of Al3Ti, the (111) peak of Al, the (311) and (400) peaks of -Al2O3, 

and the (111) and (200) peaks of TiN.  The analyzed volume fractions do not take into 

account the potentially small volume fraction of other possible BPN reaction products.  

However, a regressed volume fraction extrapolated to zero total initiation aid should 

approximate the nominal volume fraction and will be outlined in the x-ray diffraction 

assumptions section.  The error bars in all subsequent volume fraction graphs take into 

account fitting error of the integrated intensity as well as the variance between different 

peaks to calculate the volume fractions. 

3.6.2 X-Ray Diffraction Assumptions 

Quantitative x-ray diffraction analysis in this work involves the use of the direct 

comparison method [23].  This method is defined by two equations; for analysis of a two 

phase product: 

I R c  = I R c  

and 

c  + c  = 1 

Where  and  generically refer to the two phases in the product, I is the integrated 

intensity of a diffraction peak, R is a coefficient that that consists of phase and crystal 

specific values, and c is the phase volume fraction of the product.   
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For the particular reaction products in this work, a small volume fraction of the BPN 

product will be present.  However, much like the bomb calorimetry assumption, if we 

regress the volume fraction to its zero initiation aid point, no BPN product should exist.  

Therefore, the regressed value of the volume fraction should approximate the actual 

volume fraction value at zero initiation aid as shown in the equations: 

c  + c  + cBPN Product = 1 

3.7 Design of Experiments (DOE) 

3.7.1 Overview of Design of Experiments 

Design of experiments (DOE) is a strategy for experimentation that focuses on efficiency 

of collecting data and maximizing the statistical information gleaned from the data.  

Matrices of experiments are created using this method to discern particular effects of 

variables (or factors), as well as interactions between variables [37]. 

In this research, fractional factorial designs are used to reduce the amount of experiments 

needed to attain the desired statistical information.  For instance, a 25 design would imply 

5 factors are under study, with two levels of each factor.  25 (or 32 experiments would be 

needed to ascertain the full set of interactive effects between these factors.  However, the 

assumption of sparsity-of-effects can be used to reduce the number of experiments.  

Sparsity-of-effects implies that higher-order interaction terms are very unlikely to be 

significant.  Higher-order interaction terms usually include four-way interactions (a 

unique effect of having 4 variables at particular levels, rather than the sum of their 

individual effects) and higher.  Three-way interactions are also sometimes included as a 

higher-order interaction term as well.   

A 25-1 fractional factorial DOE reduces the number of experiments from 32 to 16 and 

would be able to discern single factor and two-way interactive effects.  In this model, 

single factors effects would be aliased (or combined) with a 4-way effect, which under 

the assumption of sparsity would be negligible.  The two-way interactions would be 

aliased with a three-way effect.  Based on the knowledge of the data, this could be 
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considered negligible.  If a two-way effect was found to be significant and the 

experimenter was worried that this was actually a three-way effect, further 

experimentation would be needed to separate these effects. 

3.7.2 Regression Development 

The least squares method of regression was utilized to establish a quantitative trend of 

enthalpy data and volume fraction data.  Mathematics and calculations for the regression 

were performed using Minitab software (Minitab, Inc., State College, PA).  Under the 

least squares method, the selection of the coefficients (Bi) for the significant factors (xi) 

minimizes the sum of squares of the residual error ( ) in the equation [37]:  

Hr = B0 + B1*x1 + B2*x2 + …Bi*xi  

The equation can be expanded to include as many significant factors, Bi*xi, as needed.  

Before a regression was developed, a selection of process and technique related variables 

were subjected to a design of experiments (DOE) screening test to determine the 

significance of any interactive effects between processing variables and the initiation aid 

fraction.  A 25-1 screening DOE matrix was used for the Ti-B system with the variables 

listed in Table 3.4 and was analyzed for main effects and two-way interactions. 

Total Initiation Aid (IA) Fraction refers to the total weight fraction of reacting material 

placed in the bomb that is initiation aid (KNO3/B).  Internal Fraction of IA in Compact 

refers to the weight fraction of the total initiation aid that is blended into the reactive 

sample formulation. KNO3 Fraction of IA refers to the weight fraction of the initiation 

aid that is KNO3 (balance is boron).   

 

In order to develop a more refined regression for the Ti-B reactant system, the fraction of 

initiation aid was varied incrementally further indicated in Table 3.5. The non-significant 

conditions selected for the new experiments consisted of 149 m Ti particle size, 0.80 

internal fraction of IA, and an 830 kPa initial bomb pressure. 
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Process variable screening for the Al3Ti/TiB2 system utilized a similar screening matrix 

to the TiB2 study.  Utilizing a 26-2 screening DOE matrix, the following factors in Table 

3.6 were analyzed for main effect, two-way and three way-interaction significance. 

For the Al-Ti-B reactant system, a regression was created from the levels and factors in 

Table 3.7.  KNO3 fraction of the initiation aid was kept constant at 0.70. 

 

Table 3.4  
Screening factors for TiB2 validation experiments 

 

Factor (Variable  Levels 

Total Initiation Aid (IA) 

Fraction 
0.25, 0.50 

Internal Fraction of IA in 

Compact 
0.667, 0.80 

KNO3 Fraction of IA 0.70, 0.85 

Titanium Particle Size 44 m, 149 m 

Initial Bomb Pressure 415 kPa, 830 kPa 

 

Table 3.5  
Factors for regression in the TiB2 validation study 

 
Factor Levels 

Total Initiation Aid (IA) Fraction 0.125, 0.25, 0.375 0.50 

KNO3 Fraction of IA 0.70, 0.85 
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For creation of a least squares regression model, the internal and external contributions 

were separated to reduce codependence of the variables.  This was accomplished by 

creating the following terms: IA Frac*Int Frac (the internal contribution to the enthalpy 

change from the initiation aid) and IA Frac*(1-Int Frac) (the external contribution to 

enthalpy change from the initiation aid). Enthalpies of reaction values for the nominal 

blends are obtained by entering the particular TiB2 fraction value and zeroing the 

contributions from the initiation aid.    

For the Al-Ti-B4C reactant system, the factors and levels used for developing a regression 

are listed in Table 3.8.    KNO3 fraction of the initiation aid was kept constant at 0.70. 

Table 3.6 
Screening factors and levels for screening experiments for the Al-Ti-B study 

 
Factor Levels 

Initiation Aid (IA) Fraction 0.25, 0.50 

Fraction of IA in Compact 0.667, 0.80 

KNO3 Fraction of IA 0.70, 0.85 

TiB2 vol. Fraction (Formulated) 0.20, 0.40 

Titanium Particle Size 44 m, 149 m 

Aluminum Particle Size 44 m, 149 m 

 
 

Table 3.7 
 Factors and levels for the regression model for the Al-Ti-B study 

 
TiB2Levels 0.0 0.2 0.4 0.6 0.8 

IA Frac 

Levels 

0.375, 0.50, 

0.625 

0.25, 0.375, 

0.50 

0.25, 0.375, 

0.50 

0.25, 0.375, 

0.50 

0.25, 0.375, 

0.50 

Int Frac 

Levels 
0.667, 0.80 

0.401, 0.514, 

0.667, 0.80 

0.401, 0.514, 

0.667, 0.80 
0.667, 0.80 0.667, 0.80 
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Regression for the volume fraction of TiB2 in the Al-Ti-B system consisted of the 

samples identified in the x-ray diffraction section of the Experimental Procedures.  Since 

the volume fractions themselves determined have individual uncertainties, a weighted 

least squares model was utilized to develop a regression using the reciprocal of the 

variance of each point as the unbiased weighting coefficient [38-40]. No simplistic 

analytical technique exists to combine the uncertainty of the individual measurements 

into the regression.  Therefore as a conservative estimate, the standard additive 

propagation of error is used to combine the average error of the individual measurements 

and the standard error of the fitted model from the weighted least squares regression. 

Table 3.8  
Factors and levels for the experiments and regression for the Al-Ti-B4C study 

 
TiB2 /TiC 

Levels 

0.2 0.4 0.6 

IA Frac 

Levels 

0.375, 0.50, 0.625  0.375, 0.50, 0.625 0.375, 0.50, 0.625 

Int Frac 

Levels 

0.667 0.667 0.667 
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4 Data and Results 

4.1 BPN Characterization 

The x-ray diffraction spectrum of the reacted BPN product in Figure 4.1 reveals a low-

symmetry structure and the possibility of multiple phases.  Characteristic peaks of KNO3, 

likely unreacted, were also identified in the spectrum.  Other than KNO3, the identity of 

the other phases in the spectrum could not reasonably be determined to a high degree of 

certainty. 

The measured internal energy changes in the reaction of B/KNO3determined through 

bomb calorimetry of KNO3 weight fractions of 0.50, 0.70, and 0.85 (balance B) are 

shown in Figure 4.2.  Internal energy change at the 0.50 and 0.70 KNO3 weight fraction 

levels are about the same, while the change is less negative at 0.85 weight fraction. 

 

Figure 4.1 X-ray diffraction pattern of product of BPN reaction
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4.2 TiB2 Synthesis for Technique Validation 

4.2.1 Process Variable Screening 

The significance or non-significance of the factors (shown previously in Table 3.4) in the 

DOE matrix, is displayed in a normal plot in Figure 4.3. 

The line in Figure 4.3 is Lenth’s Pseudo Standard Error (PSE), which assumes the 

variation in the smallest effects is a measure of random error [41].  Factors that have a 

large influence on the data will deviate from this line and are considered significant. The 

normal plot in Figure 4.3 shows that at an error threshold 0.05, only the total initiation 

aid fraction and the KNO3 fraction of the initiation aid are significant.   

 

Figure 4.2 Internal energy vs. KNO3 wt. fraction for the BPN reaction 
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4.2.2 Calorimetry Regression Development 

Figure 4.4 shows the regression of the significant factors to estimate the enthalpy of 

reaction for the Ti-B system. 

The equations for the regressions can be compared in the equations below: 

0.85 KNO3:  Ur (J/g) =  -4255 - 3127 IA Frac, S = 117, R-sq(adj) = 93.6% 

0.70 KNO3:  Ur (J/g) =  -4183 - 2803 IA Frac, S =110 , R-sq(adj) = 92.5% 

where S is the square root of the mean squared error and R-sq(adj) is the adjusted 

coefficient of determination. 

 

Figure 4.3 Normal plot displaying significance or non-significance of screening variables 
for TiB2 validation study 
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The interactive effect does not appear to be statistically significant according to the 

analysis of variance (ANOVA) in Table 4.1 even with additional levels added to the 

regression.  ‘DF’ refers to the degrees of freedom for the factor, ‘Seq SS’ and ‘Adj SS’ 

refer to the sequential and adjusted sum of squares that indicate the magnitude of the 

effect.  The ‘Adj MS,’ or adjusted mean squared value, of the effect is divided by the MS 

of the error which results in the ‘F’ term which is a measure of whether the effect is 

significant or not.  The significance will be indicated by the ‘P’ value with values <0.05 

( 0.05) being significant. The interaction plot in Figure 4.5 indicates the possibility of 

an interactive effect at lower levels of initiation aid as the lines almost cross. 

 

 

Figure 4.4 Internal energy change of reaction vs. total initiation aid wt. fraction with 
respect to fraction of KNO3 in the B/KNO3 blend for the TiB2 validation study.  
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Table 4.1  
ANOVA table for TiB2 validation study with relevant factors 

Source DF Seq SS Adj SS Adj MS F P 

IA Frac 3 3585620 3432883 1144294 97.49 0.000

KNO3Frac 1 206344 107188 107188 9.13 0.009 

IA Frac*KNO3Frac 3 34179 34179 11393 0.97 0.432 

Error 15 176068 176068 11738   

Total 22 4002211     

 

Figure 4.5 Interaction plot between IA fraction and KNO3 fraction.  Interaction is 

indicated by lack of a parallel nature between lines 
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The J/g output of the regression is multiplied by the appropriate molar conversion factor 

as if the result of the reaction was monolithic TiB2 for the purposes of comparing with the 

literature values (the literature values hereafter referred to as Barin [14] and Frankhouser 

[15]).  The resultant values as compared with the literature values are compared in Table 

4.2.  The enthalpy values of the regression are in good agreement with the literature 

values if data for crystalline boron as the reactant is used in the prediction. 

4.2.3 Qualitative X-Ray Diffraction 

Figure 4.6 displays an XRD pattern of the reacted product with characteristic peaks of 

TiB2 and TiN with a metastable composition of ~TiN0.5.    A few unidentified peaks are 

present in the broad scan range, but are barely above background and are assumed to be 

from one of the products of the BPN reaction. 

X-ray diffraction analysis (Figure 4.7) in of the product residue on the sides of the bomb 

and crucible indicate the presence of some unidentified low-symmetry phases that are 

likely a potassium borate as described in the BPN characterization section.  However, 

peaks can be identified that correspond to either metastable -Ti or scattering from the Al 

holder that the sample rests in.   

Table 4.2  
Experimental and literature enthalpy of reaction values for TiB2in the TiB2 validation 

study (amorphous boron enthalpy contribution from Barin[14] in both values) 
 

perimental r ( /mol  Literature r ( /mol  

-291±7 (0.85 KNO3) 

-296±6 (0.70 KNO3) 

 

-281 (Crystalline B)[15] 

-324 (Crystalline B)[14] 

-379 (Amorphous B)[15] 

-422 (Amorphous B)[14] 
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4.2.4 Quantitative X-Ray Diffraction 

Volume fraction analysis w/respect to unresolved BPN product is shown in Table 4.3.  As 

seen in Figures 4.8 and 4.9, the sample is primarily TiB2, but a regression cannot be 

developed with the available data.   

Figure 4.6 X-ray diffraction pattern of a sample with 0.25 initiation aid level, 0.80 

internal initiation aid fraction, and 0.85 KNO3 initiation aid fraction for the TiB2

validation study. 
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Figure 4.7 X-ray diffraction pattern of residue of a 0.25 initiation aid fraction, 0.80 
internal initiation aid fraction, 0.85 KNO3initiation aid fraction sample for the TiB2
validation study 

Table 4.3  
Volume percents of products for the TiB2 validation study (w/respect to the unknown 

BPN volume) 

IA Fraction 

TiB2 

Volume 

Percent 

TiN 

Volume 

Percent 

0.125 97 ± 3 3 ± 1 

0.25 94 ± 3 6 ± 1 

0.50 96 ± 4 4 ± 2 
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4.2.5 Summary of Results: TiB2 Validation Study 

The results of the TiB2 validation study indicate that: 

1) A statistically significant model could be developed for varying levels of 

initiation aid with Ti-B blends, which is in good agreement with the literature 

values for the formation of TiB2.  The model satisfies condition (a) of the 

hypothesis for the Ti-B blends. 

2) Post-reaction quantitative x-ray diffraction indicates the presence of 

approximately 3±1 vol. % TiN0.5 at the lowest recorded initiation aid fraction, 

presumably an artifact of the BPN reaction.  This finding does not explicitly 

confirm condition (b) of the hypothesis for the Ti-B blends, but the amount of 

TiN formed is very small, and must be explored further in the discussion section 

to determine if this amount is negligible and condition (b) is fully satisfied. 

 

 

Figure 4.8  Volume percents of TiB2 vs. total initiation aid wt. fraction for TiB2
validation study (w/respect to unknown BPN product) 
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4.3 Application of Technique to Al-Ti-B 

4.3.1 Process Variable Screening 

The normal plot (Figure 4.10) estimates the significance of the variables in Table 4.4.  

The total initiation aid fraction (IA Frac), the fraction of the IA in the compact (IntFrac), 

the KNO3 fraction of the initiation aid, the formulated volume fraction of TiB2 in the 

product (TiB2Frac), and an interactive effect between the IA Frac and the KNO3Frac are 

significant. 

 

Figure 4.9 Volume percents of TiN0.5 vs. total initiation aid wt. fraction for TiB2 
validation study (w/respect to unknown BPN product) 
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4.3.2 Calorimetry Regression Development 

Using the newly created terms and the TiB2 factor, the reduced regression model is 

determined to be the equation:  

H (kJ/g)  - 2.03 – 2.94 Ext Contrib – 6.96 Int Contrib – 3.05 TiB2Frac + 7.23 

Int*TiB2
2 

 

Statistical information displaying the significance of each term is provided in Table XII. 

 

 

Figure 4.10 Normal effects plot showing significance and non-significance of factors for 
0.05 in the Al-Ti-B study 
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‘Ext Contrib’ is the external initiation aid component, ‘Int Contrib’ is the internal 

initiation component, ‘TiB2Frac’ is the formulated TiB2 product volume fraction, and 

‘Int*TiB2’ is the interactive effect between the internal initiation component and the 

formulated TiB2 product volume fraction.  The column ‘Coef’ designates the coefficient 

for the factor and the column ‘SE Coef’ the standard error of the coefficient.  The ‘T’ 

value is the resultant of the coefficient being divided by its standard error to determine if 

the value is significant.  This significance is indicated by the P column, where P values 

<0.05 ( 0.05) are significant. The adequacy of the model was determined to be 

sufficient with an R-sq (adj) value of 93.3%. 

 

Figure 4.11 displays the experimental and predicted values from the regression model 

next to the predicted values from the literature.  The enthalpy is converted to kJ/mol from 

kJ/g assuming the correction proportions of products were formed in order to evaluate the 

regression values versus the literature values.  The Barin data utilizes enthalpy data for 

both TiB2 and Al3Ti from [14], while the (Frankhouser + Barin) data utilizes enthalpy 

data for TiB2 from [15] and for Al3Ti from [14].  In both cases, the enthalpy change 

associated with the amorphous to crystalline change in boron is from Barin[14]. 

 

Table 4.4  
Statistical information for the terms of the enthalpy regression model for the Al-Ti-B 

study 
 

Predictor Coef SE Coef T P 

Constant -2.0323 0.1878 -10.82 0.000 

Ext Contrib -2.9401 0.4716 -6.23 0.000 

IntContrib -6.9580 0.4325 -16.09 0.000 

TiB2Frac -3.0547 0.3926 -7.78 0.000 

Int*TiB2
2 7.230 1.422 5.08 0.000 
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The experimental model diverges from the predicted thermodynamic models.  Error 

values were determined for the TiB2 values of 0, 20, 40, 60, and 80 vol % TiB2

(formulated) to provide a sense of scatter of the data as a function of the TiB2formulation.  

Furthermore, the enthalpy result for the monolithic TiB2 study differs greatly from the 

trend of the Al-Ti-B study.   

 

4.3.3 Qualitative X-Ray Diffraction 

X-ray diffraction of selected samples at 0.40 (Figure 4.12) and 0.20 revealed formation of 

the intended equilibrium products TiB2 and Al3Ti.  Additional byproducts of Al2O3, TiN, 

and Al were also identified.   

 

Figure 4.11 Experimental and predicted reaction enthalpy change vs. vol. % TiB2 
(formulated) for the Al3Ti/TiB2 study. 
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X-ray diffraction on residues from samples at 0.20 and 0.40 formulated TiB2 volume

fractions are shown in Figures 4.13 and 4.14 respectively.  The presence of -Al2O3 can 

be detected in the diffraction patterns along with unidentified low symmetry phases 

similar to those in the raw BPN product. 

 

 

 

Figure 4.12 X-ray diffraction pattern of a product with formulation factor levels: 0.50 IA 

Frac, 0.80 Int Frac, 0.4 TiB2 Frac for the Al-Ti-B study
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Figure 4.13 X-ray diffraction pattern of residue of a 0.50 initiation aid, 0.80 internal 
initiation aid, 0.70 KNO3 initiation aid fraction sample at 0.20 vol. fraction TiB2
(formulated) for the Al-Ti-B study 

 

Figure 4.14  X-ray diffraction pattern of residue of a 0.50 initiation aid, 0.80 internal 
initiation aid, 0.70 KNO3 initiation aid fraction sample at 0.40 vol. fraction TiB2
(formulated) for the Al3Ti/TiB2 study
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4.3.4 Quantitative X-ray Diffraction 

The summary of the volume fractions as determined through analysis of the x-ray 

diffraction pattern of the samples are displayed in Table 4.5. 

 

The volume fractions of TiB2 derived with respect to the unknown BPN volume fractions 

are shown in Figure 4.15.  

The volume fraction of TiB2 appears to be linearly proportional to initiation aid for each 

TiB2 formulation.  The result of the weighted least squares regression is shown in the 

equation:  

 

Vol. Percent TiB2 = 5.85 + 53.2*Initiation Aid Fraction + 80.2*TiB2 Vol. Fraction 

(Formulated) 

 

Table 4.5  
Volume percents of products from the Al-Ti-B study samples (w/ respect to the BPN 

product volumes) 
 

IA wt. 

Fraction 

TiB2 

vol. % 

(form.  

TiB2 

vol. % 

Al3Ti 

vol. % 

Al  

vol. % 

-Al2O3 

vol. % 

TiN  

vol. % 

0.375 0 24 ± 5 36 ± 2 22 ± 2 16 ± 5 1 ± <0.5 

0.50 0 34 ± 3 4 ± 1 30 ± 3 32 ± 5 Trace 

0.625 0 35 ± 5 Trace 32 ± 2 34 ± 4 Trace 

0.25 20 36 ± 5 24 ± 3 19 ± 2 18 ± 6 2 ± 1 

0.375 20 40 ± 6 17 ± 2 16 ± 3 26 ± 5 2 ± <0.5 

0.50 20 52 ± 5 Trace 25 ± 3 23 ± 6 Trace 

0.25 40 51 ± 3 14 ± 2 23 ± 3 11 ± 3 2 ± <0.5 

0.375 40 57 ± 4 4 ± 1 15 ± 1 24 ± 3 Trace 

0.50 40 65 ± 5 Trace 11 ± 1 24 ± 6 Trace 
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The final estimates of the volume fractions of TiB2 are presented in Table 4.6. 

 

 

Figure 4.15 Volume percents of TiB2 vs. total initiation aid for the Al-Ti-B study 
(w/respect to the BPN product volumes) 

 
 

Table 4.6  
Formulated TiB2 vol. % vs. experimental TiB2 vol. % as a result of a regression of the 

volume percents derived from x-ray diffraction (for the Al-Ti-B study) 

Formulated Vol. % TiB2 Experimental TiB2 Vol. %

0 6 ± 6 

20 22 ± 6 

40 38 ± 5 
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A regression could not be developed for the volume fraction of Al3Ti given the limited 

amount of data, and therefore the nominal amount of Al3Ti being formed for each 

formulation cannot be determined.  However, a general trend of increasing Al3Ti with 

decreasing initiation aid can be observed (Figure 4.16). 

 

No consistent trend for the volume fraction of Al could be determined as observable in 

Figure 4.17.  Implicitly, no regression could be developed for the volume fraction of Al. 

The volume fractions of Al2O3 show a general decrease with decreasing initiation aid 

(Figure 4.18).  However, a reliable regression could not be developed at this time. 

 

Volume fractions of TiN were only detectable at the lower initiation aid fractions (Figure 

4.19).  A regression could not be developed for this set of data. 

 

Figure 4.16 Volume percents of Al3Ti vs. total initiation aid for the Al-Ti-B study 
(w/respect to the BPN product volumes) 
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Figure 4.17 Volume percents of Al vs. total initiation aid for the Al-Ti-B study (w/respect 
to the BPN product volumes) 
 

 

Figure 4.18 Volume percents of -Al2O3vs. total initiation aid for the Al-Ti-B study 
(w/respect to the BPN product volumes) 
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4.3.5 Summary of Results: Al-Ti-B Reactant System 

The results of the Al-Ti-B reactant system study indicate that: 

1) A statistically significant regression model for enthalpy was developed for 

varying levels of initiation aid and formulated volume fraction of TiB2/Al3Ti of 

the products with Al-Ti-B blends.  This model satisfies condition (a) of the 

hypothesis for the Al-Ti-B blends.

2) Post-reaction qualitative x-ray diffraction indicates the presence of the 

presumptive products of TiB2 and Al3Ti, as well as byproducts of Al, TiN, and -

Al2O3. Regression of post-reaction quantitative x-ray diffraction shows 

experimental TiB2 vol. fractions in good agreement with formulated TiB2 vol. 

fractions.  Post-reaction quantitative x-ray diffraction indicates actual volume 

fractions of Al3Ti appear to increase with decreasing initiation aid.  Volume 

fractions of -Al2O3 appear to decrease with decreasing initiation aid, but not to 

zero.  While general trends can be observed for the Al3Ti and -Al2O3 products, 

they cannot be precisely quantified and therefore do not satisfy condition (b) of 

the hypothesis for the Al-Ti-B blends. 

Figure 4.19 Volume percents of TiN vs. total initiation aid for the Al-Ti-B study 
(w/respect to the BPN product volumes) 
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3) Since condition (b) of the hypothesis is not met, condition (c) of the hypothesis 

cannot be addressed at this time. 

4.4 Preliminary Application of Technique to Al-Ti-B4C 

Reactant System 

4.4.1 Regression Development 

A statistically significant regression that takes into account both initiation aid and 

formulated TiB2/TiC volume percent could not be established.  The internal initiation aid 

weight fraction (Total initiation fraction multiplied by the fraction of initiation aid that is 

internal) is the only significant predictor of the internal energy.  The external initiation 

aid and the formulated volume percent of TiB2/TiC could not be resolved as predictors.  

The raw internal energy measurements from the bomb calorimeter are shown in Figure 

4.20.  Each formulated volume percentage appears to have its own unique point of 

inflection with respect varying internal initiation aid fraction of the total weight, where 

the slope of the data appears to change in sign.  One point, the 0.4 TiB2/TiC formulated 

volume fraction at 0.5 internal initiation aid weight fraction appears to be an outlier. 

4.4.2 Qualitative X-Ray Diffraction 

X-ray diffraction conducted on a randomly selected sample (0.20 TiB2/ TiC formulated 

volume fraction, 0.375 initiation aid fraction) can be seen in the diffraction pattern in 

Figure 4.21.  The phases of TiB2 and Al3Ti are clearly identified.  TiC is present in the 

sample, but the peak position indicates that it likely exists in a solid solution with TiN.    

As similarly seen in the Al-Ti-B experiments, residual Al exists in the product as well as 

-Al2O3, as a byproduct of the reaction.  
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Figure 4.20  Experimental reaction energies vs. weight fraction of the internally added 
initiation aid

Figure 4.21 X-ray diffraction pattern of a product with formulation factor levels:  0.25 
initiation aid, 0.80 internal initiation aid fraction, 0.70 KNO3 initiation aid fraction, and 
0.20 vol. fraction TiB2 + TiC (formulated) for the Al-Ti-B4C study 



45 
 

4.4.3 Summary of Results: Al-Ti-B4C Reactant System 

The results of the Al-Ti-B4C reactant system study indicate that: 

1) A significant regression model for enthalpy could not be developed for varying 

levels of initiation aid and formulated volume fraction of TiB2/TiC/Al3Ti of the 

products with Al-Ti-B4C blends.  A general trend of decreasing magnitude of 

enthalpy of the reaction with decreasing initiation aid can be observed.  This 

model does not satisfy condition (a) of the hypothesis for the Al-Ti-B4C blends. 

2) Post-reaction qualitative x-ray diffraction indicates the presence of the 

presumptive products of TiB2, TiC (in a solid solution with TiN) and Al3Ti, as 

well as byproducts of Al, TiN (in a solid solution with TiC), and -Al2O3.  

Because a significant model for heat of reaction could not be attained, quantitative 

x-ray diffraction was not performed, and therefore conditions (b) and (c) of the 

hypothesis are not addressed. 
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5 Discussion 

5.1 BPN Characterization 

The initiation aid chosen to help ignite the samples is a mixture of boron (B) and 

potassium nitrate (KNO3), also known as BPN.  BPN is a common igniter blend in the 

propellant industry.  BPN was selected as an igniter for these SHS blends since it: (1) 

does not introduce a new metallic element to the blend, (2) is highly exothermic upon 

reaction, and (3) sensitive enough to be ignited by the heat produced by the current 

running through a resistive-wire, but still insensitive enough to be handled relatively 

safely in the laboratory.   

BPN igniter mixtures have generally consisted of 50/50, 70/30, or 80/20 (KNO3 to B) 

weight mixtures[42].  Trying to formulate stoichiometrically is difficult because of the 

uncertainty of the degree of reaction that will occur.  In the literature, the BPN reaction 

has been characterized as 3 step process where most of the heat is produced in the first 

stage in the formation of KBO2 and NO, the second stage decomposes the remaining 

KNO3, and the final stage being a decomposition of the KBO2 compound to B2O3 and 

K2O[43]. 

The particular unidentified phases in the x-ray diffraction analysis are not of particular 

consequence to the study since the amount of product is being regressed to zero and the 

structure will likely change based on the heat applied from the TiB2 and Al3Ti reactions. 

In selection of a B/KNO3 relative fraction for subsequent experiments, maximization of 

energy output but retaining sensitivity is of importance. It appears a greater degree of 

reaction occurs with the 50/50 and 70/30 compositions since they have a larger internal 

energy output.  In the TiB2 validation study, both the 70/30 and 85/15 compositions are 

utilized to investigate any interactive effects with processing variables.  However, for the 

Al-Ti-B and Al-Ti-B4C systems, the 70/30 composition is used since it provides both a 

higher energy output and good sensitivity. 
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5.1 Ti-B Reactant System 

5.1.1 Process Variable Screening 

The initiation aid is expected to have a significant main effect contribution as the reaction 

between B and KNO3 is more energetic than the reaction between Ti and B.  

Furthermore, the initiation aid having a significant effect is the basis for modeling the 

regression.  However, a KNO3 interaction with IA fraction was expected rather than a 

KNO3 effect alone.  Since more KNO3 particles will be in contact with B particles inside 

the compact, there should be a higher contribution to the enthalpy from the B/KNO3 

reaction.  

5.1.2 Regression Analysis 

The regression with additional IA fraction values reveals that the interactive effect may 

have indeed been missed since at the 0.125 IA fraction level the enthalpy values seem to 

overlap.  This convergence is more consistent with what is expected as both regressions 

should produce the same enthalpy at the estimated zero point of IA fraction.  

The interaction plot matrix in Figure 5.1 shows the presence of an interaction effect 

toward the 0.125 IA fraction since the lines no longer exhibit roughly parallel slopes and 

almost overlap. 

The final regressed enthalpy value show close agreement with enthalpy values using 

crystalline boron.  The reactant boron is commercially labeled as amorphous, so this 

result is somewhat unexpected.  Further analysis of the boron is discussed later. 

5.1.2 Qualitative X-Ray Diffraction 

The diffraction pattern of the compact indicates the presence of TiB2 and TiN in a 

metastable composition of TiN0.5.  The possibility of this metastable composition is 

confirmed in the TiN binary phase diagram where the solubility range of N is larger at 

high temperatures.  The reaction temperatures with rapid cooling could possibly give rise 

to this metastable state. 
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The residue is likely mostly made up of low electron density elements (B,O) and would 

not scatter significantly which may allow the x-rays to penetrate down to the holder.  

During quantitative x-ray analysis with the combined compact and residue in a single 

powder sample, x-rays will not penetrate through to the holder and a determination can 

be made if there is any significant -Ti. 

5.1.3 Quantitative X-Ray Diffraction 

The small sample size may be the primary reason that a TiN0.5 regression was not able to 

be achieved.  It is possible that the TiN0.5 regresses to zero and TiB2 is the only product at 

zero initiation aid, but higher resolution and replicates of samples at each initiation aid 

level are needed to verify this predicted regression. 

If residual TiN exists however, this would not significantly affect the outcome of the 

experimental heats of reaction.  The heat of formation as specified in the literature is -338 

kJ/mol.  If the maximum recorded value of 6 vol. % for TiN is taken, the predicted heat 

of formation change would be -1 kJ/mol to the Barin TiB2 prediction value and -4 kJ/mol 

to the Frankhouser TiB2 prediction value.  Therefore, the effect of having 6% TiN is 

below the level of resolution of the technique and the technique for this particular system 

remains valid. 

5.1.4 Boron Analysis 

Since the volume percent of the TiB2 is near 100%, and the residual TiN would not 

account for any appreciable difference in enthalpy values, it would leave the degree of 

crystallinity of the boron as possible answer to why the experimental enthalpy values 

match those of crystalline boron rather than amorphous boron. 

As seen in the x-ray diffraction pattern of the commercially labeled ‘amorphous’ boron in 

Figure 28, there are distinct and unbroadened peaks in the pattern.  Some of the peaks 

roughly match a crystalline state of boron. These distinct peaks are indicative of strong 

crystallinity of the boron.  If the boron were completely amorphous, a wide broadened 

peak would be expected instead of distinct peaks [23].  This evidence suggests that the 
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boron is semi-crystalline.   Boron hydroxide was also determined to be present in the 

sample, likely due to reaction with the boron with oxygen and water in the air. 

5.2 Al-Ti-B Reactant System 

5.2.1 Process Variable Screening 

The significant effects determined from the normal plot are all expected and pose no 

problems for developing a regression.  The initiation aid and TiB2 volume fraction are the 

basis of the regression, and therefore would be expected to have a large effect.  The 

fraction of the IA in the compact (IntFrac) being significant implies an interaction 

between the constituents in the compact and the initiation aid added to the compact.  The 

presence of the KNO3 effect and interaction between KNO3 and IA Frac is expected 

because in previous work it is shown that the levels chosen will have a different external 

initiation aid enthalpy value.  Keeping the KNO3 fraction constant will negate this effect 

as the enthalpy will then depend only on the total level of initiation aid and the internal 

fraction of the initiation aid. 

5.2.2 Regression Analysis 

If the reactant boron is crystalline, more heat is being generated in the experiment than 

the nominal prediction for all formulated TiB2 levels. This would indicate that an 

unintended reaction is taking place or the heat contribution of the BPN reaction is not 

being fully regressed out and an oversaturation of igniter is present.   

 

Possible unintended side-reactions may include the reduction of the SiO2 crucible by Al, 

or reduction of boron oxides in the boron powder unidentified by x-ray diffraction.  The 

reaction of Al and SiO2 occurs according to the equation (for -Al2O3): 

 

3SiO2 + 2Al  2Al2O3 + 3Si, Hr = -590 kJ [14] 
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5.2.3 Qualitative X-Ray Diffraction 

The products of TiB2 and Al3Ti are present in the x-ray diffraction pattern as expected.  

Al2O3 likely forms from the oxidation of Al with oxygen liberated from KNO3 or from 

the two side reactions of Al interaction with the SiO2 crucible or boron oxide 

contamination. TiN is likely formed from titanium absorbing nitrogen gas, which is a 

byproduct of the reaction of KNO3 and B [43].  If the KNO3 is the only source of oxygen 

and nitrogen in the formation of Al2O3 and TiN, as the initiation aid is regressed to zero, 

these byproducts should disappear. 

 

The presence of Al in the x-ray diffraction spectrum is likely due to the stoichiometric 

imbalance of the formulation when the initiation aid is added.  If the prevalent reaction is 

the formation of TiB2, the TiB2 reaction would abscond Ti from the formation of Al3Ti, 

putting the effective formulation titanium deficient and therefore in the phase field of Al 

+ Al3Ti.  Under this reasoning, in the presence of the initiation aid, Al would be expected 

to be seen in the x-ray diffraction spectrum of the product. 

 

Figure 5.1 X-ray diffraction pattern of 'commercially amorphous' boron showing 
crystalline nature 
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5.2.4 Quantitative X-Ray Diffraction 

TiB2 

Given the small amount of data, the experimentally regressed TiB2 volumes coincide 

with the formulated TiB2 volumes fairly well.  This would be expected since the TiB2 

synthesis study showed the formation of close to monolithic TiB2 and the formation of 

Al2O3 should not change the availability of the reactants for TiB2.   

 

Al3Ti 

The trend of increasing Al3Ti with decreasing initiation aid is likely due to the previously 

stated supposition that as excess boron is introduced to the formulation in the BPN 

initiation aid, excess TiB2 will be formed, leaving the formulation Ti deficient and 

forming less Al3Ti.  It would be expected that as the initiation aid is decreased, more 

Al3Ti would be formed. 

 

Al 

Difficulty was encountered in finding a general trend in the amount of Al present.  

Explanation of this difficulty in finding a trend may possibly be explained by the reaction 

of Al with the SiO2 crucible.  As the Al content increases, a larger reaction with the 

crucible would be expected.  However the degree of this reaction would not controllable.  

The crucible’s silicon content is likely to change reaction to reaction.  Furthermore, 

Al2O3 or TiB2 forming on the crucible may create a diffusion barrier, further increasing 

the unpredictability of the amount of Al2O3 formed, therefore changing the amount of Al 

remaining.   

Another possible difficulty in determining the amount of Al may be in the regression of 

initiation aid itself.  As the initiation aid is decreased, the formulation will inherently 

have a larger initial Al fraction.  If the reaction does not go to equilibrium, there would be 

a larger amount of residual Al.  However, decreasing the initiation aid will also push the 

stoichiometry of the products (Al3Ti + Al) further towards higher volume fractions of 

Al3Ti, decreasing the amount of Al in the product. 
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Al2O3 

The trend of decreasing Al2O3with decreasing initiation aid would imply that at least 

some of the Al2O3 formation is proportionally related to the subtraction of the initiation 

aid.  This correlation and the presence of residual Al provide some evidence that the 

initiation aid formulations do not create a state of ‘oversaturation’ with KNO3. 

In addition to the considerations addressed earlier, if a reaction with the SiO2 crucible is 

occurring, it is also possible that the entire Al2O3 product has not been collected.  The 

inability to develop a correlation with respect to the amount of formulated TiB2/Al3Ti 

fraction is still unexplained. 

 

TiN 

The presence of TiN only at higher levels of initiation aid may imply that the TiN is more 

likely to react with Ti meant for the Al3Ti reaction, or that a certain critical level of boron 

exists that prevents the formation of TiN.  The volume fraction of TiN may regress to 

zero, but at the current precision level of this analysis, it cannot be determined and must 

be assumed that 1-3 vol %. TiN is residual in each sample. 

 

5.3 Al-Ti-B4C Reactant System 

5.3.1 Calorimetry Regression Development 

The Al-Ti-B4C system appears to be a more difficult reaction system to model using the 

modified initiation aid method. The increased complexity of the system that includes the 

endothermic breakdown of B4C may contribute to this difficulty.  The observed inflection 

points of the individual sets of formulated volume percent of TiB2/TiC with respect to 

altering the internal initiation aid may be due to some local maxima of energy related to 

what byproducts are formed as a result of adding the initiation aid.  This may be further 

complicated if there is a reaction with the crucible.  A higher level of precision is needed 

to fully ascertain whether a coherent and significant regression can be developed with 

respect to both initiation aid and the formulated volume fraction of the products.  Once 
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the precision of the measurements is increased, the external initiation aid contribution 

should be able to be resolved as well. 

5.3.2 Qualitative X-Ray Diffraction 

The formation of the expected products of TiB2, TiC, and Al3Ti were confirmed, 

although TiC appears to be in a solid solution with TiN, with the source of nitrogen being 

KNO3 from the initiation aid.  The Ti-C-N ternary phase diagram confirms the possibility 

of a solid solution of TiC and TiN, which would create the position of the diffraction 

peak between the nominal positions of the peaks of TiN and TiC.  

The presence of residual Al is likely due to the stoichiometric imbalance created by 

adding the initiation aid as addressed in previous sections. 

The formation of Al2O3 has less uncertainty from its possible sources, but without 

volume fraction analysis with respect to initiation aid, remains difficult to resolve.  For 

this particular set of reactions, the number of oxygen sources is fewer since oxygen 

contamination coming from boron is minimized since the main source of boron (other 

than the initiation aid) is bound in B4C.  Whether the source of this Al2O3 is solely from 

the reaction of Al with oxygen liberated from the BPN initiation aid or if it is due to 

reaction with the crucible is unknown.   
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6 Conclusions and Future Work 

6.1 Ti-B Validation 

The modified bomb calorimetry technique of blending a BPN initiation aid into the 

primary powder formulation and developing a regression to estimate the nominal heat of 

reaction appears valid.  The primary product of the reaction is TiB2 with small volume 

percentages of a TiN byproduct.  It was proposed that this byproduct would regress to 

zero as the initiation aid was decreased.  However, the current resolution of the volume 

fraction analysis and the limited number of samples run prevent the acquisition of data to 

support this conclusion.  However, even at the highest residual value of TiN (6 vol. %),  

the effect on the net heat of reaction would only be -1 to -4 kJ/mol, which is negligible 

since it is below the resolution of the calorimetry technique, which is 6 and 7 kJ/mol. 

Replicating the samples, running the x-ray diffraction for longer scan times, and applying 

more rigorous modeling of the diffraction pattern may be steps that can be taken in the 

future to resolve whether the formation of TiN decreases as a function of initiation aid 

and can be adequately measured.  The formation of TiN should be noted for future 

reactions using this technique as the residual heat from the formation of small volumes of 

nitrides may not be negligible for all systems. 

6.2 Al-Ti-B Reactant System 

The modified initiation aid method of blending of a BPN initiation aid into the blend of 

Al, Ti, B reactants allowed a statistically significant regression with good precision.  It 

was discovered through x-ray diffraction of the commercially amorphous boron that the 

powder was of crystalline nature rather than amorphous. If assumption that the boron is 

not amorphous holds, experimental enthalpies of reaction values are larger than the 

predicated models.  These higher than predicated values may be attributed to excess -

Al2O3 forming as a result of interaction with the SiO2 crucible or interaction with boron 

oxide forming when the fine boron powder was exposed to the atmosphere.  While the 

possibility exists that oxygen from the potassium nitrate may be oversaturating the 
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reaction, the presence of residual Al would seem to provide counter evidence to this 

statement.  A new subset of experiments must be conducted with an alumina (or more 

stable oxide) crucible to determine if this is the source of the excess heat of reaction.  

Chemical analysis separate from x-ray diffraction of the reactant boron must also be 

performed in order determine the oxygen content the boron has acquired from being 

exposed to the atmosphere. 

Volume fraction analysis using x-ray diffraction has shown that despite the uncertainties 

associated with the reactions with Al, the TiB2 fractions are forming close to formulated 

values.  Reliable regressions could not be developed for Al3Ti, Al, -Al2O3, or TiN.  

However, a general increasing trend with a reduction in initiation aid can be seen for 

Al3Ti.  Furthermore, a general decreasing trend can be observed with a reduction 

initiation aid for the formation of -Al2O3.  Particular trends could not be resolved for Al 

and TiN.  Performing volume fraction analysis on replicates of these samples and on 

samples with more levels of initiation aid and formulated TiB2 volume fractions would 

help increase the resolution of these results.  However, the possibility of previous side-

reactions with the crucible or boron oxides must first be resolved before pursuing 

additional volume fraction analysis. 

6.3 Al-Ti-B4C Reactant System 

A valid relationship between the experimental variables and the enthalpy of reaction 

cannot yet be established to approximate the nominal heat value for these blends using 

the modified initiation aid method.  A general relationship of the internal initiation aid 

with the internal energy can be observed, this relationship cannot differentiate between 

formulated volume fractions of TiB2/TiC.  It is possible that the endothermic step to 

break up the B4C combined with forming additional products (TiC) may require much 

higher resolution to discern a relationship to approximate the nominal values.  In order to 

achieve this, the question of whether interaction with the SiO2 crucible is occurring must 

first be resolved.  To further increase resolution, replicates and additional levels of 

initiation aid fraction must be added to the experimental design. 
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8 Appendix: Internal Energies of Reactions 

The following table (Table 8.1) contains the measured internal energy ( U) of reaction 

for all reactions within this study.  Total initiation aid fraction (IA) refers to the total 

weight fraction of the initiation aid that was reacted.  Internal initiation aid fraction in 

compact refers to the fraction of the initiation aid that is internal (internal IA mass 

divided by the total IA mass).  KNO3 fraction refers to the KNO3 weight fraction of the 

initiation aid (balance is B).  Bomb pressure refers to the pressure the bomb was initially  

charged (4.8 grade Ar).



 
 

   
 

Ta
bl

e 
8.

1 
C

on
tin

ue
d  

  

59 

Ta
bl

e 
8.

1 
 

In
te

rn
al

 e
ne

rg
y 

m
ea

su
re

m
en

ts
 fo

r a
ll 

ex
pe

rim
en

ts
 

 

R
ea

ct
an

t S
ys

te
m

 
T

ot
al

 
In

iti
at

io
n 

A
id

 
Fr

ac
tio

n 

Fr
ac

tio
n 

of
 IA

 in
 

C
om

pa
ct

 

K
N

O
3 

Fr
ac

tio
n 

of
 IA

 

B
om

b 
Pr

es
su

re
 

 (
Pa

 

A
vg

. 
T

i S
iz

e 
(

m
 

A
vg

. 

A
l S

iz
e 

(
m

 

Fo
rm

ul
at

ed
 

T
iB

2 o
r 

T
iB

2/T
iC

 
vo

l. 
%

 

 
(

/g
 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

7 
83

0 
14

9 
14

9 
40

 
-5

.5
86

 

A
l-T

i-B
 

0.
25

 
0.

8 
0.

7 
83

0 
14

9 
14

9 
40

 
-4

.5
32

 

A
l-T

i-B
 

0.
25

 
0.

66
7 

0.
85

 
83

0 
14

9 
14

9 
40

 
-4

.6
27

 

A
l-T

i-B
 

0.
5 

0.
8 

0.
85

 
83

0 
14

9 
14

9 
40

 
-5

.6
88

 

A
l-T

i-B
 

0.
25

 
0.

66
7 

0.
7 

83
0 

44
 

14
9 

40
 

-4
.5

09
 

A
l-T

i-B
 

0.
5 

0.
8 

0.
7 

83
0 

44
 

14
9 

40
 

-5
.6

44
 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

85
 

83
0 

44
 

14
9 

40
 

-5
.5

99
 

A
l-T

i-B
 

0.
25

 
0.

8 
0.

85
 

83
0 

44
 

14
9 

40
 

-4
.4

54
 

A
l-T

i-B
 

0.
5 

0.
8 

0.
85

 
83

0 
44

 
44

 
40

 
-5

.4
77

 

A
l-T

i-B
 

0.
25

 
0.

8 
0.

7 
83

0 
44

 
44

 
40

 
-4

.5
48

 



 
 

   
 

Ta
bl

e 
8.

1 
C

on
tin

ue
d  

  

60 R
ea

ct
an

t S
ys

te
m

 
T

ot
al

 
In

iti
at

io
n 

A
id

 
Fr

ac
tio

n 

Fr
ac

tio
n 

of
 IA

 in
 

C
om

pa
ct

 

K
N

O
3 

Fr
ac

tio
n 

of
 IA

 

B
om

b 
Pr

es
su

re
 

 (
Pa

 

A
vg

. 
T

i S
iz

e 
(

m
 

A
vg

. 

A
l S

iz
e 

(
m

 

Fo
rm

ul
at

ed
 

T
iB

2 o
r 

T
iB

2/T
iC

 
vo

l. 
%

 

 
(

/g
 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

7 
83

0 
44

 
44

 
40

 
-5

.2
70

 

A
l-T

i-B
 

0.
25

 
0.

66
7 

0.
85

 
83

0 
44

 
44

 
40

 
-4

.5
83

 

A
l-T

i-B
 

0.
5 

0.
8 

0.
7 

83
0 

14
9 

44
 

40
 

-5
.6

99
 

A
l-T

i-B
 

0.
25

 
0.

8 
0.

85
 

83
0 

14
9 

44
 

40
 

-4
.6

78
 

A
l-T

i-B
 

0.
25

 
0.

66
7 

0.
7 

83
0 

14
9 

44
 

40
 

-4
.3

05
 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

85
 

83
0 

14
9 

44
 

40
 

-5
.5

15
 

A
l-T

i-B
 

0.
12

5 
0.

66
7 

0.
85

 
83

0 
14

9 
14

9 
40

 
-4

.0
06

 

A
l-T

i-B
 

0.
37

5 
0.

66
7 

0.
85

 
83

0 
14

9 
14

9 
40

 
-5

.1
92

 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

85
 

83
0 

14
9 

14
9 

20
 

-4
.9

18
 

A
l-T

i-B
 

0.
25

 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

20
 

-3
.7

34
 

A
l-T

i-B
 

0.
25

 
0.

8 
0.

85
 

83
0 

14
9 

14
9 

20
 

-4
.3

47
 

A
l-T

i-B
 

0.
5 

0.
8 

0.
7 

83
0 

14
9 

14
9 

20
 

-5
.4

78
 



 
 

   
 

Ta
bl

e 
8.

1 
C

on
tin

ue
d  

  

61 R
ea

ct
an

t S
ys

te
m

 
T

ot
al

 
In

iti
at

io
n 

A
id

 
Fr

ac
tio

n 

Fr
ac

tio
n 

of
 IA

 in
 

C
om

pa
ct

 

K
N

O
3 

Fr
ac

tio
n 

of
 IA

 

B
om

b 
Pr

es
su

re
 

 (
Pa

 

A
vg

. 
T

i S
iz

e 
(

m
 

A
vg

. 

A
l S

iz
e 

(
m

 

Fo
rm

ul
at

ed
 

T
iB

2 o
r 

T
iB

2/T
iC

 
vo

l. 
%

 

 
(

/g
 

A
l-T

i-B
 

0.
25

 
0.

8 
0.

85
 

83
0 

44
 

44
 

20
 

-4
.0

94
 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

85
 

83
0 

44
 

44
 

20
 

-4
.5

69
 

A
l-T

i-B
 

0.
25

 
0.

66
7 

0.
7 

83
0 

44
 

44
 

20
 

-3
.8

99
 

A
l-T

i-B
 

0.
5 

0.
8 

0.
7 

83
0 

44
 

44
 

20
 

-5
.3

86
 

A
l-T

i-B
 

0.
25

 
0.

8 
0.

7 
83

0 
14

9 
44

 
20

 
-4

.3
08

 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

7 
83

0 
14

9 
44

 
20

 
-5

.4
03

 

A
l-T

i-B
 

0.
5 

0.
8 

0.
85

 
83

0 
14

9 
44

 
20

 
-5

.3
30

 

A
l-T

i-B
 

0.
25

 
0.

66
7 

0.
85

 
83

0 
14

9 
44

 
20

 
-4

.1
35

 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

7 
83

0 
44

 
14

9 
20

 
-5

.5
18

 

A
l-T

i-B
 

0.
25

 
0.

8 
0.

7 
83

0 
44

 
14

9 
20

 
-4

.0
79

 

A
l-T

i-B
 

0.
5 

0.
8 

0.
85

 
83

0 
44

 
14

9 
20

 
-5

.4
65

 

A
l-T

i-B
 

0.
25

 
0.

66
7 

0.
85

 
83

0 
44

 
14

9 
20

 
-4

.0
36

 



 
 

   
 

Ta
bl

e 
8.

1 
C

on
tin

ue
d  

  

62 R
ea

ct
an

t S
ys

te
m

 
T

ot
al

 
In

iti
at

io
n 

A
id

 
Fr

ac
tio

n 

Fr
ac

tio
n 

of
 IA

 in
 

C
om

pa
ct

 

K
N

O
3 

Fr
ac

tio
n 

of
 IA

 

B
om

b 
Pr

es
su

re
 

 (
Pa

 

A
vg

. 
T

i S
iz

e 
(

m
 

A
vg

. 

A
l S

iz
e 

(
m

 

Fo
rm

ul
at

ed
 

T
iB

2 o
r 

T
iB

2/T
iC

 
vo

l. 
%

 

 
(

/g
 

A
l-T

i-B
 

0.
25

 
0.

51
4 

0.
85

 
83

0 
44

 
44

 
40

 
-4

.4
33

 

A
l-T

i-B
 

0.
5 

0.
51

4 
0.

85
 

83
0 

44
 

44
 

40
 

-5
.5

91
 

A
l-T

i-B
 

0.
5 

0.
51

4 
0.

7 
83

0 
44

 
44

 
40

 
-5

.4
30

 

A
l-T

i-B
 

0.
25

 
0.

51
4 

0.
7 

83
0 

44
 

44
 

40
 

-4
.2

54
 

A
l-T

i-B
 

0.
25

 
0.

51
4 

0.
85

 
83

0 
44

 
44

 
20

 
-3

.9
24

 

A
l-T

i-B
 

0.
25

 
0.

51
4 

0.
7 

83
0 

44
 

44
 

20
 

-3
.6

60
 

A
l-T

i-B
 

0.
5 

0.
51

4 
0.

7 
83

0 
44

 
44

 
20

 
-5

.3
40

 

A
l-T

i-B
 

0.
5 

0.
51

4 
0.

85
 

83
0 

44
 

44
 

20
 

-4
.6

65
 

A
l-T

i-B
 

0.
25

 
0.

40
1 

0.
7 

83
0 

44
 

14
9 

40
 

-4
.1

49
 

A
l-T

i-B
 

0.
25

 
0.

40
1 

0.
7 

83
0 

44
 

14
9 

20
 

-3
.5

54
 

A
l-T

i-B
 

0.
5 

0.
40

1 
0.

7 
83

0 
44

 
14

9 
40

 
-5

.4
20

 

A
l-T

i-B
 

0.
5 

0.
40

1 
0.

7 
83

0 
44

 
14

9 
20

 
-4

.8
99

 



 
 

   
 

Ta
bl

e 
8.

1 
C

on
tin

ue
d  

  

63 R
ea

ct
an

t S
ys

te
m

 
T

ot
al

 
In

iti
at

io
n 

A
id

 
Fr

ac
tio

n 

Fr
ac

tio
n 

of
 IA

 in
 

C
om

pa
ct

 

K
N

O
3 

Fr
ac

tio
n 

of
 IA

 

B
om

b 
Pr

es
su

re
 

 (
Pa

 

A
vg

. 
T

i S
iz

e 
(

m
 

A
vg

. 

A
l S

iz
e 

(
m

 

Fo
rm

ul
at

ed
 

T
iB

2 o
r 

T
iB

2/T
iC

 
vo

l. 
%

 

 
(

/g
 

A
l-T

i-B
 

0.
37

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

40
 

-4
.6

55
 

A
l-T

i-B
4C

 
0.

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

40
 

-5
.3

67
 

A
l-T

i-B
4C

 
0.

5 
0.

8 
0.

7 
83

0 
14

9 
14

9 
40

 
-5

.5
10

 

A
l-T

i-B
4C

 
0.

37
5 

0.
8 

0.
7 

83
0 

14
9 

14
9 

40
 

-4
.9

53
 

A
l-T

i-B
4C

 
0.

37
5 

0.
8 

0.
7 

83
0 

14
9 

14
9 

20
 

-5
.0

58
 

A
l-T

i-B
4C

 
0.

37
5 

0.
66

7 
0.

7 
83

0 
14

9 
14

9 
20

 
-4

.3
86

 

A
l-T

i-B
4C

 
0.

5 
0.

8 
0.

7 
83

0 
14

9 
14

9 
20

 
-5

.6
18

 

A
l-T

i-B
4C

 
0.

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

20
 

-5
.4

09
 

A
l-T

i-B
4C

 
0.

37
5 

0.
8 

0.
7 

83
0 

14
9 

44
 

20
 

-5
.2

94
 

A
l-T

i-B
 

0.
37

5 
0.

66
7 

0.
7 

83
0 

14
9 

44
 

20
 

-4
.9

55
 

A
l-T

i-B
 

0.
37

5 
0.

8 
0.

7 
83

0 
14

9 
44

 
40

 
-5

.3
04

 

A
l-T

i-B
 

0.
37

5 
0.

66
7 

0.
7 

83
0 

14
9 

44
 

40
 

-5
.2

85
 



 
 

   
 

Ta
bl

e 
8.

1 
C

on
tin

ue
d  

  

64 R
ea

ct
an

t S
ys

te
m

 
T

ot
al

 
In

iti
at

io
n 

A
id

 
Fr

ac
tio

n 

Fr
ac

tio
n 

of
 IA

 in
 

C
om

pa
ct

 

K
N

O
3 

Fr
ac

tio
n 

of
 IA

 

B
om

b 
Pr

es
su

re
 

 (
Pa

 

A
vg

. 
T

i S
iz

e 
(

m
 

A
vg

. 

A
l S

iz
e 

(
m

 

Fo
rm

ul
at

ed
 

T
iB

2 o
r 

T
iB

2/T
iC

 
vo

l. 
%

 

 
(

/g
 

A
l-T

i-B
 

0.
25

 
0.

66
7 

0.
7 

83
0 

44
 

44
 

60
 

-4
.9

52
 

A
l-T

i-B
 

0.
25

 
0.

8 
0.

7 
83

0 
44

 
44

 
60

 
-4

.8
23

 

A
l-T

i-B
 

0.
37

5 
0.

8 
0.

7 
83

0 
44

 
44

 
60

 
-5

.5
25

 

A
l-T

i-B
 

0.
37

5 
0.

66
7 

0.
7 

83
0 

44
 

44
 

60
 

-5
.5

69
 

A
l-T

i-B
 

0.
5 

0.
8 

0.
7 

83
0 

44
 

44
 

60
 

-5
.8

56
 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

7 
83

0 
44

 
44

 
60

 
-5

.6
61

 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

7 
83

0 
14

9 
14

9 
0 

-5
.1

81
 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

7 
83

0 
14

9 
14

9 
0 

-4
.9

29
 

A
l-T

i-B
 

0.
37

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

0 
-4

.3
92

 

A
l-T

i-B
 

0.
37

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

0 
-3

.9
73

 

A
l-T

i-B
 

0.
62

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

0 
-5

.6
44

 

A
l-T

i-B
 

0.
62

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

0 
-5

.5
54

 



 
 

   
 

Ta
bl

e 
8.

1 
C

on
tin

ue
d  

  

65 R
ea

ct
an

t S
ys

te
m

 
T

ot
al

 
In

iti
at

io
n 

A
id

 
Fr

ac
tio

n 

Fr
ac

tio
n 

of
 IA

 in
 

C
om

pa
ct

 

K
N

O
3 

Fr
ac

tio
n 

of
 IA

 

B
om

b 
Pr

es
su

re
 

 (
Pa

 

A
vg

. 
T

i S
iz

e 
(

m
 

A
vg

. 

A
l S

iz
e 

(
m

 

Fo
rm

ul
at

ed
 

T
iB

2 o
r 

T
iB

2/T
iC

 
vo

l. 
%

 

 
(

/g
 

A
l-T

i-B
 

0.
37

5 
0.

8 
0.

7 
83

0 
14

9 
14

9 
0 

-4
.2

72
 

A
l-T

i-B
 

0.
5 

0.
8 

0.
7 

83
0 

14
9 

14
9 

0 
-5

.5
32

 

A
l-T

i-B
 

0.
62

5 
0.

8 
0.

7 
83

0 
14

9 
14

9 
0 

-5
.5

93
 

A
l-T

i-B
 

0.
37

5 
0.

8 
0.

7 
83

0 
14

9 
14

9 
20

 
-5

.1
37

 

A
l-T

i-B
 

0.
37

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

20
 

-4
.9

43
 

A
l-T

i-B
 

0.
37

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

80
 

-5
.4

70
 

A
l-T

i-B
 

0.
25

 
0.

8 
0.

7 
83

0 
14

9 
14

9 
80

 
-5

.1
95

 

A
l-T

i-B
 

0.
5 

0.
8 

0.
7 

83
0 

14
9 

14
9 

80
 

-5
.7

70
 

A
l-T

i-B
 

0.
25

 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

80
 

-5
.0

68
 

A
l-T

i-B
 

0.
37

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

80
 

-5
.4

81
 

A
l-T

i-B
 

0.
5 

0.
66

7 
0.

7 
83

0 
14

9 
14

9 
80

 
-5

.6
10

 

A
l-T

i-B
 

0.
62

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

40
 

-5
.3

53
 



 
 

   
 

Ta
bl

e 
8.

1 
C

on
tin

ue
d  

  

66 R
ea

ct
an

t S
ys

te
m

 
T

ot
al

 
In

iti
at

io
n 

A
id

 
Fr

ac
tio

n 

Fr
ac

tio
n 

of
 IA

 in
 

C
om

pa
ct

 

K
N

O
3 

Fr
ac

tio
n 

of
 IA

 

B
om

b 
Pr

es
su

re
 

 (
Pa

 

A
vg

. 
T

i S
iz

e 
(

m
 

A
vg

. 

A
l S

iz
e 

(
m

 

Fo
rm

ul
at

ed
 

T
iB

2 o
r 

T
iB

2/T
iC

 
vo

l. 
%

 

 
(

/g
 

A
l-T

i-B
4C

 
0.

62
5 

0.
8 

0.
7 

83
0 

14
9 

14
9 

40
 

-7
.2

72
 

A
l-T

i-B
4C

 
0.

62
5 

0.
66

7 
0.

7 
83

0 
14

9 
14

9 
20

 
-5

.5
71

 

A
l-T

i-B
4C

 
0.

62
5 

0.
8 

0.
7 

83
0 

14
9 

14
9 

20
 

-5
.1

61
 

A
l-T

i-B
4C

 
0.

37
5 

0.
8 

0.
7 

83
0 

14
9 

14
9 

60
 

-4
.8

84
 

A
l-T

i-B
4C

 
0.

37
5 

0.
66

7 
0.

7 
83

0 
14

9 
14

9 
60

 
-4

.8
58

 

A
l-T

i-B
4C

 
0.

5 
0.

66
7 

0.
7 

83
0 

14
9 

14
9 

60
 

-5
.1

98
 

A
l-T

i-B
4C

 
0.

5 
0.

8 
0.

7 
83

0 
14

9 
14

9 
60

 
-5

.4
15

 

A
l-T

i-B
4C

 
0.

62
5 

0.
66

7 
0.

7 
83

0 
14

9 
14

9 
60

 
-5

.6
02

 

A
l-T

i-B
4C

 
0.

62
5 

0.
8 

0.
7 

83
0 

14
9 

14
9 

60
 

-5
.5

59
 

T
i-B

 
0.

5 
0.

66
7 

0.
7 

41
5 

14
9 

N
/A

 
10

0 
-5

.4
68

 

T
i-B

 
0.

25
 

0.
8 

0.
7 

41
5 

14
9 

N
/A

 
10

0 
-4

.7
35

 

T
i-B

 
0.

25
 

0.
66

7 
0.

7 
83

0 
14

9 
N

/A
 

10
0 

-4
.8

63
 



 
 

   
 

Ta
bl

e 
8.

1 
C

on
tin

ue
d  

  

67 R
ea

ct
an

t S
ys

te
m

 
T

ot
al

 
In

iti
at

io
n 

A
id

 
Fr

ac
tio

n 

Fr
ac

tio
n 

of
 IA

 in
 

C
om

pa
ct

 

K
N

O
3 

Fr
ac

tio
n 

of
 IA

 

B
om

b 
Pr

es
su

re
 

 (
Pa

 

A
vg

. 
T

i S
iz

e 
(

m
 

A
vg

. 

A
l S

iz
e 

(
m

 

Fo
rm

ul
at

ed
 

T
iB

2 o
r 

T
iB

2/T
iC

 
vo

l. 
%

 

 
(

/g
 

T
i-B

 
0.

5 
0.

8 
0.

85
 

41
5 

14
9 

N
/A

 
10

0 
-5

.8
90

 

T
i-B

 
0.

5 
0.

66
7 

0.
85

 
83

0 
14

9 
N

/A
 

10
0 

-5
.7

59
 

T
i-B

 
0.

25
 

0.
66

7 
0.

85
 

41
5 

14
9 

N
/A

 
10

0 
-5

.0
33

 

T
i-B

 
0.

25
 

0.
8 

0.
85

 
83

0 
14

9 
N

/A
 

10
0 

-5
.1

71
 

T
i-B

 
0.

5 
0.

8 
0.

7 
83

0 
14

9 
N

/A
 

10
0 

-5
.4

99
 

T
i-B

 
0.

25
 

0.
66

7 
0.

7 
41

5 
44

 
N

/A
 

10
0 

-4
.9

60
 

T
i-B

 
0.

5 
0.

8 
0.

7 
41

5 
44

 
N

/A
 

10
0 

-5
.7

74
 

T
i-B

 
0.

5 
0.

66
7 

0.
85

 
41

5 
44

 
N

/A
 

10
0 

-5
.7

65
 

T
i-B

 
0.

25
 

0.
8 

0.
85

 
41

5 
44

 
N

/A
 

10
0 

-5
.2

16
 

T
i-B

 
0.

5 
0.

66
7 

0.
7 

83
0 

44
 

N
/A

 
10

0 
-5

.5
23

 

T
i-B

 
0.

25
 

0.
8 

0.
7 

83
0 

44
 

N
/A

 
10

0 
-4

.9
35

 

T
i-B

 
0.

25
 

0.
66

7 
0.

85
 

83
0 

44
 

N
/A

 
10

0 
-5

.0
64

 



 
 

   
 

Ta
bl

e 
8.

1 
C

on
tin

ue
d  

  

68 R
ea

ct
an

t S
ys

te
m

 
T

ot
al

 
In

iti
at

io
n 

A
id

 
Fr

ac
tio

n 

Fr
ac

tio
n 

of
 IA

 in
 

C
om

pa
ct

 

K
N

O
3 

Fr
ac

tio
n 

of
 IA

 

B
om

b 
Pr

es
su

re
 

 (
Pa

 

A
vg

. 
T

i S
iz

e 
(

m
 

A
vg

. 

A
l S

iz
e 

(
m

 

Fo
rm

ul
at

ed
 

T
iB

2 o
r 

T
iB

2/T
iC

 
vo

l. 
%

 

 
(

/g
 

T
i-B

 
0.

5 
0.

8 
0.

85
 

83
0 

44
 

N
/A

 
10

0 
-5

.7
69

 

T
i-B

 
0.

37
5 

0.
8 

0.
85

 
83

0 
14

9 
N

/A
 

10
0 

-5
.4

39
 

T
i-B

 
0.

37
5 

0.
8 

0.
85

 
83

0 
14

9 
N

/A
 

10
0 

-5
.3

86
 

T
i-B

 
0.

12
5 

0.
8 

0.
85

 
83

0 
14

9 
N

/A
 

10
0 

-4
.3

85
 

T
i-B

 
0.

12
5 

0.
8 

0.
85

 
83

0 
14

9 
N

/A
 

10
0 

-4
.6

94
 

T
i-B

 
0.

37
5 

0.
8 

0.
7 

83
0 

14
9 

N
/A

 
10

0 
-5

.2
71

 

T
i-B

 
0.

37
5 

0.
8 

0.
7 

83
0 

14
9 

N
/A

 
10

0 
-5

.3
31

 

T
i-B

 
0.

12
5 

0.
8 

0.
7 

83
0 

14
9 

N
/A

 
10

0 
-4

.5
15

 

 



 

69 
 

9 Appendix: X-Ray Diffraction Spectra 

This section contains the x-ray diffraction patterns of the samples used for quantitative 

volume fraction analysis in this thesis.  Designations are given in the captions for the 

reaction system, total wt. fraction of initiation aid, internal wt. fraction of total initiation 

aid, and KNO3 wt. fraction of initiation aid.
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Figure 9.1 Ti-B, 0.125 total initiation aid wt. fraction, 0.80 internal fraction of total 
initiation aid, 0.85 wt. fraction KNO3 initiation aid 

 

Figure 9.2 Ti-B, 0.25 total initiation aid wt. fraction, 0.80 internal fraction of total 
initiation aid, 0.85 wt. fraction KNO3 initiation aid 
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Figure 9.3 Ti-B, 0.50 total initiation aid wt. fraction, 0.80 internal fraction of total 
initiation aid, 0.85 wt. fraction KNO3 initiation aid 

 

Figure 9.4 Ti-Al-B, 0 vol. % TiB2, 0.375 total initiation aid wt. fraction, 0.80 internal 
fraction of total initiation aid, 0.85 wt. fraction KNO3 initiation aid 
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Figure 9.5 Ti-Al-B, 0 vol. % TiB2, 0.50 total initiation aid wt. fraction, 0.80 internal 
fraction of total initiation aid, 0.85 wt. fraction KNO3 initiation aid 

 

Figure 9.6 Ti-Al-B, 0 vol. % TiB2, 0.625 total initiation aid wt. fraction, 0.80 internal 
fraction of total initiation aid, 0.85 wt. fraction KNO3 initiation aid 
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Figure 9.7 Ti-Al-B, 20 vol. % TiB2, 0.25 total initiation aid wt. fraction, 0.80 internal 
fraction of total initiation aid, 0.85 wt. fraction KNO3 initiation aid 

 

Figure 9.8 Ti-Al-B, 20 vol. % TiB2, 0.375 total initiation aid wt. fraction, 0.80 internal 
fraction of total initiation aid, 0.85 wt. fraction KNO3 initiation aid 
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Figure 9.9 Ti-Al-B, 20 vol. % TiB2, 0.50 total initiation aid wt. fraction, 0.80 internal 
fraction of total initiation aid, 0.85 wt. fraction KNO3 initiation aid 

 

Figure 9.10 Ti-Al-B, 40 vol. % TiB2, 0.25 total initiation aid wt. fraction, 0.80 internal 
fraction of total initiation aid, 0.85 wt. fraction KNO3 initiation aid 
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Figure 9.11 Ti-Al-B, 40 vol. % TiB2, 0.375 total initiation aid wt. fraction, 0.80 internal 
fraction of total initiation aid, 0.85 wt. fraction KNO3 initiation aid 

 

Figure 9.12 Ti-Al-B, 40 vol. % TiB2, 0.50 total initiation aid wt. fraction, 0.80 internal 
fraction of total initiation aid, 0.85 wt. fraction KNO3 initiation aid 
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