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Abstract 

Testing a new method of nanoindentation using the atomic force microscope (AFM) was 

the purpose of this research.  Nanoindentation is a useful technique to study the 

properties of materials on the sub-micron scale.  The AFM has been used as a 

nanoindenter previously; however several parameters needed to obtain accurate results, 

including tip radius and cantilever sensitivity, can be difficult to determine.  To solve this 

problem, a new method to determine the elastic modulus of a material using the atomic 

force microscope (AFM) has been proposed by Tang et al.  This method models the 

cantilever and the sample as two springs in a series. The ratio of the cantilever spring 

constant (k) to diameter of the tip (2a) is treated in the model as one parameter (α=k/2a). 

The value of a, along with the cantilever sensitivity, are determined on two reference 

samples with known mechanical properties and then used to find the elastic modulus of 

an unknown sample.  To determine the reliability and accuracy of this technique, it was 

tested on several polymers.  Traditional depth-sensing nanoindentation was preformed for 

comparison.  The elastic modulus values from the AFM were shown to be statistically 

similar to the nanoindenter results for three of the five samples tested. 
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1 Introduction 

1.1 Indentation Testing 

The purpose of this research was to test a newly proposed method of 

nanoindentation with the atomic force microscope (AFM) to determine the elastic 

modulus of polymer samples.  Nanotechnology has become a major field in science and 

engineering with products ranging from cosmetics, auto parts, and electronics using 

nano-scale component.  Polymers are frequently used in composites, thin films, or 

nanoparticles, and it has been shown that the local properties in these components can 

differ from their bulk properties [1, 2, 3]. 

 Indentation testing is a simple and convenient way to measure the properties of a 

material.  The hardness and elastic modulus are the two most common properties 

measured by indentation testing.  Depth sensing indentation (DSI) involves pushing an 

indenter tip into a material and measuring the load versus displacement, which can then 

be used to find the desired property of the sample.  Rockwell and Vicker’s hardness 

testers are common instruments used for this purpose; however, they are not effective for 

use on nanomaterials or thin films due to the size of the indenters and the depth of 

penetration.  To facilitate more accurate study of a material’s properties on a sub-micron 

scale, many nanoindentation methods have been developed [4, 5, 6]. 

 These experiments in nanoindentation have typically used a purpose built 

instrument; however, the AFM can also be used for mechanical testing.  While its 

primary function is to image the surface of a sample, the AFM has been employed as a 

nanoindenter [7, 8, 9].  Most AFM methods have used the same principles as traditional 

nanoindentation.  To obtain accurate results, several properties of the AFM cantilever 
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must be known, particularly the spring constant, sensitivity, and tip radius.  These 

properties can be difficult to determine; however, a new technique has been proposed that 

can calculate these properties by performing tests on reference samples [10].  This 

technique was tested in this MS program on several polymer materials to determine its 

accuracy and reliability. 

1.2 Applications 

 Improving nanoindentation techniques will allow for more accurate 

characterization of materials at the sub-micron scale.  This will benefit the many 

industries that now use nanocomponents in their products.  The interfacial region of 

composites could be studied more accurately.  This region has been shown to have an 

important effect on the overall performance of the composite [11, 12].  Using lower loads 

and indentation depths, AFM indentation could be used to study thin films while avoiding 

the effects of the underlying substrate [2].  This new method could make characterizing 

the nano-scale properties of materials more convenient and precise, aiding in further 

advancements in chemistry, biology, and materials science [13]. 
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2 Background 

2.1 Depth Sensing Indentation 

Depth sensing indentation (DSI) tests involve pushing an indenter tip into a 

sample and measuring the load and displacement of the tip in order to determine 

mechanical properties of the sample [14].  The most common properties to be measured 

are the hardness and elastic modulus, which can be calculated using contact mechanics 

and the tip-sample contact area [5, 15].  In order to accurately calculate the properties of 

the material, the tip shape and contact area must be known and the data must be corrected 

for load frame compliance, as well as problems with the sample such as creep, thermal 

drift, which is caused by changes in ambient temperature or the equipment heating , and 

pile up, which can be caused by plastic deformation in the sample [15, 16].  Typically, 

the indentation depths produced by this method fall in the sub-micron or even nano-scale 

range.  Due to these low depths, DSI is commonly referred to as nano-indentation.  This 

method has become an important tool for materials characterization.  The low depths 

allow it to be used on thin films, avoiding interference from the substrate below.  In 

addition, it can be used on small components for electronics, measuring properties of 

individual grains of materials, or any other application where localized small scale testing 

is needed [15]. 

Methods for determining the mechanical properties of a material are derived from 

classic contact mechanics equations, such as the Hertz model which deals with the elastic 

contact between two materials [10].  The relationship between the load, depth, and 

contact area were then derived by Sneddon [17].  His equation gives a simple relationship 

between the load and displacement for simple tip geometries: 
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(1) 

where P is the load, h is the displacement, and α0 and m are constants.  The parameter 

“m” is determined by the geometry of the tip; for a cylinder m = 1, and for a cone m = 2 

[5].  This model was expanded on by Oliver and Pharr [5] to include the final unloading 

depth, hf: 

(2) 

As the indenter pushes into the sample, the load and displacement are 

continuously measured, producing a load versus displacement curve shown in Figure 1a.  

The displacement values are directly related to the indentation depth as seen in the 

schematic shown in Figure 1b.   Equation 2 models the unloading curve by a power law 

function, and it was realized that the derivative of this curve would model the contact 

between the tip and sample at that point, which could then be used to determine 

mechanical properties [5, 14].  The slope at the point of maximum load is defined as the 

contact stiffness, S, which is modeled using Sneddon’s solution for elastic contact: 

(3) 

where “a” is the contact radius, A0 is the projected area of the elastic contact, and Er is the 

reduced modulus.  The elastic modulus of the sample material can then be calculated by 

using the reduced modulus: 

(4) 

where νs and Es are the Poisson’s ratio and elastic modulus of the sample, respectively, 

and νi and Ei are the Poisson’s ratio and elastic modulus of the indenter, respectively.  

 = ( - )0
m

fP h hα

2 = 2  = 
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Thus, if the properties of the indenter are known, and the Poisson’s ratio of the sample is 

known or can be reasonably estimated, then the elastic modulus of the sample can be 

calculated.  

These models assume ideal conditions during the indentation process, but this 

normally does not occur in practice.  Two important factors that need to be accounted for 

are the load frame compliance and the tip area function [5, 15].  The total depth reading 

can include deformations in the indenter as well as the sample, which is termed the load 

frame compliance.  For an accurate measurement, this must be factored out of the 

indentation depth.  While the general shape of the tip is known, the geometry is usually 

not ideal and therefore must also be adjusted.  In addition to developing the power law 

rule used to determine the elastic modulus, Oliver and Pharr also developed methods to 

determine the load frame compliance and the tip area function [5]. 

 
Figure 1: (a) Typical load verses displacement curve from a nano-indentation 
experiment.  hmax is the maximum depth of the indentation, and hf is the final depth 
after elastic recovery.  (b) A schematic of indentation geometry at the maximum and 
final load positions.  hc is the contact depth. 
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Their method assumes that the elastic modulus is independent of indentation 

depth and the load frame and sample can be modeled as two springs in a series.  Thus the 

total compliance, C, is the sum of the sample compliance, Cs, and the load frame 

compliance, Cf: 

(5) 

The sample compliance is defined as the inverse of the stiffness (Equation 3), and the 

total compliance is the slope of the load versus displacement curve; thus the equation 

becomes: 

 (6) 

Using this analysis, Oliver and Pharr [5] developed a technique to calculate both 

the load frame compliance and the tip area function using a single reference test and 

solving Equation 6 for Cf and A.  While this method can be effective, generally a less 

math intensive method is used [14].  In this method, the load frame compliance is found 

by testing a reference sample and finding the value for the intercept of Equataion 6.  For 

this calculation, the tip area A is taken to be an ideal geometry, which was given a value 

of 24.5hc
2 by Oliver and Pharr [5]; thus Equation 6 can be rewritten as [15]: 

  (7) 

In addition to the load frame compliance, the tip area function is also calibrated to 

account for non-ideal tip geometry.  A common tip used in nanoindentation is the 

Berkovich indenter tip, which has a three sided pyramid shape; a model can be seen in 

Figure 2.  Ideally the indenter could be infinitely sharp, but in practice the tip has some 

 =  + sfC C C

d 1 =  + 
d 2 0
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degree of rounding, and calibrating the tip area function accounts for this effect.  The 

calibration is made by indenting a reference material and determining the value of A as a 

function of hc.  The tip area function, A0(hc), takes the form: 

(8) 

As well the compliance and tip area function, other material related issues can 

introduce error into the results.  Creep can occur within the material while under load.  

This can cause the indentation depth to increase with time.  To account for this effect, a 

hold segment can be added at full load during which the system measures the creep rate 

[10].  Changes in temperature during testing can cause expansion or contraction in the 

sample or indenter which can cause changes in the contact area [15].  This can be 

accounted for by adding a hold period at low load after the indentation during which the 

system can again determine and account for the drift rate [10]. 

  
Figure 2: A model of a Berkovich indenter tip.  The face angle "a" is approximately 
65.3°. 

 

2 1/2 1/4    ( ) = 24.5 + + + +...0 c c c c c1 2 3A h h B h B h B h
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Sink-in and pile-up effects are also important material related issues that can 

occur with certain materials.  The Oliver and Pharr method as described can account for 

sink-in effects, but pile-up can produce error in the contact area and so affect the final 

result [18].  Pile-up occurs when deformation in the sample displaces material to the edge 

of the indentation.  This material supports the indenter and increases the contact area [15, 

19].  If pile-up occurs, the Oliver and Pharr method underestimates the contact area, A, 

which in turn causes an increase in the estimated elastic modulus or hardness [18].  Sink-

in and pile-up effects can be accounted for by measuring the contact area using either 

scanning electron microscopy or atomic force microscopy to image the indentation.  

2.2 Atomic Force Microscopy 

The AFM belongs to a family of instruments called scanning probe microscopes 

(SPM).  Binning and Rohrer et. al. developed the first SPM in 1982.  It was used to 

obtain atomic scale topographic images by placing a conducting tip near the sample and 

measuring tunneling current between the tip and the sample [20].  Binning and Rohrer 

expanded on this technique with the invention of the AFM in 1986 [21].  The AFM was 

first used to scan the topography of the sample, and can achieve resolutions down to 

nanometer scale.  In addition to topography, the AFM can also perform nanoindentation.   

Using the AFM as a nanoindenter allows the surface of the sample to be scanned and 

characterized then indented with the same tip.  This way a suitable area can be found to 

test, avoiding roughness that can decrease the accuracy of the results, or particular 

features of interest can be located and tested. 
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Figure 3: The Dimension 3000 atomic force microscope that was used for this test. 

The AFM operates by using a probe to “feel” the surface of the sample.  A typical 

probe consists of three parts: a chip, a cantilever, and a tip.  The chip provides a base to 

mount the probe into the AFM.  The cantilever extends out from the chip, and has a sharp 

tip on the end.  The cantilever can have either a single beam or double beam design, 

depending on the application.  In this paper, only single beam cantilevers were used.  

Probes are commonly made of silicon and typically have tip radius of 5 - 10 nm and a 

spring constant between 20 – 100 N/m [21].  Figure 4 shows an image of a single beam 

cantilever and tip. 

To translate the mechanical motion of the cantilever to usable data, a laser and 

photodiode system is used.  A laser is focused on the end of the cantilever where it is 

reflected into a set of photodiodes.  The photodiode array consists of four quadrants, each 

of which outputs a voltage when the laser hits it.  The change in voltage between the 

diodes is measured and converted into topographic data.  The position of the probe is 

controlled by piezoelectric scanners which can move the indenter in three dimensions 
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with nanometer scale resolution.  A schematic of a typical AFM system can be seen in 

Figure 4. 

The AFM has several modes of operation, each of which can produce data on 

several surface properties.  The two most common modes which will be discussed are 

contact mode and tapping mode.  Contact mode was the first mode of operation created 

for the AFM.  In this mode, the tip is put into contact with the sample and dragged over 

the scan area.  As the tip comes into contact with changing topography, the cantilever 

deflects, which in turn causes the laser to move on the photodiode, outputting 

topographic data.  Contact mode has the advantage of being capable of quickly imaging a 

sample.  However the continuous contact can cause damage to softer samples.  To solve 

this problem a second operating mode, called tapping mode was developed. 

 
Figure 4: An image of a typical single beam AFM cantilever and schematic of a 
typical AFM set up.  The piezoelectric oscillator controls the tip movement.  A laser 
is aimed at the end of the cantilever, where the most deflection occurs, and is 
reflected into the detector.  The signal from the detector is processed into 
topographic data and used to control the tip movement. 
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Figure 5:  The top image shows a schematic of the AFM cantilever operating in 
contact mode.  The solid line represents the sample surface while the dotted line 
traces the tip position as the tip moves from left to right.  The bottom shows the 
same image but with the AFM operating in tapping mode.   

In tapping mode the cantilever is oscillated above the surface then lowered until it 

makes contact.  In this mode the tip repeatedly taps the surface, rather than remaining in 

constant contact.  The computer records the voltage from the oscillating tip, measuring 

the amplitude.  To operate in tapping mode, the tip is oscillated at its resonant frequency 

and taps the surface at the bottom of its swing.  Once the amplitude is set, the computer 

will maintain this amplitude by changing the height of the scanner as the tip taps features 

with varying height.  The height at each point is recorded and converted into an image. 

2.3 AFM Nanoindentation 

In addition to topographic information, the AFM can be used as a nanoindenter to 

obtain data regarding the mechanical properties of the sample.  To perform 

nanoindentation the AFM is operated in force mode.  In force mode, the tip is brought 

into contact with the surface, pushed to a maximum load, and then withdrawn.  The 

voltage on the photodiode is recorded throughout the motion and plotted against the 

vertical distance to the sample, as seen in Figure 6.  By modeling the cantilever as a 
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spring, the voltages recorded can be converted into forces by Hooke’s law.  Because of 

this relation, these voltage versus distance curves are commonly called force curves. 

 
Figure 6:  The graph on the left shows a voltage versus displacement curve that 
would be output by the AFM from a nanoindentation test.  Two curves are shown: 
one with no deformation, which shows a sharp change in slope, and one with elastic 
deformation, which has a gradual increase in slope caused by the changing contact 
area between the tip and sample.  The figure on the right shows the same curves 
converted into a force curve.   

Figure 6 shows a generic force curve that would result from this mode of testing.  

The tip begins at a position above the sample, marked as point 1, and is lowered toward 

the surface.  At point 2 the tip comes into contact with the surface.  As the tip is pushed 

into the sample the cantilever deflects, causing an increase in the voltage.  At point 3 the 

maximum load is reached and the tip retracts.  If the contact is purely elastic, the 

retracting curve will be equal to the approaching curve.  If plastic deformation occurred, 

the retracting curve will trace beneath the approaching curve. The difference between the 

approach curve and the retracting curve is related to the amount of plastic deformation 
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experienced by the sample.  A stiff sample will produce a curve close to parallel with the 

approach curve, while a softer sample will show greater variation.   

By converting the voltage versus displacement curve into a force curve, the load 

and depth data can be obtained.    The area function can be determined by rescanning the 

topography of the indent and measuring it using the software’s cross sectional analysis.  

The Oliver and Pharr method can be used in the same way as in traditional DSI testing [9, 

14].  To obtain accurate data from these models, the cantilever sensitivity and tip radius 

must be known.  The cantilever sensitivity is typically calibrated by measuring the slope 

of the deflection versus displacement curve after indenting a hard sample.   

2.4 Comparison of the Techniques 

 The nanoindenter provides a relatively simple method for performing indentation 

testing.  Since the tip shape is well characterized and the test parameters such as load and 

time are known, computer software can perform the necessary calculations to determine 

the hardness and elastic modulus.  A major disadvantage of this technique is that the 

sample surface cannot be scanned at high resolutions; it must be removed and imaged 

with a scanning electron microscope or AFM to fully characterize the surface.  This also 

means that testing nanostructures or phases would be difficult since they could not be 

located with only the nanoindenter’s optical microscope.   

 The AFM has the advantage of being capable of imaging and indenting the 

surface with the same probe, thus eliminating the need to transfer samples to a different 

instrument for surface characterization.  The surface scanning features of the AFM allow 

for particular features or phases to be located and tested accurately.  However, the test 

parameters are more difficult to control in AFM nanoindentation.  The properties of the 
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probe, such as spring constant, sensitivity, and tip radius need to be known to obtain 

accurate results.  The spring constant can be found using the AFM software, and the 

cantilever sensitivity can be calibrated; however, estimating the tip geometry can be 

difficult due to the small size of AFM tips.  Scanning electron microscope images or 

blind reconstruction can be used to estimate the geometry, but can be difficult with small 

tips [22, 23].  Recently, a new method has been proposed that uses two samples with 

known properties to calibrate the AFM [10].  The two reference materials are used to 

calculate the cantilever sensitivity and a new parameter, the cantilever-tip property.  Then 

the modulus of a third unknown material can be measured, reducing the need to estimate 

cantilever sensitivity or tip geometry. 
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3 Theoretical Method 

The AFM force curves were used to obtain the Young’s Modulus of several 

polymers.  This approach models the interaction between the tip and sample as two 

springs in a series.  The small indentation depths and low loads create an elastic 

interaction between the tip and sample.  As described, the force curves are produced by 

measuring the vertical displacement and the tip deflection.  The deflection measured by 

the photodiode is expressed in units of volts. Vertical tip deflection, δ’, can be related to 

the electrical signal, D, by: 

 (9) 

where A is the cantilever sensitivity and Do is the initial deflection signal.  Since the 

interaction is modeled as a spring, the deflection is directly related to the applied force, P, 

by Hooke’s Law.  For the tip modeled as a spring: 

(10) 

and for the sample: 

 (11) 

where k is the cantilever’s spring constant, S is the contact stiffness, and δ is the vertical 

change in the piezo actuator.  Combining these equations gives: 

 (12) 

Relating this equation to the force curves shows that a plot of δ versus D has slope K: 

 (13) 

The contact stiffness is defined by Sneddon [17] as: 

(14) 
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where Er is the reduced modulus, and a is the contact radius.  By modeling the tip as a flat 

ended cylinder, a cantilever-tip property, α, is defined: 

 (15) 

substituting this into Equation 13 gives: 

(16) 

This shows that if the cantilever sensitivity and cantilever-tip property can be found, the 

reduced modulus of the system can be found. 

To find these two parameters, materials with known elastic moduli and Poisson’s 

Ratios are used to calibrate the system.  The reduced modulus can be found using 

Equation 17 for both calibration materials.  With two solutions to Equation 17, the two 

unknowns α and A can be found.  Then force curves can be collected on a sample with 

unknown properties, and the reduced modulus is found by using the slope.  Equation 17 

then relates the reduced modulus to the unknown sample: 

(17) 

where Ei and Es are the indenter and sample moduli, respectively, and νi and νs are the 

Poisson Ratios. 
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4  Experimental Procedure 

4.1 Samples 

To find the cantilever sensitivity and cantilever-tip property, two samples with 

known properties were used, a piece of a silicon wafer and polyethylene terephthalate 

(PET).  In order to test the capability of the AFM as a nanoindenter, five unknown 

samples were tested in two separate experiments: nylon-12 and polystyrene (PS) were 

used for the first test; polymethyl methacrylate (PMMA), polycarbonate (PC), and low 

density polyethylene (LDPE) were used in the second test.  The bulk polymer samples 

were mounted in epoxy and ground to expose a large surface to test.  The samples were 

polished with silicon carbide paper down to 1200 grit.  These were then polished with 6 

μm diamond paste, 3 μm alumina slurry, and finally a .05 μm alumina slurry.  Each 

sample was ultrasonically cleaned between each stage of polishing.   

4.2 Nanoindentation 

In order to characterize the polymer samples, nanoindentations were performed 

using a MTS Nanoindenter XP.  Nine indents were preformed on each of the polymer 

samples.  The indentation depth was set to a maximum of 1000 nm.  The load method 

was identical for each sample except for the maximum load achieved.  The indenter is 

held at a high load to determine the viscoelastic deformation, and then held at a low load 

to determine the thermal drift.  The software can then correct for these parameters and 

calculate the hardness and elastic modulus of the samples.   
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4.3 AFM 

A Veeco Dimension 3000 AFM was used for the nanoindentation tests, using a 

Budget Sensors Tap300Al tip.  This tip is made of silicon with an aluminum reflex 

coating, and has an estimated tip radius of 10 nm.  Two separate tests were run: the first 

tested nylon-12 and PS, the second tested PMMA, PC, and LDPE.  Each test used a 

different probe, so the cantilever spring constant was found for each one.  The spring 

constant for the first cantilever was found to be 29.83 N/m and the second 31.30 N/m.  

The system was calibrated on the silicon sample to determine the deflection sensitivity 

for each test, which was kept constant for the indents on the polymers.   

Each sample was scanned to determine the roughness of the surface and to avoid 

any contaminants that could affect the results.  Once a suitable location was found, the 

probe was then pushed into the surface to carry out the indentation.  To perform the 

indentation, the microscope was set into force calibration mode.  In this mode, the tip is 

held stationary above the surface.  The probe can be moved over the surface with x and y 

offsets allowing for the tests to be performed at specific locations.  Fifteen indents were 

made at random locations on the surface using a scan rate of 2 Hz.  Each indent was 

separated by a space of 50 nm to avoid any changes in the local properties caused by an 

indentation affecting the results of the following indentation.   

The vertical displacement and cantilever deflection are recorded throughout the 

indentation, producing a force curve for each indent made.  After the indentations were 

completed the tip was withdrawn.  This method does not create an indent that needs to be 

rescanned and measured.  The force curves were then converted using SPIP software so 

that they could be analyzed. 
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5 Results and Discussion 

5.1 Topography and Roughness 

Nanoindentation results can be affected by the condition of the sample surface.  

Peaks and valleys can influence how the tip contacts the surface, affecting the accuracy 

of the results.  Prior to indentation, each sample was scanned with the AFM to obtain 

images of the topography and determine the roughness of the samples.  Figure 7 shows 

representative images of each sample, along with cross section images in Figure 8.  The 

five polymer samples show more prominent features than the silicon sample, most likely 

due to the polishing process.  The parallel trenches seen in the PET sample are evidence 

of remaining polishing artifacts.  The PS  and PMMA samples also show some 

directionality (vertically in the images) which is also due to polishing.  The nylon-12, PC, 

and PMMA have no apparent artifacts, but have much larger variations in topography.  

Since the silicon was fabricated and not polished like the polymer samples, it has the 

lowest roughness and has the most consistent topography of the samples.  
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Figure 7:  Topographic images of each sample taken prior to nanoindentation: A. 
Nylon-12; B. PET; C. PS; D. Silicon; E. PMMA; F. PC; G. LDPE. The features can 
affect the outcome of the test, so imaging the surface to find suitable test locations is 
important. 
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Figure 8:  Cross sectional images of the sample surfaces.  The dark line on the 
topographic images represents where the cross section was taken.  Cross sections 
can help characterize surface features to determine how they may affect the 
nanoindentation. 

Three different roughness parameters can be readily calculated with the AFM, the 

root mean squared (RRMS), arithmetic mean (Ra), and the ratio of the image surface area 

to the projected surface area (r).  The first two values can give information regarding the 

height of asperities while the third shows how much additional surface area there is 

compared to the two dimensional image. Table 1 shows the calculated roughness values 

for each sample.  The cut and polished polymer samples are rougher than the silicon, 

since the silicon did not have to be polished.  Most of the polymers have low roughness, 

but the soft LDPE sample did not polish as well and so is much rougher than the other 
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samples.  However since the large ridges and peaks were identified prior to testing they 

could be avoided, reducing the effect of the roughness on the elastic modulus 

calculations. 

Table 1: Average roughness data taken from five images.  Three roughness 
parameters are presented, root mean squared (RMS), arithmetic mean (Ra), and the 
ratio of the image surface area to the image projected surface area (r). 

 RMS Roughness 
(nm) 

Ra Roughness 
(nm) 

r Roughness 
(μm/μm) 

Nylon-12 14.82 ±1.97 11.58 ±1.57 1.03 ±0.01 

PET 10.33 ±3.73 7.13 ±1.90 1.02 ±0.01 

PS 12.04 ±2.45 8.22 ±1.54 1.03 ±0.01 

PMMA 13.43 ±2.42 10.17 ±1.88 1.02 ±0.01 

PC 28.73 ±8.61 21.10 ±4.79 1.09 ±0.02 

LDPE 118.07 ±62.69 90.76 ±51.55 1.26 ±0.13 

Silicon 4.33 ±0.37 3.40 ±0.23 1.03 ±0.01 
 
The presence of these peaks and valleys can affect the contact area between the 

tip and the sample during indentation, causing variations in the results.  If the tip contacts 

on a peak, the indentation depth will be larger as compared to indenting a flat surface 

with the same load.  The reverse is true if the tip contacts a valley, the indentation depth 

will be lower than on the flat surface [24].  Because of these effects, it is important to 

avoid these features when performing nanoindentation.  The imaging capabilities of the 

AFM can be used to find suitable areas to test.  In addition, the effects of peaks and 

valley can be reduced with the AFM due to the small tip size.  The radius of the AFM tip 

is smaller than a typical nanoindenter tip.  As a result, even if the AFM tip contacts on a 

protuberance, locally the surface may be flat and so the contact area may remain the same 

as the horizontal surface.   
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5.2 Mechanical Properties from Nanoindenter 

In order to determine the accuracy of the AFM results, each sample was first 

tested with traditional nanoindentation.  Nine tests were performed on each polymer 

sample in order to reduce error due to roughness or creep effects.  A sample loading 

curve can be seen in Figure 9.  The nanoindenter includes holding segments in the 

loading and unloading phases to evaluate the viscoelastic creep and thermal drift.  The 

software can then adjust the final results accordingly.  Since silicon has well defined 

properties, it was not tested with nanoindentation.  Values for its modulus and Poisson’s 

ratio were instead found in a materials database. 

Table 2 shows the elastic modulus results from the nanoindentation as well as the 

elastic moduli and Poisson’s ratio’s found in databases.  The results for the polymer 

samples match well with the values found in the databases.  Variations could be caused 

by the thermal and creep effects, or by the roughness of the samples as perviously 

discussed.  Additionally, the mechanical properties of polymers can vary between 

samples due to their non-crystaline structure. 
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Figure 9: A sample loading curve showing the load schematic for the 
nanoindentation tests.  This curve was taken from a PET test.  The loading schemes 
for the other samples are similar except for the maximum load applied. 

Table 2: Elastic modulus data from both the nanoindentation tests and from 
databases for comparison.  The Poisson's ratio found for each sample is also given.  
These values were used in the final calculations. 

 Elastic Modulus 
(GPa) 

Elastic Modulus from 
Database (GPa) Poisson's Ratio 

Nylon-12 1.61 ±0.07 1.40 [25] 0.40 [25] 

PET 3.25 ±0.14 2 - 4 [25] 0.44 [25] 

PS 4.26 ±0.07 3.43 [25] 0.34 [25] 

PMMA 5.54 ±0.05 1.8 - 3.1 [25] 0.35 - 0.40 [25] 

PC 3.18 ±0.44 2.36 [25] .038 - .042 [27] 

LDPE 0.24 ±0.11 0.24 [25] 0.5 [27] 

Silicon -- 112.40 [26] 0.28 [28] 
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5.3 Modulus from AFM 

To extract the modulus data from the force curves, the slope of the unloading 

curve is found.  The linearity of the unloading curves suggests that the tip radius did not 

vary throughout the test (See Figure 10).  This method assumes the tip is a flat punch 

cylinder in which the tip radius is constant, and this linearity of the unloading curves 

supports this assumption.  The unloading curve for the LDPE does exhibit non-linearity.  

If the tip is penetrating deeper into the LDPE than the other samples it may be reaching a 

point on the tip that can no longer be modeled as cylinder.   Images of one of the tips 

used can be seen in Figure 11.   

Using the first 100 points of the unloading curve, linear regression was preformed 

to find the slope of each of the curves.  The average of these values was then used in the 

final calculations.  Representative curves can be seen in Figure 10.  For the silicon 

sample, the loading and unloading curves are directly atop each other, and a sharp change 

in slope at the point of contact.  This suggests that no deformation occurred during the 

test.  Since the silicon was used as the sample with ‘infinite hardness’ to calibrate the 

AFM, this is an ideal result. The polymer samples show various degree of separation 

between the loading and unloading curves.  This deviation can be caused by adhesion 

forces between the tip and the sample, which can be seen in the nylon and PMMA curves, 

or plastic deformation.  The LDPE and PC show a significant difference between the 

approaching and retracting curves, with little to no adhesion force.  This suggests that 

these samples experienced a considerable amount of plastic deformation during the test.  

Since this method assumes an elastic interaction, this may add a large error in the results. 
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Figure 10: Representative distance versus deflection curves from the 
nanoindentation tests on the AFM.  The solid lines represent the loading cycle while 
the dashed lines are the unloading cycle. 
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Figure 11: FESEM images of the tip used in the second set of tests.  Image B shows a 
magnified picture of the tip.  The tip radius from this image is about 50nm.  The tip 
used in the first test was damaged and so the images were not included. 

The K-values for the silicon and the PET are used to determine the values of α 

and A which were found as 0.31 GPa and 72.5 nm nV-1 respectively.  Once these values 

were found, the K-values of the two unknowns were plugged into Equation 16 to find the 

reduced modulus.  Then the elastic modulus of the unknowns could be found using 

Equation 17 and the Poisson’s ratios in Table 2.  The result of these calculations gives 

elastic moduli of 1.80 GPa for the Nylon-12 and 5.05 GPa for the PS.   

The same procedure was used for the other three polymers.  Since a different tip 

was used, the K-values are not the same as the first test due to the different spring 

constant and tip radius.  In this test the K-values for the silicon and PET were lower, due 

to the higher cantilever spring constant.  The values for α and A were calculated as 0.26 

GPa and 46.9 nm nV-1 respectivly.  Using these values, the elastic moduli for the 

remaining polymers were calculated and found to be: 6.35 GPa for PMMA, 2.11 GPa for 

PC, and 0.36 GPa for LDPE. 
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Table 3:  Average K-values calculated from fifteen unloading curves for each 
sample.  K-values are given in units of nm nV-1. 

Sample Test 1 Test 2 

Silicon 72.9 ±1.20 46.4 ±0.4 

Nylon-12 83.2 ±0.5 Not Tested 

PS 76.6 ±5.0 Not Tested 

PET 78.3 ±4.90 50.2 ±2.6 

PMMA Not Tested 48.6 ±0.3 

PC Not Tested 51.9 ±0.7 

LDPE Not Tested 74.1 ±1.4 
 

Table 4: Comparison between the elastic modulus results from the nanoindenter 
and the AFM. 

Sample 
Elastic Modulus 

from Nanoindenter 
(GPa) 

Elastic Modulus from 
AFM (GPa) 

Difference (%) 

Nylon-12 1.61 ±0.07 1.80 ±0.38 11.80  
PS 4.26 ±0.07 5.05 ±2.79 18.54  

PMMA 5.54 ±0.05 6.35 ±2.71 14.62  
PC 3.18 ±0.44 2.11 ±0.38 33.65  

LDPE 0.24 ±0.11 0.36 ±0.028 50.0  
 

To determine if the nanoindenter results and the AFM results are statistically 

different, a t-test was performed for each sample.  Using the average values and standard 

deviations in Table 4, t-statistics were calculated for each sample by: 
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were μi is the mean value of the elastic modulus, σi is the standard deviation, and Ni is the 

number of tests.   The values denoted with a 1 represent the nanoindenter, and 2 

represents the AFM.  To find the critical t- value the degrees of freedom were determined 

by: 

(19) 

  Nine tests were run with the nanoindenter and fifteen with the AFM, giving 22 

degrees of freedom.  The critical t-value for a two sided test at a 95% confidence limit, 

found in a table of t-values, is 2.07. The t-tests determined that the nylon-12, PS, and 

PMMA were less than the critical t-value, thus the mean moduli are not statistically 

different.  The PC and LDPE have larger differences between the nanoindenter and AFM 

values than the other samples, and the t-test determined that the means have a statistically 

significant variation.  This is likely due to plastic deformation in these samples.  This 

deformation could be corrected by using a cantilever with a lower spring constant on 

these softer samples. 

Table 5: T-statistics for each sample compared with the critical t-value for a 95% 
confidence limit. 

Sample T-statistic 
Critical t-value for 95% 

confidence limit 
2.07 

Nylon-12 -1.88 
PS -1.10 

PMMA -1.16 
PC 6.06 

LDPE -3.21 
 
 

1 2( 1) ( 1)df N N= − + −
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In addition to plastic deformation, other issues may cause a difference between 

the two instruments.  The MTS nanoindenter uses higher loads and deeper depths than 

the AFM.  As a result, if there is any variation between the bulk modulus of the sample 

and the properties near the surface, it could appear as a deviation between the two tests.  

Additionally, the nanoindenter included hold periods to correct for viscoelastic 

deformation and thermal drift whereas the AFM tests did not.  Since both of these have 

an effect in polymers, the AFM results may be affected more than the nanoindenter. 

Viscoelasic creep results in higher modulus values compared to bulk measurements, 

which may explain the higher value seen in the AFM results for the PS [14].   

To check the accuracy of the tests, the cantilever-tip property can be used to 

estimate the tip radius.  Using the spring constant, k, from each test, and the calculated 

cantilever tip property, the respective tip radii can be calculated by α = k/2a.  This results 

in a tip radius of 48.0 nm for the first probe and 59.2 nm for the second.  The 

manufacturer give an estimated tip radius of 10 nm, however, at this scale such an 

estimate is not always reliable.  It is also possible that the tip was deformed or 

contaminated during the test, resulting in a larger radius.  The calculated cantilever 

sensitivity A can also be checked.  This value is defined as the slope of a δ versus D 

curve on a material of ‘unlimited hardness.’  In this test the silicon was used as this 

sample, therefore the calculated A value and the K-value from the silicon should be the 

same.  From Table 3 the K-values from the silicon tests were 72.9 nm nV-1, and 46.4 nm 

nV-1 compared to the calculated A values of 72.5 nm nV-1 and 46.9 nm nV-1.  The 

experimental and calculated values match well for both tests, indicating that the 

calculated values are accurate. 
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6 Conclusion 

A new method for determining the mechanical properties of a material by 

nanoindentation with an AFM was tested.  This method uses two reference samples with 

known properties to calculate the cantilever sensitivity and a new value, the cantilever-tip 

property.  This method reduces the need to attempt to measure these values directly, and 

thus is faster and easier than previous methods.   

In this paper, five polymer samples were tested in two separate experiments to 

determine the accuracy of this method.  Traditional depth-sensing nanoindentation was 

preformed to obtain values for comparison.  Before AFM nanoindentation, the samples 

were scanned to determine the surface characteristics.  The effects of surface feature on 

the indentation results was explored, and it was seen that the AFM has an advantage to 

traditional methods since it can be used to find suitable areas to test, and the smaller tip 

radius can lessen the effects of surface features. 

Each sample was then indented with the AFM, and using this new method the 

elastic modulus was calculated.  The results from the AFM tests for three of the five 

samples were shown to be statistically similar to the nanoindenter results, while the PC 

and LDPE were statistically different.  This is likely due to plastic deformation in these 

samples.  To further check the calculations, the cantilever-tip property was used to 

estimate the tip radius.  The results of 48.0 nm and 59.2 nm were higher than the 

manufacturer’s value of 10 nm, but this is most likely due to wearing and blunting of the 

tip during nanoindentation and imaging.  The calculated cantilever sensitivities were 

compared to the K-values from the nanoindentation of the silicon.  These values were 

seen to be nearly identical, confirming that this calculation was accurate.  With these two 
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checks, and the comparison with the nanoindenter results, it can be said that the new 

method for finding the elastic modulus is reliable and accurate. 

The nano-scale imaging capabilities, combined with the ability to perform 

nanoindentation tests, make the AFM a useful tool of characterizing materials on the 

nanometer scale.  Sample surfaces can be imaged before testing to find suitable test sites, 

or to identify nano-structures for testing.  The AFM can also be used to find different 

phases in a sample, allowing for accurate testing of a multiphase material.  Additionally, 

the low load and shallow indentation depth of AFM nanoindentation make it suitable for 

thinner samples, such as coatings and thin films. 

Since this method is proven reliable on bulk materials, future work can test it on 

more specific sample types.  This technique could be used to better understand the 

nanoscale properties of materials, benefiting fields such as biology, chemistry, and 

materials science.  Future testing could include experiments involving multiphase 

systems, thin films, or nanostructures.  This method could also potentially be expanded 

beyond polymer systems.  Tests on stiffer materials such as metals could be performed if 

a stiffer cantilever is used.  Expanding upon these techniques could allow for the nano-

scale properties of many different material types to be accurately studied. 
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