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ABSTRACT 
Fish within the Great Lakes region of North America are an invaluable 

resource with economic and cultural significance. While these fish are vital, they 

contain chemical pollutants that are hazardous to human health. One such man-made 

group of chemicals, polychlorinated biphenyl compounds (PCBs), continue to be a 

problem long after the ban on production (1979).  

The objective of this research thesis was to assess PCB contamination in fish 

within the Great Lakes Region. This objective was completed by determining the 

sources of PCB contamination, defining the ecosystem characteristics that 

significantly affect fish contamination, predicting when it will be safe to consume a 

desired amount of fish,  identifying which water bodies have higher contamination, 

and determining if PCBs have significantly declined since the early 1990s.  

The assessment of inland lake contamination revealed that lakes impacted by 

point sources of PCBs can de differentiated from lakes whose only source of PCBs is 

atmospheric.  Principal Component Analysis of PCB concentrations in common fish 

species revealed that lakes impacted by local, point sources of PCBs had congener 

distributions in fish dominated by heavier congeners. Similar results were obtained 

for sites in the Great Lakes; PCBs in Lake Superior fish were found to be derived 

primarily from atmospheric deposition while the lower lakes had significant 

contributions from local sources. 

10 
 



It was discovered that deeper inland lakes had higher levels of fish 

contamination based on multiple linear regression analysis where mean depth was the 

best predictor of total PCB concentration in fish (r2=0.73). The importance of 

developed watersheds to Great Lakes fish contamination was revealed using the same 

form of analysis. Lakes with lower primary production tended to have higher PCB 

contamination. 

The use of a lake model to predict dissolved PCB concentrations from 

atmospheric concentrations and the EPA’s Bioaccumulation and Aquatic System 

Simulator (BASS) to model food web dynamics predicted that if atmospheric 

concentrations continue to decline at the same rate, fish in Michigan’s inland lakes 

will be safe to consume at a rate of 2 meals per day in roughly 20 years. For most 

sites in the Great Lakes, there has been a significant decline in PCB contamination 

since the early 1990s. However, the Great Lakes have a higher level of PCB 

contamination compared to inland Michigan Lakes.  

This thesis research provides the public and scientific community an 

explanation of the trends in PCB contamination in the Great Lakes Region. Safer fish 

consumption habits according to PCB contamination are now possible without 

prohibiting the use of this resource. Modeling tools revealed what can be improved 

upon to adequately predict chemical accumulation in an aquatic ecosystem. The 

research provides a better and more comprehensive method to assess chemical 

contamination in fish so that the safety of humans and the environment can be 

secured for the future. 
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CHAPTER 1: LITERATURE REVIEW 

1.1 Introduction 
In order to complete an assessment of PCB contamination in the Great Lakes 

region, an understanding of the state of knowledge on PCB bioaccumulation is 

required. Persistent pollutant concentrations in a given ecosystem are affected by 

various physical and chemical characteristics. PCBs have an added complexity due to 

there being 209 PCB congeners, or unique chemical structures, in existence, where 

some are stable in the environment. Several studies across North America and Europe 

have attempted to identify the lake, watershed and food web characteristics that either 

adequately predict or have a significant effect on chemical accumulation in fish.  

The health risks associated with hazardous pollutants are complex because of 

the many and various chemicals that bioaccumulate and the fact that each chemical 

affects human and animal health differently. Health risks associated with PCBs 

include developmental effects, immunological effects, reproductive effects and 

cancer. Examples of these include neonatal deficits in behavior, allergies, and 

rheumatoid arthritis (MDCH, 2012). 

While this study focused on PCB accumulation, research has been conducted 

on a variety of hazardous chemicals (i.e. mercury, trace metals, PAHs, PBDEs). Some 

of these hazardous chemicals have properties similar to PCBs or act similarly in the 

environment (e.g. the ability to bioaccumulate, store easily in fat and/or resist 

biodegradation). Therefore, to assess the full range of potential environmental factors 
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affecting PCB accumulation, this review discusses research on any hazardous 

chemical bioaccumulation and corresponding significant environmental factors that 

may also affect PCBs. Modeling efforts to explain the movement of PCBs in water 

and the aquatic food web and contamination specifically in the Great Lakes Region 

are also discussed. The complexity of bioaccumulation models has increased as 

research has revealed the relative importance of environmental factors.  It was 

proposed to determine which factors were deemed important from the literature, and 

to identify gaps that remain in our understanding of PCB bioaccumulation in the 

Great Lakes region. The environmental factors that are considered pertinent in the 

literature include: 1) the source of contamination, 2) physical and chemical lake and 

watershed characteristics, 3) global distribution, and 4) fish and food web 

characteristics.  

1.2 Modeling Efforts 
Since the 1980s, models have been developed and revised to accurately 

predict PCB concentrations in water, sediment and biota. There have been several 

lake water models developed for specific Great Lakes because PCB accumulation 

depends on the chemical and physical characteristics unique to a particular lake. Most 

models were designed for Lakes Superior, Michigan or Ontario and were focused on 

either air-water exchange or whole lake modeling that included sedimentation and 

resuspension (Jeremiason et al., 1994; Baker and Eisenreich, 1990; Hornbuckle et al., 

1994; Mackay 1989; Mackay and Diamond, 1989; Rowe, 2009). These models have 

revealed that, due to sedimentation and resuspension, the internal cycling of PCBs 
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causes the recovery time to take longer for lakes than for the atmosphere. Over time, 

dead organisms and particles settle to the bottom of a lake, taking PCBs with them. 

However, with annual or multiannual turnovers, particles and PCBs can return to the 

water column from the sediment, and bioaccumulate once again. Thus, the major 

fraction of pollutants that settle out each year are due to this internal cycling and not 

to new inputs due to atmospheric loading (Larrson et al., 1998). In addition, the 

longer the hydraulic residence time, the longer the contaminant will remain in the 

lake.  

Food web bioaccumulation and fish bioenergetics models have been 

developed in an attempt to account for all significant biota characteristics that affect 

contaminant accumulation. The level of complexity of these models continues to 

increase. The basis of the models has been either empirical or mechanistic, with the 

latter being much more complex and accurate. These models involve the combination 

of accumulation and loss of contaminants at each level of the food chain. Fish can 

gain or lose contaminants through respiration, consumption, metabolism, and 

excretion.  Fugacity- based models include FISH from the Canadian Environmental 

Modelling Centre and FOODWEB by Campfens and Mackay (1997) (Mackay and 

Fraser, 2000). These models focus on individual fish, while more complex models 

have the ability to assess population dynamics (e.g., the United State Environmental 

Protection Agency’s (U.S. EPA’s) Bioaccumulation and Aquatic System Simulator 

(BASS)). The U.S. EPA has developed several models, including the Acute-to 

Chronic Estimation model (ACE), AQUATOX and BASS, to assess the exposure and 
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toxicity of contaminants (US EPA, 2014). For this assessment, EPA’s BASS was 

used to predict the bioaccumulation of PCBs in fish in inland lakes. EPA’s BASS 

uses three differential equations to determine the fate of pollutants, such as PCBs.  

𝑑𝑑𝐵𝐵𝑓𝑓
𝑑𝑑𝑑𝑑

= 𝐽𝐽𝑔𝑔 + 𝐽𝐽𝑖𝑖 − 𝐽𝐽𝑏𝑏𝑑𝑑            [1.1] 

𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝑑𝑑 − 𝐸𝐸𝑑𝑑 − 𝑅𝑅 − 𝐸𝐸𝐸𝐸 − 𝑆𝑆𝑆𝑆𝑆𝑆            [1.2] 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝐸𝐸𝐸𝐸 −𝑁𝑁𝐸𝐸 − 𝑃𝑃𝐸𝐸              [1.3] 

where Bf is the chemical body burden (µg/fish), Wd is the dry weight (g (dry wt)/fish) 

and N is the cohort population density. J is the net chemical exchange across gills (g), 

intestines from food (i) and chemical transformation rate (bt). The gains or losses of 

the chemical are from fish feeding (Fd), egestion (Ed), respiration (R), excretion (EX) 

and specific dynamic action (SDA). Population density is affected by the rate of 

emigration/dispersal (EM), non-predatory mortality (NM) and predatory mortality 

(PM). The combination of these three differential equations provides a detailed 

dynamic prediction of what occurs to a pollutant throughout the food web using 

bioaccumulation factors to explain the rate of chemical uptake in lower trophic 

organisms.  

Another set of modeling software used widely is Ecopath with Ecosim. Used 

and continuously developed for almost 20 years, this software system has been 

widely used to assess marine food webs and applied to policies for fishery 
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communities. It uses the following two equations as the basis for the model (UBC 

Fisheries Centre, 2012): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃ℎ + 𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑝𝑝𝑃𝑃 𝑚𝑚𝑃𝑃𝑚𝑚𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑏𝑏𝑃𝑃𝑃𝑃𝑚𝑚𝑐𝑐𝑏𝑏𝑏𝑏 +

𝑃𝑃𝑃𝑃ℎ𝑝𝑝𝑃𝑃 𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚    [1.4] 

𝐶𝐶𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑚𝑚𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑝𝑝𝑏𝑏𝑝𝑝𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑐𝑐𝑏𝑏𝑏𝑏𝑃𝑃𝑚𝑚𝑃𝑃𝑚𝑚𝑐𝑐𝑃𝑃𝑝𝑝𝑃𝑃 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 

 [1.5] 

The model uses biomass pools, which are similar to the cohorts in BASS, and 

links them to develop the entire food web. Some additions to the model include 

Ecospace and Ecotrace. Ecospace is a grid version of the program and has been used 

for protected areas in marine environments where detailed dimensions of food web 

dynamics are needed (UBC Fisheries Centre, 2012). Ecotrace is an addition that 

tracks contaminant movement (Razinkovas, 2007). This program has been used to 

study the movements of both mercury and PCBs (Booth and Dirk Zeller, 2005; 

Coombs, 2004).  

1.3 Source of Contamination 
To determine the relative significance of PCB sources, studies have turned to 

statistical analyses, including regression analyses to predict contamination levels, and 

component analyses to separate datasets based on variance. While all lakes are 

contaminated by atmospheric deposition, point sources can exist within a watershed, 

increasing the amount of contamination of the watershed. In addition, local 

contamination may have a different PCB congener distribution as these sites tend to 
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have heavier congeners that are less mobile in the environment. These point sources 

typically originate from sites where PCBs were improperly disposed of (i.e. 

contaminated sediment). Macdonald et al. (1991) used discriminant analysis to prove 

that one Ontario lake with known local sources had a significantly different (p<0.05) 

PCB congener distribution in biota compared to other lakes in the region. Another 

study analyzed sediment cores by using Principal Component Analysis (PCA) and 

determined that certain locations in the Milwaukee Harbor Estuaries potentially had 

historical local sources (Rachdawong et al., 1997). Monosson et al. (2003) concluded 

that congener distributions in fish, compared using PCA and general linear model 

(GLM) profile analysis, can provide evidence of differences in sources along the 

Hudson River in the state of New York. The distribution of the prominent PCB 

congeners found in the environment could reveal that some inland lakes included in 

this study have unknown point sources.   

Another form of factor analysis used to identify PCB contamination sources is 

positive matrix factorization (PMF).  It has been successful in finding sources of PCB 

in sediment cores (Du et al., 2008; Bzdusek et al., 2006; Soonthornnonda et al., 

2011). PCBs and particles settle out of the water column, forming distinct layers in 

sediment cores. These cores explain how the use of PCBs near the water body 

changed over time.  Bzdusek et al. (2006) analyzed cores from a river that feeds into 

Lake Michigan. The two factors determined significant from PMF were specific 

Aroclor mixtures and a matrix that represented the dechlorination of an Arochlor 

mixture (Bzdusek et al., 2006). PMF was also used on sediment cores from four of 
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the Great Lakes to determine that 3 or 4 significant factors explained the variance 

among the samples. The factors were heavily influenced by specific Aroclor mixtures 

and some dechlorination. The analysis identified where and when PCB mixtures were 

used near the sites (Soonthornnonda et al., 2011). PMF is ideal for sediment core 

analyses; years of sedimentation can be broken down to identify the sources of PCBs 

over time using this matrix form of factor analysis (Soonthornnonda et al., 2011). 

1.4 Lake and Watershed Characteristics 
The loss of PCBs via volatilization can vary in magnitude, where lakes with 

larger surface areas can experience greater loss as well as deposition of PCBs. For 

most of the year in Lake Superior, volatilization dominates the loss of PCBs due to its 

larger surface area and climate (Hornbuckle et al., 1994; Baker and Eisenreich, 1990; 

Rowe et al., 2009). PCB water concentrations have declined since the 1980s, but the 

decline has slowed. Pearson et al. (1996) determined that the volatilization of PCBs 

from Lake Michigan has followed first order kinetics with a half-life of about 9 years. 

Lake Superior was also found to follow the same rate loss (Jeremiason et al., 1994). 

Due to this first-order rate tendency, the absolute magnitude of the annual loss is 

slowing and significant decreases in contaminant concentrations will take much 

longer than in the 1980s.   

Another discussion in the literature involves the significance of watershed 

inputs to a lake system. Many hazardous chemicals undergo atmospheric deposition 

and enter a lake via runoff. However, the amount of chemicals entering a lake varies 

based on the land use in the watershed and pollutant chemical characteristics. 
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Jeremiason et al. (1991) performed a mass balance on two remote Canadian study 

lakes of varying productivity, finding that 60% of PCB inputs to the eutrophic lake 

were from the watershed during stratification. However, the overall propagated error 

for the mass balance was 90% over that time period, indicating that the watershed 

input could not be distinguished from zero. An assessment of the Delaware River 

watershed determined a pass-through efficiency of about 1% based on watersheds 

with no point sources of PCBs. It was concluded that this was likely due to the 

binding of PCBs to organic matter in the soil (Totten et al., 2006). A nearby study 

compared the watersheds of Chesapeake Bay and determined that the amount of 

commercial land within a watershed could explain 99% of the variance in PCB 

concentration in white perch; the greater the amount of developed land, the higher the 

total PCB contamination (King et al., 2004). According to the regression results of the 

study, the fraction of PCBs that remained in the fish when no developed land existed 

(the y-intercept) was -8.9 ng/g wet weight. This negative value reflects the 

significance of developed land to the model. More impervious surfaces and greater 

runoff rates of developed land were concluded to be the cause of this correlation 

(King et al., 2004). A study involving remote lakes in Ontario found 10% of total 

PCB loading to the lakes was from the watershed (Macdonald et al., 1991). Paul et al. 

(2002) conducted a similar analysis of Chesapeake Bay and other watersheds in the 

Northeastern United States; sediment contamination of metals, organics and 

polycyclic aromatic hydrocarbons (PAHs) increased as urban area increased in a 

given watershed. The y-intercept for the model was not provided (Paul et al., 2002). 

20 
 



Another Chesapeake Bay study had a similar conclusion on sediment contamination 

where the urban contribution of metals is from point sources. Atmospheric inputs 

were not considered (Comeleo et al., 1996). Analyses of Yukon lake sediments in 

Canada found that PCB concentrations were higher near more populated areas and 

PCB fluxes to sediments were lower in remote lakes. Glaciers likely had an effect on 

increasing the watershed inputs to small lakes at higher elevations (Rawn et al., 

2001). In this assessment, the accumulation of PCBs was evaluated for Michigan’s 

Upper Peninsula Inland lakes where much of the land is forested. It seems that, while 

study results vary, the magnitude of watershed PCB inputs to the lakes in this 

assessment may be assumed minimal (< 10%) due to the undeveloped environment of 

the majority of watershed areas.  

Studies have tried to determine the significance of trophic state on PCB 

contamination in lakes and biota by focusing on the extremes of lake productivity— 

eutrophic (highly productive) and oligotrophic (poorly productive). The lake 

productivity can have a positive effect on the amount of dissolved or particulate-

bound PCBs. Regardless of the level of productivity in a lake, the dissolved form of a 

chemical is readily available for uptake at any level in a food chain. An interesting 

finding in one Canadian study was the discovery that the PCB congener distribution 

was maintained among lakes with varying trophic levels and sizes. This was 

attributed to larger lakes having greater deposition rates, but also larger losses due to 

sedimentation and volatilization (Macdonald et al., 1991). In a study looking at 

polybrominated diphenyl ethers (PBDEs) in biota (i.e. crab, fish, and porpoise) along 
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the western coast of Canada, the authors applied PCA and found that this organic 

pollutant had similar congener distributions across the large study area even though 

sampling locations varied greatly in characteristics (Ikonomou et al., 2002). This 

study revealed that water bodies with a wide variety of physical characteristics may 

not affect organic chemical accumulation in biota higher in the food chain.  

It is theorized that more productive lakes lead to lower PCB concentrations in 

biota because increased particle deposition tends to decrease water concentrations as 

more PCBs sorb and also more biomass leads to dilution at the base of the food web. 

If the base of the food web contains lower PCB concentrations, then the effects of 

biomagnification would be less severe. Dachs et al. (2000) developed a model to 

explain the effects of eutrophication on the lake ecosystem. Air-water exchange, not 

settling fluxes, was determined to be most significant for phytoplankton 

concentrations, and increased with increasing phytoplankton biomass (Dachs et al., 

2000). 

There are, however, contrasting conclusions in the literature about the 

significance of lake trophic state on PCB concentrations in the lake and biota. A study 

comparing 19 Swedish lakes with no known point sources of contamination 

determined that sediment PCB concentrations were greater in eutrophic lakes than 

oligotrophic lakes. This was explained by the increased rate of organic matter-

associated PCB settling in highly productive lakes. The total concentration of PCBs 

in each analyzed portion of the lakes (phytoplankton, zooplankton and fish) did not 

vary greatly among lake types, excluding the dissolved water concentration which 
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was 10% higher in oligotrophic lakes (Berglund et al., 2001a). An earlier study that 

compared two Canadian lakes that varied greatly in productivity also concluded that 

the settling of PCBs was greater in the eutrophic lake. In contrast to the 

aforementioned study, there was little difference in the dissolved PCB water 

concentration (the phase most readily absorbed by biota (Jeremiason et al., 1999)). A 

later study used the same Canadian lakes to study the addition of northern pike, a top 

predator, to the food chain. While the addition shifted the diet of lower trophic level 

organisms, the PCB concentrations did not vary greatly from original levels. 

Contaminant levels were lower in the eutrophic lake in all of the biota sampled (Kidd 

et al., 1999). 

There have been many studies confirming the importance of lake trophic state 

on another hazardous pollutant, mercury. Lavoie et al. (2013) concluded that the 

concentration of mercury in aquatic food webs is highest in cold lakes with low 

productivity. There is less plankton biomass at the base of the food chain in a pristine 

lake, causing higher contaminant concentrations in organisms compared to plankton 

in eutrophic systems. Several other studies drew the same conclusion using similar 

techniques with stable isotopes for species trophic position determination and linear 

regression analysis to relate lake productivity to contamination (e.g. Kamman et al., 

2003; Clayden et al., 2013; Chen et al., 2005; Driscoll et al., 2012).  

A study including eight lakes ranging in surface area from 0.2 to 4800 km2 in 

Ontario determined that these lakes did not have significantly different concentrations 

of dissolved PCBs even though lake sizes were very different and productivity varied 
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(Paterson et al., 1998). Similar conclusions to Berglund et al. (2001a) about settling 

rates were made by using a model developed for air-water exchange of PCBs in Lake 

Ontario. This study also noted an increased amount of deposition of PCBs into the 

eutrophic lake simulation due to higher settling rates (Dachs et al., 2000). Jeremiason 

et al. (1999) found that during times of stratification, there was net volatilization 

occurring from both lake productivity types while more volatilization occurred in the 

oligotrophic lake.  A study using PCA and regression analysis for 33 lakes in 

Southern Ontario concluded that there were higher PCB concentrations in 

phytoplankton from oligotrophic lakes (Taylor et al., 1991). While there are more 

phytoplankton and microzooplankton per area in eutrophic lakes, the organisms have 

a lower lipid content, which reduces the amount of lipophilic PCBs being stored 

(Berglund et al., 2000a and Berglund et al., 2001b). Berglund et al. (2001b) did not 

see this trend found in phytoplankton reflected higher up in the food web. In contrast, 

a study of 61 southern Scandinavian lakes found lower PCB contamination in 

Northern Pike in more productive lakes. However, it was concluded that this was 

likely due to an increased growth rate of this species in the eutrophic lakes, not due to 

lower trophic level concentrations. The faster the growth rate, the faster the excretion 

of PCBs from an organism as well as the greater the growth dilution (Larsson et al., 

1992).  These studies point towards the conclusion that more productive lakes can 

reduce the amount of PCB exposure to biota, but the significance of this reduction 

varies. The trophic state of a lake may have an indirect effect on the level of 

contamination in higher trophic level organisms, but results fluctuate due to species 
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characteristics and lake location as dissolved water concentrations may not differ 

significantly.  

Linear regression analysis is a statistical technique that has been used on a 

number of chemical pollutants to determine if there is a significant relationship 

between the contamination and any physical characteristics of the lake or watershed. 

McMurty et al. (1989) found a correlation using this technique between mercury in 

fish tissue and lake trophic indicators, lake area and watershed area in Ontario. The 

most significant correlation was with dissolved organic carbon, which increased with 

lake productivity (r2=0.60, p<0.05). Multiple linear regression was also used with 

PCA to determine similar results for mercury contamination in biota in Nova Scotia 

(Clayden et al., 2013). The concentrations of methyl mercury in organisms closer to 

the base of the food web were correlated most strongly with pH, metal presence and 

lake morphometry (R2 adjusted=0.348-0.730, p<0.001). Total concentrations of 

mercury in yellow perch were best predicted by wetland area (R2 adjusted =0.020, 

p<0.001). This was not a surprise due to the ability of wetlands to convert mercury 

into the more toxic and bioavailable form. It was concluded that physical lake 

characteristics can play a large role in methyl mercury accumulation (Clayden et al., 

2013).  

Another physical lake characteristic that could affect PCB exposure is the 

amount of littoral zone in a lake. This could have a significant effect on feeding habits 

and therefore have an effect on the exposure of top predator fish. Pelagic feeding is 

associated with a longer food web because top predators consume more pelagic fish 
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than littoral organisms. Longer food webs lead to more bioaccumulation. Guildford et 

al. (2008) concluded that lake trout, which only feed in the pelagic zones, tend to 

have higher concentrations of PCBs because of the limited availability of littoral prey. 

Another study that sampled five of the same lakes, among others, found that 

polybrominated diphenyl ether (PBDE), another organic contaminant, increased in 

concentration in lake trout with increased benthic feeding (Gewurtz et al., 2011b). For 

mercury, Kidd et al. (2012) found inconsistent links between the level of 

contamination and benthic or pelagic feeding for lake trout. A study involving three 

river fish species found that detrital feeding increased the level of PCB contamination 

(Lopes et al., 2011). There may be a linkage between PCB concentrations in fish and 

littoral feeding habits, but many factors, including lake trophic state and food 

availability, can play a role in what fish consume and their level of exposure. In 

addition, fish of the same species in a given water body do not always have the same 

feeding habits (Vander Zanden et al., 2000). 

1.5 Global Distribution 
While production of PCBs was banned in the late 1970s due to the discovery 

of harmful health effects, the movement of these organic contaminants are still being 

studied today. All lakes throughout the world are affected by atmospheric deposition 

of PCBs. PCBs often undergo deposition and revolatilization multiple times, moving 

farther from the original source of production, use or contamination. This movement 

into the air and back to the earth’s surface has been coined the grasshopper effect 

(Gouin et al., 2004). Light, or lower-chlorinated, PCBs can revolatilize more easily 
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due to their lighter weight, and they have been found to move to higher latitudes due 

to cooler air temperatures for deposition (Meijer et al., 2002). With warmer climates 

making volatilization easier, there is a chance that PCBs could be re-emitted and 

transported even farther north at greater concentrations in the future (Schmidt 2010).  

Due to the grasshopper effect, there is a tendency for PCBs to move into 

higher latitudes and redeposit in lake ecosystems. Using linear regression, Houde et 

al.(2008) determined that there was a weak influence of latitude or longitude on lake 

trout PCB trophic magnification factors between Canadian lakes and lakes in the 

northeastern United States (R2=0.238, p<0.05). Another study on mercury 

bioaccumulation was the first to show a significant positive relationship between the 

contaminant and latitude, likely because of temperature and lake trophic state 

differences across the large study region that included 205 aquatic food webs (Lavoie 

et al., 2013). Guildford et al. (2008) found lake area and latitude accounted for 73% 

of the variance in total PCB concentration in lake trout in 23 lakes in Canada and the 

eastern US. It would seem that in order to determine if latitude is significant, there 

needs to be a study completed at a larger scale (i.e., across continents) for PCB 

accumulation.  

1.6 Fish and Food Web Characteristics 
Similar to water concentrations, PCB concentrations in fish have been 

declining and can be explained using first order rate modeling. In a comparison of 

Great Lakes contamination from 1970 to 1998, the first order half-life of total PCBs 

in top predators ranged from 2.3 to 12.4 years (R2=0.61 to 0.96, p<0.05) (Hickey et 
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al., 2006). Lake Huron saw a slight increase in PCB contamination due to an increase 

in lipid content in lake trout from 1995 to 1998. There was a similar occurrence in 

Lake Superior when lake trout diet switched to lake herring in the early 1990s, but 

Lake Superior still has the lowest level of PCB contamination in fish among the Great 

Lakes (Hickey et al., 2006). Carlson and Swackhamer (2006) summarized the results 

of the U.S. Great Lakes Fish Monitoring Program (GLFMP), but only with samples 

from 1999 and 2000, which yielded no significant time trend of decline. However, the 

study did find that sites located in the same lake had significantly different PCB fish 

concentrations, suggesting the different diets among the same fish species lead to 

different PCB concentrations. Later, Carlson et al. (2010) summarized 34 years of 

monitoring efforts by the GLFMP. A significant decline in PCBs in lake trout and 

walleye has occurred since the 1970s. However, the rate of decline is slowing as 

concentrations have been significantly reduced (Carlson et al., 2006).  

The differences in the food web may affect PCB bioaccumulation, but there 

has been debate over whether lipid content, which is affected by food web 

characteristics, is more important. The higher the lipid content, the more PCBs can be 

stored more easily in fish because this organic pollutant is lipophilic. Longer food 

webs result in fattier top predators because of their tendency to consume larger, fattier 

fish rather than the smaller organisms found in shorter food webs. Rasmussen et al. 

(1990) found that lake trout contamination can be explained by differences in the 

food chain, but that PCB content also increased with increasing lipid content. Trophic 

position can be affected by the food chain; the longer the food chain, the higher the 
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trophic position of top predators. Many studies have used stable isotopes to determine 

the trophic position of fish species and used different statistical methods to identify 

the factors that predict the level of contamination (Vander Zanden and Rasmussen, 

1996; Borgå et al., 2004; McIntyre and Beauchamp, 2007). Some studies determined 

that trophic position was only significant in larger fish, using nitrogen isotope 

analysis to determine the exact trophic level of fish samples. Olsson et al. (2000) used 

a regression analysis to determine that perch in a Latvian lake only had strong 

correlations between increasing PCB concentrations and increasing trophic position if 

the samples were longer than 20 cm in their regression analysis. A later Norwegian 

study of multiple fish species, which used PCA and linear regression to expose 

trends, reached a similar conclusion. PCA divided fish species based on the measured 

tissue congener distribution into higher and lower trophic positions. This study 

revealed a trend that higher chlorinated PCB congeners increased in concentration 

with increasing trophic level using linear regression on the PCA components (Ruus et 

al., 2002). It was concluded in both studies that the significance of trophic level was 

an indication of contrasting characteristics of small and large fish of the same species. 

Smaller fish have a larger gill surface area to body weight ratio than larger fish which 

could increase their exposure from respiration rather than diet. This ratio may also be 

the cause of an increased loss of PCBs as well as a loss through excretion, causing the 

lower PCB concentrations. Metabolic differences could also be a factor with how 

quickly the organic contaminant is excreted (Ruus et al., 2002). The higher fat 

content, higher consumption of larger fish and smaller gill surface area to body 
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weight ratio of larger fish for a given species is the likely cause of trophic position 

being a more important factor (Olsson et al., 2000).  

Other studies have shown contrasting views to Olsson et al. (2000) and Ruus 

et al. (2002). Using nitrogen isotope ratios to determine trophic position and 

backwards multiple linear regression, McIntyre et al. (2007) determined that age or 

length was more significant than trophic position for predicting PCB concentrations 

in a food web studied in the state of Washington (r2=0.419-0.829, p<0.002). In 

addition, it was concluded that lipids were not significant in bioaccumulation 

according to a Pearson correlation between lipid content and total PCB concentrations 

for multiple food web species (McIntyre et al., 2007). It was recommended by 

Gewurtz et al. (2011a) to sample the larger size range of upper trophic level fish to 

find strong correlations between PCB concentration and length. A study on three 

lakes in the Yukon Territory used nitrogen isotope analysis and multiple linear 

regression to determine that the importance of trophic position depended on the fish 

species. Northern pike contamination was best explained by a combination of lipid 

content and trophic position (r2=0.81, p<0.01) while burbot and lake trout 

concentrations were predicted by weight and trophic position (r2=0.87 and 0.66, 

respectively, p<0.01). Correlations with trophic position were only significant for 

lake trout when data were combined across lakes, but not for individual lake data 

(Kidd et al., 1998). Another study found similar complications for lake trout in four 

Arctic lakes in that trophic position could not explain PCB concentration differences 

due to nitrogen isotope inconsistencies. This points towards varying dietary 
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preferences in any given lake (Allen-Gil et al., 1997). Vander Zanden et al. (1996) 

designed food web classes in a trophic position model to represent the range of 

trophic positions for lake trout in an attempt to create a trophic structure without 

discrete trophic levels assigned. This model also accounted for omnivory and 

explained 85% of the variability between the lake types. In the same year, another 

study used ANCOVA and linear regression on lake trout in inland Ontario lakes and 

three of the Great Lakes to assess the interaction between food web structure, trophic 

position and lipid content. Regression analysis proved that lipid content could predict 

PCB contamination levels in all six lakes (r2=0.73, p<0.00001). The longer the food 

web, the greater amount of lipid content in the species as well.  Their conclusions 

posed the idea of an interplay between food web structures and lipid content which in 

turn similarly affected the accumulation of PCBs (Bentzen et al., 1996).  

With the variability in lipid content dependent on the species, many other fish 

characteristics may affect contamination levels. In a comparison of rainbow trout and 

lake trout in Lake Michigan, Madenjian et al. (1994) determined that the longer life 

span and slower growth rate of lake trout led to higher PCB concentrations. Rainbow 

trout can reach the same size as lake trout in significantly less time, meaning the 

species has had less time to accumulate organic contaminants. In addition, the diet of 

rainbow trout was more diverse than that of lake trout, causing higher variability in 

dietary exposure compared to lake trout (Madenjian et al., 1994). Coho salmon, 

another top predator species in the Great Lakes, is more sensitive to changes in 

dissolved water concentrations because of its faster growth rate and metabolism. 
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While lake trout contaminant levels are built up over several years of exposure, coho 

salmon contamination reflects about 1 or 2 years of exposure (Pearson et al., 1996).   

It seems that the significance of food chain differences and other food web and fish 

characteristics on contaminant bioaccumulation is dependent on multiple factors 

including individual species physiology (i.e. lipid content, respiration rate, 

metabolism, and life span), food availability and dietary preference.  

The relationship between level of contamination and lipid content of fish also 

becomes important when determining if the sex of the fish has significant effects on 

organic contaminant accumulation. The lipid content and weight of male and female 

fish can fluctuate before, during and after spawning. However, regression results for 

Gewurtz et al. (2011a) in Ontario found that walleye was the only species with a 

strong difference between sexes and PCB contamination while several other species 

were included in the study. Male walleye had higher fat content than their female 

counterparts. Fish length was determined to be a better predictor than lipid content for 

the highest trophic level predators, since size—not sex--is the cause of higher lipid 

content for the species as a whole (Gewurtz et al., 2011a). Madenjian et al. (2010) 

determined that male lake trout had a higher PCB content than females in Lake 

Ontario. The release of gametes was not the cause for this difference and their 

bioenergetics model could not explain the differences measured in the field. More 

research into food preferences and bioenergetics during spawning may be needed to 

understand the true effects of sex on PCB bioaccumulation (Madenjian et al., 2010). 

Upon further review of the literature on the effects of sex, Madenjian (2011) 
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concluded that one of three factors likely explained the differences between male and 

female contamination. Loss of PCBs during spawning and differences in habitat could 

only explain differences in few species and was not always significant. Differences in 

gross growth efficiency was concluded to affect all species to some extent and was 

the most significant factor for some. Males of a given species tend to need more 

energy to reach the same size and are more active than females. This review also 

recommended that bioenergetics models need to take these differences into account 

for more accurate modeling (Madenjian, 2011).  

1.7 Great Lakes Region Contamination 
Studies that compare inland lake contamination to the Great Lakes are 

uncommon. Typically, only the Great Lakes are studied because of their high priority 

in monitoring programs. However, for many people, especially indigenous people, all 

water bodies are important as a food source and hold cultural significance.  Due to 

this varying level of contamination among species and pollutants, it is difficult to say 

whether fish from either the Great Lakes or inland lakes are safer. In the case of 

PCBs, the role of food web differences and its effect on lipid content are important. 

The Great Lakes tend to have much longer food webs than inland water bodies, which 

has been found to significantly affect lipid content and PCB concentrations, while the 

loading rates of contaminants are also higher for the Great Lakes (Bentzen et al. 

1996). Bentzen et al. (1996) compared lake trout from inland Ontario lakes to the 

contamination in Lakes Superior, Huron and Ontario. It was determined that inland 

lake contamination was on average lower than that of the Great Lakes in the 1980s. 
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However, the contaminant levels in Lake Superior were significantly lower than the 

other Great Lakes as well as a portion of the inland lakes. The lower PCB 

contaminant levels were attributed to the colder Lake Superior water slowing fish 

metabolism (Bentzen et al., 1996). However, the opposite was observed for 

concentrations of methyl-mercury in fish in Lakes Michigan, Huron and inland water 

bodies (Carlson and Swachhamer, 2006). The different tendencies of PCBs and 

mercury accumulation in the water bodies were attributed to the significance of 

different lake and food web characteristics on bioaccumulation.  In addition, 

toxaphene concentrations are highest in Lake Superior compared to the other Great 

Lakes (Carlson and Swachhamer, 2006). Toxaphene concentrations in lake trout from 

inland Ontario lakes were also lower than that of Lake Superior (Muir et al., 2004).  

The discrepancies among inland water bodies and Great Lake contamination 

was assessed in more detail by Kannan et al. (2000). Siskiwit Lake, located on an 

island in Lake Superior where no point sources (i.e., a large quantity of PCBs 

originating from one small area) exist, was reported to have nine-fold higher levels of 

PCBs in lake trout than Lake Superior in the late 1990s if concentrations were lipid-

normalized (Kannan et al., 2000). Local sources tend to have highly significant 

impacts on river systems. Of the 13 sites sampled throughout the State of Michigan 

and the Great Lakes, Kannan et al. (2000) found that the Detroit River, where local 

sources leach PCBs into the river, had the highest concentrations of PCBs.  

An element that adds to the complexity of comparing lakes is the species 

present. Not all inland lakes contain the large, cold water fish species that the Great 
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Lakes have in abundance. In addition, different species accumulate PCBs differently 

because of unique traits (e.g. metabolism and growth rate). For example, 

Gerstenberger and Dellinger (2002) found that walleye were typically less 

contaminated with organic chemicals than lake trout and whitefish in the upper Great 

Lakes region.  

1.8 Conclusion 
Upon review of the literature related to chemical accumulation in fish, many 

questions are unanswered for the Great Lakes Region in terms of PCB contamination. 

Differentiating sources of PCBs to the region and linking important watershed and/or 

lake characteristics to contamination trends provides focus to remediation plans and 

healthier fishing/fish consumption habits. While the sources of contamination have 

been assessed in other regions, it has not been done so extensively for the Great Lakes 

Region. The importance of ecosystem characteristics has varied among studies. Few 

studies have shown unequivocally the effects of lake trophic state and fish diets on 

PCB accumulation. Understanding what food web and fish characteristics hold 

significance for PCB accumulation could explain why fish species have high 

variability in contaminant levels within the region and neighboring inland lakes. 

Applying modeling scenarios to evaluate some of these topics could provide more 

insight than could sampling efforts for the region. 

The complexity of hazardous chemicals and their environmental processing 

has continued to challenge the scientific community. Continued study of such 

pollutants including PCBs is necessary for the protection of the environment and 
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human health. The development of models can do more for our understanding than 

sampling and analysis of contaminants alone. With continued efforts, our ability to 

combat hazardous chemicals will yield better protection of future generations.  
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CHAPTER 2: INLAND LAKES ASSESSMENT 

2.1 Introduction 
An assessment of PCB contamination in Michigan’s Upper Peninsula inland 

lakes was desired to determine: 1) if there is a distinct difference in PCB congener 

distribution in fish affected by different sources of contamination, 2) which lake 

ecosystem characteristics affect the level of PCB contamination in fish, 3) which 

lakes are most susceptible to PCB contamination and 4) when safely consuming a 

desired amount of fish could be possible. These objectives were completed by using 

statistical analyses on measured fish data provided by the Michigan Department of 

Environmental Quality and modeling tools. 

Lakes can be impacted by two sources of PCBs: local, industrial 

contamination and atmospheric deposition. As considered here, industrial 

contamination is a point source of PCBs to the local watershed or lake due to 

negligent disposal of PCBs (i.e., contaminated soil and groundwater). In contrast, 

atmospheric deposition affects all lakes, and the PCBs can originate from another 

state or continent. In the literature, a form of principal component analysis (PCA) has 

been used to differentiate between these sources by comparing PCB congener 

distributions in fish (Macdonald et al., 1991; Rachdawong et al., 1997; Monosson et 

al., 2003). However, this type of comparison has never been done for this study 

region where most of the lakes have never been tested for local, point sources of 

PCBs.  
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Lakes have unique physical and chemical characteristics that can significantly 

affect the bioaccumulation of chemical contaminants. For example, the amount of 

particulates or dissolved organic matter in a lake will affect the concentration of a 

dissolved contaminant that is readily available for uptake by fish through respiration. 

In regards to mercury, a hazardous pollutant that also bioaccumulates, wetlands can 

alter it into its more toxic form (Clayden et al., 2013). The purpose of comparing lake 

ecosystem characteristics was to see if any characteristics could be used to estimate or 

to predict the total concentration of PCBs in fish. The significance of watershed 

inputs of PCBs to lakes has varied in previous studies (Jeremiason et al., 1991; Paul 

et al., 2002; King et al., 2004; Totten et al., 2006). There has been strong evidence 

that the trophic state of a lake can significantly impact the amount of PCBs to which 

fish are exposed (Macdonald et al., 1991; Paterson et al., 1998; Kidd et al., 1999; 

Dachs et al., 2000; Ikonomou et al., 2002). A form of multiple linear regression 

(MLR) has been performed to determine the lake characteristics that can best predict, 

and therefore have the most effect on, bioaccumulation of various chemical pollutants 

(McMurty et al., 1989; Clayden et al., 2013). For the first time in this study, MLR 

analysis was used on inland lakes in the study region to determine which ecosystem 

characteristics (i.e., trophic state, lake size indicators, watershed area and wetland 

area) have the most impact on PCB contamination in fish.  

To determine which lakes are most susceptible to PCB contamination and 

when safe fish consumption may be possible, modeling tools were used to predict 

lake PCB concentrations and fish contamination. Previous lake models have been 
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developed for the Great Lakes region, but most have focused specifically on one lake 

(Baker et al., 1990, Mackay 1989, and Rowe 2009). For this study, a mass balance 

model was developed to determine the concentration of PCB congeners in any given 

lake. The only source of PCBs to the lake was assumed to be from the atmosphere; 

modes of atmospheric deposition include wet, dry particulate, and gas exchange. 

Calibrated using measured PCB water concentrations in Lake Superior, the model 

was used to estimate concentrations in other lakes that, in turn, were used to predict 

bioaccumulation. This model estimates PCB congener concentrations based on a wide 

range of lake chemical and physical characteristics so that it is not as restricted as 

previous models have been. 

The U.S. Environmental Protection Agency’s (EPA) Bioaccumulation and 

Aquatic System Simulator (BASS) was used to estimate PCB congener 

concentrations in fish at varying trophic levels in a given food web. Once the model 

was calibrated using Michigan Department of Natural Resources (MDNR) fish 

surveys, the model was adjusted to determine if any major change in food web 

structure had a significant effect on PCB concentrations in upper trophic level 

species. The proposed hypothesis was that the trophic position of a top predator, 

which is determined by the fish diet, significantly affects PCB accumulation.  

EPA’s BASS model has been used in many projects in the United States to 

study mercury, DDT and PCB bioaccumulation (US EPA, 2015). One such study 

assessed PCB accumulation in Lake Ontario Salmonids and used BASS’s precursor, 

FGETS (Food and Gill Exchange of Toxic Substances) (Barber et al., 1991). The 
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bioaccumulation model was also used for PCB accumulation in creek systems 

(Marchettini et al., 2001). BASS has been applied to watershed studies (Johnston et 

al., 2011) and an assessment of fish mercury response time to atmospheric changes 

(Knightes et. al., 2009). The great range of uses for this program, and the fact that it 

was recommended as an assessment tool to the State of Michigan (Exponent 2003), 

made it an appropriate tool for this analysis.  

Lake ecosystem scenarios were developed using the models to determine the 

extent of PCB contamination in top predator fish. To encompass the wide range of 

possible lake types in the study region, the scenarios involved lakes that varied in 

size, trophic state and food web structure. The results of the scenarios helped to 

explain the importance of other biophysical factors affecting bioaccumulation and 

were used to determine which type of lake likely has the highest contamination in 

fish. Prediction of when safe fish consumption may be possible has never been 

estimated for inland lakes. These lake ecosystem scenarios and modeling tools have 

now made this possible. 

2.2 Methods 

2.2.1 Source of Contamination 
In order to discriminate between fish impacted by a local source and those 

impacted by atmospheric sources, PCA was used on a set of lakes sampled by the 

Michigan Department of Environmental Quality (MDEQ) (Bohr, 2013). The MDEQ 

sampled and analyzed multiple fish species for total PCB concentrations and PCB 
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congener concentrations in 18 lakes across the state of Michigan’s Upper Peninsula 

from 2000 to 2010 (Figure 2. 1). The samples were analyzed following the Great 

Lakes and Environmental Assessment Section Procedure 31 (Bohr and VanDusen, 

2011). 

 

Figure 2. 1: Map of MDEQ sampled lakes from 2000 to 2010 in Michigan’s Upper 
Peninsula. 

PCA, with direct oblimin rotation, was performed using IBM® SPSS® 

Statistics 21 to determine if a statistically significant difference existed between fish 

contamination sources. PCA is a statistical method that uses the variance in observed 

data to simplify multiple variables into a reduced number of variables or principal 

components. These components are determined through transformations to account 

for the most variance among the datasets. Direct oblimin rotation is an oblique 

rotation and allows factors to not be orthogonal to make interpretation of results 
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easier. This method is widely used to observe similarities and differences in observed 

data.  

For the analysis, concentrations of individual PCB congeners are treated as 

multiple variables for each lake.  Congener concentrations above the detection limit 

were log-transformed for the analysis while congeners below detection limit were 

omitted from the analysis. By omitting congeners below the detection limit, the 

greatest contrast between sites could be interpreted. In addition, fish species 

(Northern Pike (Esox lucius) and Walleye (Sander vitreus)) were compared separately 

in the analysis to account for physiological differences (i.e. fat content, growth rate 

and relative size). The samples included in the analyses were between 40 to 50 and 50 

to 60 cm in length for walleye and northern pike, respectively. Limiting the size of 

fish provided a better comparison among lakes because similar sizes and ages of fish 

have more comparable PCB concentrations (e.g. Olsson et al., 2000). Species 

comparisons were limited due to a lack of common species among all lakes. Due to 

this complication, three of the lakes could not be compared using PCA: Siskiwit 

Lake, Boston Pond and Chicagon Lake were sampled only for lake trout, white 

sucker and lake whitefish, respectively. 

2.2.2 Ecosystem Characteristics 
For lakes not impacted by local, industrial PCB contamination (Section 2.3.1) 

MLR was performed to determine if any lake characteristic(s) could predict the total 

concentration of PCBs in a given lake. Total concentration of PCBs, measured by the 

MDEQ, was calculated as the sum of all congeners above the detection limit. Both the 
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characteristics and the average total PCB concentrations for each lake were log 

transformed for the analysis. Lake fish sample concentrations were provided by the 

MDEQ (Bohr, 2013). Fish species included in the analysis were walleye, northern 

pike and lake trout. Values for lake characteristics used in the analysis can be seen in 

Table A. 1.  

Lake characteristics included in the analysis were chosen based on their 

potential to affect fish PCB concentrations and data availability; lake characteristics 

used in the MLR included surface area, mean depth, maximum depth, trophic state, 

watershed area, wetland area, open water area within the watershed and the ratio of 

watershed area to lake surface area. The lakes determined from PCA to be only 

atmospherically impacted (Figure 2. 8) were used in the analysis so that the potential 

of local contamination did not skew the results. Siskiwit Lake was also included 

because there are no industrial sources on Isle Royale. Lipid-normalized total PCB 

concentrations in fish from each lake were used as the basis for fish PCB 

concentration in the analysis.  

2.2.3.1 Lake PCB Model Description 
A two-box model (Figure 2. 2) was designed to predict the PCB water 

concentration in inland lakes given rates of atmospheric inputs and lake 

characteristics. It was designed as a non-steady state model to illustrate the time 

required for the water column to react to a change in the atmospheric concentration of 

PCBs. This non-steady state approach contrasts with the previously published 
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QWASI (Quantitative Water Air Sediment Interaction) fugacity model, which was 

designed as a steady state model (Mackay and Diamond 1989).  

 

Figure 2. 2: Diagram of PCB water concentration model. 

The differential equations used in this model were taken from Schwarzenbach 

et al. (2003): 

𝑑𝑑𝐶𝐶𝑤𝑤
𝑑𝑑𝑑𝑑

= 𝐽𝐽𝑤𝑤 − 𝑘𝑘11𝐶𝐶𝑤𝑤 + 𝑘𝑘12𝐶𝐶𝑠𝑠    [2.1] 

𝑑𝑑𝐶𝐶𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝐽𝐽𝑠𝑠 + 𝑘𝑘21𝐶𝐶𝑤𝑤 − 𝑘𝑘22𝐶𝐶𝑠𝑠     [2.2] 

𝐽𝐽𝑤𝑤 = 𝐽𝐽𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐽𝐽𝑝𝑝𝑤𝑤𝑝𝑝𝑑𝑑 + 𝐽𝐽𝑔𝑔𝑤𝑤𝑝𝑝𝑑𝑑 + 𝐽𝐽𝑎𝑎𝑤𝑤 + 𝐽𝐽𝑤𝑤𝑠𝑠              [2.3] 
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where Js is assumed to be equal to zero for all lakes considered in this study. The 

“surface mixed sediment layer” (SMSL) model, provided by Schwarzenbach et al. 

(2003), was used as the basis of the model. Table 2. 1 and Table 2. 2 summarize all 

variables and equations used in the model. 

Table 2. 1: List of all symbols and references used in the PCB lake model where M is 
mass, L is length and T is time (no entry under value means that the value varies for 
the PCB congener or lake). 

Chemical Characteristics 

Symbol Quantity units value Source 

Ca PCB air concentration M/L3 - IADN 2006 data 

Cw PCB water concentration  M/L3 - - 

Cs PCB soil concentration M/L3 - - 

Diw, Djw 

Diffusivity of a compound 
in Water for compound of 
interest (i) and reference 
compound (j) 

L2/T - Schwarzenbach, 
2003 

Dia, Dja 

Diffusivity of a compound 
in air for compound of 
interest (i) and reference 
compound (j) 

L2/T - Schwarzenbach, 
2003 

Koc 
natural organic matter-
water partition coefficient L3/M - Schwarzenbach, 

2003 

Koa 
Octanol-air partition 
coefficient unitless - Schwarzenbach, 

2003 

KH Dimensionless Henry’s 
Law Constant unitless - Paasivirta and 

Sinkkonen, 2009 

Kow Octanol-Water Partition 
Coefficient unitless - Paasivirta and 

Sinkkonen, 2009 
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Mi molar mass of a compound M/mol - Paasivirta and 
Sinkkonen, 2009 

viaw Air-water exchange 
velocity L/T - Schwarzenbach, 

2003 

via, vja 
Mass transfer velocity of a 
compound in air L/T - Schwarzenbach, 

2003 

vis, vjw Mass transfer velocity of a 
compound in water L/T - Schwarzenbach, 

2003 

fw
op dissolved fraction of PCB 

in open water unitless - Schwarzenbach, 
2003 

fs
air PCB fraction sorbed to 

particles in air unitless - Schwarzenbach, 
2003 

fDOC PCB fraction sorbed to 
DOC unitless - Schwarzenbach, 

2003 

Cw,o initial water concentration M/L3 - - 

Cs,o initial sediment 
concentration M/M - - 

Css steady state concentration M/L3 - - 

Atmosphere Characteristics 

Symbol Quantity units value Source 

vd particle dry deposition 
velocity to lake L/T 0.002 

m/s Rowe, 2009 

foc,air fraction of organic carbon 
in aerosol unitless 0.1 Rowe, 2009 

fom,air fraction of organic matter 
in aerosol unitless 0.2 Rowe, 2009 
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TSP 
atmospheric aerosol 
particle mass 
concentration 

M/L3 10 
µg/m3 Rowe, 2009 

Mair Average molar mass of air M/mol 28.91 
g/mol 

Schwarzenbach 
2003 

 

molar volume of air gasses L3/mol 20.1 
cm3/mol 

Schwarzenbach 
2003 

fd fraction of time not raining 
or snowing unitless 0.9 Rowe, 2009 

Lake Characteristics 

Symbol Quantity units value Source 

u10 Wind speed 10 meters 
above the water surface L/T - 

CMX weather 
station data 
(NOAA GLERL, 
2015) 

Ao Lake Surface Area L2 - Table A. 2 or 
Table 2. 3 

Aw Watershed area L2 - Table A. 2 or 
Table 2. 3 

h Lake Mean Depth L - Table A. 2 or 
Table 2. 3 

V Lake Volume L3 - Table A. 2 or 
Table 2. 3 

TSS Total Suspended Solids M/L3 - Table A. 2 or 
Table 2. 3 
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fom fraction of organic matter 
in suspended solids unitless - Table A. 2 or 

Table 2. 3 

foc 
fraction of organic carbon 
in suspended solids unitless - Table A. 2 or 

Table 2. 3 

DOC Dissolved Organic Carbon 
in the water column M/L3 - Table A. 2 or 

Table 2. 3 

τ residence time of the water 
body T - - 

rsw
op solid to water phase ratio M/L3 - Schwarzenbach, 

2003 

Kd distribution coefficient of 
suspended solids L3/M - Schwarzenbach, 

2003 

KDOC partition coefficient for 
dissolved organic carbon L3/M - Schwarzenbach, 

2003 

fs
op 

fraction sorbed to 
suspended solids in open 
water 

unitless - Schwarzenbach, 
2003 

vs particle settling velocity L/T 1.37 m/d 
Noel Urban, 
personal 
communication 

Qpr (avg) precipitation flow rate L3/T - - 

P Annual Precipitation L/T 0.83 
m/yr 

Current Results, 
2015 

Sediment Characteristics 

Symbol Quantity units value Source 

focs 
Fraction of Organic 
Carbon in the sediments unitless  Schwarzenbach, 

2003 

δbl 
Aqueous boundary layer 
thickness L 5×10-4 

m Rowe, 2009 
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Symbol Quantity units value Source 

vsd 
Diffusive sediment-water 
exchange velocity L/T  Schwarzenbach, 

2003 

Kd
sc 

distribution coefficient of 
settled solids in sediment 
column 

L3/M  Schwarzenbach, 
2003 

µres sediment resuspension rate M/L2/T 4×10-8 Lake Superior 
Rowe, 2009 

vsre sediment resuspension 
velocity L/T - Schwarzenbach, 

2003 

ρs
sc density of solids in 

sediment column M/L3 - Schwarzenbach, 
2003 

rsw
sc solid to water phase ratio 

in sediment column M/L3 - Schwarzenbach, 
2003 

ɸsc porosity of the sediment 
column unitless - Schwarzenbach, 

2003 

vsedex 
Overall sediment-water 
exchange velocity L/T - Schwarzenbach, 

2003 

fw
sc Dissolved fraction of PCB 

in sediment unitless - Schwarzenbach, 
2003 

zmix sediment mixing depth L 0.01 m Rowe, 2009. 

m mixed layer mass/area M/L2 - Schwarzenbach, 
2003 

β 
preservation factor of 
organic carbon in sediment 
mixing layer 

unitless 0.0001 

Noel Urban, 
personal 
communication, 
2014. 

ηp particle scavenging 
efficiency unitless 50000 Rowe, 2009. 
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Watershed Characteristics 

Symbol Quantity units value Source 

Jdry,ws Dry particle deposition 
onto watershed M/L3/T - Schwarzenbach, 

2003 

Jpwet,ws 
particle wet deposition 
onto watershed M/L3/T - Schwarzenbach, 

2003 

Jgwet,ws 
gas phase scavenging by 
precipitation onto 
watershed 

M/L3/T - Schwarzenbach, 
2003 

fws 
fraction of chemical 
deposited on watershed 
that enters the lake 

unitless 0.03 Totten et al. 2006 

vd,ws particle dry deposition 
velocity to watershed L/T 0.002 

m/s Rowe, 2009 

CLS Concentration on leaf 
surface M/L3 - Nizzetto and 

Perlinger, 2012 

Cr 
Concentration in leaf 
reservoir M/L3 - Nizzetto and 

Perlinger, 2012 

Jsa Surface-air exchange flux M/L3/T - Nizzetto and 
Perlinger, 2012 

Jra 
Reservoir-air exchange 
flux M/L3/T - Nizzetto and 

Perlinger, 2012 

Jca Air-canopy exchange flux M/L3/T - Nizzetto and 
Perlinger, 2012 

L Leaf area  L2 - Nizzetto and 
Perlinger, 2012 

ksa 
Air-surface mass transfer 
coefficient L/T - Nizzetto and 

Perlinger, 2012 
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kra 
Air-reservoir mass transfer 
coefficient L/T - Nizzetto and 

Perlinger, 2012 

Ksa 

Surface-air dimensionless 
equilibrium partition 
coefficient 

- - Nizzetto and 
Perlinger, 2012 

Kra 
Air-leaf reservoir 
dimensionless  equilibrium 
partition coefficient 

- - Nizzetto and 
Perlinger, 2012 

Constants 

Symbol Quantity units value Source 

η solution viscosity in 
centipoise M/L/T - Schwarzenbach, 

2003 

R Gas constant 8.314×10-3 
kJ/mol/K  Schwarzenbach, 

2003 

T Temperature K - - 

p gas phase pressure ML/T2 1 atm Schwarzenbach, 
2003 

TSI Trophic State Index unitless - Table A.2.1 

tss time to steady state T - Schwarzenbach, 
2003 

Fluxes 

Symbol Quantity units value Source 

Jw sum of all input fluxes to 
lake M/L3/T - Schwarzenbach, 

2003 

Js sum of all input fluxes to 
sediment M/L3/T - Schwarzenbach, 

2003 

Jdry dry deposition flux M/L3/T - Schwarzenbach, 
2003 
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Jpwet particle wet deposition M/L3/T - Schwarzenbach, 
2003 

Jgwet 
gas phase scavenging by 
precipitation M/L3/T - Schwarzenbach, 

2003 

Jaw air-water exchange flux M/L3/T - Schwarzenbach, 
2003 

Jws watershed flux M/L3/T - Schwarzenbach, 
2003 

First Order Rates 

Symbol Quantity units value Source 

k11 sum of first order rate loss 
constants from the lake T-1 - 

Schwarzenbach, 
2003, see 
equation 2.1 

k22 
sum of first order rate loss 
constants from the 
sediment  

T-1 - 
Schwarzenbach, 
2003, see 
equation 2.2 

k12 sum of first order rate loss 
constants from the lake  L3/M/T - 

Schwarzenbach, 
2003, see 
equation 2.1 

k21 
sum of first order rate loss 
constants from the 
sediment  

L3/M/T - 
Schwarzenbach, 
2003, see 
equation 2.2 

ksedex resuspension transfer rate 
constant T-1 - Schwarzenbach, 

2003 

ka/w removal rate to 
atmosphere T-1 - Schwarzenbach, 

2003 

kw outflow loss rate T-1 - Schwarzenbach, 
2003 

ks 
particle settling rate 
constant T-1 - Schwarzenbach, 

2003 
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Table 2. 2: List of equations used in the PCB lake model. 
Equation 

Description Units Equation Source Eqn 
# 

Flux Equations 

dry particle 
deposition 

flux 

µg/m3/
yr  

Schwarze
nbach et 
al. 2003 

2.4 

particle wet 
deposition 

µg/m3

yr  

Schwarze
nbach et 
al. 2003 

2.5 

gas-phase 
scavenging 

by 
precipitation 

µg/m3

yr 

  

Schwarze
nbach et 
al. 2003 

2.6 

air-water 
exchange 

flux 

µg/m3/
yr  

Schwarze
nbach et 
al. 2003 

2.7 

watershed 
flux to lake 

µg/m3

yr 
 

Schwarze
nbach et 
al. 2003 

2.8 

dry particle 
deposition 

onto 
watershed 

 

µg/m3

yr 

 

 Schwarze
nbach et 
al. 2003 

2.9 

gas-phase 
scavenging 

by 
precipitation 

onto 
watershed 

 

µg/m3

yr 𝐽𝐽𝑔𝑔𝑤𝑤𝑝𝑝𝑑𝑑,𝑤𝑤𝑠𝑠 =  
𝑄𝑄𝑝𝑝𝑑𝑑(1− 𝑓𝑓𝑠𝑠𝑎𝑎𝑖𝑖𝑑𝑑)𝐶𝐶𝑎𝑎

𝑉𝑉𝐾𝐾𝐻𝐻
 

Schwarze
nbach et 
al. 2003 

2.10 

Air- canopy 
exchange 

flux 

µg/m3/
yr 𝐽𝐽𝑐𝑐𝑎𝑎 = ��𝐽𝐽𝑑𝑑𝑎𝑎(𝑖𝑖) + 𝐽𝐽𝑠𝑠𝑎𝑎(𝑖𝑖)�

𝑛𝑛

𝑖𝑖=1

 

Nizzetto 
and 

Perlinger, 
2012 

2.11 

𝐽𝐽𝑑𝑑𝑑𝑑𝑑𝑑,𝑤𝑤𝑠𝑠 =
𝐶𝐶𝑎𝑎𝑓𝑓𝑠𝑠𝑎𝑎𝑖𝑖𝑑𝑑𝑣𝑣𝑑𝑑,𝑤𝑤𝑠𝑠𝑓𝑓𝑑𝑑𝑆𝑆𝑤𝑤𝑠𝑠

𝑉𝑉
 

𝐽𝐽𝑤𝑤𝑠𝑠 = 𝑓𝑓𝑤𝑤𝑠𝑠�𝐽𝐽𝑑𝑑𝑑𝑑𝑑𝑑,𝑤𝑤𝑠𝑠 + 𝐽𝐽𝑝𝑝𝑤𝑤𝑝𝑝𝑑𝑑,𝑤𝑤𝑠𝑠 + 𝐽𝐽𝑔𝑔𝑤𝑤𝑝𝑝𝑑𝑑,𝑤𝑤𝑠𝑠
+ 𝐽𝐽𝑐𝑐𝑎𝑎� 
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`Reservoir-
air 

exchange 
flux 

µg/m3/
yr 𝐽𝐽𝑑𝑑𝑎𝑎 = �−2𝐿𝐿𝑘𝑘𝑑𝑑𝑎𝑎 �𝐶𝐶𝑎𝑎 −

𝐶𝐶𝐿𝐿𝐿𝐿
𝐾𝐾𝑑𝑑𝑎𝑎

�� ×
𝑆𝑆𝑤𝑤
𝑉𝑉

 

Nizzetto 
and 

Perlinger, 
2012 

2.12 

Surface-air 
exchange 

flux 

µg/m3/
yr 𝐽𝐽𝑠𝑠𝑎𝑎 = �−2𝐿𝐿𝑘𝑘𝑠𝑠𝑎𝑎 �𝐶𝐶𝑎𝑎 −

𝐶𝐶𝐿𝐿𝐿𝐿
𝐾𝐾𝑠𝑠𝑎𝑎

�� ×
𝑆𝑆𝑤𝑤
𝑉𝑉

 

Nizzetto 
and 

Perlinger, 
2012 

2.13 

First-order rate constants and subcomponents 

Equation 
Description Units Equation Source Eqn 

# 

sum of first 
order rate 

loss 
constants 
from the 

lake  

yr-1  
Schwarze
nbach et 
al. 2003 

2.14 

outflow loss 
rate 

(flushing) 

yr-1 

  

Schwarze
nbach et 
al. 2003 

2.15 

particle 
settling rate 
constant(sed
imentation) 

yr-1 

  

Schwarze
nbach et 
al. 2003 

2.16 

resuspensio
n transfer 

rate 
constant 

yr-1 

  

Schwarze
nbach et 
al. 2003 

2.17 

Overall 
sediment-

water 
exchange 
velocity 

m/s 

  
Schwarze
nbach et 
al. 2003 

2.18 

Diffusive 
sediment-

water 
exchange 
velocity 

m/s 
 

Schwarze
nbach et 
al. 2003 

2.19 
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Equation 
Description Units Equation Source Eqn 

# 

Sediment 
resuspensio
n velocity 

m/s  
Schwarze
nbach et 
al. 2003 

2.20 

removal rate 
to 

atmosphere 

1/s 

  

Schwarze
nbach et 
al. 2003 

2.21 

Dissolved 
fraction of 
compound 

in lake 

 
 

Schwarze
nbach et 
al. 2003 

2.22 

solid to 
water phase 

ratio 

kg/m3 

 

rsw
op=TSS 

 

Schwarze
nbach et 
al. 2003 

2.23 

Distribution 
coefficient 

of 
suspended 

solids 

m3/kgs

olid  
Schwarze
nbach et 
al. 2003 

2.24 

partition 
coefficient 
for DOC 

m3/kg 
solid  

Schwarze
nbach et 
al. 2003 

2.25 

chemical 
fraction 

sorbed to 
the particle 

in air 

 𝑓𝑓𝑠𝑠𝑎𝑎𝑖𝑖𝑑𝑑 = 𝐾𝐾𝑃𝑃 ∗ 𝑇𝑇𝑆𝑆𝑃𝑃/(𝐾𝐾𝑃𝑃 ∗ 𝑇𝑇𝑆𝑆𝑃𝑃 + 1) 
Schwarze
nbach et 
al. 2003 

2.26 

particle-gas 
partition 

coefficient 
 𝑚𝑚𝑃𝑃𝑚𝑚𝐾𝐾𝑃𝑃 = log𝐾𝐾𝑜𝑜𝑎𝑎 + 𝑚𝑚𝑃𝑃𝑚𝑚𝑓𝑓𝑜𝑜𝑚𝑚 − 11 

Schwarze
nbach et 
al. 2003 

2.27 

natural 
organic 
matter-
water 

partition 
coefficient 

L/kgoc 

 
𝑚𝑚𝑃𝑃𝑚𝑚𝐾𝐾𝑜𝑜𝑐𝑐 = 0.74𝑚𝑚𝑃𝑃𝑚𝑚𝐾𝐾𝑜𝑜𝑤𝑤 + 0.15 

Schwarze
nbach et 
al. 2003 

2.28 
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Equation 
Description Units Equation Source Eqn 

# 

sum of first 
order rate 

loss 
constants 
from the 

sediment as 
a function 

of the conc. 
in the 

sediment 

yr-1 

  

Schwarze
nbach et 
al. 2003 

2.29 

solid to 
water phase 
ratio in the 
sediments 

kgsolids/
m3 

  

Schwarze
nbach et 
al. 2003 

2.30 

density of 
solids in 
sediment 

kg/m3  
Schwarze
nbach et 
al. 2003 

2.31 

porosity of 
the 

sediment 
 

 

Noel 
Urban, 

personal 
communic

ation, 
2014 

2.32 

sum of first 
order rate 

loss 
constants 
from the 
lake as a 

function of 
the conc. in 

the 
sediment 

m3/kg/
yr 

  

Schwarze
nbach et 
al. 2003 

2.33 

distribution 
coefficient 
of settled 

solids 

m3/ 
kgsolid 

 
 

Schwarze
nbach et 
al. 2003 

2.34 
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Equation 
Description Units Equation Source Eqn 

# 

 
Dissolved 
fraction of 
compound 
in sediment 

 𝑓𝑓𝑤𝑤𝑠𝑠𝑐𝑐 =
1

(1 + 𝑃𝑃𝑠𝑠𝑤𝑤𝑠𝑠𝑐𝑐𝐾𝐾𝑑𝑑𝑠𝑠𝑐𝑐 + 𝐾𝐾𝑑𝑑𝑜𝑜𝑐𝑐[𝑆𝑆𝐷𝐷𝐶𝐶])
 

Schwarze
nbach et 
al. 2003 

2.35 

sum of first 
order rate 

loss 
constants 
from the 
sediment  

m3/kg/
yr 

  

Schwarze
nbach et 
al. 2003 

2.36 

mixed layer 
mass/area kg/m2  

Schwarze
nbach et 
al. 2003 

2.37 

fraction 
sorbed to 
suspended 

solids 

 
 

Schwarze
nbach et 
al. 2003 

2.38 

precipitation 
flow rate m3/s 

𝑄𝑄𝑝𝑝𝑑𝑑 = 𝑃𝑃 × 𝑆𝑆𝑜𝑜 for lake 

𝑄𝑄𝑝𝑝𝑑𝑑 = 𝑃𝑃 × 𝑆𝑆𝑤𝑤 for watershed 
 2.39 

Time to 
steady state yr  

 

Schwarze
nbach et 
al. 2003 

2.40 

 

In order to calculate the air-water exchange velocities of the PCB congeners, 

reference compounds were used to determine diffusivity and the velocity of the 

congener in air and water, provided a wind speed 10 meters above the surface (u10) 

and air temperature. Equations from Schwarzenbach et al. 2003 were used: 

1
𝑣𝑣𝑖𝑖𝑖𝑖 𝑤𝑤⁄

= 1
𝑣𝑣𝑖𝑖𝑤𝑤

+ 1
𝑣𝑣𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖𝑖𝑖 𝑤𝑤⁄

            [2.41] 
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𝑣𝑣𝑖𝑖𝑤𝑤
𝑣𝑣𝑗𝑗𝑤𝑤

= �𝐷𝐷𝑖𝑖𝑤𝑤
𝐷𝐷𝑗𝑗𝑤𝑤

�
0.67

     [2.42] 

𝑆𝑆𝑖𝑖𝑤𝑤(𝑃𝑃𝑚𝑚2𝑏𝑏−1) = 13.26×10−5

𝜂𝜂1.14𝑉𝑉�𝑖𝑖
0.589               [2.43] 

𝑣𝑣𝑖𝑖𝑖𝑖
𝑣𝑣𝑗𝑗𝑖𝑖

= �𝐷𝐷𝑖𝑖𝑖𝑖
𝐷𝐷𝑗𝑗𝑖𝑖
�
0.67

     [2.44] 

Initially, carbon dioxide and water were used as the reference compounds for 

equations 2.41 and 2.44, respectively. Once the model was calibrated for Lake 

Superior, sulfur hexafluoride was used as the reference compound for small inland 

lakes to match the results of previous studies (Wanninkhof et al. 1985, Wanninkhof et 

al. 1987, Crusius and Wanninkhof 2003, Clark et al. 1995). The wind speed was also 

adjusted to account for the differences between large lakes and small inland lakes- 5 

and 2.7 m/s, respectively. The diffusivity of a compound in air was determined by 

using the derivation of Fuller et al. (1966). 

𝑆𝑆𝑖𝑖𝑎𝑎 = 10−3
𝑇𝑇1.75��1 𝑀𝑀𝑖𝑖𝑖𝑖𝑎𝑎� �+�1 𝑀𝑀𝑖𝑖� ��

0.5

𝑝𝑝�𝑉𝑉�𝑖𝑖𝑖𝑖𝑎𝑎
1 3⁄ +𝑉𝑉�𝑖𝑖

1 3⁄ �
2              [2.45] 

King and Saltzman (1995) provided the expression used for diffusivity of 

sulfur hexafluoride in water. 

𝑆𝑆𝐿𝐿𝐹𝐹6𝑤𝑤(𝑃𝑃𝑚𝑚2 𝑏𝑏)⁄ = 0.029𝑝𝑝−19.3/𝑅𝑅𝑇𝑇      [2.46] 

 The water-film mass transfer velocity of carbon dioxide was calculated for 

each lake based on the average wind speed using the equation from Rowe (2009) 

which was based on the empirical relationship of Wanninkhof et al. (1985). 
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𝑣𝑣𝐶𝐶𝐶𝐶2(𝑃𝑃𝑚𝑚 ℎ𝑃𝑃⁄ ) = 0.45𝑃𝑃101.65     [2.47] 

Schwarzenbach et al. 2003 provided the means to calculate the mass transfer 

velocity of water vapor in air.  

𝑣𝑣𝑤𝑤𝑎𝑎(𝑃𝑃𝑚𝑚 𝑏𝑏⁄ ) = 0.2𝑃𝑃10(𝑚𝑚 𝑏𝑏⁄ ) + 0.3        [2.48] 

Lake characteristics were determined by recorded measurements or estimated 

based on trophic state (Table A. 2). The trophic state index (TSI) and total suspended 

solids (TSS) were related to secchi depth by the following equations (Armongol et al., 

2003): 

𝑇𝑇𝑆𝑆𝑇𝑇 = 60 ∗ 14.41 ln(𝑆𝑆𝑝𝑝𝑃𝑃𝑃𝑃ℎ𝑃𝑃 𝑆𝑆𝑝𝑝𝑝𝑝𝑃𝑃ℎ (𝑚𝑚))           [2.49] 

𝑇𝑇𝑆𝑆𝑆𝑆 = 9.61(𝑆𝑆𝑝𝑝𝑃𝑃𝑃𝑃ℎ𝑃𝑃 𝑆𝑆𝑝𝑝𝑝𝑝𝑃𝑃ℎ (𝑚𝑚))−0.97          [2.50] 

 In addition, hydraulic residence time (V/Qout) was calculated using USGS 

(United States Geological Survey) gauge data (USGS, 2015). However, not all outlets 

were gauged for the lakes of interest. An average annual runoff was calculated for 

each USGS gauge in Michigan’s Upper Peninsula that provided a mean flow and 

drainage area. An average runoff (Rws = 0.41 m/yr) for the peninsula was assumed 

adequate to calculate the water retention time because the runoff from all gauges 

across the Upper Peninsula did not show any spatial trend (Figure A. 1 and Figure A. 

2).  Outflow was calculated as: 

  Qin + P*A – E*A = Qout            [2.51] 
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where P and E are average values of precipitation and evaporation (m/yr) and Qin  was 

calculated as Rws*Aws.  This calculation assumes that groundwater flows into and out 

of the lakes are negligible.  Results of the model can be seen in Figure A. 3.  

2.2.3.2 Model Calibration 
The model was calibrated using PCB congener concentrations measured in 

Lake Superior as a part of the Great Lakes Aquatic Contaminants Survey (GLACS) 

completed in 2006 (US EPA GLNPO, 2009). Particulate-bound and “aqueous” 

concentrations of PCBs were measured by GLACS; the sum of the two is assumed to 

equal total PCB concentration.  Aqueous concentrations were measured by extracting 

the PCBs using XAD resin; this method measures all of the truly dissolved PCBs and 

a large fraction of the DOM-bound PCBs (US EPA GLNPO, 2009).  The average 

aqueous concentration of PCBs from all sample locations was used for comparison 

with the model output. It was assumed that this was an accurate representation of the 

entire lake concentration where the only source of PCBs to the lake was from 

atmospheric deposition. Atmospheric PCB concentrations as the input to the model 

were based on IADN atmospheric measurements in Eagle Harbor in 2006 (IADN, 

2006). Figure 2. 3 summarizes the calibration comparison. A Chi-Square Test of 

Goodness of Fit determined that the measured and modeled water concentrations 

were statistically similar at the 90% confidence level (X2= (2, N=23) =30.01, p>0.10). 

In this test, the null hypothesis states that the model is similar to the measured data 

where if p>α, the null hypothesis cannot be rejected. 
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Volatilization was the most important removal mechanism for the model. 

Lighter PCB congeners had the highest rates of volatilization. Losses through 

flushing remained more consistent for all PCB congeners while sedimentation was 

more significant for heavier congeners (Figure A. 4 through Figure A. 6). 

 

Figure 2. 3: Lake model calibration. Comparison of Lake Superior aqueous 
concentrations measured by the Great Lakes Aquatic Contamination Survey with 
model-predicted concentrations. 

2.2.4.1 EPA’s BASS Model  
EPA’s BASS model is a program designed to predict the accumulation of a 

chemical in an aquatic food web. Each fish species is divided into cohorts to account 

for population dynamics. For model details see the BASS User’s manual provided by 

the EPA (Barber, 2008). Fish input files and fish community files were provided by 

Mr. M. Craig Barber (personal communication, July 1st through September 22nd, 

2014) of the Ecosystems Research Division of the EPA.  

Lake characteristics were acquired from various sources. A mean lake 

temperature was calculated from the Online Lake Modeling System (Kirillin et al., 
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2011). The concentrations of phytoplankton and zooplankton in Torch Lake were 

measured in a Michigan Tech course in 2000, 2002 and 2004, and used to determine 

an average (Urban, 2014). In addition, Torch Lake had passive samplers deployed in 

2005 to measure the amount of dissolved PCBs; these water concentrations were used 

to determine the fit of BASS to measurements (MDEQ Water Bureau, 2006). The 

water concentrations were calculated from the passive sampler results by using the 

SPMD (semi-permeable membrane device) water concentration estimators from 

USGS Columbia Environmental Research Center (USGS CERC, 2010). Version 4.1 

of the water concentration estimator was used because the 2005 SPMD study did not 

use performance reference compounds. For the other lakes, the concentrations of 

lower trophic level organisms were estimated based on lake characteristics and 

assumed constant for the simulations. Zooplankton (Z) and benthos (B) biomass were 

estimated using regression equations from Hanson and Peters (1984) by providing the 

total phosphorous concentration (TP), maximum lake depth (Zmax) and surface area 

(Ao) of the lake.   

𝑚𝑚𝑃𝑃𝑚𝑚 Z (𝑚𝑚𝑚𝑚 𝑚𝑚3,𝑃𝑃𝑃𝑃𝑚𝑚 𝑤𝑤𝑃𝑃)⁄ = 0.989 log𝑇𝑇𝑃𝑃 − 0.158 log𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚 + 1.13     [2.52] 

where TP and Zmax have units of mg/m3 and meters, respectively.  The regression 

coefficient for this relationship was 0.75 in the original study. 

log𝐵𝐵 (𝑚𝑚 𝑚𝑚2,𝑤𝑤𝑝𝑝𝑃𝑃 𝑤𝑤𝑝𝑝𝑃𝑃𝑚𝑚ℎ𝑃𝑃)⁄ = 0.742 log𝑇𝑇𝑃𝑃 − 0.158 log𝑆𝑆𝑜𝑜 + 0.161   [2.53] 
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where Ao has units of km2; the regression coefficient was reported to be 0.59 (Hanson 

and Peters 1984). The regression used to calculate phytoplankton (phyto) biomass 

from total phosphorous (TP) was taken from Watson and Kalff (1981).  

log𝑝𝑝ℎ𝑚𝑚𝑃𝑃𝑃𝑃 (𝑚𝑚𝑚𝑚 𝑚𝑚3,𝑃𝑃𝑃𝑃𝑚𝑚 𝑤𝑤𝑃𝑃) = 1.28 log𝑇𝑇𝑃𝑃 + 1.24⁄                [2.54] 

where and TP has units of mg/m3.  Periphyton biomass was estimated using either 

secchi depth (secchi) or total phosphorous and the relationships from Shortreed et al., 

1983. 

𝑃𝑃𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝ℎ𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚 𝑚𝑚2⁄ ,𝑃𝑃𝑃𝑃𝑚𝑚 𝑤𝑤𝑃𝑃) = 0.0161(𝑏𝑏𝑝𝑝𝑃𝑃𝑃𝑃ℎ𝑃𝑃) + 0.375    [2.55] 

𝑃𝑃𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝ℎ𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃 (𝑚𝑚 𝑚𝑚2⁄ ,𝑃𝑃𝑃𝑃𝑚𝑚 𝑤𝑤𝑃𝑃) = 0.0835 (𝑇𝑇𝑃𝑃) + 0.1479    [2.56] 

The regression coefficients reported for these relationships were 0.01 and 0.17, 

respectively.  Secchi depth was measured in meters and TP in µg P/L. 

Bioaccumulation factors for the lower trophic level organisms were estimated 

from linear regressions based on the octanol-water partition coefficient (unitless) of 

the PCB congener (Arnot and Gobas, 2006). These equations were used to set up the 

chemical exposure files. 

𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝ℎ𝑏𝑏: log𝐵𝐵𝐶𝐶𝐹𝐹 = 0.21 + 0.71 log𝐾𝐾𝑜𝑜𝑤𝑤   [2.57] 

 𝑇𝑇𝑃𝑃𝑣𝑣𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑏𝑏𝑃𝑃𝑐𝑐𝑃𝑃𝑝𝑝𝑏𝑏: log𝐵𝐵𝑆𝑆𝐹𝐹 = 0.09 + 0.82 log𝐾𝐾𝑜𝑜𝑤𝑤      [2.58] 

where r2 equals 0.88 for equation 2.57 and 0.55 for equation 2.58.  

PCB congener chemical characteristics used in BASS were based on 

Paasivirta and Sinkkonen (2009). Lake characteristics (i.e. total phosphorus, secchi 
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depth) were found using the MDEQ’s Michigan Surface Water Information 

Management System (MiSWIMS, 2015). Lake Fish Surveys were acquired from 

Patrick Hanchin at the Charlevoix Fisheries Station or directly from the MDNR 

fishery resource reports (MDNR, 2015). All inland lake fish PCB sampling and 

analysis data were attained from Joseph Bohr of the Water Resources Division at 

MDEQ (Bohr, 2013) for comparison with model output.  

While BASS was a useful tool, it had limitations. The output analyzer was not 

capable of generating figures because of the many PCB congeners included in each 

simulation, and the total number of congeners included was necessary to adequately 

predict the total PCB accumulation. The newest operating system with which BASS 

was compatible was Windows XP which is no longer supported by the university. 

Due to these challenges, all figures were generated from individual project results in 

Microsoft Excel.   

2.2.4.2 Model Calibration 
To test the capabilities of BASS, a project file was developed for Torch Lake 

because PCB congener water concentrations were measured in this lake using passive 

samplers in 2006 which were used as the exposure input to the model (GLEC, 2006), 

and fish surveys were completed in 2007 and 2008 in this lake (Hanchin, 2013). In 

addition, the model was designated to use the FGETS (Food and Gill Exchange of 

Toxic Substances) modeling framework. This framework was chosen because fish 

surveys performed by the DNR did not provide adequate information to estimate 

population dynamics. Figures 2. 4 through Figure 2. 6 show the model output 
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generated in Microsoft Excel. The program was run for 10 years and used an average 

lake water temperature, depth and lower food web trophic level concentrations (i.e. 

zooplankton and periphyton). Table A. 9 summarizes the species included in the 

Torch Lake Simulation. All fish files and fish community files were provided by the 

EPA (C. Barber, personal communication, 2014). Only one fish species, walleye, had 

to be adjusted to fit measured data for weight to length ratios (Figure 2. 5) and the 

maximum age was extended from 7 years to 15 years to account for trends in Torch 

Lake (Hanchin, 2013). The fish files and fish community files provided by the EPA 

had typical diets for each species and all other fish parameters provided. All PCB 

congeners measured above detection limit in fish samples were included in the 

simulation. All PCB chemical characteristics used in the chemical property files were 

taken from Paasivirta and Sinkkonen (2009). 

 
Figure 2. 4: EPA's BASS Torch Lake simulation northern pike output. Measured data 
from Bohr, 2013. 
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Figure 2. 5: EPA's BASS Torch Lake Simulation walleye output. Measured data from 
Bohr, 2013. 

 

Figure 2. 6: EPA's BASS Torch Lake white sucker output. Measured data from Bohr, 
2013. 
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Upon completion of the calibration using Torch Lake, the BASS model was 

used on Manistique Lake to evaluate the accuracy of the combined food web and lake 

models. Manistique Lake had walleye sampled for PCBs in 2003 by the MDEQ, but 

does not have any measured PCB water concentrations. Using the two models, the 

lake PCB model and EPA’s BASS, to predict walleye concentrations revealed if the 

models could accurately predict PCB concentrations in a top predator fish species. All 

fish species included in the simulation are listed in Table A. 9. All fish files and fish 

community files were provided by the EPA (C. Barber, personal communication, 

2014). The walleye fish file was adjusted in the same manner as for Torch Lake 

(Figure A. 4). Project file details can be found in Table A. 4. Figure 2. 7 shows the 

output of BASS for walleye from Manistique Lake. The lake PCB dissolved water 

concentrations used the same PCB atmospheric concentrations as the Lake Superior 

calibration inputs from IADN in 2006 over Eagle Harbor. This lake was also 

surveyed for fish species in 2003 and 2004 (Hanchin and Kramer, 2007).  

 
Figure 2. 7: Manistique Lake food web model output for walleye vs. measured 
MDEQ whole fish total PCB concentration from 2003 (Bohr, 2013). 
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2.2.5 Lake Ecosystem Model Scenarios 
To understand the extent to which typical lake characteristics and 

corresponding food web structures affect PCB contamination, a set of lake scenarios 

that incorporated the scope of Michigan’s Upper Peninsula lakes was developed. 

These scenarios were based on the typical lakes sizes from the Cheruvelil 

EPA-NLAPP 6-state lake-landscape database (Cheruvelil et al., 2013). The average 

characteristics for the four lake sizes were based on the 10th, 20th, 50th and 85th 

percentiles for the 135 Upper Peninsula lakes in the database (Table 2. 3). 

Table 2. 3: Lake size category for lake/food web scenario development based on 
percentiles from Cheruvelil et al., 2013. 

Lake 
Category 

Mean 
Depth 

(m) 

Surface 
Area 
(km2) 

Watershed 
Area (km2) 

Maximum 
Depth (m) 

Seepage 2.5 0.5 8.8 9.0 
Small 2.7 0.8 14.3 5.0 

Medium 4.0 1.2 59.9 8.0 
Large 6.5 2.2 70.5 10 

Each lake size category was tested for the effect of trophic state by using the 

two extremes for lake productivity─ oligotrophic and eutrophic. Lake characteristics 

used for lake productivity are listed in Table A. 2. In addition, the small lake category 

could contain lakes that may not have adequate streams for spawning, limiting the 

number of potential fish species. If there are not adequate streams for spawning, some 

benthic fish (e.g., suckers) and some top predators (e.g., northern pike) likely cannot 

sustain substantial populations within the lake. Therefore, two food web scenarios 

(one with and one without species that require tributaries for spawning) were 
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developed for the small lake category to account for this change in food web 

structure. The list of species included in each lake are summarized in Table A. 10. 

Species were chosen based on fish typically recorded to be abundant in the DNR fish 

surveys in the study region (Michigan DNR, 2015). The number of species present 

reflected the complexity of the food web and availability of different prey for top 

predators. Scenarios were chosen over using actual lake surveys due to the limited 

availability of recent fish surveys for lakes in the Upper Peninsula. The available fish 

surveys did not encompass the full range of lake sizes throughout the study area. 

Population dynamics were not included in BASS simulations due to the use of these 

theoretical scenarios. Details for each scenario project file are listed in Table A. 4. All 

fish files and fish community files were provided by the EPA (C. Barber, personal 

communication, 2014). Walleye fish files were adjusted according to the calibration 

adjustments (Figure A. 3).  

2.2.6 Desired Fish Consumption  
The Michigan Department of Community Health (MDCH) sets fish advisory 

limits for the state. Their basis for determining safe consumption limits was followed 

to determine a concentration of PCBs in fish that would ensure the safety of sensitive 

populations at a desired level of consumption. The MDCH defines sensitive 

populations as children under 15 and women between the ages of 15-45. This latter 

population has an average body weight (BW) of 65.4 kg. The most recent update for 

Fish Consumption Screening Values (FCSVs) sets the reference dose (RfD) as 0.02 
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μg/kg-day. This value was chosen to safely protect against harmful immune system 

effects caused by PCBs (MDCH, 2012).  

A desired amount of fish consumption depends on the human population of 

interest as well as the fish species. It is important to set limits rather than ban 

consumption, as many groups desire to consume certain fish species. For the 

Keweenaw Bay Indian Community (KBIC), walleye have an important cultural 

significance. The KBIC is a local stakeholder in Michigan’s Upper Peninsula who are 

concerned with safe fish consumption. Due to their traditions, there are certain times 

of the year when walleye are consumed at higher quantities than recommended by 

fish consumption advisories. During a recent talking circles event with the KBIC, the 

question of a desired amount of fish was posed to this stakeholder. The desired fish 

consumption was two meals of walleye/day, where one meal is equal to 8 ounces of 

fish (Gagnon, 2014). 

The EPA provides an equation for determining the consumption limit used by 

the MDCH for safe human consumption (EPA, 2000): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑚𝑚𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝜇𝜇𝑔𝑔 𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛𝑎𝑎𝑛𝑛𝑑𝑑
𝑘𝑘𝑔𝑔 𝑓𝑓𝑖𝑖𝑠𝑠ℎ

� =
𝑅𝑅𝑓𝑓𝐷𝐷� 𝜇𝜇𝜇𝜇

𝑘𝑘𝜇𝜇−𝑑𝑑𝑖𝑖𝑑𝑑�×𝐵𝐵𝑑𝑑 (𝑘𝑘𝑔𝑔)

𝑓𝑓𝑖𝑖𝑠𝑠ℎ 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑐𝑐𝑚𝑚𝑝𝑝𝑑𝑑𝑖𝑖𝑜𝑜𝑛𝑛 (𝑘𝑘𝑔𝑔 𝑑𝑑𝑎𝑎𝑑𝑑⁄ )  [2.59] 

Using equation 2.56, 2.88 μg/kg (or 2.88 ppb) is the amount of PCBs in fish 

that is safe in order for the KBIC to consume their desired quantities. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑚𝑚𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝜇𝜇𝑔𝑔 𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛𝑎𝑎𝑛𝑛𝑑𝑑
𝑘𝑘𝑔𝑔 𝑓𝑓𝑖𝑖𝑠𝑠ℎ

� =
0.02� 𝜇𝜇𝜇𝜇

𝑘𝑘𝜇𝜇−𝑑𝑑𝑖𝑖𝑑𝑑�×65.4 𝑘𝑘𝑔𝑔

0.454 (𝑘𝑘𝑔𝑔 𝑑𝑑𝑎𝑎𝑑𝑑⁄ ) = 2.88 𝜇𝜇𝑔𝑔
𝑘𝑘𝑔𝑔

  [2.60] 
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2.3 Results 

2.3.1 Source of Contamination 
PCA identified two combinations of congeners that explained much of the 

differences among the lakes (i.e., divided them along two axis) on a per species basis 

(Figure 2. 8). Of the 18 lakes, only in Manistique Lake were PCB congener 

concentrations significantly correlated with both components (p<0.05). The two 

components accounted for 90.1% and 90.9% of the total variance in the congener 

concentrations in northern pike (Esox lucius) and walleye (Sander vitreus), 

respectively. These species were the only possible options for comparison as no other 

species were common to all lakes. Based on regression factor scores, the PCB 

congeners that most affected component A were 138, 153 and 167 while component 

B was most affected by congeners 44, 49, 52, 66, 74, and 77. It is important to note 

that Goose Lake and Torch Lake were sampled for both walleye and northern pike. 

Knowing that Torch Lake’s sediments are contaminated with PCBs, all lakes 

correlated with the same component (or axis) as Torch Lake have a likelihood of 

being locally, industrially impacted (Figure 2. 8 and Figure 2. 9).  
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Figure 2. 8: PCA results. Each species were analyzed separately. The first component 
accounts for the most variance among the data. For the two analyses, the first 
component was not the same for lakes that contained both species. Therefore, 
component A consists of the first component for Walleye-sampled lakes and the 
second component for Northern Pike-sampled lakes (vice versa for component B) so 
that lakes sampled for both species correlated with the same component. 

 
Figure 2. 9: Summary of Lakes categorized by means of PCA in terms of PCB 
source. Three lakes were not categorized due to the unique species sampled. 

Locally Impacted Lakes 
Undetermined Source Lakes 
Only Atmospherically Impacted Lakes 
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2.3.2 Ecosystem Characteristics 
MLR analysis revealed mean depth to be the component that could most 

accurately predict PCB concentrations (r2=0.76) (Figure 2. 10). Omitting mean depth 

from the analysis returned lake area as the next best predictor (r2=0.57).   

 

Figure 2. 10: Multiple Linear Regression Analysis results. Mean depth (ft) was 
determined to be the best predictor of total PCB concentration (PCBt) in sampled 
fish. Error bars represent standard error. 

2.3.3 Ecosystem Model Scenarios 
Figure 2. 11 through Figure 2. 14 show the output for selected species among 

the modeled scenarios. The models predict that oligotrophic lakes have higher PCB 

concentrations in fish while the smaller of the lake categories in each figure are more 

susceptible to high fish PCB concentrations as well. 
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Figure 2. 11: EPA's BASS scenario outputs for yellow perch. Each lake scenario 
contained this species so that all lakes had one commonality. 

 

Figure 2. 12: EPA's BASS scenario outputs for smallmouth bass. 
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Figure 2. 13: EPA's BASS scenario output for northern pike. 

 

Figure 2. 14: EPA's BASS output for walleye. 
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A summary of the Cheruvelil EPA-NLAPP 6-state lake-landscape database 

was completed to determine the percentage of lakes in Michigan’s Upper Peninsula 

that are most susceptible to high PCB contamination based on lake characteristics 

(Reinl, K., personal communications, 2015). Table A. 5 through Table A. 8 

summarize all lakes in the database that had all characteristics needed for the analysis. 

Of the inland lakes in the Cheruvelil EPA-NLAPP 6-state lake-landscape database, 30 

did not contain catchment size. For the 105 lakes that had all of the details necessary, 

it was determined that 15% of them were most susceptible to high PCB 

contamination in fish based on lake trophic state and lake size category (oligotrophic 

and small lakes). If this dataset reflects the distribution of lakes across the Peninsula, 

then roughly 600 lakes are likely to have high concentrations of PCBs in fish where 

the PCBs originated from atmospheric sources.  

2.3.4 Desired Fish Consumption 
In order to determine when in the future it may be possible to consume the 

desired amount of fish, the desired consumption of walleye was used as the threshold 

or end-goal. Using current atmospheric concentrations as the initial model input, the 

PCB lake model and EPA’s BASS model were used to determine by how much 

atmospheric concentrations need to change in order for this safe consumption to be a 

reality. Manistique Lake (Figure 2. 15) and the theoretical scenario lake with the 

highest walleye PCB concentrations (Figure 2. 16) indicated that a drop of 42% in 

atmospheric PCB concentration from 2006 levels would be necessary to reach the 

target fish concentration. 
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Figure 2. 15: EPA's BASS output for Manistique Lake walleye, measured DEQ data 
(Bohr, 2013) and reduced atmospheric PCB concentration in BASS. By reducing 
atmospheric concentrations of PCBs by 42%, the concentration in all sizes of walleye 
would drop below the desired fish consumption limit. 

 

Figure 2. 16: EPA's BASS output for the medium oligotrophic lake. If atmospheric 
concentrations of PCBs were reduced by 35%, walleye of all sizes would be below 
the desired fish consumption limit. 
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2.3.5 Response Times of Lakes and Fish Species 
As air concentrations of PCBs continue to decrease, a change in lake and biota 

concentrations follow. However, these responses are not immediately evident; it takes 

time for the lake and biota to re-equilibrate from the changed level of exposure. 

Equation 2.40 was used to calculate the time to steady state (tss) for the PCB lake 

model (Schwarzenbach et al. 2003).  The time to steady state for dissolved PCBs in 

Lake Superior and inland lakes ranged from 3.5 to 30 and 0.2 to 1.2 years, 

respectively. The time to reach steady state for PCBs in fish tissue (assuming steady 

state was reached once the contaminant concentration reached 95% of the final 

concentration) ranged between 4 and 7 years, depending on the fish species of interest 

(Figure 2. 17).   Thus, a maximum of 37 years would be required for the heaviest 

congener to reach steady state in Lake Superior, and 8 years in a typical inland lake 

following a sudden drop in atmospheric concentrations. 

 
Figure 2. 17: Time to steady state for 5 common fish species in Michigan's Upper 
Peninsula Manistique Lake. The legend provides the time to steady state for each 
species in parenthesis. 
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2.4 Discussion 

2.4.1 Source Determination 
While it is widely accepted that PCBs impact all Michigan lakes through 

atmospheric deposition (MDEQ and US EPA Region 5, 2013), the extent of local, 

point source contamination is unknown. Other studies have used PCA to distinguish 

between PCB sources via congener distributions. A study of Milwaukee Harbor 

Estuaries and another of the Hudson River used congener distributions in the same 

manner to distinguish sources of PCBs (Rachdawong et al., 1997; and Monosson et 

al., 2003). Monosson et al. (2003) also found distinguishable PCB congener patterns, 

concluding that it was likely related to the source of contamination.  

The results of the principal component analysis suggested that some inland 

lakes in Michigan’s Upper Peninsula may have local sources of contamination. Only 

one sampled lake is known to have point sources of PCB contamination─ Torch Lake 

(Mandelia, 2015) ─ both of which correlate to Component A in the PCA results. The 

fact that two lakes known to have local contamination had high scores on component 

A of Figure 2. 8 combined with the fact that heavier PCB congeners are weighted 

most heavily in component A, suggests that all lakes falling along this axis may be 

locally impacted.  Fish from these lakes have relatively more of the heavier 

congeners; although food web factors cannot be ruled out, the presence of heavier 

congeners that are less likely to travel far from their original emission location via 

volatilization suggests that local contamination may exist in these lakes. To verify the 

existence of local sources, sampling (e.g., passive samplers spatially distributed 
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throughout the lake) would be required.  It is important to note that Manistique Lake 

significantly correlated with both components. This lake was listed as PCB-impaired 

under the state-wide TMDL (total maximum daily load) (MDEQ and US EPA, 2013). 

It is interesting to note that Goose Lake also falls along the axis of local 

contamination. This lake has fish consumption advisories for selenium contamination 

caused by mining in Marquette County (MDEQ, 2009). The potential for local 

contamination of other chemicals associated with mining activities, including PCBs 

(Mandelia, 2015), could also be of concern for Goose Lake.  

The use of PCA for source determination was limited to northern pike and 

walleye because these fish species were the most widely sampled species of the 

inland lakes. When comparing multiple species in the same analysis, there were no 

distinct groupings of lakes (not shown). This was likely due to differences in fish 

species characteristics that can significantly affect PCB accumulation (e.g., growth 

rate, size, trophic position, lipid content). This limited the number of lakes that could 

be included in the analysis. The lakes sampled by the MDEQ have public access. The 

sampling locations are not spread evenly across the Peninsula (Figure 2. 1); there 

seems to be a greater sampling preference for lakes in Marquette County where lakes 

have known point sources of chemical pollutants (e.g., Goose Lake has high selenium 

concentrations). The explanation for sampling preference is not known, but frequency 

of angler fishing and human population density around the lakes may be factors.     
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2.4.2 Ecosystem Characteristics  
Linear regression analysis has been used to determine which ecosystem 

characteristics affect chemical bioaccumulation. Studies using regression analysis 

have found different factors to be more significant for mercury accumulation. 

Dissolved organic carbon (DOC), pH, lake morphometry and wetland area were 

considered significant factors for particular fish species (McMurty et al., 1989; and 

Clayden et al., 2013). While lake morphometry importance overlaps for PCBs and 

mercury, there seem to be many other lake properties influencing mercury 

accumulation. Since mercury can be transformed in a waterbody into its more readily 

available and toxic form (methylmercury), it is logical that chemical characteristics 

have a stronger effect on mercury. PCBs do not change as significantly. However, the 

concentration of DOC can have an effect on the concentration of dissolved PCBs 

(Berglund et al., 2001a). 

It is important to note that not all physical lake characteristics could be 

included in the analysis because not all were measured across the peninsula. For 

example, in Michigan’s Upper Peninsula, many lakes have a high concentration of 

dissolved organic carbon (DOC) and many are dystrophic, or contain high amounts of 

humic substances and organic acids. DOC affects the partitioning of PCBs in the 

water column, where higher DOC can reduce the concentration of dissolved PCBs 

which lessens the likelihood of bioaccumulation. Dystrophic lakes also have a lower 

visibility which reduces secchi depth, causing discrepancies in the true trophic status 
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of a lake. The concentration of DOC and the level of dystrophy in lakes is not well 

recorded by the State of Michigan and could not be well accounted for in this study.  

Multiple Linear Regression (MLR) analysis was used to determine which lake 

characteristic(s) best predicted the total PCB concentration in fish within the nine 

lakes included in Michigan’s Fish Contaminant Monitoring Program.  The use of 

MLR to determine which lake physical or chemical characteristics adequately predict 

PCB or other persistent chemical accumulation in fish is typically done for one fish 

species only (e.g., Clayden et al., 2013; Ruus et al., 2002; Bentzen et al., 1996). 

Conducting MLR for just one fish species was not possible in this assessment because 

of the limited number of lakes and multiple species sampled in the study area.  Only 

the nine lakes determined by PCA to have predominantly an atmospheric source of 

PCBs were included in this analysis.  By including multiple species, additional 

sources of variability (trophic position, fish lipid content, fish age and growth rate) 

may contribute noise to the analysis and obscure the influence of lake characteristics.  

On the other hand, this approach identifies factors affecting all fish within a lake, not 

just factors affecting a single species.    

While the number of lakes was limited, a strong correlation was observed 

between lake mean depth and PCB concentration (r2=0.73, p <0.01).  In other words, 

the deeper the lake, the higher the PCB concentration in fish. The second best 

predictor, lake surface area (r2=0.569), also points towards lake size as being of 

paramount importance.  Several factors likely contribute to the influence of lake 

depth and surface area.  A larger lake (surface area or depth) may have a longer 
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hydraulic residence time and slower flushing, allowing higher accumulation of PCBs 

within the lake water. PCB water concentrations in Lake Superior are most affected 

by atmospheric deposition, due to its large surface area (Rowe et al., 2009). A deeper 

lake may have a longer settling time and slower removal of PCBs by this mechanism 

as well. Larger lakes also have a higher likelihood of containing longer food webs, 

where top predators contain higher contaminant concentrations. For example, 

Rasmussen et al. (1990) found that lake trout contamination could be explained by 

food chain differences and lipid content. Larger lakes also have a greater likelihood of 

containing more pelagic feeding habitat, which Guildford et al. (2008) found to 

increase PCB contamination in lake trout. This conclusion is important for public 

understanding. With an awareness that fishing in smaller lakes with high primary 

production could reduce human exposure (as long as the small lakes have short 

hydraulic residence times), safer fishing habits could be taught/developed.  

For the lakes excluded from the MLR analysis, which were those determined 

by PCA to have a high potential for local, industrial impacts, the regression equation 

under-predicts PCB concentrations in Torch Lake, Portage Lake, Otter Lake and 

Manistique Lake. For these lakes, the average measured total PCB concentration 

ranges from 1.4 to 4.3 times higher than what was predicted by the model. This 

provides additional confirmation that a local source of PCBs is impacting some lakes 

in Michigan’s Upper Peninsula.  
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2.4.3 Ecosystem Model Scenarios 
Due to the limited number of fish surveys available and the paucity of 

common species among the surveys, this study modeled lake categories to test the 

relative effects of lake characteristics on PCB accumulation in inland lakes. Recent 

fish surveys by the Michigan Department of Natural Resources (DNR) were limited 

in number and varied in regards to top predators and species presence. The small 

variability in fish community structure may be a reflection of the prevalence of 

stocking as well as the reality that commonly fished lakes span a narrow range of lake 

characteristics.  However, the surveys do not provide information on the range of 

food webs in Michigan’s Upper Peninsula. Lake size can significantly affect species 

richness and community composition (i.e., the common top predators). To include the 

full range of potential food webs, a variety of scenarios were modeled with EPA’s 

BASS to assess PCB accumulation. The scenario analysis suggested that smaller 

oligotrophic lakes are likely to have fish with the highest levels of PCB 

contamination. It is not surprising that eutrophic systems have lower concentrations 

of PCBs in upper trophic level fish. These results are supported by existing literature: 

1) the higher rate of settling in eutrophic systems reduces the level of exposure to the 

food web over time (Berglund et al., 2001a); 2) The level of contamination at the base 

of the food web is lower because of the greater amount of biomass (Kidd et al., 1999); 

and 3) the lipid content at the base of the food web is also lower in more eutrophic 

systems where there is greater competition for food, lowering the amount of PCBs 

that tend to accumulate in fatty tissue (Berglund et al., 2001b). Lake size has not been 
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deemed a significant factor in previous studies in which the level of PCB 

contamination in fish did not vary greatly while surface area and volume of the study 

lakes did (Paterson et al., 1998). Volatilization is the most significant rate of PCB loss 

for an inland lake according to the PCB lake model (Figure A. 4 through Figure A. 6). 

As the mean depth of a lake increases the rate of volatilization declines (Equation 

2.18), indicating the potential importance of lake size. Volatilization varies more 

significantly for lighter congeners, settling is slightly more variable for heavier 

congeners and loss through flushing is similar for all congeners in the modeled inland 

lakes.  

If the dataset of lakes used to develop the hypothetical scenarios is reflective 

of the distribution of lakes in Michigan’s Upper Peninsula, 600 lakes are likely 

susceptible to high concentrations of PCBs in fish. Knowing this, it is important to 

understand what lakes would be best to avoid for fishing because of PCB exposure. 

The relatively small lakes with the lowest primary productivity have the highest PCB 

concentrations in fish according to theoretical modeling. 

Due to the results of MLR analysis where mean depth explained a large 

amount of the variance in the dataset, the importance of physical characteristics may 

outweigh the significance of food web differences. The consideration of other 

physical lake characteristics may provide further explanation into the accumulation of 

PCBs that could not be evaluated here. One such characteristic is the frequency of 

turnovers. Shallower lakes can undergo multiple turnovers each year, re-exposing 

biota to PCBs that have undergone settling. The significance of these events is 
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unknown because the numbers of turnovers for inland lakes is unknown. For the 

inland lakes used in MLR, there was a positive correlation between mean depth and 

surface area. This overall increase in lake volume may also play a role in PCB 

exposure due to longer hydraulic residence times or colder depths for larger, older 

fish. Incorporating more physical data to the ecosystem scenarios and linear 

regression may explain more trends in total PCB contamination as well as links 

between physical characteristics that could not be evaluated in this study.  

2.4.4 Response Times 
Due to the internal cycling of PCBs within a lake and the turnover time of the 

fish community, a decline in fish contamination will not be seen instantly when 

atmospheric PCB concentrations decline. Depending on lake size and trophic state, 

the rate of removal of PCBs from the water column (i.e., burial and outflow loss) 

varies. According to the PCB lake model, the time to steady state can vary 

significantly between the Great Lakes and inland lakes. For Lake Superior, time to 

steady state for PCB congeners ranges from 3.5 to 30 years. For inland lakes, the time 

is much shorter, ranging 0.2 to 1.2 years.  

The growth rate of a fish species affects how long it is exposed to PCBs 

before reaching a size suitable for human consumption. For example, coho salmon 

can reach the same length as lake trout in considerably less time due to their faster 

growth rates. Therefore, coho salmon typically have lower PCB content than lake 

trout of the same size (Pearson et al., 1996). According to the EPA’s BASS model, 

the time to steady state for yellow perch, northern pike, walleye, and smallmouth bass 
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found in inland lakes in Michigan’s Upper Peninsula is between 4 and 7 years. Thus, 

with the combination of lake and fish response times (ranging from 4.2 to 37 years), it 

could take about a decade after atmospheric concentrations decline for PCB content 

in fish to be positively affected. 

Salamova et al. (2015) summarized the rate of decline of atmospheric PCBs in 

the Great Lakes Region according to measurements provided by the Integrated 

Atmospheric Deposition Network. It was determined that the half-life of total PCBs 

in the atmosphere was ~13.2 years over Eagle Harbor (Salamova et al., 2015). This 

halving time was used here to estimate how long it would take for PCBs to decline by 

40% to reach desired fish consumption concentrations because Eagle Harbor air 

concentrations from 2006 were used to model the BASS ecosystem simulations. If 

atmospheric PCBs continue to decline at the same rate in Michigan’s Upper 

Peninsula, and no new sources of PCBs are emitted to the atmosphere, atmospheric 

PCB levels will reach acceptable concentrations in about 8 years for Michigan’s 

Upper Peninsula. With the additional response time for inland lakes and fish, it is 

estimated that PCBs will be below the desired fish consumption limit in about 20 

years. The half-life of PCBs in the atmosphere of other locations in the Great Lakes 

region vary, ranging from about 12 to almost 19 years (Salamova et al., 2015). Thus, 

the time it will take for the entire Great Lakes Region to have safe fish for 

consumption according to PCB contamination could be longer than 20 years. Thus, 

the time it will take for the entire Great Lakes Region to have safe fish for 

consumption according to PCB contamination could be longer than 20 years.  
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2.4.5 Model Improvements 
Some improvements or enhancements in EPA’s BASS program would help to 

reveal the effects of other fish and ecosystems characteristics on PCB 

bioaccumulation. The predictions of periphyton, phytoplankton, zooplankton and 

benthos abundance (equations 2.49-2.55) have large uncertainty, but other predictive 

relationships are unavailable.  The fish diets used in the BASS simulations were 

based on typical dietary habits for each species provided by Mr. M. Craig Barber of 

the EPA (personal communication, July 1st through September 22nd, 2014). Fish diets 

vary depending on changes in food availability seasonally, among lakes, and due to 

human impacts. In order to assess the effects of diet in Michigan’s inland lakes, a 

more thorough analysis of inland fish dietary habits is needed. The range of dietary 

preferences could then be added as a new element to food web modeling and the 

theoretical scenarios. Typical diets for the study region could then be compared to the 

amount of littoral zone in a lake to determine if there is a significant difference in 

PCB accumulation due to a more pelagic or littoral diet. The effect of littoral feeding 

has been studied in lake trout  producing conflicting results, while the consequences 

for other species have not been widely studied (Guildford et al., 2008; Gewurtz et al., 

2011b; Lopes et al., 2011).  

Accurate modeling of fish communities requires accurate measurements of 

population sizes.  The scenarios used to test the effects of lake trophic state and lake 

size used FGETS because the differences in population that would be typical for each 
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lake size are unknown. More fish surveys in contrasting lake types would also 

determine the accuracy of the food webs used in the theoretical scenario analysis.  

Most of the studies that have used the EPA’s BASS were conducted on lakes 

near the east coast and in the southern United States. The predecessor to BASS, 

FGETS, was used to study PCB accumulation in Lake Ontario fish and indicated that 

gill exchange is more significant than previously thought (Barber et al., 1991). Other 

studies have used FGETS and BASS to assess PCB and mercury accumulation in the 

eastern half of the United States (Marchettini et al., 2001; Brockway et al., 1996; 

Johnston et al., 2011; VDEQ, 2005). Studies using the population dynamics 

capabilities in BASS are less common because of the need for more detailed 

information on a water bodies’ ecosystem and the relative amount of time BASS has 

been available.  

This is the first time EPA’s BASS has been used for Michigan’s Upper 

Peninsula inland lakes. While some fish species are found in both the Midwest and 

across the country, the growth rate, habitat preference and dietary preferences are 

likely different due to adaptation to the environment and differences in a given 

species’ niche. This is the likely explanation for why the walleye fish file needed to 

be adjusted to adequately describe the size and maximum age of the species to match 

what was measured by the MDEQ. 

EPA’s BASS has a convenient output analyzer that, after running a project 

file, can produce figures depicting a range of model outputs. These outputs include 

comparisons of fish weight, length and age to the total concentration of the chemical 
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of interest, bioaccumulation factors, and species population. These figures can easily 

be produced for a single chemical. However, when assessing multiple PCB congeners 

at once, the output analyzer could not produce figures using available software; the 

amount of data was too great. The capabilities of the output analyzer need to be 

improved to accommodate the large number of PCB congeners.  

According to the literature, effects of fish sex may not be significant for 

modeling accumulation except for walleye. In a comparison of multiple fish species 

common to Michigan’s Upper Peninsula (i.e. whitefish, yellow perch, smallmouth 

bass and northern pike), Gewurtz et al. (2011a) recommended that individual fish 

consumption advisories be made for male and female walleye. It was concluded by 

Madenjian et al. (2011) that sex accumulation differences caused by gross growth 

efficiency affect all species, but the differences are moderate. Overall trends for sex 

differences are not necessary for incorporation in the BASS program due to the high 

variability in significance for most species; it would be an unnecessary effort until the 

significance has been proven crucial.  However, it would be fascinating to see if 

walleye sex differences could be adequately explained using BASS.  

2.5 Conclusion 
The inland lakes assessment provided key insight into PCB contamination in 

the study region. Principal Component Analysis revealed that some lakes sampled by 

the Michigan Department of Environmental Quality may have point sources of 

contamination or are more susceptible to PCB accumulation. Multiple Linear 

Regression Analysis showed that mean depth was the best predictor of PCB 
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accumulation across lakes of varying characteristics and fish species. This revealed 

that the size of the lake can impact the bioaccumulation of PCBs. Additionally, lake 

food web modeling revealed that lake trophic state and hydraulic residence time have 

a significant impact as well. While all lakes in the study region are impacted by 

PCBs, 15% are most susceptible to higher contamination levels and are of greatest 

concern because of their physical characteristics. To avoid this higher exposure to 

PCBs, it is recommended not to fish in lakes with low primary productivity and long 

hydraulic residence times. With the response time of the inland lakes and fish species, 

it takes roughly 10 years for a change in atmospheric PCB concentrations to be seen 

in fish. With this time delay, and according to the measured rate of decline in 

atmospheric PCB concentrations, it will take roughly 20 years for inland lakes with 

no local point sources of PCBs in Michigan’s Upper Peninsula to reach the level of 

consumption desired by local indigenous communities.    

 

 

 

 

 

 

97 
 



 

2.6 References 

Armengol, J., et al. (2003). “Sau reservoir’s light climate: relationship between 
Secchi depth and light extinction coefficient.” Limnoteca 22 (1-2): 195-210. 

Arnot, J. A. and F. A. P. C. Gobas (2006). "A review of bioconcentration factor 
(BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in 
aquatic organisms." Environmental Reviews 14: 257+. 

Baker, J. E. and S. J. Eisenreich (1990). "Concentrations and fluxes of polycyclic 
aromatic hydrocarbons and polychlorinated biphenyls across the air-water interface of 
Lake Superior." Environmental Science & Technology 24(3): 342-352. 

Barber, M. C., et al. (1991). "Modelling Bioaccumulation of Organic Pollutants in 
Fish with an Application to PCBs in Lake Ontario Salmonids." Canadian journal of 
fisheries and aquatic sciences 48(2): 318-337. 

Barber, M.C. (2008). “Bioaccumulation and Aquatic System Simulator (BASS) 
User’s Manual Version 2.2.” Ecosystems Research Division, U.S. Environmental 
Protection Agency. 

Berglund, O., et al. (2001a). "Influence of trophic status on PCB distribution in lake 
sediments and biota." Environmental Pollution 113(2): 199-210. 

Bentzen, E., et al. (1996). "Role of food web structure on lipid bioaccumulation of 
organic contaminants by lake trout (Salvelinus namaycush)." Canadian journal of 
fisheries and aquatic sciences 53(11): 2397-2407. 

Blanchard, P., C.V. Audette, M.L. Hulting, I. Basu, K.A. Brice, S.M. Backus, H. 
Dryfhout-Clark, F. Froude, R.A. Hites, M. Neilson and R. Wu (2008). “Atmospheric 
Deposition of Toxic Substances to the Great Lakes: IADN Results through 2005.” 
Environment Canada and the U.S. Environmental Protection Agency. En56-
156/2005E. Report Number: EPA-905-R-08-001. 

Bohr, J. and J. VanDusen. 2011. Michigan Fish Contaminant Monitoring Program 
2010 Annual Edible Portion Report. MI/DEQ/WRD-11/028.  

Bohr, J. (2013). All UP Hg & PCB 7-25-2013. State of Michigan. Michigan 
Department of Environmental Quality. 

Brockway, D.L., P.D. Smith, and M.C. Barber. 1996. PCBs in the Aquatic-Riparian 
zone of the Lake Hartwell Ecosystem, South Carolina. U.S. Environmental Protection 
Agency, National Exposure Research Laboratory, Athens, GA. Internal Report. 

98 
 



 

Cheruvelil, K.S., P.A. Soranno, M.T. Bremigan, and K.E. Webster. 2013. The 
multi-scaled drivers of ecosystem state: Quantifying the importance of the regional 
spatial scale. Ecological Applications 23:1603-1618. 

Clark, J. F., et al. (1995). "Gas Transfer Velocities for SF6 and He-3 in a Small Pond 
at Low Wind Speeds." Geophysical Research Letters 22(2): 93-96. 

Clayden, M. G., et al. (2013). "Mercury Biomagnification through Food Webs Is 
Affected by Physical and Chemical Characteristics of Lakes." Environmental Science 
& Technology 47(21): 12047-12053. 

CMTB (2002). “Michigan Geographic Data Library.” Michigan Department of 
Technology, Management and Budget. State of Michigan. Retrieved from: 
http://www.mcgi.state.mi.us/mgdl/?rel=ext&action=sext 

Crusius, J. and R. Wanninkhof (2003). "Gas transfer velocities measured at low wind 
speed over a lake." Limnology and Oceanography 48(3): 1010-1017. 

Current Results (2015). "Average Annual Precipitation of Michigan." Retrieved 
November, 2015, from http://www.currentresults.com/Weather/Michigan/average-
yearly-precipitation.php. 

Dachs, J., et al. (2000). "Influence of Eutrophication on Air−Water Exchange, 
Vertical Fluxes, and Phytoplankton Concentrations of Persistent Organic Pollutants." 
Environmental Science & Technology 34(6): 1095-1102. 

Exponent (2003). "Fish Contaminant Monitoring Program: Review and 
Recommendations.” Prepared for Michigan Department of Environmental Quality, 
Water Division, Lansing, MI. 

FWS (2015). “US Fish and Wildlife Service National Wetland Inventory.” United 
State Fish and Wildlife Service. US Department of the Interior. Retrieved from: 
http://www.fws.gov/wetlands/Data/Mapper.html 

Fuller, L.M., and Taricska, C.K., 2012, Water-quality characteristics of Michigan’s 
inland lakes, 2001–10: U.S. Geological Survey Scientific Investigations Report 2011–
5233, 53 p., plus CD–ROM. 

Fuller, E.N., P.D. Schellter, and J.C. Giddlings (1966), “A new method for prediction 
of binary gas-phase diffusion coefficient”, Ind. Eng. Chem., 58, 19-27 (1966). 

Gagnon, Valoree S. 2014. Synthesis and Community Brief: A Talking Circles Event. 
Proceedings. Keweenaw Bay Ojibwa Community College. Contribution No. 15 of the 
Great Lakes Research Center at Michigan Tech.  Available 
at: http://asep.mtu.edu/Publications/asep-publications.htm (March 2015) 

99 
 

http://asep.mtu.edu/Publications/asep-publications.htm


 

Gewurtz, S. B., et al. (2011a). "Influence of fish size and sex on mercury/PCB 
concentration: Importance for fish consumption advisories." Environment 
International 37(2): 425-434. 

Gewurtz, S. B., et al. (2011b). "Spatial trends of polybrominated diphenyl ethers in 
Canadian fish and implications for long-term monitoring." Environmental Toxicology 
and Chemistry 30(7): 1564-1575. 

Great Lakes Environmental Center (March 16, 2006). PCB Study Using 
Semipermeable Membrane Devices in Torch Lake, Houghton County. Michigan 
Department of Environmental Quality Water Bureau, State of Michigan. Project #05-
25. 

Guildford, S. J., et al. (2008). "PCB Concentrations in Lake Trout (Salvelinus 
namaycush) Are Correlated to Habitat Use and Lake Characteristics." Environmental 
Science & Technology 42(22): 8239-8244. 

Hanchin, P. A., and D. R. Kramer. 2007. The fish community and fishery of Big 
Manistique Lake, Luce and Mackinac counties, Michigan in 2003–04 with emphasis 
on walleyes, northern pike, and smallmouth bass. Michigan Department of Natural 
Resources, Fisheries Special Report 43, Ann Arbor. 

Hanchin, P. A. 2013. The fish community and fishery of the Portage-Torch lake 
system, Houghton County, Michigan in 2007-08. State of Michigan. Michigan 
Department of Natural Resources, Fisheries Special Report, Lansing. 

Hanson, J. M. and R. H. Peters (1984). "Empirical Prediction of Crustacean 
Zooplankton Biomass and Profundal Macrobenthos Biomass in Lakes." Canadian 
journal of fisheries and aquatic sciences 41(3): 439-445. 

IADN (2006). Integrated Atmospheric Deposition Network Atmospheric PCB 
concentration measurements. Environment Canada and US EPA Great Lakes 
National Program Office. 

Ikonomou, M. G., et al. (2002). "Occurrence and congener profiles of polybrominated 
diphenyl ethers (PBDEs) in environmental samples from coastal British Columbia, 
Canada." Chemosphere 46(5): 649-663. 

Jeremiason, J. D., et al. (1999). "Biogeochemical cycling of PCBs in lakes of variable 
trophic status: A paired-lake experiment." Limnology and Oceanography 44(3part2): 
889-902. 

Johnston, J. M., et al. (2011). "An integrated modeling framework for performing 
environmental assessments: Application to ecosystem services in the Albemarle-
Pamlico basins (NC and VA, USA)." Ecological Modelling 222(14): 2471-2484. 

100 
 



 

King, D. B. and E. S. Saltzman (1995). "Measurement of the diffusion coefficient of 
sulfur hexafluoride in water." Journal of Geophysical Research: Oceans 100(C4): 
7083-7088. 

King, R. S., et al. (2004). "Watershed Land Use Is Strongly Linked to PCBs in White 
Perch in Chesapeake Bay Subestuaries." Environmental Science & Technology 
38(24): 6546-6552. 

Kidd, K. A., et al. (1999). "Effects of northern pike (Esox lucius) additions on 
pollutant accumulation and food web structure, as determined by δ13 C and δ15 N , 
in a eutrophic and an oligotrophic lake." Canadian journal of fisheries and aquatic 
sciences 56(11): 2193-2202. 

Kirillin, G., J. Hochschild, D. Mironov, A. Terzhevik, S. Golosov and G. Nützmann 
2011: FLake-Global: Online lake model with worldwide coverage. Environ. Modell. 
Softw., 26, 683-684. doi:10.1016/j.envsoft.2010.12.004 

Knightes, C. D., et al. (2009). "Application Of Ecosystem-Scale Fate And 
Bioaccumulation Models To Predict Fish Mercury Response Times To Changes In 
Atmospheric Deposition." Environmental Toxicology and Chemistry 28(4): 881-893. 

Lopes, C., et al. (2011). "Is PCBs concentration variability between and within 
freshwater fish species explained by their contamination pathways?" Chemosphere 
85(3): 502-508. 

Macdonald, C. R. and C. D. Metcalfe (1991). "Concentration and Distribution of PCB 
Congeners in Isolated Ontario Lakes Contaminated by Atmospheric Deposition." 
Canadian journal of fisheries and aquatic sciences 48(3): 371-381. 

Mackay, D. (1989). "Modeling the Long-Term Behavior of an Organic Contaminant 
in a Large Lake: Application to PCBs in Lake Ontario." Journal of Great Lakes 
Research 15(2): 283-297. 

Mackay, D. and M. Diamond (1989). "Application of the QWASI (Quantitative 
Water Air Sediment Interaction) fugacity model to the dynamics of organic and 
inorganic chemicals in lakes." Chemosphere 18(7–8): 1343-1365. 

Madenjian, C. P. (2011). "Sex effect on polychlorinated biphenyl concentrations in 
fish: a synthesis." Fish and Fisheries 12(4): 451-460. 

Mandelia, A. J. (2015 (Expected)). Polychlorinated Biphenyl Compound and Metal 
Contamination and Remediation in Torch Lake, Houghton County, MI. Civil and 
Environmental Engineering. Houghton, MI, Michigan Technological University. 
Master of Science Environmental Engineering. 

101 
 



 

Marchettini, N., et al. (2001). "Effects of bioaccumulation of PCBS on biodiversity 
and distribution of fish in two creeks in east Tennessee (USA)." Annali Di Chimica 
91(7-8): 435-443. 

McMurtry, M. J., et al. (1989). "Relationship of Mercury Concentrations in Lake 
Trout (Salvelinus namaycush) and Smallmouth Bass (Micropterus dolomieui) to the 
Physical and Chemical Characteristics of Ontario Lakes." Canadian journal of 
fisheries and aquatic sciences 46(3): 426-434. 

Michigan Department of Community Health (November, 2012). “Health 
Consultation: Technical Support Document for a Polychlorinated Biphenyl Reference 
Dose (RfD) as a Basis for Fish Consumption Screening Values (FCSVs).” State of 
Michigan. 

Michigan Department of Environmental Quality Water Bureau (2006). “PCB 
Concentrations in Torch Lake Using Semi-Permeable Membrane Devices.” State of 
Michigan.  

MDEQ (2009). “An Assessment of Environmental Selenium Levels Around Empire 
and Tilden Mines, Marquette County, Michigan.” State of Michigan. Selenium 
Monitoring Work Group. June 2, 2015. 
https://www.michigan.gov/documents/deq/wb-swas-selenium-report_287994_7.pdf 

MDEQ (2011). “Stage 2 Remedial Action Plan De Lake Area of Concern.” State of 
Michigan. Office of the Great Lakes. Great Lakes Management Unit. 
http://www.michigan.gov/documents/deq/deq-ogl-aoc-
DeerLakeStage2RAP_378183_7.pdf 

MDEQ and US EPA, Region 5. (January 2013). "Statewide Michigan PCB TMDL." 
State of Michigan. Department of the Interior. USEPA Contract No. EP-C-08-
001,Task Order 006. http://www.michigan.gov/documents/deq/wrd-swas-tmdl-
draftpcb_408124_7.pdf 

Michigan Department of Environmental Quality and Department of Natural 
Resources (2015). “Michigan Surface Water Information Management System.” State 
of Michigan. http://www.mcgi.state.mi.us/miswims/ 

Michigan Department of Natural Resources (2015). “Status of the Fishery Resource 
Reports/Management Plans.” State of Michigan. 
http://www.michigan.gov/dnr/0,4570,7-153-10364_52259_19056-46374--,00.html 

MDNR (2015). “Inland Lake Maps by County.” Michigan Department of Natural 
Resources. State of Michigan. Retrieved from: 
http://www.michigan.gov/dnr/0,4570,7-153-10364_52261-67498--
,00.html?source=govdelivery 

102 
 



 

Monosson, E., et al. (2003). "PCB congener distributions in muscle, liver and gonad 
of Fundulus heteroclitus from the lower Hudson River Estuary and Newark Bay." 
Chemosphere 52(4): 777-787. 

National Oceanic and Atmospheric Administration (2015). “Annual Observational 
Data.” Department of Commerce. 
http://gis.ncdc.noaa.gov/map/viewer/#app=clim&cfg=cdo&theme=annual&layers=1
&node=gis&extent=-139.2:12.7:-50.4:57.8 
 
Nizzetto, L. and J. A. Perlinger (2012). "Climatic, Biological, and Land Cover 
Controls on the Exchange of Gas-Phase Semivolatile Chemical Pollutants between 
Forest Canopies and the Atmosphere." Environmental Science & Technology 46(5): 
2699-2707. 

NOAA GLERL. (2015). NOAAPORT- Daily Summary of Realtime Great Lakes 
Weather Data and Marine Observations CMX node. National Oceanic and 
Atmospheric Administration, U.S. Department of Commerce. 

Olsson, A., et al. (2000). "Concentrations of Organochlorine Substances in Relation 
to Fish Size and Trophic Position:  A Study on Perch (Perca fluviatilis L.)." 
Environmental Science & Technology 34(23): 4878-4886. 

Paul, J. F., et al. (2002). "Landscape Metrics and Estuarine Sediment Contamination 
in the Mid-Atlantic and Southern New England Regions." J. Environ. Qual. 31(3): 
836-845. 

Paasivirta, J. and S. I. Sinkkonen (2009). "Environmentally Relevant Properties of All 
209 Polychlorinated Biphenyl Congeners for Modeling Their Fate in Different 
Natural and Climatic Conditions." Journal of Chemical and Engineering Data 54(4): 
1189-1213. 

Paterson, M. J., et al. (1998). "Does lake size affect concentrations of atmospherically 
derived polychlorinated biphenyls in water, sediment, zooplankton, and fish?" 
Canadian journal of fisheries and aquatic sciences 55(3): 544-553. 

Pearson, R. F., et al. (1996). "PCBs in Lake Michigan Water Revisited." 
Environmental Science & Technology 30(5): 1429-1436. 

Rachdawong, P. and E. R. Christensen (1997). "Determination of PCB Sources by a 
Principal Component Method with Nonnegative Constraints." Environmental Science 
& Technology 31(9): 2686-2691. 

Rowe, M. D. (2009). Modeling contaminant behavior in Lake Superior: a comparison 
of PCBs, PBDEs, and mercury. Civil and Environmental Engineering, Michigan 
Technological University. M.S. Environmental Engineering. 

103 
 



 

Ruus, A., et al. (2002). "Influence of trophic position on organochlorine 
concentrations and compositional patterns in a marine food web." Environmental 
Toxicology and Chemistry 21(11): 2356-2364. 

Salamova, A., et al. (2015). "Revised Temporal Trends of Persistent Organic 
Pollutant Concentrations in Air around the Great Lakes." Environmental Science & 
Technology Letters 2(2): 20-25. 

Shortreed, K. S., et al. (1984). "Periphyton biomass and species composition in 21 
British Columbia lakes: seasonal abundance and response to whole-lake nutrient 
additions." Canadian Journal of Botany 62(5): 1022-1031. 

Schwarzenbach, R., Gschwend, P., & Imboden, D. (2003). “Environmental Organic 
Chemistry” (2nd ed.). Hoboken: John Wiley & Sons. 

Totten, L. A., et al. (2006). "Direct and Indirect Atmospheric Deposition of PCBs to 
the Delaware River Watershed." Environmental Science & Technology 40(7): 2171-
2176. 

Urban, N.R. (2014). “BL 4451 Physical Limnological Data.” Michigan Technological 
University. 2000, 2002 and 2004. 

U.S. EPA GLNPO (2009). “Great Lakes Aquatic Contaminants Survey Final Report.” 
Department of the Interior. 

USGS Columbia Environmental Research Center (2010). “SPMD Water 
Concentration Estimator Version 4.1.” U.S. Department of the Interior. Received 
from: http://www.cerc.usgs.gov/Branches.aspx?BranchId=8  

USGS (2014). “The National Map Viewer.” United States Geological Survey. US 
Department of the Interior. Retrieved from: http://viewer.nationalmap.gov/viewer/  

USGS (2015). “USGS Surface-Water Historical Instantaneous Data for Michigan.” 
U.S. Department of the Interior. http://waterdata.usgs.gov/mi/nwis/uv? 

US Environmental Protection Agency (3 Feb. 2015). “BASS”. Web. 25 Mar. 2015. 
<http://www2.epa.gov/exposure-assessment-models/bass#Applications>. 

U.S. Environmental Protection Agency (EPA). 2000. Guidance for Assessing 
Chemical Contaminant Data for Use in Fish Advisories Volume 2 Risk Assessment 
and Fish Consumption Limits, Third Edition. Washington DC: U.S. Environmental 
Protection Agency, Office of Science and Technology, Office of Water. EPA 823-B-
00-008. 

104 
 



 

Wanninkhof, R., et al. (1985). "Gas-Exchange Wind-Speed Relation Measured With 
Sulfur-Hexaflouride On a Lake." Science 227(4691): 1224-1226. 

Wanninkhof, R., et al. (1987). "Gas-Exchange on Mono Lake and Crowley Lake, 
California." Journal of Geophysical Research-Oceans 92(C13): 14567-14580. 

Watson, S. and J. Kalff (1981). "Relationships between Nannoplankton and Lake 
Trophic Status." Canadian journal of fisheries and aquatic sciences 38(8): 960-967. 

VDEQ (2005). PCB Strategy for the Commonwealth of Virginia. State of Virginia. 
Department of Environmental Quality. June 1, 2015. 
http://www.deq.virginia.gov/Portals/0/DEQ/Water/WaterQualityMonitoring/FishSedi
mentMonitoring/PCB-Statewide-Strategy-2005.pdf 

105 
 



 

106 
 



 

CHAPTER 3: GREAT LAKES ASSESSMENT 

3.1 Introduction 
The Great Lakes are an abundant source of fish to consumers throughout the 

region. Their sheer size and unique characteristics provide a variety of habitats; the 

bay and littoral zones sustain multiple food webs within each Great Lake. Chemical 

contaminants are not spread evenly throughout each lake. The level of PCB 

contamination in fish varies widely due to local contamination (i.e. areas of concern 

and superfund sites), high emissions from urban areas, water currents and flow rates 

of rivers and bays (Zhang et al., 2008; Burniston et al., 2011).  

To reduce human exposure to PCBs, it is important to understand which type 

of water body contains the safest fish for consumption. While there are always 

exceptions (e.g. local contamination), providing an overall recommendation for where 

it is best to fish can help to reduce risk while continuing to promote fishing in the 

State of Michigan. Evers et al. (2011) compiled a comparison of mercury in fillet fish 

samples in the Great Lakes and inland lakes in the Great Lakes Region. The 

comparison encompassed all species sampled from 2000 to 2008 from several 

monitoring efforts. It was concluded that mercury contamination was higher in fish 

from inland water bodies as compared to the Great Lakes.  A similar comparison has 

yet to be made for PCBs. 

While studies have been conducted on different lake sizes in the Great Lakes 

region and the corresponding PCB concentrations in fish, none have involved such a 
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large geographic extent for PCB contamination in Michigan involving so many fish 

species. Bentzen et al. (1996) compared PCB concentrations in a single species, lake 

trout, from the Great Lakes and a few inland Ontario lakes. This study expands on 

this earlier work by comparing the level of PCB contamination in multiple species 

from dozens of inland water bodies to the contamination found in the Great Lakes.  

Since the ban on production and import of PCBs in 1970s, the level of 

contamination has declined in the Great Lakes. This decline has been documented 

through decades of sampling by the Great Lakes Fish monitoring Program (GLFMP). 

Carlson et al. (2010) summarized lake-wide trends in lake trout and walleye, showing 

that the rate of decline has been slowing in recent years. Other studies have also 

reported the decrease of PCBs in fish tissue (Borgmann and Whittle, 1991; Szlinder-

Richert J. et al., 2009; Bhavsar et al., 2007), water (Jeremiason et al., 1994) and air 

(Hillery et al., 1997; Simcik et al., 1999; Salamova et al., 2015). Trend analyses 

typically utilize linear regression (Hillery et al., 1997; Simcik et al., 1999; Borgmann 

and Whittle et al., 1997). Exponential declines have also been reported (Jeremiason et 

al., 1994). Due to the efforts of the MDEQ, it was possible to see time trends of PCB 

contamination in Great Lakes fish for over two decades. Instead of an overall lake 

trend, the sites sampled revealed whether local clean-up efforts have been successful 

as well as if the decline in PCBs is statistically significant. Generally, time trends 

have focused on lake-wide confirmation that contaminants are declining. This 

analysis is unique because it focuses on specific locations where more remediation 

could reduce fish PCB contamination. 
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The MDEQ has been sampling fish for PCBs since the 1980s. Over time, the 

method for processing the fish has changed as technology has improved. Two 

analytical techniques have been used most frequently. The technique originally used 

to measure total PCB concentrations in biota was an Aroclor-based analysis. Aroclors 

are specific mixtures of PCBs designed by manufacturers and dominated by specific 

PCB congeners. Each Aroclor mixture was given a numerical ID indicating the 

weight percentage of chlorine in the mixture (e.g., Aroclor 1242 had 42% chlorine).  

Originally, Aroclors were measured by gas chromatography using a packed column 

and an electron-capture detector.  Individual congeners were not resolved by this 

method; rather, a broad peak for an aroclor mixture eluted from the column. 

Beginning in the 1980s, packed columns were replaced with capillary columns that 

did resolve many of the individual congeners.  At that point, the congeners could be 

summed to yield total PCB concentration, or a statistical program could be applied to 

determine the best fit to the Aroclor mixtures (e.g., Capel et al. 1985).  This method 

assumes that PCBs are not degraded over time or differentially transported and still 

reflect the original Aroclor mixture. The longer the PCBs are present in the 

environment, the lower the accuracy of this method due to congener transformation 

and environmental fractionation.  

Improvements in analytical techniques (better chromatographic separation, 

congener-specific identification via mass spectrometry) have made it possible to 

detect each congener in a sample. While more expensive, the new analytical 
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techniques yield congener and total-PCB concentrations that are not inferred from 

original Aroclor mixtures (Sather et al., 2001).  

Comparisons of the two methods have been conducted and have yielded 

variable results because there are multiple variants of both methods, ranging from the 

use of multiple Aroclor mixtures or the summation of selected PCB congeners. Sather 

et al. (2001) compared the techniques, using the sum of three Aroclor mixtures (1242, 

1254 and 1260) and the sum of 206 PCB congeners from the congener analysis 

method. In this comparison, the two techniques were very comparable (regression 

slope=1.079, r2=0.96). Another study (Connor et al. 2005) compared methods 

recommended by the U.S. EPA for Aroclor analysis and the NOAA method for total 

PCB congener analysis.  The NOAA method involved the sum of a subset of PCB 

congeners and the use of a regression equation to calculate the total PCB 

concentration. It was determined that total PCB concentrations determined for 

Aroclors 1248, 1254 and 1260 were typically five-fold lower than those calculated by 

the NOAA congener method (Connor et al., 2005). In conclusion, it seems the two 

methods for PCB tissue analyses have varying levels of comparability depending on 

which version of each method is used. 

The MDEQ has used the congener method to determine the total PCB 

concentration for over a decade. The total PCB concentration is calculated as the sum 

of all congener concentrations that are above the detection limit (MDEQ, 2010). Prior 

to the adoption of the congener method, an Aroclor method was used that determined 
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the total PCB concentration from different Aroclor mixtures. It was desired to 

determine if the decline in PCB concentration was significant over time and how 

comparable were the Aroclor and congener methods for estimating total PCB 

concentrations in fish. 

The Great Lakes were cross-compared using statistical analysis to reveal why 

PCB contamination varies among them and what is causing the variations. Previous 

studies have linked highly urbanized watersheds with higher PCB contamination in 

local water bodies (King et al., 2004; Paul et al., 2002). The Great Lakes, due to their 

size, differ from inland lakes in physical, chemical and food web characteristics. 

Other research has shown that concentrations vary by location in each Great Lake 

(Dellinger, 2004; Bhavsar et al., 2007). Using Multiple Linear Regression (MLR) 

analysis, the best predictor of total PCB concentration in fish for inland lakes was 

determined to be mean depth (Section 2.3.2). It was desired to see which predictor(s) 

could explain PCB contamination in the Great Lakes by using the same statistical 

analysis. Multiple physical characteristics (i.e. secchi depth, watershed area, surface 

area, mean depth and maximum depth) were factored into the analysis as well as 

features that pertain to local contamination (i.e. population, population density and 

distance to a known local contamination source). The local contamination factors 

were included because, according to PCA results, many sites were concluded to be 

locally impacted (see Section 3.4.3). Population and population density are linked to 

the level of urbanization within a watershed. The amount of developed land within a 

watershed has been linked to higher PCB contamination in nearby waters in multiple 
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studies (King et al., 2004; Paul et al., 2002). It was desired to see if the same could be 

said for the sites sampled by the MDEQ (Figure 3. 1).   

The objectives of this research were to: 1) provide an accurate comparison of 

inland lake versus Great Lake PCB concentrations in fish, 2) evaluate time trends for 

PCB concentrations in fish, and 3) assess the causes for variable contamination levels 

among the Great Lakes. The analyses and comparisons completed involved inland 

lakes from Michigan’s Upper and Lower Peninsula and each Great Lake sampled by 

the Michigan Department of Environmental Quality (MDEQ). These analyses are 

important to enhance the understanding of how PCBs have affected the Great Lakes 

Region. These new results can help to focus remediation efforts to locations where 

significant improvements are still possible. 

3.2 Methods 

3.2.1 Great Lakes Region Contamination Comparison 
To compare the PCB concentrations in inland and Great Lakes, data were 

compiled from the MDEQ’s Fish Contaminant Monitoring Program (FCMP).  

Because the sampling and analyses for this program are planned and executed by a 

single group, the methods are consistent across all sites and over time.  The FCMP 

samples multiple fish species throughout the state and along the shores of the Great 

Lakes (Bohr, 2015). The fillets are processed for multiple contaminants, including 

PCB congeners and total PCB concentration (Figure 3. 1). Skin-on or skin-off 

sampling depended on the species for fillet samples (MDEQ, 2014). The average total 
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PCB concentration for each fish species in each water body category since the year 

2000 were lipid normalized to remove the variability of fat content from the 

comparison. The water body categories included inland lakes, rivers and the Great 

Lakes. The data were divided into subcategories: Michigan’s Upper and Lower 

Peninsula’s rivers and inland lakes, and each of the Great Lakes. Lake Ontario was 

not sampled because the database is for the State of Michigan’s water bodies only. 

These subcategories were chosen to compare spatial differences in addition to the 

water body categories.  

 

Figure 3. 1: MDEQ sampling locations (2000-2015) for edible fish monitoring 
program (data from Bohr, 2015). 

3.2.2 Time Trend Analysis  
The MDEQ has designated several sites in the Great Lakes and in inland 

water bodies for trend monitoring under their Fish Contaminant Monitoring Program 

(FCMP) (Figure 3. 2).  For trend monitoring, whole fish rather than fillets are used. 

Great Lakes 
Inland Lakes 
Rivers 
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Figure 3. 2: Trend monitoring sites in the MDEQ Fish Contaminant Monitoring 
Program (MDEQ, 2015). The sites used in this analysis include Keweenaw Bay (lake 
trout), Thunder Bay (lake trout), Saginaw Bay (carp), Lake St. Clair (carp and 
walleye), and Brest Bay (carp and walleye). 

Established in the 1980s, this program provides its fish contaminant data on 

the FCMP Online Database. The total PCB concentrations were used in this analysis 

(MDEQ, 2013). Conveniently, the MDEQ overlapped the use of both its Aroclor 

method and congener method for a few years in the 1990s, allowing for a direct 

comparison between the estimated total PCB concentrations. Five sites in the Great 

Lakes that had lake trout, carp and/or walleye samples were compared. There was at 

least one year of overlap between the two PCB analysis methods for each fish 

sampled. Linear regression analysis (General Linear Model (GLM) II) was used to 

quantify the relationship between results from both methods using fish analyzed 

during the overlapping years (generally 10 fish per site per year). Model II linear 

regression was used because neither the Aroclor method nor the congener method 

estimates of total PCB concentrations are free from measurement error. The resulting 

regression equations, one for each species from each site, were used to “convert” the 

Whole fish sampling locations 
used for time trend analysis 
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Aroclor method estimates of total PCB concentration to that of the newer, congener 

method (Figure B. 16 through Figure B. 22).  

Time trend analysis was conducted by regressing (type I regression) total PCB 

concentration vs. time.  Regressions were performed for each fish species in each 

location.  To evaluate the effect of the change in methodology, regressions were 

performed using total PCB concentrations from both analytical methods and using the 

adjusted total PCB concentrations from the aroclor method with the results from the 

congener-specific method.  For each fish species, total PCB concentrations were 

averaged for each year for use in the regression analysis. 

3.2.3 Source Identification 
PCA was performed using IBM SPSS Statistics 22. Average, lipid-normalized 

congener concentrations were calculated for walleye and northern pike samples from 

each site where available (Bohr, 2015). The fish species were chosen so that they 

could be compared to the inland lake analysis. Two PCA analyses, one for each 

species, were performed. The analysis was limited to two factors to compare with 

inland lake results. Direct oblimin rotation was used as well. The congener 

distributions were limited to 34 congeners because those were above detection limits 

for the majority of samples. If a concentration was under detection limit for one of the 

34 congeners considered, the value was set at the detection limit. Samples used in the 

analysis were limited to 40 to 50 cm and 60 to 70 cm in length for walleye and 

northern pike, respectively. This ensured that the samples were comparable in size. 

Age would have been used for this criteria had it been determined in the fillet 
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analysis. Table 3. 1 summarizes the sites and species used for the analysis. The inland 

lakes were the same water bodies as in the analysis for Michigan’s Upper Peninsula 

(Section 2.2.1) and were included for further comparison of these distinct water 

bodies.  

Table 3. 1: MDEQ sampling location used for PCA analysis (Bohr, 2015). 

Water Body Sampling Location lat/long Species 
Lake Superior Keweenaw Bay, L'Anse Bay 46.76/-88.45 northern pike 

Lake Superior Huron Bay 46.85/-88.26 walleye and 
northern pike 

Lake Michigan Little Bay De Noc 45.79/-87.05 walleye and 
northern pike 

Lake Erie Off Monroe 41.89/-83.33 walleye 
Lake Erie Western Basin 41.86/-83.27 walleye 
Lake Michigan Green Bay, Cedar River 45.56/-87.18 walleye 
Lake Superior Huron Bay 46.85/-88.26 walleye 
Lake Superior Tahquamenon River 46.56/-85.03 walleye 
Lake Huron Saginaw Bay, Bay Port 43.86/-83.37 walleye 
Lake Huron Saginaw Bay 43.78/-83.44 walleye 

3.2.4 Ecosystem Characteristics 
Average total PCB concentrations were calculated for each Great Lakes site 

sampled by the MDEQ for edible fish portion contamination.  Site characteristics 

were used as independent variables in MLR analysis and correlation analysis to 

evaluate their contribution to the variability in average fish PCB concentrations at 

each site. MLR analysis was performed using IBM SPSS 22. Enough locations 

sampled walleye between 40 and 50 cm in length so that the analysis could be limited 

to one species. This eliminated confounding effects from multiple fish species. The 

nearest site of known local contamination, either an Area of Concern or Superfund 
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site, was factored into the analysis by calculating the distance from the potential 

source to the sampling site (Figure 3. 3). Physical characteristics of the bay or basin 

where fish were collected were used rather than characteristics for the entire Great 

Lake. The population factored into the analysis was estimated based on the area of 

each bay or basin’s catchment area. Table B. 5 summarizes all details of site 

locations, variables and referenced information used for the analysis. All variables 

and concentrations were log-transformed for the analyses.  

 

Figure 3. 3: MDEQ Great Lakes sites sampled for walleye between 2000 and 2015 
along with the potential sources of known local PCB contamination that could affect 
the sites. 

Stepwise forward and backward multiple linear regressions were compared to 

determine which variables explained more variance in fish PCB concentrations. 

Stepwise forward MLR finds the variable that explains the most variance and adds 

additional variables if any improve the outcome of the analysis. Backward MLR 

considers all variables initially and removes those that do not explain variance in the 

dependent variable or increase the total error of the analysis. Pearson Correlation 

MDEQ Sampling Locations 
Areas of Concern 
Superfund Site (proposed) 
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analysis was performed on all independent variables and the average total PCB 

concentrations in walleye. 

3.3 Results 

3.3.1 Great Lakes Region Contamination Comparison 
Figure 3. 4 through Figure 3. 7 summarize the lipid normalized, average total-

PCB concentration in fish sampled by the MDEQ for edible fish-portion monitoring 

since 2000. A Kruskal-Wallis test revealed that the variance is so large, that there was 

no statistical difference among them (p>0.05). Additionally, t-tests (pair-wise or 

assuming equal or unequal variance, as appropriate) led to the same conclusion for all 

groups (p>0.05). These statistical analyses were performed for both the common fish 

species among all groups and any common species between groups. These figures 

show only fish species commonly found in all three water body categories─ inland 

lakes, rivers and the Great Lakes- for the most direct comparison. Figure B. 1 through 

Figure B. 9 summarize all species sampled in each water body category. Table B. 1 

through Table B. 3 provide a more detailed summary of sampling (e.g., sampling sites 

and number of samples).  

Among the Great Lakes, Lake Michigan had the highest PCB contamination, 

followed by Lake Huron; Lake Superior had the lowest contamination. The 

distribution of total-PCB concentrations among common fish species for each Great 

Lake was also determined (Figure B. 10 through Figure B. 15).  The distributions, in 

the form of box plots, revealed that the level of contamination in individual fish 
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ranged from 0.2 ppm in lake trout to 14 ppm in carp. Lake Superior had the lowest 

variance in PCB concentrations for most fish species while the Great Lake with the 

highest variability differed among fish species. River fish typically had higher PCB 

concentrations than fish from inland lakes. It is important to note that these trends are 

not true for all fish species.  

 

Figure 3. 4: MDEQ fish fillet data summary (2000-2015) of Michigan Rivers (Bohr, 
2015). Data summarized in Table B. 1.Error bars indicate one standard deviation.  
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Figure 3. 5: MDEQ fish fillet data summary of Michigan inland lakes (Bohr, 2015). 
Data summarized in Table B. 1. Error bars indicate one standard deviation. 

 
Figure 3. 6: MDEQ fish fillet data summary of inland lakes and Great Lakes (Bohr, 
2015). Data summarized in Table B. 2 and Table B. 3. Error bars indicate one 
standard deviation. 
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Figure 3. 7: MDEQ fish fillet data summary of Great Lakes (Bohr, 2015). Data 
summarized in Table B. 2 and Table B. 3. Error bars indicate one standard deviation. 

3.3.2 Time Trend Analysis 
Figure 3. 8 through Figure 3. 14 summarize the results of the comparison and 

time trend analysis. The regressions in these figures include all of the years where the 

congener method was used to calculate total PCB concentrations as well as the 

adjusted Aroclor method concentration estimates for any prior years. The difference 

between the Aroclor method and congener method ranged from ± 0.08 to 1.52 ppm, 

on average, for all sites and species. All declines in total PCB concentration were 

found to be statistically significant except for carp from Brest Bay in Lake Erie. After 

adjusting the PCB concentrations measured using the Aroclor method to be more, the 

rate of change in PCB concentration was reduced for most sites. Table 3. 2 
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summarizes the rate of change (i.e. the magnitude of slope change) caused by this 

adjustment.   

Table 3. 2: Summary of differences in slope for all regressions in Figure 3. 8 through 
Figure 3. 14 from the original slope of decline. 

Site Name Great Lake Fish 
Species 

Magnitude 
of slope  

difference 

Thunder 
Bay Lake Huron lake 

trout  5.5% 

Lake St. 
Clair 

 

 

walleye 7.0% 

carp 11% 

Saginaw 
Bay Lake Huron carp 17% 

Brest Bay Lake Erie 
walleye 61% 

carp 33% 

Keweenaw 
Bay 

Lake 
Superior 

lake 
trout -60% 
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Figure 3. 8: Time trend analysis results for whole lake trout from Keweenaw Bay, 
Lake Superior (MDEQ, 2013). Pearson correlation r= -0.726, p<0.05. Adjusted 
Aroclor method PCB concentrations were projected from regression analysis (See 
Figure B. 22). Total PCB concentrations were 44% to 53% lower according to the 
congener method compared to the Aroclor method. 

 

Figure 3. 9: Time trend analysis results for whole lake trout from Thunder Bay, Lake 
Huron (MDEQ, 2013). Pearson correlation r=-0.87, p<0.01. Adjusted Aroclor method 
PCB concentrations were projected from regression analysis (See Figure B. 18). Total 
PCB concentrations were -9% to 2% lower according to the congener method 
compared to the Aroclor method. 
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Figure 3. 10: Time trend analysis results for whole carp from Saginaw Bay, Lake 
Huron (MDEQ, 2013). Pearson correlation r= -0.852, p<0.01. Adjusted Aroclor 
method PCB concentrations were projected from regression analysis (See Figure B. 
19). Total PCB concentrations were -16% to 28% lower according to the congener 
method compared to the Aroclor method. 

 

Figure 3. 11: Time trend analysis results for whole carp from Lake St. Clair (MDEQ, 
2013). Pearson correlation r=-0.839, p<0.01. Adjusted Aroclor method PCB 
concentrations were projected from regression analysis (See Figure B. 20). Total PCB 
concentrations were 29% to 31% lower according to the congener method compared 
to the Aroclor method. 
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Figure 3. 12: Time trend analysis results for whole walleye from Lake St. Clair 
(MDEQ, 2013). Pearson correlation r=-0.953, p<0.01. Adjusted Aroclor method PCB 
concentrations were projected from regression analysis (See Figure B. 21). Total PCB 
concentrations were 19% to 25% lower according to the congener method compared 
to the Aroclor method. 

 

Figure 3. 13: Time trend analysis results for walleye from Brest Bay, Lake Erie 
(MDEQ, 2013). Pearson correlation r=-0.935, p<0.01. Adjusted Aroclor method PCB 
concentrations were projected from regression analysis (See Figure B. 16). Total PCB 
concentrations were 47% to 48% lower according to the congener method compared 
to the Aroclor method. 
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Figure 3. 14: Time trend analysis results for carp from Brest Bay, Lake Erie (MDEQ, 
2013). Decline in concentration was not statistically significant. Adjusted Aroclor 
method PCB concentrations were projected from regression analysis (See Figure B. 
17). Total PCB concentrations were 3% to 17% lower according to the congener 
method compared to the Aroclor method. 

3.3.3 Source Identification 
Based upon PCA, only three sampling locations─ Manistique Lake (walleye), 

Lake Michigan’s Green Bay (walleye) and Lake Michigan’s Little Bay De Noc 

(northern pike)—had significant contributions from both components. Lake Superior 

was the only Great Lake where sites were designated as only atmospherically 

impacted (Figure 3. 15). 84% of the total variance was explained for walleye 

(component 1=63%) and 83% for northern pike (component 1=58%). 
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Figure 3. 15: PCA results comparing inland lakes from Michigan’s Upper Peninsula 
to the Great Lakes (Bohr, 2015). Each species was analyzed separately. Component A 
consists of the first component for Walleye-sampled lakes and the second component 
for Northern Pike- sampled lakes (vice versa for component B). The component axes 
were altered so that the lakes sampled for both species (Goose Lake and Torch Lake) 
fell on the same axis. PCB congeners were weighted the same for both species in 
component B where lighter congeners were the most important; Component A was 
weighted by similar, heavy PCB congeners. 

3.3.4 Ecosystem Characteristics  
Of the two forms of MLR performed, backwards MLR produced the best fit; it 

explained more of the variance and had a lower standard error than the forward 

stepwise MLR analysis. Both forms of regression analysis had the same level of 

significance (p<0.006). Stepwise MLR identified one variable (maximum depth) as 

the best predictor. The following equation is the result of the backward MLR 

analysis. 
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log�𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑚𝑚 𝑃𝑃𝐶𝐶𝐵𝐵 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑝𝑝𝑝𝑝𝑚𝑚)� = 2.640 + 0.306 log(𝑤𝑤𝑐𝑐𝑃𝑃𝑝𝑝𝑃𝑃𝑏𝑏ℎ𝑝𝑝𝑃𝑃 𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐 (𝑘𝑘𝑚𝑚2)) −

2.747log (max𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃ℎ (𝑚𝑚)) − 0.628log (𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑚𝑚𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑝𝑝𝑃𝑃𝑏𝑏𝑃𝑃𝑃𝑃𝑚𝑚)     [3.1] 

The watershed area, maximum depth and population density (human 

population over watershed area) accounted for 8.1%, 74.3% and 15% of the variance, 

respectively, for a total of 97.4% of the variance in fish PCB concentrations. The 

standard error of the analysis was reduced to 14.7% as opposed to 33% for the 

stepwise linear regression. Figure 3. 16 shows the fit of the backward MLR results to 

the measured total PCB concentrations at the site. 

 

Figure 3. 16: Comparison of measured average total PCB concentrations (ppm) with 
those predicted by regression using three independent variables as selected by 
backwards MLR.  Measured PCB data from MDEQ (Bohr, 2015). 

Correlation analysis revealed six statistically strong correlations. Pairs of 

variables that were significantly correlated (p < 0.05) included population and 

distance to contamination, surface area and secchi depth, surface area and watershed 

area, and population density and population; factors that significantly correlated at the 
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99% confidence interval were population and watershed area, and total PCB 

concentration and maximum depth. Figure B. 23 shows the correlation matrix for all 

of the factors considered in the analysis. It is important to note that, according to the 

correlation analysis, one outlier exists for mean depth vs. total PCB concentration- the 

Tahquamenon River site in Lake Superior. Without this outlier mean depth was very 

significant (r2=0.80). 

3.5 Discussion 

3.5.1 Great Lakes Region Contamination Comparison 
Figure 3. 4 through Figure 3. 7 summarize the comparison of lipid normalized 

average total PCB concentrations in fish fillets of species from inland water bodies 

and the Great Lakes (sampling locations from Figure 3. 1). These figures were 

developed to compare the same species that were sampled from the different water 

body categories since 2000. It was determined that there was not a statistically 

significant difference between lake categories. There are some key points to glean 

from these figures. First, sampling efforts are not distributed evenly throughout the 

state and the Great Lakes. Less sampling, in regards to both the total number of 

samples and locations, has been completed for Michigan’s Upper Peninsula relative 

to Lower Michigan. Second, sampling locations may not have been randomly 

distributed but preferentially located near to local contamination to assess cleanup 

efforts (e.g., the Kalamazoo and Detroit rivers have multiple sampling locations). 

Third, while the sampling locations in the Great Lakes are near shore, these are 
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locations where more fishermen are more likely to frequent. It becomes more 

expensive and less common to fish farther into the Great Lakes (Hoehn et al., 1996). 

In addition, many of the species sampled are more commonly found closer to shore.  

According to the MDEQ dataset, among inland water bodies, four of the five 

comparable species had higher total PCB concentrations in rivers than in inland lakes.   

Three of the five fish species had higher contamination in Upper Peninsula rivers as 

compared to lakes, while all rivers in the Lower Peninsula had higher PCB 

contamination than the lakes. The PCB contamination in rivers may also reflect the 

non-random selection of sampling sites.  

For three of the five species compared in Figure 3. 6, the Great Lakes had 

higher PCB concentrations in fish than those collected from inland lakes. However, it 

is important to look at each Great Lake individually (Figure 3. 7). Lake Michigan has 

always had the highest PCB contamination in fish, and Lake Superior has typically 

had the lowest (Carlson et al., 2010). Lake Ontario has historically had similar 

concentrations to those of Lake Michigan (Hickey et al., 2006). For this comparison, 

Lake Michigan had the highest total PCB concentrations for three of the four species 

compared in Figure 3. 7. The distribution of total PCB concentrations among sites can 

be seen in Figure B. 10 through Figure B. 15.  Sites on Lake Erie and Lake Michigan 

tend to have the largest spread in sample concentrations. Among the fish types 

sampled, carp and lake whitefish have the highest and lowest levels of contamination, 

respectively. Overall, the Great Lakes tend to have higher PCB contamination in fish 

than inland lakes.  
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By using the general categories for lake types, there was not a statistically 

significant difference between them. These categories ignore the important 

differences in lake characteristics that affect PCB accumulation in fish, which were 

determined in Chapter 2 and 3. This finding only emphasizes the importance of taking 

lake and ecosystem characteristics into account when determining where it is best to 

consume fish from.  

The results for PCBs contrast with those of Evers et al. (2011) who assessed 

mercury contamination of the Great Lakes and inland lakes. That study compared all 

species represented in multiple databases. In comparing multiple fish species, it was 

determined that inland lakes had higher mercury contamination in fish than the Great 

Lakes. This comparison focuses on a smaller number of species that are found in all 

categories of water bodies. By doing so, the confounding effects of varying species 

metabolism, fat content, and other biophysical characteristics are reduced. The use of 

only one database helps to reduce noise resulting from different sample handling and 

analysis protocols.   

3.5.2 Time Trend Analysis 
The MDEQ has made an exemplary effort to assess PCB contamination in fish 

in the Great Lakes since the inception of the Fish Contaminant Monitoring Program 

in 1988.. The consistency with site and species sampling made it possible to see time 

trends in PCB concentrations in whole fish samples. Several sites have had 

continuous sampling since the early 1990s. Time trends for seven combinations of 
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fish type and sampling site were summarized to determine whether there has been a 

significant decline in PCB concentration over time.   

Of the sites summarized, carp from Brest Bay in Lake Erie were the only fish 

population where the decline in PCB concentration was not statistically significant 

(Figure 3. 14). Interestingly, walleye from the same site have had a significant decline 

in PCB levels since 1990. This trend may correlate with cleanup efforts at a nearby 

Area of Concern, River Raisin, where high PCB contamination still exists in the 

sediment (US EPA, 2013b). Carp is a benthic fish species that has high fat content 

compared to other species. Its feeding habits could expose it to a greater amount of 

PCBs over its lifetime as compared to walleye, a pelagic feeding species. Carp 

migrate up rivers. The local contamination in a major river nearby could explain the 

insignificant decline in PCB concentrations. In contrast, the walleye have lower lipid 

content (1.5 to 15% in walleye vs. 1 to 32% in carp from Lake Erie from the MDEQ 

whole fish montoring dataset) and consume prey higher in the food chain. These 

habits lead to most walleye PCB exposure originating in the water column, not the 

sediment. Water concentrations of PCBs have declined throughout the Great Lakes 

region (Carlson et al., 2010; Jeremiason et al., 1994) due to their ban, volatilization 

and sedimentation. Thus, it was not surprising to see a significant decline in PCB 

concentration for pelagic fish species.  

Keweenaw Bay in Lake Superior was the only site where the adjusted total 

PCB concentrations reduced the rate of change in concentration since the start of fish 

sampling (Figure B. 22 and Figure 3. 14). There has been concern that the Aroclor 
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method overestimated total PCB concentrations. According to this assessment, it 

cannot be stated that the Aroclor method systematically overestimated total-PCB 

concentrations as performed by the MDEQ and its contractors.  

A summary of the EPA’s Great Lakes Fish Monitoring Program (GLFMP) 

showed that the half-lives of several chemicals (e.g. PCBs, DDT, PBDEs) have 

increased since the mid-1980s with the rate constants becoming less negative 

(Carlson et al., 2010). Hickey et al. (2006) stated that mean levels of PCBs in lake 

trout are reaching irreducible levels in Lakes Michigan and Huron. Continued 

sampling efforts will provide evidence of improvements from clean-up efforts. The 

sites that are not reaching safe levels should be targeted for remediation, focusing 

efforts where they are most needed.  

The time-series data show that PCB concentrations do not decline smoothly in 

all locations. The noise in the time-series data could have multiple, overlapping 

causes. It has been documented that some top predators go through a major shift in 

diet due to food availability (Hickey et al., 2006). This shift can alter fat content, 

affecting the amount of PCBs that are stored for the lifespan of the fish.  For example, 

Lake Superior lake trout have gone through major diet changes since the 1980s. The 

change to a fattier diet led to an increase in PCB accumulation in the early 1990s 

(Hickey et al., 2006). In addition, the size of the fish sampled over time has changed. 

While it is important to be consistent, there is no guarantee that the same size and age 

will be available during a sampling event. Finally, the time of year that sampling 

occurred can have an effect. Some fish species build up more fat during spawning 

133 
 



 

season (Madenjian, 2011), which can skew total PCB concentration estimates over 

time.  

Salamova et al. (2015) investigated trends in atmospheric concentrations of 

PCBs from 1991 to the present in the Great Lakes Region. Samples for atmospheric 

PCB concentration measurement were collected every 12 days by the Integrated 

Atmospheric Deposition Network (IADN). The total concentration of PCBs in the 

vapor phase declined at a relatively similar rate across the region. The half-life of 

PCBs in the air ranged from one to two decades. While there were exceptions to these 

trends at certain sites, the slow rate of decline was concluded to be caused by local 

source emissions to the atmosphere. The decline in atmospheric PCBs is reflected in a 

decline in fish contamination in so far as most of the sites had a significant decline in 

PCB levels over the same time period. Using the same calculations used by Salamova 

et al. (2015) to calculate the half-life of total PCB concentration in fish, it was 

determined that the half-life for PCBs in fish ranged from 7 to 11 years. The estimate 

of half-life in air and fish was calculated over the same time period. It is interesting 

that the rate of decline in air and fish are similar. The sites where atmospheric 

concentration half-lives were longer were assumed to be affected by local sources. 

Similarly, the presence of continuing, local PCB sources are likely the cause of the 

lack of a decline in PCB in carp in Brest Bay of Lake Erie.   

3.5.3 Source Identification 
The MDEQ has sampled fish fillets from multiple locations in the Great Lakes 

since 2000, some of which are closer to local, industrial sources at the mouths of 
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rivers (Figure 3. 1, See Table B. 4 for Great Lake sites details).  For example, Green 

Bay, which is connected to Lake Michigan, is known to have high fish PCB 

concentrations due to historical pulp and paper mill disposal of PCBs along the rivers 

that feed into the bay (EPA, 2015). The MDEQ has three sampling sites within Green 

Bay, possibly chosen to monitor the effects of these potential local sources. Similarly, 

Saginaw Bay, connected to Lake Huron, has PCB sediment contamination that is of 

concern for fish consumption advisories (EPA, 2013).  

To identify which Great Lakes sampling locations were impacted by local 

PCB contamination sources, PCA was used in the same manner as for the inland 

lakes source analysis (Figure 2.2) and both the inland lakes and Great Lake sites were 

used in the Great Lakes PCA to compare contaminant sources. The same PCB 

congeners were significant in both the inland lake and Great Lakes PCAs- congeners 

44, 49, 52, 66, 74, 77, 138, 153 and 163. The ratios of light congeners to heavy 

congeners was lower for locally impacted lakes in both inland and Great Lakes; 

inland, and Great Lakes follow the same trend in congener patterns (Table B. 6).  On 

average, the sites determined to have a local source of PCB contamination had fish 

PCB concentrations that were an order of magnitude higher than those that had only 

atmospheric sources (Lake Superior sites).  

Only two locations on Lake Michigan, Little Bay De Noc (northern pike) and 

Green Bay (walleye) sites, had significant contributions from both local and 

atmospheric sources of PCBs. Only the three sites from Lake Superior were 

determined to be impacted by atmospheric inputs alone. Several of the other sites are 
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near Areas of Concern or Superfund sites with known PCB contamination in the 

sediment and/or water column (Table B. 5). As was observed in the inland lake PCA 

source analysis (Section 2.3.1), component A was influenced most by heavier 

congeners, indicating the likelihood of local impacts.  

There was one major outlier in the PCA analysis- walleye from Huron Bay in 

Lake Superior were categorized as being affected by local contamination. Northern 

pike from the same location correlated with the atmospheric source component. Two 

PCB congeners, 153 and 138, were higher in the walleye sampled from Huron Bay. 

These congeners played a significant role in defining sites with local contamination. 

However, the concentration of these congeners were not as high as at other sites in the 

Great Lakes; walleye from Huron Bay had 2 to 24 ppm less of these congeners than 

did other sites.  

Other studies have used similar statistical techniques to evaluate PCB sources. 

Discriminant analysis, an earlier form of PCA, revealed significant differences in 

PCB congener distributions among biota of lakes in Ontario (p<0.05) (MacDonald et 

al., 1991). Studies on the U.S. east coast found similar results, linking known local 

sources to fish contamination in nearby estuaries (Rachdawong et al., 1997; 

Monosson et al., 2003). These results support the conclusions made here that this 

form of analysis can provide evidence of the impact of local contamination sources 

on PCB accumulation in fish in the Great Lakes Region. Analyses like these may be 

beneficial in determining where sampling and clean-up efforts should be focused.  
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3.5.4 Ecosystem Characteristics 
To assess what environmental factors had the most impact on PCB 

accumulation in fish for the MDEQ sample locations in the Great Lakes, correlation 

analysis, multiple linear regression and principal component analysis were applied for 

a number of characteristics (Table B. 5). Unlike the inland lake MLR analysis, some 

additional factors were considered to assess the effects of human activities. These 

characteristics included the human population within the watershed and the distance 

to a source of known local contamination acknowledged by the state or federal 

government. These were not considered in the inland lake analysis because 

population density did not vary greatly for the lake watersheds, and the location of 

local source impact sites was unknown. Population and population density were 

considered to observe the potential for human impact on the watershed and the 

movement of PCBs. It has been concluded in the literature that the more urbanized a 

watershed, the greater the amount of PCBs that impact a local water body (King et al., 

2004; Paul et al., 2002). The distance to contamination was used to evaluate whether 

known sites of sediment contamination affect the PCB contamination in the fish. The 

characteristics used to describe the sites were not based on the entire Great Lake, but 

rather, on the bay or basin. The assumption being tested was that local factors were 

responsible for the heterogeneity among sites.  Consideration of multiple fish species 

in the analysis would have increased the number of data points, but would likely have 

introduced additional noise due to interspecies differences in metabolism and trophic 
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position. While it was not possible to use one species for the inland lake analysis, it 

was possible to use walleye alone for this Great Lakes assessment.  

Stepwise MLR revealed that maximum depth alone was the best predictor of 

total PCB concentration in walleye (R2=0.807, p<0.01). Backward MLR identified 

three characteristics (watershed area, maximum depth, and population density) as the 

best predictors explaining 8%, 74%, and 15% of the total variance, respectively. It 

was important to assess the results of both methods to consider all of the variables 

initially in the analysis. In both cases, maximum depth was the best predictor where, 

as the depth of the site increased, the total PCB concentration decreased. In the case 

of inland lakes, mean depth can be linked to food chain differences as larger inland 

lakes have a potential for more complicated food webs (Guildford et al., 2008). For 

the sites in the Great Lakes, predatory fish could have a habit of feeding in the littoral 

zones near the sampling sites within the bays or basins and may not leave to feed 

elsewhere in the lakes. This would indicate the existence of unique food webs for 

each embayment. However, the relationship of depth to PCB contamination is 

inverted compared to inland lakes (Figure B. 24); as the depth of the bays and basins 

in the Great Lakes increase, the concentration of PCBs in fish decline. This result 

might be explained by the amount of littoral zone in each bay or basin and MDEQ 

sampling sites. Top predators sampled from the Great Lakes were caught at shallow 

depths, close to shore. These fish likely have a tendency to feed at shallower depth 

(the littoral zone). Many of these shallow bays and basins could be impacted by local 

contamination (i.e. AOCs, superfund sites or unknown sources); according to the 
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source analysis that used PCA (Section 3.3.3), the presence of local contamination is 

likely. Therefore, this feeding habit increases the level of exposure due to local 

sources even though littoral feeding habits may cause a shorter food web and less 

bioaccumulation, as discovered by Guildford et al. (2008). The area of littoral zone of 

these sites in the Great Lakes and the feeding habits at the time of fish sampling are 

unknown. Further research could reveal a link between feeding habits and depth in 

the Great Lakes. Conducting a similar regression analysis with fish collected farther 

from shore may reveal a different relationship between PCB concentrations and 

depth.  

The correlation analysis revealed a few statistically strong links between the 

characteristics used in the MLR analysis. The most notable of these correlations is 

that of population and distance to contamination (p<0.05), where the greater the 

population in the watershed, the closer the site is to local PCB contamination. These 

results, along with the MLR analysis, are not statistically robust due to the low 

number of sites used in the analysis; more sites could provide additional significant 

correlations. The backward MLR results included population density as an important 

factor. These analyses link the PCB concentration in the fish to more populated, 

developed land and the nearby contamination sources.  King et al. (2004) and Paul et 

al. (2002) drew similar conclusions with regards to more developed land resulting in 

more PCBs and other chemicals entering New England estuaries because of increased 

runoff and emissions. A study of lakes in the Yukon Territory found higher PCB 

sediment concentration near populated areas (Rawn et al., 2002). Highly populated 
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areas typically contain chemically contaminated sites where industry utilized easy 

access to waterways for waste disposal. These areas also have more impermeable 

surfaces, leading to increased chemical runoff. As PCBs continue to redeposit, these 

surfaces allow them to enter water bodies more efficiently. These compounding 

factors, population/urban area and local sources, are likely the cause of the chemical 

contamination trends in the Great Lakes.  

A singular outlier, the Tahquamenon River in Lake Superior, caused MLR to 

exclude mean depth in the analysis results (Figure B. 23). The mean depth for this 

outlier was estimated based on the bathymetry of the corresponding bay. It is 

important to note that, had this outlier not existed, it is likely that mean depth would 

have been just as significant in the analysis for the Great Lake sites as it was for 

inland lakes.  

3.6 Conclusion 
The analyses herein were completed in an effort to enhance the understanding 

of organic contaminants in the Great Lakes Region. It was concluded that the Great 

Lakes have higher PCB concentrations in fish than do inland lakes. Time trend 

analysis suggested that local remediation efforts have been successful in reducing 

PCBs, and that the decline in fish concentration is statistically significant for most 

sites. The exception to this trend is a site near an Area of Concern where sediment is 

contaminated with PCBs (Brest Bay, Lake Erie).  Sources of contamination, either 

atmospheric or point sources, can be differentiated through the use of PCA. Sites 

where heavier PCB congeners are prevalent in fish indicate local contamination.  
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Focusing remediation efforts on these sites could increase the rate of ecosystem 

recovery and reduce human exposure to PCBs. Multiple linear regression revealed the 

importance of depth in relation to total PCB concentration in fish, which may be 

linked to food chain complexity and local source impacts. There is considerable 

heterogeneity in fish PCB concentrations among different sampling sites.  The cause 

for this heterogeneity in the level of PCB contamination is, in part, due to the effects 

of urbanization. The more densely populated and industrialized a watershed, the more 

local sources of PCBs exist that can enter the lake through runoff or atmospheric 

transport. Therefore, focusing remediation efforts on more densely populated areas 

would improve ecosystem health across the Great Lakes Region. There is a need for 

continued remediation in the Great Lakes Region in order to reduce PCB levels in 

fish to below consumption advisory limits more quickly. The sooner we reach a time 

where PCBs and other persistent pollutants are no longer a concern, the better the 

ecosystems and livelihoods of future generations will be.  
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CHAPTER 4: OVERALL CONCLUSIONS 
 The research herein revealed some notable explanations for trends in PCB 

contamination in fish in the Great Lakes Region. These trends involved the 

assessment of recorded data and model simulations. Practical implications and 

recommendations can be gleaned from these efforts in order to reduce the risks of 

polychlorinated biphenyl exposure. 

Through the use of Principal Component Analysis (PCA), it was determined 

that differentiating between two sources of PCBs to a lake- atmospheric and local, 

point sources- was possible. Lakes impacted by both atmospheric and local, point 

sources contain fish with higher concentrations of heavier PCB congeners and PCA 

found this distinction statistically significant. Knowing this, it would be possible for 

government entities to focus clean-up efforts on lakes where local sources have not 

been confirmed, but contain fish with this type of contamination pattern. This could 

speed the recovery of the ecosystems where actions may still take an effect. Future 

work into the use of this method would be to compare results to other geographic 

regions to determine if the same PCB congeners are significant or if PCA would 

require an adjustment for different locations based on potential local contamination 

sources.  

Other research results revealed what lakes may be most impacted by PCB 

contamination due to their physical and food web characteristics. For inland lakes, 

lake mean depth was very significant in explaining PCCB concentrations in fish using 

147 
 



 

Multiple Linear Regression (MLR) analysis; as mean depth in an inland lake 

increased, the level of total PCB contamination in fish increased. According to these 

results, it would be best to fish in inland lakes with shallow depths where no local 

contamination exists. However, the opposite trend was true for sites in the Great 

Lakes; as maximum depth increased, the concentration of PCBs in fish declined. It 

was unexpected that inland lakes and Great Lakes sites did not follow the same trend. 

A possible explanation could be due to the near-shore sampling of fish in the Great 

Lakes practiced by the Michigan Department of Environmental Quality (MDEQ). 

Fish of the same species in the Great Lakes have different feeding habits and 

metabolisms depending on the depth of water they inhabit. Higher food availability 

with the combination of higher local PCB contamination in the nearshore may cause 

this higher accumulation, skewing the trend identified by MLR analysis. Future work 

could involve looking at this trend across a larger geographic region to determine if 

the significance of depth is more of a worldwide trend. In addition, using another 

dataset for fish in the Great Lakes where sampling sites are farther from the nearshore 

may reveal trends similar to those found in inland lakes. 

Trophic state also had significant effect on lake modeling scenarios that tested 

food web dynamics; lakes with more primary productivity had lower PCB 

contamination in fish. This may be due to the overall dilution of PCBs at the base of 

the food web. These finding could implicate what lakes are best to consume fish 

from- inland lakes with higher primary productivity may have safer fish. Future 

modeling work should include a better summary of possible top predator diets and 
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more seasonal changes in the water column in order to more accurately explain the 

significance of food web differences.  

In comparing lake categories in the MDEQ fish monitoring dataset (i.e. upper 

and lower peninsula inland and Great Lakes sites), it was concluded that the Great 

Lakes have higher PCB contamination in fish than inland lakes. However, this 

conclusion may be skewed due to the effects of local, point sources on several of the 

sites sampled in the Great Lakes. A limited number of common species were sampled 

among the lake categories, making the direct comparison less statistically significant. 

For future efforts, it would be beneficial to include multiple datasets in the 

comparison to encompass a larger array of species and a larger number of samples. 

However, using datasets where laboratory processes were similar would be critical so 

that comparisons are accurate.  

Through the use of the modeling tools and the literature, it was determined 

that it may be safe to consume a desired amount of fish from lakes in Michigan’s 

Upper Peninsula in 20 years. This estimate was determined with the assumption that 

no local contamination existed in the lakes simulated; the existence of local 

contamination would increase the recovery time of the ecosystem. Efforts into 

modeling lake ecosystems in Michigan’s Lower Peninsula may results in a longer 

time period till safe consumption may be possible as sources of PCBs, either 

atmospheric or local, may be more prevalent.  
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APPENDIX A 

 
Figure A. 1: Plot of annual average runoff from USGS rain gauge data vs latitude 
(USGS, 2015). Average runoff equals 16.3 in/yr. 

 

 

Figure A. 2: Plot of annual average runoff from USGS rain gauge data vs longitude 
(USGS, 2015). Average runoff equals 15.2 in/yr.
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Table A. 2: Lake Characteristics based on trophic state (Armengol et al., 2003). 

Trophic 
State 

Trophic 
State 
Index 
(TSI) 

TSI 
Select

ed 

Secchi 
Depth 

Selected 
m 

TSS, 
mg/L fom DOC, 

mg/L focs 

Oligotrop
hic 

<30 20 16 0.653 0.1 1 0.03 

Mesotrop
hic 

40-50 45 3 3.311 0.25 2.5 0.05 

Eutrophic 50-60 55 1.5 6.485 0.5 4 0.08 

 

 

 

Figure A. 3: Adjustments made to walleye length to weight ratios in the fish file 
provided by the EPA (personal communications, Craig Barber 2014). Manistique 
Lake measured walleye data from Bohr, 2013. 
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Figure A. 4: Summary of volatilization loss rates for four PCB congeners in the PCB 
lake model (chlorination level of each congener is in parenthesis). Lakes included are 
all ecosystem scenario lakes, Manistique Lake, Muskallonge Lake, Little Lake and 
Sporley Lake. 

 

 

Figure A. 5: Summary of first order settling loss rates for four PCB congeners in the 
PCB lake model (chlorination level of each congener is in parenthesis). Lakes 
included are all ecosystem scenario lakes, Manistique Lake, Muskallonge Lake, Little 
Lake and Sporley Lake. 
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Figure A. 6: Summary of flushing (outflow) loss rates for four PCB congeners in the 
PCB lake model (chlorination level of each congener is in parenthesis). Lakes 
included are all ecosystem scenario lakes, Manistique Lake, Muskallonge Lake, Little 
Lake and Sporley Lake. 
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Table A. 9: Summary of species included in Torch Lake and Manistique Lake food 
web modeling using EPA BASS. 

Torch Lake Manistique Lake 
alewife (Alosa pseudoharengus) brown bullhead (Ameiurus nebulosus) 

black bullhead (Ameiurus 
melas) northern pike  (Esox lucius) 

brown bullhead (Ameiurus 
nebulosus) rock bass (Ambloplites rupestris) 

common shiner (Luxilus 
cornutus) 

shorthead redhorse (Moxostoma 
macrolepidotum) 

longnose sucker (Catostomus 
catostomus) silver redhorse (Moxostoma anisurum) 

northern pike  (Esox lucius) smallmouth bass (Micropterus dolomieu) 
pumpkinseed (Lepomis 

gibbosus) walleye (Sander vitreus) 
rainbow smelt (Osmerus 

mordax) white sucker (Catostomus commersonii) 
rock bass (Ambloplites 

rupestris) yellow perch  (Perca flavescens) 
silver redhorse (Moxostoma 

anisurum)  
smallmouth bass (Micropterus 

dolomieu)  
trout-perch (Percopsis 

omiscomaycus)  
walleye (Sander vitreus)  

white sucker (Catostomus 
commersonii)  

yellow perch  (Perca 
flavescens)  
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Table A. 10: Species present in each lake size category for the lake/food web 
scenarios. 

Lake Size Category 
Seepage small (no 

tribs) 
small (with 

tribs) medium large 

bluegill                             
(Lepmis 
macrochirus) 

bluegill                                 
(Lepmis 
macrochirus) 

black bullhead                                         
(Ameiurus 
melas) 

black bullhead                                                   
(Ameiurus melas) 

black bullhead                                          
(Ameiurus melas) 

pumpkinseed                
(Lepomis 
gibbosus) 

pumpkinseed                
(Lepomis 
gibbosus) 

bluegill                                                          
(Lepmis 
macrochirus) 

bluegill                                                                      
(Lepmis 
macrochirus) 

bluegill                                                             
(Lepmis 
macrochirus) 

rock bass                  
(Ambloplites 
rupestris) 

rock bass                    
(Ambloplites 
rupestris) 

northern pike                                                 
(Esox lucius) 

brown bullhead                                              
(Ameiurus nebulosus) 

brown bullhead                                               
(Ameiurus 
nebulosus) 

yellow perch                   
(Perca 
flavescens) 

yellow perch                         
(Perca 
flavescens) 

smallmouth 
bass                                      
(Micropterus 
dolomieu) 

longnose sucker                                            
(Catostomus 
catostomus) 

longnose sucker                                        
(Catostomus 
catostomus) 

smallmouth 
bass 
(Micropterus 
dolomieu) 

smallmouth 
bass(Micropter
us dolomieu) 

pumpkinseed                                            
(Lepomis 
gibbosus) 

northern pike                                                                 
(Esox lucius) 

northern pike                                                              
(Esox lucius) 

    rock bass                                                    
(Ambloplites 
rupestris) 

pumpkinseed                                                 
(Lepomis gibbosus) 

pumpkinseed                                                  
(Lepomis gibbosus) 

    white sucker                                               
(Catostomus 
commersonii) 

rock bass                                                          
(Ambloplites 
rupestris) 

rock bass                                                      
(Ambloplites 
rupestris) 

    yellow perch                                                    
(Perca 
flavescens) 

shorthead redhorse                                    
(Moxostoma 
macrolepidotum) 

shorthead redhorse                                 
(Moxostoma 
macrolepidotum) 

      smallmouth bass                                          
(Micropterus 
dolomieu) 

smallmouth bass                               
(Micropterus 
dolomieu) 

      trout-perch                                                
(Percopsis 
omiscomaycus) 

trout-perch                                               
(Percopsis 
omiscomaycus) 

      walleye                                                                    
(Sander vitreus) 

walleye                                                              
(Sander vitreus) 

      white sucker                                                     
(Catostomus 
commersonii) 

white sucker                                                 
(Catostomus 
commersonii) 

      yellow perch                                                            
(Perca flavescens) 

yellow perch                                                             
(Perca flavescens) 
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APPENDIX B 

Table B. 1: Summary of MDEQ inland water body sampling from 2000-2015 (Bohr, 
2015).  

Fish 
Species 

water body 
category Peninsula number of 

sites 
number of 

samples 

walleye 
Inland Lake Upper 8 111 

Lower 12 143 

River Upper 3 78 
Lower 26 101 

smallmouth 
bass 

Inland Lake Upper 1 19 
Lower 11 100 

River Upper 3 59 
Lower 17 270 

white 
sucker 

Inland Lake Upper 4 41 
Lower 11 106 

River Upper 1 10 
Lower 14 232 

northern 
pike 

Inland Lake Upper 9 116 
Lower 13 120 

River Upper 2 16 
Lower 13 166 

yellow 
perch 

Inland Lake Upper 3 26 
Lower 2 80 

River Upper 2 19 
Lower 2 30 

 

Table B. 2: Summary of MDEQ Great Lakes sampling from 2000-2015 (Bohr, 2015). 

Species Lake 
Michigan 

Lake 
Huron 

Lake 
Superior 

Lake 
Erie 

rainbow 
trout 19 10 9   
walleye 26 20 38 21 
lake trout 10 20 29   
chinook 20 20 10   
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Table B. 3: Summary of MDEQ Great Lakes sampling from 2000-2015 (Bohr, 2015). 
Fish 

Species 
number of 

samples 
Great Lakes 

included 

walleye 105 
Erie, Michigan, 
Superior, Huron 

smallmouth 
bass 74 

Erie, Michigan, 
Huron 

white 
sucker 20 Erie, Huron 

northern 
pike 30 Michigan, Superior 

yellow 
perch 49 Erie, Huron 
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Table B. 4: MDEQ Great Lakes sampling location summary for edible portion 
monitoring (Bohr, 2015).  

Water 
Body Sampling Location lat/long Species 

lipid 
normalized 

average 
concentration 

(ppm)1 

Lake 
Superior 

Keweenaw Bay, L'Anse 
Bay 46.76/-88.45 

northern 
pike 0.002 

Lake 
Superior Huron Bay 46.85/-88.26 

northern 
pike 0.004 

Lake 
Michigan Little Bay De Noc 45.79/-87.05 

northern 
pike 0.004 

Lake Erie Off Monroe 41.89/-83.33 walleye 0.117 
Lake Erie Western Basin 41.86/-83.27 walleye 0.326 
Lake 
Michigan Green Bay, Cedar River 45.56/-87.18 walleye 1.135 
Lake 
Michigan Little Bay De Noc 45.79/-87.05 walleye 0.316 
Lake 
Superior Huron Bay 46.85/-88.26 walleye 0.023 
Lake 
Superior Tahquamenon River 46.56/-85.03 walleye 0.005 
Lake 
Huron Saginaw Bay, Bay Port 43.86/-83.37 walleye 0.227 
Lake 
Huron Saginaw Bay 43.78/-83.44 walleye 0.020 
Lake 
Michigan Grand Traverse Bay 44.99/-85.45 

lake 
trout 0.281 

Lake 
Superior Isle Royale 47.88/-88.96 

lake 
trout 0.097 

Lake 
Superior Munising 46.51/-86.57 

lake 
trout 0.024 

Lake 
Superior Marquette 46.61/-87.35 

lake 
trout 0.533 

Lake 
Huron Grindstone City 44.06/-82.89 

lake 
trout 0.359 

Lake 
Huron Thunder Bay 45.06/-83.42 

lake 
trout 0.707 

1See section 3.2.3 for calculation details.
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Figure B. 1: Summary of MDEQ fillet 
fish sample concentrations for 
Michigan's Upper Peninsula inland 
lakes from 2000-2015 (Bohr, 2015). 
Data summary: (number of sites, 
number of samples). 

 

Figure B. 2: Summary of MDEQ fillet 
fish sample concentrations for 
Michigan's Lower Peninsula inland 
lakes from 2000-2015 (Bohr, 2015). 
Data summary: (number of sites, 
number of samples). Values exceeding 
1.5 ppm indicated above respective 
bar. 
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Figure B. 3: Summary of MDEQ fillet 
fish sample concentrations for 
Michigan's Upper Peninsula rivers 
from 2000-2015 (Bohr, 2015). Data 
summary: (number of sites, number of 
samples). Values exceeding 1.5 ppm 
indicated above respective bar. 

 

Figure B. 4: Summary of MDEQ fillet 
fish sample concentrations for 
Michigan's Lower Peninsula rivers 
from 2000-2015 (Bohr, 2015). Data 
summary: (number of sites, number of 
samples). Values exceeding 1.5 ppm 
indicated above respective bar. 
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Figure B. 5: Summary of MDEQ fillet 
fish sample concentrations for Lake 
Erie from 2000-2015 (Bohr, 2015). 
Data summary: (number of samples). 
Values exceeding 1.5 ppm indicated 
above respective bar. 

 

Figure B. 6: Summary of MDEQ fillet 
fish sample concentrations for Lake 
Michigan from 2000-2015 (Bohr, 
2015). Data summary: (number of 
samples). Values exceeding 1.5 ppm 
indicated above respective bar. 
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Figure B. 7: Summary of MDEQ fillet 
fish sample concentrations for Lake 
Superior from 2000-2015 (Bohr, 
2015). Data summary: (number of 
samples). 

 

Figure B. 8: Summary of MDEQ fillet 
fish sample concentrations for Lake 
Huron from 2000-2015 (Bohr, 2015). 
Data summary: (number of samples). 
Values exceeding 1.5 ppm indicated 
above respective bar. 
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Figure B. 9: Summary of MDEQ fillet 
fish sample concentrations for all 
Great Lakes (excluding Lake Ontario) 
from 2000-2015 (Bohr, 2015). Data 
summary: (number of sites, Great Lake  
initial). Values exceeding 1.5 ppm 
indicated above respective bar
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Figure B. 10: Summary of total PCB concentration distributions in walleye from MDEQ 
Great Lakes sampling sites (Bohr, 2015). See Table B. 4 for site details. Numbers indicate 
sample number (arbitrary), circles indicate outliers, stars indicate extreme outliers, error bars 
indicate the maximum and minimum (excluding outliers), and bars indicate the 75th 
percentile, median (line) and 25th percentile (from top down).  

 
Figure B. 11: Summary of total PCB concentration distributions in smallmouth bass from 
MDEQ Great Lakes sampling sites (Bohr, 2015). See Table B. 4 for site details. Numbers 
indicate sample number (arbitrary), circles indicate outliers, stars indicate extreme outliers, 
error bars indicate the maximum and minimum (excluding outliers), and bars indicate the 75th 
percentile, median (line) and 25th percentile (from top down). 
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Figure B. 12: Summary of total PCB concentration distributions in lake whitefish 
from MDEQ Great Lakes sampling sites (Bohr, 2015). See Table B. 4 for site details. 
Numbers indicate sample number (arbitrary), circles indicate outliers, stars indicate 
extreme outliers, error bars indicate the maximum and minimum (excluding outliers), 
and bars indicate the 75th percentile, median (line) and 25th percentile (from top 
down). 

 
Figure B. 13: Summary of total PCB concentration distributions in chinook salmon 
from MDEQ Great Lakes sampling sites (Bohr, 2015). See Table B. 4 for site details. 
Numbers indicate sample number (arbitrary), circles indicate outliers, stars indicate 
extreme outliers, error bars indicate the maximum and minimum (excluding outliers), 
and bars indicate the 75th percentile, median (line) and 25th percentile (from top 
down).  
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Figure B. 14: Summary of total PCB concentration distributions in lake trout from MDEQ 
Great Lakes sampling sites (Bohr, 2015). See Table B. 4 for site details. Numbers indicate 
sample number (arbitrary), circles indicate outliers, stars indicate extreme outliers, error bars 
indicate the maximum and minimum (excluding outliers), and bars indicate the 75th 
percentile, median (line) and 25th percentile (from top down). 

 
Figure B. 15: Summary of total PCB concentration distributions in carp from MDEQ Great 
Lakes sampling sites (Bohr, 2015). See Table B. 4 for site details. Numbers indicate sample 
number (arbitrary), circles indicate outliers, stars indicate extreme outliers, error bars indicate 
the maximum and minimum (excluding outliers), and bars indicate the 75th percentile, median 
(line) and 25th percentile (from top down). 
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Figure B. 16: Aroclor method vs. congener method regression analysis for walleye in 
Brest Bay, Lake Erie (MDEQ, 2013). The legend indicates the year sampling 
occurred and which Aroclor mixture(s) were included in the total PCB concentration 
calculation. 

 

Figure B. 17: Aroclor method vs. congener method regression analysis for carp in 
Brest Bay, Lake Erie (MDEQ, 2013). The legend indicates the year sampling 
occurred and which Aroclor mixture(s) were included in the total PCB concentration 
calculation. 
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Figure B. 18: Aroclor method vs. congener method regression analysis for lake trout 
in Thunder Bay, Lake Huron (MDEQ, 2013). The legend indicates the year sampling 
occurred and which Aroclor mixture(s) were included in the total PCB concentration 
calculation. 

 

 

Figure B. 19: Aroclor method vs. congener method regression analysis for carp in 
Saginaw Bay, Lake Huron (MDEQ, 2013). The legend indicates the year sampling 
occurred and which Aroclor mixture(s) were included in the total PCB concentration 
calculation. 
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Figure B. 20: Aroclor method vs. congener method regression analysis for carp in 
Lake St. Clair (MDEQ, 2013). The legend indicates the year sampling occurred and 
which Aroclor mixture(s) were included in the total PCB concentration calculation. 

 

 

Figure B. 21: Aroclor method vs. congener method regression analysis for walleye in 
Lake St. Clair (MDEQ, 2013). The legend indicates the year sampling occurred and 
which Aroclor mixture(s) were included in the total PCB concentration calculation. 
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Figure B. 22: Aroclor method vs. congener method regression analysis for lake trout 
in Keweenaw Bay, Lake Superior (MDEQ, 2013). The legend indicates the year 
sampling occurred and which Aroclor mixture(s) were included in the total PCB 
concentration calculation. 
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Figure B. 23: Correlation matrix of Great Lakes sites characteristics from Table B. 5. 
Six correlations were statistically significant (indicated by the significance levels). 
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Figure B. 24: Comparison of mean depth from inland lakes and maximum depth from 
Great Lake sites vs. the total PCB concentration in fish used in MLR analysis. 

Table B. 6: Ratios of average PCB congener concentrations that significantly 
impacted PCA- light congeners: heavy congeners. From Figure 3.15, Component B 
was most affected by congeners 44, 49, 52, 66, 74 and 77 (light congeners) while 
Component A was most affected by congeners 138, 153 and 163 (heavy congeners). 
‘Atm’ stands for atmospherically.  

 Great Lakes Inland Lakes 

 atm impacted 
locally and atm 

impacted atm impacted 

locally and 
atm 

impacted 
min 0.68 0.20 0.06 0.07 
max 0.89 0.49 1.50 1.40 
average 0.77 0.33 1.08 0.45 
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