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Abstract

For enzymatic hydrolysis, a mechanistic model on enzymatic hydrolysis of pure
cellulosic substrates was improved to consider oligomer reactions with beta-glucanases,
inhibition of oligomers to cellulases and enzyme decay. Then a novel and general modeling
framework was developed for enzymatic hydrolysis of hemicellulose-cellulosic substrates.
This mechanistic model, for the first time, took into consideration explicitly the time
evolution of morphologies of intertwining cellulose and hemicelluloses. This novel
mechanistic model was applied to optimize the composition of enzyme mixtures for
substrate conversion and monosaccharides yield during simultaneous enzymatic hydrolysis
of different lignocellulosic substrates. For anaerobic digestion, the original "Anaerobic
Digestion Model No.1" (ADM1) developed by the International Water Association (IWA)
task group was modified by improving the bio-chemical framework and integrating a more
detailed physico-chemical framework. The modified ADM1 was used to investigate the
effects of metal ions and other inorganic components on anaerobic digestion in batch

reactor.
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Chapter 1 Introduction and Research Objectives



Biofuel is the fuel derived from biological materials. It is renewable and sustainable and
can reduce our high reliance on fossil fuels and thus the greenhouse gas emission. Biofuels
includes a wide range of types such as biogas, bioethanol and biodiesel, which can be
produced through thermochemical and biochemical conversion processes. Biomass
materials have been considered as the major sources for biofuel production. The basic
categories of biomass materials include lignocellulosic biomass, food and industrial
wastes. Lignocellulosic biomass refers to the plant materials such as wood, grass,
agriculture residues and energy crops, which are abundant and sustainable feedstocks for
biofuel production. The main components of lignocellulosic biomass include cellulose,

hemicelluloses and lignin.

The biochemical conversion process of lignocellulosic biomass mainly contains three
steps, which are pretreatment, hydrolysis and fermentation. The goal of the pretreatment
step is to break down lignin and increase the enzyme accessibility of cellulose and
hemicelluloses. In the hydrolysis step, pretreated substrates are catalyzed by enzymes and
converted into soluble sugars, which is also the critical step of converting lignocellulosic
biomass into biofuels. In the fermentation step, microorganisms finally convert soluble
sugars into biofuels such as bioethanol. Besides lignocellulosic biomass, food and
industrial wastes are other important sources for biofuel production. They can be used to
produce biogas through anaerobic digestion by microbes. There are five major biochemical
processes involved in anaerobic digestion, which are disintegration, hydrolysis,
acidogenesis, acetogenesis and methanogenesis. In the disintegration process, solid wastes
are disintegrated into carbohydrates, proteins, fats and inerts. In the hydrolysis process,

carbohydrates, proteins and fats are hydrolyzed into monosaccharides, amino acids and
2



long chain fatty acids. These two processes occur outside the microbes and are catalyzed
by extracellular enzymes. In the next acidogenesis and acetogenesis processes, the
chemicals from the hydrolysis process are converted into acetates, hydrogen and carbon
dioxides, which are finally converted into biogas in the final methanogenesis process.
These processes occur inside the microbes and are catalyzed by intracellular enzymes. In
addition, many other physico-chemical processes simultaneously occur with biochemical
processes. These process are not directly mediated by microbes, such as liquid-gas transfer,
ion association and dissociation and precipitation, but can affect the bio-chemical processes

of anaerobic digestion.

Both enzymatic hydrolysis and anaerobic digestion are important biochemical processes
for biofuel production. The main research objective of the dissertation is to better
understand and optimize these two processes based on mechanistic models. In chapter two,
an improved mechanistic model for enzymatic hydrolysis of pure cellulosic substrates is
developed which considers oligomer reactions with beta-glucanases, inhibition of
oligomers to cellulases and enzyme decay. In chapter three, a novel and general modeling
framework is developed for enzymatic hydrolysis of cellulose and hemicellulose
simultaneously. This mechanistic model, for the first time, takes into consideration
explicitly the time evolution of morphologies of intertwining cellulose. In chapter four, the
novel mechanistic model is applied to optimize the composition of enzyme mixtures for
substrate conversion and monosaccharides yield during simultaneous enzymatic hydrolysis
of different lignocellulosic substrates. In chapter five, the original "Anaerobic Digestion
Model No.1" (ADM1) developed by the International Water Association (IWA) task group

is improved by improving the bio-chemical framework and integrating a more detailed
3



physico-chemical framework. The modified ADML1 is then used to investigate the effects

of metal ions and other inorganic components on anaerobic digestion in batch reactor.



Chapter 2 On Improved Mechanistic Modeling for Enzymatic Hydrolysis

of Cellulose?!

! Published in the Journal of Chemical Engineering & Process Technology
This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author

and source are credited. © 2014 Zhang Y, et al.



Abstract

An improved model for enzymatic hydrolysis of cellulose was developed which
considered oligomer reactions with beta-glucanases, inhibition of oligomers to cellulases
and enzyme decay processes during hydrolysis. The oligomer reactions with beta-
glucanases were modeled based on the enzymatic glucan chain fragmentation kinetics
which described the further fragmentation of oligomers in solution after being solubilized
from the insoluble glucan chains. The inhibition effects on all cellulases by different types
of cello-oligomers were taken into account based on competitive adsorption of cello-
oligomers to the active site of cellulases, which is a critical factor contributing to the
decrease in the rate of enzymatic hydrolysis of cellulose. As another factor affecting the
kinetics of cellulose hydrolysis process, enzyme decay factor was incorporated into the
model as the typical first order decay process. We considered two different processes for
cellulases losing activity during hydrolysis in order to better understand the impact of
enzyme decay on hydrolysis. Numerical simulation results were presented to investigate
the phenomenon of hydrolysis rate slow-down commonly observed in experiments.
Improvement of the predictive capability of the new model over previous one was
demonstrated by comparing the simulations with experimental data. After considering all
the possible hydrolysis rate slow-down factors, the simulation results could agree with the
experimental data very well, showing that the model is capable to fully capture the rate

decrease of cellulose hydrolysis.



2.1 Introduction

The enzymatic hydrolysis of cellulose into soluble and fermentable oligomers (e.g.,
glucose and cellobiose) has been under intensive investigation due to the potential
utilization of lignocellulosic biomass to produce sustainable biofuel and replace the non-
renewable fossil transportation fuel. In order to optimize the design of reactors and the
biofuel production process, it is critical to have a mechanistic model describing the
hydrolysis kinetics of solid cellulosic substrates being solubilized by all kinds of cellulases
in detail. Unlike non-mechanistic and semi-mechanistic models which usually include less
than two substrate and/or enzyme variables and are used to fit experimental data (Zhang
and Lynd, 2004), mechanistic models involve multiple substrate and enzyme variables and
can provide insights on the complex chemical and physical properties of both enzyme and

substrate and all the enzymatic and material transformations occurring during hydrolysis.

Over the past 10 years, many advanced mechanistic models have been developed in full
generality to describe the enzymatic hydrolysis process of cellulose based on more realistic
representations of cellulosic substrate (Griggs et al., 2012a, b; Hosseini and Shah, 2011a,
b; Levine et al., 2010; Levine et al., 2011; Zhang and Lynd, 2006; Zhou et al., 2009b). For
example, Zhou et al. (2009b) developed a detailed mechanistic model for enzymatic
hydrolysis of cellulose considering the substrate morphologies and their coupling with
morphology-depended substrate hydrolysis kinetics. As described in the model, the whole
process of cellulose hydrolysis could be viewed as the process of fragmentation and
solubilization of glucan chains and lead to the evolution of cellulosic substrate morphology,

that is, the organization of glucan chains, which, in turn, significantly influenced the
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cellulose hydrolysis kinetics. The concept of smallest accessible compartment (SAC) was
first proposed, defined as a minimal volume by external and internal surfaces exposed to
enzyme-accessible hydrated interior voids of the solid cellulosic substrate material, and
used as minimal time-evolving structural unit to keep track of the cellulosic substrate
morphology. In addition, a site representation formalism of enzyme hydrolytic
fragmentation coupled with morphology evolution was also introduced in the model. The
formalism considered all the B-(1, 4)-glycosidic bonds on glucan chains as six types of
bond sites based on their locations and reactions with different kinds of cellulases that
mainly act on the solid substrate. Basically, these cellulases can be categorized into two
broad classes, which are endo-glucanases and exo-glucanases. Endo-glucanases usually
adsorb onto the glucan chains of insoluble part of substrate and randomly cut the internal
B-(1,4)-glycosidic bonds. Unlike endo-glucanases, exo-glucanases only cut the terminal f3-
(1, 4)-glycosidic bonds at the ends of each glucan chain. Since the two ends of each glucan
chain are chemically distinct from each other, exo-glucanase can be divided into two
groups, which are cellobiohydrolase I (CBH I) and cellobiohydrolase 11 (CBH I1). CBH lls
usually cut the terminal bonds from the non-reducing end of each glucan chain, while CBH
Is cut the terminal bonds from the reducing end of each glucan chain. These cellulases can
be produced in nature by many different cellulolytic fungi species. The most commonly
used species in industry is Trichoderma species, especially Trichoderma reesei (T. reesei).
Thus T. reesei EG1 (Cel7B), T. reesei CBH Il (Cel6B) and T. reesei CBH | (Cel7A) are
the three major cellulases that often used in model simulation work to analyze the process
of enzymatic hydrolysis of cellulosic substrate. The site representation formalism was
proposed to not only take into account all kinds of solid-substrate-acting cellulases but also

8



change the view of solid cellulosic substrate from a bundle of glucan chains with different
lengths into a composite of six types of bond sites, so that the total number of ordinary
differential equations (ODES) can be reduced at magnitude of two orders and solved much

more efficiently.

Almost all of the mechanistic models have recognized that the enzyme accessibility of
substrate, or the enzyme-accessible substrate surface area, is a critical rate-limiting factor
during the process of enzymatic hydrolysis (Levine et al., 2010; Zhang and Lynd, 2006;
Zhou et al., 2009b). In order to increase the kinetics of hydrolysis and obtain more soluble
oligomers, it will be helpful to increase the amount of accessible glucose units (B-(1,4)-
glycosidic bonds) exposed on substrate surface by pretreatments before hydrolysis
proceeding. However, most of the simulation results from the mechanistic models still
could not agree with the experimental data completely, especially not be capable to capture
the full extent of the hydrolysis rate slow-down, probably due to the reason that these
models did not consider the complex inhibition relationships between substrate and
oligomers except glucose and cellobiose, and possible enzyme decay and inactive
absorption. Some of the models also did not consider the oligomer reactions which happen
in liquid phase with the beta-glucanases. Unlike endo- and exo-glucanases, beta-glucanases
mainly act on soluble cello-oligomers in solution which often contains no more than 7
glucose units. The most commonly used cellulolytic fungi species to created beta-
glucanases in industry is Aspergillus species, especially Aspergillus niger (A. niger)
because Trichoderma species do not produce significant amount of beta-glucanases
compared to other cellulases. A. niger beta-glucosidase (BG) is the major beta-glucanase

and often used with other cellulases to increase their efficiency during enzymatic
9



hydrolysis of cellulose, because dissolved oligomers could cause strong inhibition effects
by adsorbing the free cellulase molecules. BGs can hydrolyze soluble oligomers into
smaller ones mainly by releasing glucose from them and avoid the strong inhibitions
between cellulases and long-chain oligomers. It is clear that the oligomer reactions with
beta-glucanase will affect hydrolysis kinetics and change inhibition equilibrium. Ignoring
the kinetics slow-down factors will also hinder the precise prediction of final conversion

level of cellulosic substrate after a long time-scale of enzymatic hydrolysis process.

In this study, we improve the model described by (Zhou et al., 2009b) by incorporating
(1) the reactions involving beta-glucanases digesting soluble oligomer sugars in solution,
(2) the comprehensive competitive inhibition effects of oligomers from glucose (G1) to
cellohexaose (G6) on enzymatic hydrolysis, and (3) the enzymatic thermal deactivation
and inactive adsorption. Here, we consider enzymatic thermal deactivation as the process
that the hydrolytic enzymes lose the ability of binding to substrates, and consider enzymatic
inactive adsorption as the process that the hydrolytic enzymes lose the ability to continue
the subsequent catalytic reactions although they are able to bind to substrate. We carry out
numerical analysis to investigate the impacts of aforementioned factors on the kinetics of

enzymatic hydrolysis of cellulose.

2.2 Materials and Methods

2.2.1 Oligomer reactions with beta-glucanases

The basic part of the model we used in this study was from the mechanistic model of

enzymatic hydrolysis of cellulose presented by Zhou et al. (2009b). In their work, the
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concept of smallest accessible compartment (SAC) was first proposed to describe the
geometrical construction of pretreated pure cellulosic substrate material. An SAC unit was
defined as a minimal volume that is delimited by external surfaces and by internal surfaces
at the internal surfaces of the voids exposed to all kinds of cellulases. SACs initially had a
random distribution of sizes, and to represent the distribution, the parameter of SAC
geometry class was used and labeled by "¢" with ¢=1, 2... Mmp where Mmp was the
population size of SAC geometry classes. During the process of enzymatic hydrolysis, the
size of each SAC would shrink due to the enzymatic ablation of glucose units from the
SAC surfaces. And glucose units which were originally blocked would gradually become
exposed on the SAC surfaces. In addition, Zhou et al. (2009b) proposed in their work an
innovative surface site concentration formalism which treated each SAC as a composite of
six different types of B-(1,4)-glycosidic bond sites. These site types were labeled by index
"u" and referred to as N-, O-, X-, Y-, L-, and R-sites. N-site bonds could only adsorb, and
only be cut by endo-glucanases. O-site bonds could not adsorb any enzyme molecule due
to the obstruction. X-site bonds could adsorb and be cut by either endo-glucanases or
cellobiohydrolase 1ls, which were located a distance of ky glucose units from the non-
reducing ends of glucan chains. Y-site bonds could adsorb and be cut by either endo-
glucanases or cellobiohydrolase Is, which were located a distance of ky glucose units from
the reducing ends of glucan chains. L- and R-site bonds represented the non-reducing and
reducing ends of glucan chains respectively. They were both broken bonds and could not
adsorb any enzyme molecule. Then the production rate of glucose units dissolved from

glucan chains of class-oc SACs was given by
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X5 = XS 1 Ry o (D) (1)

where Rg (1) is the production rate of oligomers containing [ glucose units (1 < [ < I =
7) dissolved from insoluble glucan chains exposed on class-c SAC surface caused by the
enzymatic cuts on B-(1,4)-glycosidic bonds. I is the minimal length of insoluble glucan
chains, which could be varied into any length if needed. In the mode, we considered
cellohexaose (G6) as the longest cello-oligomer in solution based on the typical industrial

applications.

We improved the mechanistic model to not only consider the processes that endo- or
exo-glucanases cut the B-(1,4)-glycosidic bonds of insoluble glucan chains to produce
oligomers, but also consider explicitly the reactions of oligomers after being released from
solid substrates that involve beta-glucanases in solution. The production rates of soluble

oligomers in solution are given by
Xs(1) = Yo Rs,s (D) + Rs(D) )

where Rg(1) is the production rate of the oligomers containing [ monomer units after being
dissolved from glucan chains, which describes the reactions between oligomers and beta-
glucanases. R¢ (1) did not exist in the model of Zhou et al. (2009b) where all the oligomers

kept increasing in solution by being hydrolyzed from solid substrate.

Based on the study of sub-site structure of A. niger beta-glucosidase (Yazaki et al.,
1997), the reaction mechanism between oligomers and beta-glucanases in solution can be

considered as: an oligomer which contains [ — 1 glucose units can adsorb and be
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hydrolyzed by an beta-glucanase molecule into a glucose unit and an oligomer containing

[ — 1 glucose unit(s). So the expression of Rg(1) can be written as

(ve(2) - 2(2) + Y5y (D) - 2 (D), 1=1
Rs(D) = { (D 2D +y.A+1) 2z, (1+1), 2<1<lg—2 @)
L=y, (D) - 2 D), =1 —1

where y,. (1) is the oligomer cutting rate coefficient, z, (1) is the concentration of (k, )
enzyme-oligomer (EO) complexes where the oligomers contain [ glucose units adsorb the
type-k beta-glucosidase enzyme molecules. The expression of EO complexes z, (1) can be

written, based on the enzyme adsorption equilibrium, as

Z}c(l) = I;c(l) " U 3’5([) (4)

with 1 <1< l; =7. Here, (1) is the oligomer adsorption coefficient; ys(l) is the
concentration of free oligomers containing [ glucose units dissolved from glucan chains,
and v, is the concentrations of type-k free enzyme molecules in solution which could be

any type of cellulases.

2.2.2 Inhibition effects

Cellulase inhibition describes the process that inhibitors limit the activity of cellulase
molecules. Based on the impacts on cellulase, cellulase inhibitors can be classified into
reversible and irreversible inhibitors in which the oligomer products of cellulose hydrolysis
(e.g. glucose and cellobiose) are reversible inhibitors (Sharma, 2012). Reversible inhibitors

can be classified into three types, which are competitive, uncompetitive and mix (or non-
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competitive) inhibitors. Most of the inhibition processes between the cello-oligomer
inhibitors and cellulases are competitive inhibitions (Sharma, 2012) where inhibitors can
only bind free cellulase molecules in solution, which can also be described by adsorption
Equation (4), where v, is now the concentration of type-k cellulase (both endo- and exo-
glucanases) free enzyme molecules in solution, and I, (1) is the oligomer adsorption

coefficient specifically for different cellulases.

If the EO complexes are formed by oligomers and endo- (or exo-) glucanases by
oligomers binding onto active sites of binding domain of cellulases, and since we assume
that catalytic domain cannot act on soluble oligomers, their corresponding values of y,. (1),
oligomer cutting rate coefficient, will be 0. Similarly, we could consider the inhibition of
glucose (G1) to the beta-glucanases hydrolysis, where glucose binds onto the active site of
beta-glucanase and no further catalytic action can be taken. Thus for beta-glucanases, if
they are adsorbed by glucose units, y,. (1) will also be 0 in that glucose units are the finial
products of oligomer reactions and cannot be further dissolved. In Equation (4), v, and
ys(1) are related to their corresponding total concentrations u, and xs(l) . The

relationships are written as

U = Ve + Zu,a Zuo T lex(l) (5)

xs(1) = ys(D) + Xe 2, (1) (6)

Zy .6 1S the concentration of enzyme-substrate complexes formed by type-p bond sites and

type-k enzyme molecules on class-c SAC surfaces. Equations (5) and (6) can be used to
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find the expressions of v, and ys(l) as functions of u, and xg(l) respectively, which are

written as
Uk
Vie = 1+ o LYot ZiLe(D)-ys() (7)
O
ys(D) = —=——— )

14Xk I (Dv

where y, , is the concentration of free type-u sites on glucan chains exposed on class-o
SAC surfaces, L, , is the adsorption coefficient between type-k cellulase molecules and

type-u sites on glucan chains. Then the more detailed expressions of Rs(l) can be obtained

by combining Equations (3), (4), (7) and (8).

2.2.3 Enzymatic thermal deactivation and inactive adsorption

Many experiments illustrated that even after alleviating the inhibition effects mostly,
the rate of enzymatic hydrolysis of cellulose still decreases during hydrolysis, meaning that
inhibition effect is not the only rate-limiting factor (Bansal et al., 2009; Levine et al., 2010).
Many studies considered the process of cellulases losing activities as a contributing factor
to the hydrolysis rate slow-down, which was called enzyme decay process and often
modeled as a first order process (Bansal et al., 2009; Levine et al., 2010). Enzyme decay
process naturally happen to all hydrolytic enzymes based on experimental observations
(Hong et al., 2007; Yang et al., 2006). In principle, the enzyme decay will make the
enzymes lose their hydrolytic capability through two possible meanings according to the
specific structure of enzymes. Most of the hydrolytic enzymes contain a carbohydrate
binding domain and a catalytic domain. Typically, these two domains are away from each
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other and connected by a long segment of linker sequence. Some enzymes, however, only
contain a catalytic core domain, such as T. reesei EG Il (Cel12A), which bind to substrate
through the substrate-binding sites in the catalytic core domain. So if the carbohydrate
binding domains or the substrate-binding sites are deactivated, hydrolytic enzymes will
lose the capability of binding to the cellulosic substrate chain sites. On the other hand, if
the catalytic domain is deactivated, hydrolytic enzymes are still able to bind to substrate

chain sites, but will not carry out the subsequent catalytic reactions.

We incorporated into the model these two different mechanisms, which are referred to
as the model the enzymatic thermal deactivation and the enzymatic inactive adsorption,
respectively. We defined the enzymatic thermal deactivation in the model as the process
that the binding domains or sites of cellulase molecules kept losing the ability to adsorb on
glucan chains during hydrolysis. By contrast, we defined enzymatic inactive adsorption in
the model as the process that the catalytic domains of all cellulases kept losing the reactivity
to cut glucan chains after adsorbing on the substrate. For a single cellulase molecule, the
binding and catalyzing abilities could keep losing simultaneously. The decay processes of
cellulase may be caused by the affection of temperature during hydrolysis, since each type

of enzymes has its own optimal temperature to work efficiently for certain period of time.

The enzyme decay factor D, is set to D,, = (0.5)¢/T1/2k in the model for type-k enzyme
molecules where Ty, k is the half-life for type-x enzyme molecules, which represent the
time for an enzyme lost half of its enzymatic activity. We apply the decay factor D, to

parameters u,. and z,, , to represent the processes of enzymatic thermal deactivation and

16



enzymatic inactive adsorption respectively and test the impact range of enzyme decay on

the cellulose hydrolysis kinetics.

2.2.4 Model parameters

The specific activity and adsorption equilibrium coefficients of Endo-glucanase (EG1)
and Exo-glucanases including Cellobiohydrolase I and 11 (CBH I and Il) are from the work
by (Zhang and Lynd, 2006). For beta-glucanase (BG), the values of adsorption and kinetics
parameters describing the reactions with oligomers are from the literature (Chauve et al.,
2010; Yazaki et al., 1997). In the model, the values x=1, 2, 3 and 4 represent EG1, CBH
Il, CBH | and BG. The mass ratio of EG1:CBHI:CBHII in the commercial enzyme
Spezyme CP was 0.17:0.24:0.13 (Nagendran et al., 2009). The values of inhibition
parameters are from various literature sources (Levine et al., 2010; Lo Leggio and
Pickersgill, 1999; Tolan and Foody, 1999) due to the fact that we considered several
different inhibition effects involving 4 different types of cellulases (EG1, CBHI, CBHII
and BG) and 6 types of oligomers from glucose (G1) to cellohexaose (G6). The half-life
of all kinds of cellulases was set to 42.5h as reported in the work of Drissen et al. (2007).
The substrate and enzyme loadings were set based on the experimental data (Hong et al.,

2007; Yang et al., 2006).

2.3 Results and Discussion

2.3.1 Testing cellulosic substrate accessibility

In this section, we investigate the effect of enzymatic accessibility of cellulosic

substrates. In the work of Zhou et al. (2009a), the initial value of F, for Avicel, that is, the
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ratio of enzyme-accessible glucose units to the total number of glucose units in Avicel was
set to 0.00620, which was originally described in the work of Zhang and Lynd (2004). Not
until recently, Hong et al. (2007) determined that the value of F, for Avicel should be
0.00232 from the experiments testing the adsorption of fluorescent cellulase-like molecules
on the substrate surface. We test some new values of F, and compare the new simulation
results with the original ones from the work of Zhou et al. (2010). The experimental data
(Hong et al., 2007; Yang et al., 2006) was used in the work of Zhou et al. (2010) to compare

their simulation results, and will be adopted in this work.

Figure 2.1 clearly shows that increasing the enzymatic accessibility for substrate prior
to hydrolysis could allow more enzyme molecules attack the bonds on glucan chains and
thus increase the hydrolysis rate and finial conversion level of substrate. Substrate
accessibility in hydrolysis is believed to govern the entire hydrolysis process and act as a
critical rate-affecting factor during hydrolysis. The previous initial value 0.00620 for F,
was obtained based on the nitrogen BET measurements. In the process of such adsorption-
based measurements, nitrogen was usually used to test the initial accessible surface area of
substrate. However, since nitrogen molecules are much smaller than enzyme molecules,
and the substrate need to be in dry conditions, the value is probably overestimated and thus
not accurate. Hong et al. (2007) determined the accessible surface area of cellulosic
substrate by testing the adsorption of molecules containing fluorescent proteins and
cellulose-binding modules (CBMs), which had similar size as cellulases could be
quantitatively tested. However, the value 0.00232 may be underestimated due to the fact

that only one type of cellulose-binding module was used to create cellulase-like molecules.
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Recently, Levine et al. (2010) pointed out in their work that the initial value of F, from the
work of Hong et al. (2007) might be underestimated. Based on their estimation by using
the Random Sequential Adsorption (RSA) simulation process, the initial accessible surface
area of Avicel should be at least 3.5m?g™, meaning that initial value of F, should be
0.00341 for Avicel. We believe that the initial value of F, should be set between 0.00232
and 0.00620 so that 0.00341 is more accurate and will be used in next sections. The
parameter of cellulosic substrate accessibility is critical and reflects the cellulase-accessible
surface area. However, it was estimated that during the early stage of hydrolysis the
substrate accessibility could either decrease or increase if using different substrate
morphologies (Zhou et al., 2009a), remaining the impact of substrate accessibility on the
hydrolysis rate unclear. Most of the experiments only tested the value of substrate
accessibility at the beginning and the end of hydrolysis and did not keep track of its
changing through the entire process. So in order to better understand the role of substrate
accessibility, it is highly recommended to test substrate accessibility at different time points
during hydrolysis. By using smaller initial values for F,, the new hydrolysis rates are a
little slower than the original ones but still could not capture the full extent of the hydrolysis
rate decreases shown in the experimental data. The enormous differences between the
simulation results and experimental data also indicate that only considering substrate
morphology as hydrolysis rate-limiting factor is not enough to reproduce the kinetics slow-
down phenomenon during the process of enzymatic hydrolysis of cellulose. More
hydrolysis rate-limiting factors, such as oligomer inhibition, should be considered when

constructing a model of enzymatic hydrolysis of cellulose.
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2.3.2 Oligomer reactions

In this section, we demonstrate the simulation results after considering the oligomer
reactions in solution without inhibition effects. In the work of Zhou et al. (2009b), the
reactions involving beta-glucanases were not concerned. Although the main rate-limiting
steps of the cellulose hydrolysis process is the reactions that endo- and exo-glucanases
depolymerize insoluble long glucan chains into soluble oligomers, the changes of
oligomers in solution could also affect the hydrolysis kinetics in turn and thus could not be

ignored.

Figure 2.2 shows the comparison of final conversion level of cellulosic substrate
between simulations considering and not considering oligomer reactions in solution. As we
expected, there is no difference of simulation results after incorporating oligomer reactions.
Because the conversion level describe the ratio of the total amount of dissolved substrate
to the initial amount of substrate. According to the mass balance, although the amount of
each type of oligomer will be changed after considering oligomer reaction, the total amount
of soluble substrate should be the same as that considers no oligomer reaction. In Figures
2.3 and 2.4, differences are illustrated for cello-oligomers during hydrolysis, indicating that
if considering oligomer inhibition effects, simulation results taking into account the

oligomer reactions will be more accurate.

2.3.3 Inhibition effects

In this section, we demonstrate the simulation results after considering the oligomer

reactions in solution and all kinds of competitive inhibition effects between 4 types of
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cellulases and 6 types of cello-oligomers. As shown in Figure 2.5, after incorporating both
the oligomer reactions and inhibitions, the simulation results can capture some extent of
the decrease in the rate of cellulose hydrolysis often observed in experiments, showing that
inhibition is one of the critical factors contributing to the phenomenon of hydrolysis rate

slow-down.

However, the process of inhibition still remains to elucidate in more details. Although
we considered all kinds of competitive inhibitions that could possibly happen in solution
during enzymatic hydrolysis, it still might exist other types of inhibition relationships, such
as uncompetitive inhibitions of cellobiose which can not only bind free cellulase molecules
but also EO or ES complexes. Deeper understanding of the inhibitions during cellulose

hydrolysis is needed to improve the kinetic models.

2.3.4 Enzyme decay and the slow-down of enzymatic hydrolysis Kinetics

In order to reproduce the phenomenon of hydrolysis rate slow-down, we first test the
enzymatic decay factor in the model. It is clear that only considering the inhibition effect
during hydrolysis is not enough to investigate the rate decrease of enzymatic hydrolysis of
cellulose. Similar view was given in the work of Levine et al. (2010) where they tried to
fit the data by using much shorter estimated half-life values for cellulases. Here, we use
the experimentally-determined half-life values for all the 4 types of cellulases in the model,
and test the impact range between enzymatic thermal deactivation and enzymatic inactive
adsorption on the hydrolysis kinetics. As shown in Figure 2.6 the impacts of enzymatic
thermal deactivation and enzymatic inactive adsorption on the hydrolysis rate are very

close to each other, probably because they are both reflecting the affection of temperature
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on the rate of hydrolysis. Also, both the impacts of enzymatic thermal deactivation and
enzymatic inactive adsorption are weaker than the impact of the inhibition effects if
comparing the results in Figures 2.5 and 2.6, indicating that inhibition is the prime factor
contributing to the decrease in the rate of hydrolysis. After combining all the possible factor
that cause the hydrolysis rate slow-down, the simulation results can agree with the
experimental data very well in Figure 2.7, which indicate that considering inhibition and
enzyme decay together in the model of enzymatic hydrolysis of cellulose can capture the
full extent of the rate decrease phenomenon during the hydrolysis process. In order to
enhance the hydrolysis rate and the conversion level of cellulosic substrate, a route is to
increase the loading or improve the specific activities of cellulases. However, increasing
the amount of cellulases will causes a huge waste of cellulase since only a small part of
free cellulase molecules could adsorb onto the substrate and as hydrolysis proceeds all the
cellulase molecules will decay and gradually lose the abilities of binding and catalyzing.
Besides, since the oligomer inhibition effects impact the hydrolysis rate more than other
rate-limiting factors as discussed before, highly efficient cellulases may increase the rate
in the early stage of hydrolysis but will unavoidably end up with binding oligomers and
could not enhance the conversion level too much. So a better approach would be to add
cellulases of small loading at different time points during hydrolysis with substrate filtered
from the original solution into another reactor. This approach can theoretically reduce the
impact of inhibition and keep the high efficiency of cellulases which need to be further

tested by experiments.

Mechanistic modeling the entire process of enzymatic hydrolysis of cellulose is a

challenging work. The big differences probably come from two sources: (1) the parameters
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used may not be accurate or may not be considered constants along the entire hydrolysis
process (i.e. could be functions of time and operational conditions); and (2) there are some
other factors that have not been taken into account, for example, lignin effect. Nevertheless,
our work in the paper shows that when more affecting factors are considered reasonably,
the mechanistic modeling results can be improved, and the simulated trends agree very
well with the experimental data which imply that the modeling has captured the intrinsic

characteristics of the hydrolysis.

2.4 Conclusions

We have developed a detailed modeling framework for enzymatic hydrolysis of
cellulose. The model for the first time not only consider the main hydrolysis step where
long insoluble glucan chains are hydrolyzed by endo- and exo-glucanases on the surface
of solid substrate, but also the reactions in solution which involve beta-glucanases and
oligomers released from the conversion process of insoluble glucan chains. To investigate
the phenomenon of hydrolysis rate slow-down often reported in the literature, the model
considers the competitive inhibition effects of all possible cello-oligomers on cellulases
and two theoretical enzyme decay processes, which are enzymatic thermal deactivation and

the enzymatic inactive adsorption.

By using the model, we have presented analyses for the role of enzymatic accessibility
of cellulosic substrate. As the enzyme-accessible surface area increases, both the hydrolysis
rate and the finial conversion level of substrate could increase, showing that the enzymatic
accessibility is a critical rate-limiting factor during the entire process of hydrolysis. After

incorporating the reactions involving beta-glucanases and oligomers in solution and
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inhibition effects by oligomers, the simulation results can capture some extent of the
decrease in the rate of cellulose hydrolysis often observed in experiments. We have tested
the impacts of enzymatic thermal deactivation and the enzymatic inactive adsorption on
the rate of hydrolysis and found the impacts of the two enzyme decay processes are very
close to each other. We have presented detailed investigation of the phenomenon of
hydrolysis rate slow-down. From the simulation results, we have found that inhibition
effect of oligomer and enzyme decay are both critical factors contributing to the kinetics

slow-down phenomenon during the process of enzymatic hydrolysis of cellulose.

Nomenclature

D,.: decay factor of type-k enzymes

F,: enzymatic accessibility of cellulosic substrates

I.(1): oligomer adsorption coefficient for (x, 1) EO complexes (1/mM)

k, k' number of glucose units contained in a glucan chain

[ : chain length, equal to the number of glucose units contained in a glucan chain
ls: minimum insoluble chain length for glucan chains, =7

L, ,: substrate adsorption coefficient for (x, i) ES complexes (1/mM)

R(1): changing rate of soluble oligomers in solution contained [ glucose units
Rs (1): production rate of soluble oligomers contained [ glucose units dissolved from
glucan chains exposed on class-c SAC surfaces (mM/min)

T1 /2, half-life of type-k enzymes (min)

u,: total concentration of type-x enzymes (mM)

v, concentration of free type-k enzymes in solution (mM)
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Xs - total concentration of glucose units dissolved from glucan chains exposed on class-c
SAC surfaces (mM)

xs(1): concentration of oligomers dissolved from glucan chains containing [ glucose units
Yuc- concentration of free type-u sites on glucan chains exposed on class-c SAC surfaces
(mM)

ys(1): concentration of free oligomers dissolved from glucan chains containing [ glucose
units

Zy .6+ CONCentration of (i, 1) ES complexes exposed on class-c SAC surfaces (mM)
z,.(1): concentration of (x,l) EO complexes formed by type-k enzymes and oligomers
containing [ glucose units (mM)

k. index of enzyme types

v, (D): cutting rate coefficient for (x, 1) EO complexes (1/min)

1, 1': index of site types

o, index of SAC classes
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Tables
Table 2.1 Parameters used in the model

Parameter Value Units Source

(Zhang and Lynd, 2006;

LyyLixLyy 3 LmM Zhou et al., 2009)
(Zhang and Lynd, 2006;
Lox Loy 4 1/mM Zhou et al., 2009)
(Zhang and Lynd, 2006;
LanLax Loy Lay 0 1/mM Zhou et al., 2009)
. (Zhang and Lynd, 2006;
YinVix Yiy 235 1/min Zhou et al., 2009)
. (Zhang and Lynd, 2006;
Y2x 10.6 1/min Zhou et al., 2009)
. (Zhang and Lynd, 2006;
Vay 6.2 1/min Zhou et al,, 2009)
. (Zhang and Lynd, 2006;
V3N Vax Van Yoy 0 1/min Zhou et al., 2009)
I;(1) 0.06 1/mM (Levine et al., 2010)
I1,(1) 15(1) 0.032 1/mM (Levine et al., 2010)
1;(2) I,(2) I3(2) 0.13 1/mM (Tolan and Foody, 1999)
(Lo Leggio and Pickersgill,
1;(3) I,(3) I5(3) 0.3 1/mM 1999; Tolan and Foody,
1999)
(Lo Leggio and Pickersgill,
I1,(4) I,(4) I3(4) 0.37 1/mM 1999; Tolan and Foody,
1999)
(Lo Leggio and Pickersgill,
I1;(5) I,(5) I5(5) 0.44 1/mM 1999; Tolan and Foody,
1999)
(Lo Leggio and Pickersgill,
1,(6) I,(6) I5(6) 0.51 1/mM 1999; Tolan and Foody,
1999)
I,(1) 0.294 1/mM (Yazaki et al., 1997)
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14(2)

1,(3)

I,(4)

1,(5)

1,(6)

Y4(1)

Ya(2)

Y4(3)

Ya(4)

va(5)

¥4(6)

1.136

3.846

4.000

2.174

1.449

1897

1738.9

1422.8

895.8

843.1

1/mM

1/mM

1/mM

1/mM

1/mM

1/min

1/min

1/min

1/min

1/min

1/min

(Chauve et al., 2010;
Yazaki et al., 1997)

(Chauve et al., 2010;
Yazaki et al., 1997)

(Chauve et al., 2010;
Yazaki et al., 1997)

(Chauve et al., 2010;
Yazaki et al., 1997)

(Chauve et al., 2010;
Yazaki et al., 1997)

This work

(YYazaki et al., 1997)

(Chauve et al., 2010;
Yazaki et al., 1997)

(Chauve et al., 2010;
Yazaki et al., 1997)

(Chauve et al., 2010;
Yazaki et al., 1997)

(Chauve et al., 2010;
Yazaki et al., 1997)
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Figure 2.1 Simulation results using different initial values of F, compared with experimental data. The substrate and
enzyme have initial properties of (a) 20 g/L Avicel and 4.1 g/L Spezyme CP and (b) 10 g/L Avicel and 0.51 g/L Spezyme
CP together with 30 1U beta-glucanase/g Avicel (57.69 mg/L beta-glucanase)
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Figure 2.2 Simulation results of finial conversion level with and without consideration of oligomer reactions in solution.
The substrate and enzyme have initial properties of 10 g/L Avicel and 0.51 g/L Spezyme CP together with 30 IU beta-
glucanase/g Avicel (57.69 mg/L beta-glucanase)
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Figure 2.3 Simulation results of glucose concentration with and without consideration of oligomer reactions in solution.
The substrate and enzyme have initial properties of 10 g/L Avicel and 0.51 g/L Spezyme CP together with 30 IU beta-
glucanase/g Avicel (57.69 mg/L beta-glucanase)
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Figure 2.4 Simulation results of oligomer concentrations (a) without and (b) with consideration of oligomer reactions in
solution. The substrate and enzyme have initial properties of 10 g/L Avicel and 0.51 g/L Spezyme CP together with 30
IU beta-glucanase/g Avicel (57.69 mg/L beta-glucanase)
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Figure 2.5 Simulation results considering oligomer reactions and inhibitions compared with experimental data. The
substrate and enzyme have initial properties of (a) 20 g/L Avicel and 4.1 g/L Spezyme CP and (b) 10 g/L Avicel and
0.51 g/L Spezyme CP together with 30 IU beta-glucanase/g Avicel (57.69 mg/L beta-glucanase)
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Figure 2.6 Simulation results considering different enzyme decay factors compared with experimental data. The substrate
and enzyme have initial properties of (a) 20 g/L Avicel and 4.1 g/L Spezyme CP and (b) 10 g/L Auvicel and 0.51 g/L

Spezyme CP together with 30 1U beta-glucanase/g Avicel (57.69 mg/L beta-glucanase)
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Figure 2.7 Simulation results considering all rate-limiting factors compared with experimental data. The substrate and
enzyme have initial properties of (a) 20 g/L Avicel and 4.1 g/L Spezyme CP and (b) 10 g/L Avicel and 0.51 g/L Spezyme
CP together with 30 U beta-glucanase/g Avicel (57.69 mg/L beta-glucanase)
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Abstract

We develop a novel and general modeling framework for enzymatic hydrolysis of
cellulose and hemicellulose simultaneously. Our mechanistic model, for the first time,
takes into consideration explicitly the time evolution of morphologies of intertwining
cellulose and hemicelluloses within substrate during enzymatic hydrolysis. This
morphology evolution is driven by hydrolytic chain fragmentation and solubilization,
which is, in turn, profoundly affected by the substrate morphology. We represent the
substrate morphology as a randomly distributed Smallest Accessible compartments (SACs)
which are described by geometric functions to track total volume and exposed surface
substrate materials, including both cellulose and hemicelluloses. Our morphology-plus-
kinetics approach then couple the time-dependent morphology with chain fragmentation
and solubilization resulting from enzymatic reactions between various bonds in cellulose
and hemicelluloses and a mixture (i.e. endo-, exo- and oligomer- acting) of cellulases and
hemicellulases. In addition, we propose an advanced and generalized site concentration
formalism that considers different polysaccharide chain types and different monomer unit
types on chains. The resulting ODE system has a substantially reduced size compared to
conventional chain concentration formalism. We present numerical simulation results
under real enzymatic hydrolysis experimental conditions from literature. The comparisons
between the simulation results and the experiment measurements demonstrate

effectiveness and wide applicability of the proposed mechanistic model.
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3.1 Introduction

Cellulose and hemicelluloses are the major polysaccharides existing in the cell wall of
woods, straws, grasses and other natural plants on the earth. The amount of cellulose and
hemicelluloses are, respectively, about 33%-51% and 25%-39% of the dry weight of plants
(Sjostrom, 1993; Sun et al., 2004). Both Cellulose and hemicelluloses have been
recognized as important renewable energy sources due to their abundance and potential to

produce biofuels.

The mechanism of enzymatic hydrolysis of cellulose and hemicelluloses is not well
understood due to the complexity of the enzyme system and structural and morphological
heterogeneity of the substrate. During the last 40 years, a great number of kinetic models
have been developed in order to better understand the mechanism and to facilitate the
experimental studies of enzymatic hydrolysis of cellulose (see Zhang and Lynd, 2004 for
detailed review). A majority of these models are either non-mechanistic or semi-
mechanistic models which are mainly used in data fitting (Zhang and Lynd, 2004). More
recently, studies have been focused on the development of detailed mechanistic models for
enzymatic hydrolysis of cellulose (Griggs et al., 2012a, b; Levine et al., 2010; Zhou et al.,
2009a; Zhou et al., 2009b; Zhou et al., 2010). These models involved more than one
substrate and/or enzyme variable and described the mechanisms of hydrolysis in detail.
Most importantly, they avoided the unrealistic simplification in the past that viewed
cellulose as an assembly of isolated glucan chains without obstructive interactions, so that
most of the glucan chains are initially inaccessible to enzymes and gradually become

accessible by hydrolytic removal of overlaying glucan chains. These mechanistic models
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not only provide tools for studying the reaction mechanisms involved in enzymatic
hydrolysis process, but also have potential utilities for industrial process design and

enzymatic system optimization.

On the other hand, the development of detailed mechanistic model considering
enzymatic hydrolysis of hemicelluloses is much less advanced, regardless of the equal
importance of hemicellulose to biofuel production. By now, only a few models of
enzymatic hydrolysis of hemicelluloses have been developed (Belkacemi and Hamoudi,
2003; Feng et al., 2003; Harjunpaa et al., 1995; Liu et al., 2012). Most of the models were
only considering one certain group of hemicelluloses and obviously cannot be used to
predict the conversion of plant materials that usually contain several groups of
hemicelluloses with different structural characteristics of backbones and side-groups.
Furthermore, to our best knowledge, there exists no mechanistic model that takes
consideration of both cellulose and hemicelluloses simultaneously during enzymatic
hydrolysis. While for hydrolysis of substrate where a large percentage of the
hemicelluloses could have already been removed by pretreatment techniques, the need for
such comprehensive model is less obviously urgent, the major reason of absence of the
model is probably due to much higher mathematic complexity caused by the large variation

of hemicelluloses and their complicated structural interactions with cellulose.

In this work, we develop a detailed mechanistic model for simultaneous enzymatic
hydrolysis of cellulose and hemicelluloses, considering the substrate morphologies and
their coupling with morphology-depended substrate hydrolysis kinetics. The cellulose and

hemicellulose hydrolysis, i.e. chain fragmentation and solubilization, also significantly
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influence the concurrent hydrolysis-driven evolution of the substrate morphology. We
extend the concept of smallest accessible compartment (SAC) as a minimal volume by
external and internal surfaces exposed to enzyme-accessible hydrated interior voids of the
solid substrate material with consideration of intertwining between hemicellulose and
cellulose chains. In addition, an advanced site representation formalism of enzyme
hydrolytic fragmentation coupled with morphology evolution is introduced. The new
formalism considers all bond sites, which can be attacked by a variety of hydrolytic
enzymes, between monomer units of both cellulose chains and various hemicellulose
chains. This model is developed in full generality to present a replication of real-world
hydrolysis and allows us to predict the enzymatic accessibility and conversion level for

both hemicellulose and cellulose within substrates.

3.2 Methodology

3.2.1 Morphology of substrate containing hemicellulose and cellulose

Cellulose is known as a composite of linear glucan chains whose backbone is only
composed of D-glucose units linked to each other by B-(1, 4)-glycosidic bonds. Cellulose
exists in most of the plant species on the earth and differs in degree of polymerization
(Zhang and Lynd, 2004). Unlike cellulose, hemicelluloses are a group of polysaccharides
varying in the composition and the degree of polymerization. Based on the characteristics
of backbones hemicelluloses can be categorized into several groups in which the most
predominant ones are mannans and xylans (Tenkanen, 2004). The backbone of mannans is
a linear or slightly branched chain composed of B-(1, 4)-linked D-mannose units and D-

glucose units. Other monomer units, mainly D-galactose units, usually attach on the
39



backbones as side groups. The backbones of xylan is composed of -(1, 4)-linked D-xylose
units and also have some monomer units attached as side groups such as L-arabinose units
(Sun et al., 2004; Tenkanen, 2004). Some pretreatment of lignocellulosic biomass, such as
ammonia fiber expansion, could retain majority of cellulose and hemicellulose, and
dissolve and re-distribute lignin (Chundawat et al., 2011). Hereafter, we refer to the
substrates, which mainly contain cellulose and hemicellulose with lignin being ignored
during hydrolysis, as hemicellulose-cellulosic substrate, as compared to pure cellulosic and

ligno-cellulosic substrate.

Within the hemicellulose-cellulosic substrate, all the chains tend to be a dense and
spatially correlated organization. Such substrate morphology will unavoidably limit the
rate of hydrolysis because a large fraction of chains are initially inaccessible to enzyme
molecules and cannot be hydrolyzed. In addition, hemicellulose-cellulosic substrates, like
cellulosic substrates, often have larger internal enzyme accessible area than external
enzyme accessible area due to the large and sufficiently-distributed pores and cracks within
the substrate particles (Weimer et al., 1990). In the work of Zhou et al. (2009b), two
concepts, smallest accessible void (SAV) and smallest accessible compartment (SAC),
were first proposed and used to describe the morphology of cellulosic substrates. These
two concepts can be extended and used here in a way that morphology of substrate
containing both cellulose and hemicellulose can be depicted. For hemicellulose-cellulosic
substrates, the smallest void that can be invaded by enzyme molecules is called SAV,
which could have different sizes for different enzyme species. SAC is defined as a minimal
volume of the substrate delimited by enzyme-accessible surfaces which not only contain

external surfaces but also internal surfaces from the voids in the interior of the substrate.
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Figures 3.1 and 3.2 illustrate a cellulose elementary fibril and hemicelluloses, and
respectively the subdivision of a single contiguous hemicellulose-cellulosic substrate
particle into SACs by SAVs. Note here we use the 36-chain square shape model only as an
example to represent crystalline cellulose elementary fibril and its positional relation with
hemicelluloses. While there may have different structural shapes and sizes of elementary
fibril, there is no close relationship between the structure and distribution of SAC and shape
and size of elementary fibril. As illustrated in Figure 3.2, substrate is composed of a great
variety of SACs that represent a random distribution of shapes and sizes including any
extremes, that is then modeled with a large but finite number of SAC geometry classes.
Our general SAC concept can consider different possible directions of enzyme attack
during hydrolysis that is due to the severity of orientational and directional disorder of the
cellulose and hemicellulose chains, including but not limited to (1) chains within the SAC
exhibit orientational order with all chain ribbon faces oriented approximately parallel to
the SAC surface, (2) chains within the SAC are orientationally disordered, but remain
directional ordered, with all chain directions aligned approximately parallel, i.e. substrate
comprises highly aligned fibers of random chain facial orientations, and (3) chains within
the SAC are highly both orientationally and directionally disordered, i.e. substrate is highly

amorphous (Zhou et al., 2009Db).

As hydrolysis happens, the chains on the surface of SAC is solubilized into solution and
the previously buried chains will be exposed to enzyme access, which leads to the
shrinkage of SACs. To quantify the substrate morphology evolution, each SAC is further
defined in terms of elementary layers, where each layer is a fraction of the given SAC

which can be removed from the surface if all the monomer units in the outer layers are
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hydrolyzed. Figure 3.3 illustrates the partitioning of an SAC, selected from Figure 3.2, into
elementary layers. Each elementary layer is represented by a different value of layer
number 1 in the way that the highest value represents the outermost one. Notice that the
concept of elementary layer is not a real reflection of the layered structure of SAC but only
a convenient counting tool to keep track of the amount of monomers either exposed on

each SAC surface or contained in its volume at any time during hydrolysis.

To represent the variety of the linear chains and side groups presented in hemicellulose-
cellulosic substrate, a finite number of SAC "chain types", such as glucan chain and xylan
chain, labeled by p is introduced so that xy,, the total concentration of monomer units
contained in substrate, and x,,, the total concentration of exposed monomer units on the

surfaces of substrate, have such expressions
Xy = Yo xV,a(Aa) = Zp Xyp = Zp,a xV,p,a(Aa) (1a)
Xy = o xM,o(Aa) = Zp XM,p = Zp,a xM,p,o(Ao) (1b)

where xy ,  is the total concentration of monomer units of type-p chains contained in the
class-c SACs, and x, ,, ;- is the concentration of monomer units of type-p chains exposed
on the class-c SACs. 1 is treated as a continuous variable used to keep track of the
elementary layers of each SAC, and the indexes ¢ and p describe the sizes of SACs and the
chain types contained in SACs respectively. By way of terms shown in Equations (1a) and

(1b), four parameters @y, , ;(A,), Pu,p s (A5), Py, and @, , can be created and expressed

as qbV,p,a(Aa) = xV,p,J(AJ)/xV,J(AJ)I ¢M,p,a(/10) = xM,p,O'(/lJ)/xM,J(/lJ)I 5V,p = xV,p/

xy and @y, = Xy /Xy . Here, @y, ;(1,) is defined as the native ratio of the total
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concentration of monomer units contained in type-p chains to those contained in all types
of chains of class-c SACs, and @y ,,(4,) is defined as the native ratio of the
concentration of exposed monomer units contained in the type-p chains to those contained
in all types of chains of class-c SACs. 5‘,,,) is defined as the overall fraction of total
monomer units contained in type-p chains, and 5M,p is defined as the overall fraction of

exposed monomer units of type-p chains. The SAC geometric functions of hemicellulose-

cellulosic substrate are developed in Supporting Information section A and given as
dA,a
Zp xV,p,a(Aa) = BV,aAa (29)

Zp xM,p,a(Aa) = Zp xV,p,a(/la) - Zp xV,p,a(/la - 1)@(/10 -1) (2b)

where By ; is the molar volume prefactor for class-c SACs, and dg, is the ablation
dimension factor for class-c SACs. For all the SAC classes, we set dy , = 2 because all
chains within an SAC are believed to exhibit "directional” order directions, as shown in

Figure 3.1.
3.2.2 Advanced site concentration formalism

To greatly reduce the large amount of ordinary differential equation variables generated
from chain formalism, the site formalism was first proposed and developed for cellulosic
substrate hydrolysis in which all glucan chains were treated as a composite of only 6
different types of B-(1,4)-glycosidic bond sites, referred to as N-, O-, X-, Y-, L-, R-sites
(Zhou et al., 2009b). The classification of these 6 site types was based on the interactions

between B-(1, 4)-glycosidic bonds on pure cellulose chains and 3 cellulase species:
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endoglucanase, cellobiohydrolase | and cellobiohydrolase Il. For hemicellulose-cellulosic
substrate hydrolysis, however, there will be different types of chains possessing different
types of monomer units and side groups. Besides, more enzyme species may also be
involved during hydrolysis, as show in Table 3.1, making it necessary to develop advanced
and generalized site formalism for hemicellulose-cellulosic substrate hydrolysis, as

illustrated in Figures 3.4a-b.

First, two parameters are created and labeled by U; and U;; respectively. U; denotes the
type-i monomer unit and the broken bonds (i.e. left or right ends) belonging to the type-i
monomer units, whereas U;; denotes the intact bonds formed by the left ends of type-i
monomer units and the right ends of type-j monomer units in which the subscripts "i" and
"j*" could be the same. Both U; and U;; are used to describe the diversities of monomer
units and bonds contained in the backbones. After incorporating them into the previous six-

type bond site formalism for cellulose, the type of sites are expanded and could be

categorized into six site groups, referred to as Ny, Xy Yy Luy Ry, and O.

Second, considering the side groups, another two parameters are created and labeled by
S; and J; respectively. S; denotes the type-i side groups, whereas J; denotes the type-i side
bonds linking the backbones and side groups. So now there are seven groups of site types:
Ny,;» Xuyj Yo Ly Ry Ji and O in the new bond site formalism, which can be used to
represent any type of chains in hemicellulose-cellulosic substrate, as illustrated by Figures
3.4a-b. The concentration relationship between bond sites and monomer units on the

substrate surface is Y., , @ X, p.6(t) = Xu,6(As(t)), Where u represents any site type, the
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weight factor w), represents the fraction of a monomer unit associated to certain site type
in backbones, that is, w, = 1 for intact bond site types Ny, Xuyj Yoy, and O; w, = 1/2
for broken bond site types Ly, and Ry,,. For the side bond site types J;, w, = 1 is also set

to count the side groups.

As hydrolysis proceeds, all types of chains exposed on each SAC surface can be cut by
enzymes. The chain length [ is defined as the number of monomer units contained in the
backbone of a chain. If the length of a type-p chain fragment resulting from a cut is less
than a certain minimum insoluble length, denoted by [s,, then the fragment will
immediately be dissolved, which results in the SAC surface layer ablation. So the SAC
surfaces changing rate during hydrolytic ablation can be described by a system of coupled
rate equations containing two dynamic variables A,(t) and x, , 5(t). The surface layer

ablation rate equations are derived in Supporting Information section B and given by

%00 = Rupo = Roe(Ae) Py p0(Ae — DGupo (3a)
Ao = Ry/(Byoagly™ ) (3b)
Ne(Ae) = 1= 03,%m,6(A6) /03, %v,6(A5) (3¢)
Ry = Zup OuRpypo (3d)

In Equation (3a), the first term R, , , is the net production rate of type-u sites due to site

fragmentation and the second term —R;1,(A5) @ p 5 (A — 1) g+ 1S due to native site
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exposure from underlying layer as a result of hydrolytic removal of all types of overlaying

sites in the surface layer.

The production rate of monomer units dissolved from type-p chains of class-c SACs

and the production rate of soluble oligomers originally belonging to type-p chains are given

by

. lsp—1

Xs.po = =1 lRS,p,a(l) (4a)
J.CS,p = ZURS,p,a(l) + RS,p ) (4b)

where Rg , -(1) is the production rate of oligomers containing [ monomer units (1 <1 <
ls,) and dissolved from type-p chains exposed on class-c SAC surfaces. Rg , (1) is the
changing rate of the oligomers containing [ monomer units and dissolved from type-p
chains, which describes the reactions between oligomers and beta-enzymes in solution. The
constructions of R, ,  and Rg , ;(1) both require (i) the concomitant solutions of the
enzyme adsorption and inhibition equilibriums, (ii) the chain fragmentation probabilities
and (iii) the enzymatic bond cutting reaction rate coefficients, whereas the construction of

Rs (D) only need to consider the enzyme adsorption and inhibition equilibriums as

described in Supporting Information section C.
3.2.3 Ablation and oligomer rate equations

In general, cutting a type-p site belonging to type-p chains will change the number of
all types of sites belonging to type-p chains at SAC surfaces. To describe the sites

change, AN, , , , is denoted as the mean increment of type-p' sites per type-p site being
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cut on type-p chains exposed on class-oc SAC surfaces. So R that is, the production

wpo
rate of type-u' sites resulting from cuts of all site types belonging to type-p chains, subject

to all enzyme types «, per class-c SAC, can be expressed as

Ry po = ZicuViupZiwp ANy yp.o (52)
AIVHIM,,(I = Yk=12r/=1 Boo(k K |, +DAN 1 , (K, k) (5b)
where AN, , ;(k, k") is the increment of type-u' sites that is produced by a bond cut

generating a (k, k") type-p chain fragment pair, and B, ;(k, k'|u, +1) is the probability for
a randomly selected intact bond of given site type u to be located k monomer units from
the L-end and k" monomer units from the R-end of a type-p chain exposed on surface of a
class-c SAC. The detailed expression of AN s shown in Supporting Information

wwp.o

section F is obtained based on the expressions of AN (k, k') and P, ;(k, k'|u, +1)

u'.p,o

from Supporting Information sections D and E.

By definition, the production rate of soluble oligomers R , ;(k) can be expressed as
RS,p,a(k) = ZK,M VK,M,,DZK,M,,D,O' Zﬁ:lsyp—k[Pp,a(kr k' |,U, +1) + Pp,a (k" kl.u: +1)] (6)
which can be simplified into

RS,p,o(k) = ZK,;L Vx,u,pzx,u,p,aANS,u,p,a(k) (7)

ANS,M,p,J(k) is defined as the production factor of oligomers. The detailed expression of

AIVS,H,p,U(k) is given in Supporting Information section E which, like the expression of
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AN 15,0 CONtaiNs the type-p chain number probability variable F, (1) with a few "short"

chain lengths up to the cut-off length . , defined by I , = Is , + max(l;,, Iz ,) — 2. The
expression of P, ;(1) is given by Equation (H.9) as described in Supporting Information

section H.

The closed ordinary differential equation (ODE) system for the site concentration
formalism now is completed, including Equations (3a-d), (4a-b), (5a-b), (7) and (C.3),
(E.10), (F.1), (H.1), (H.6), (H.8) in SI. The independent dynamical variables of this ODE
system are x, , 5, A¢ and H, 5(1) with I , < | < ,. Intermediate variables z,, , ; are
evaluated from enzyme adsorption and inhibition equations. In addition, we can obtain the
concentrations of dissolved monomer units xs ,(I) by solving enzyme adsorption and

inhibition equations and oligomer production rate equations together.
3.3 Numerical Simulation Results and Discussion

In this section, numerical simulations are carried out using real experimental conditions,
and simulation results are compared with the experimental data from literature. The
substrates used in the experiments were either poplar solids or corn stover, where the major
type of hemicellulose is xylan. All the experiments used ammonia fiber expansion (AFEX)
to pretreat substrate. It has been shown in recent studies that AFEX pretreatment could cut
the linkages between lignin and side-groups of hemicelluloses, create pores within the
substrate and relocate extractable lignin to the substrate surfaces (Chundawat et al., 2011).
In this work, to focus on the interactions between cellulose and hemicelluloses, we assume

that after the AFEX pretreatment the blocking effect of lignin can be neglected.
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All SACs could be categorized into three groups based on the components contained.
The first and the second group of SACs are composed of pure cellulose and pure xylan
respectively, while SACs belonging to the third group contain both cellulose and xylan.
Xylan, like other hemicelluloses, is believed to have intimate interconnection with
cellulose by twisting together the cellulosic microfibrils. However, the detailed structural
characteristics about how cellulose and hemicelluloses are spatially organized have still
remained unclear. We assume that for each SAC containing both cellulose and xylan, the
fraction of monomer units belonging to xylan linearly decreases as follows:

Py xy1,6(As) = max [m [¢M,Xyl,a (Ag) — ¢M,Xyl,o(ACO,o)] + Py xy1.0(Acos)s 0]

AU'_ACO,O'

(8)

with 1 < Aco s < Agy. Aco s represents the largest layer of class-c SACs containing the
smallest amount of hemicelluloses. The model requires a variety of kinetic, adsorption and
inhibition parameters for enzymes, which are determined from the literature. We assume
the initial values for @, x,, and F, which are the key parameters describing the enzyme
accessibilities of cellulose and xylan. The value of F, is decided by adjusting two Gaussian
distribution parameters A4,4 and Ay;4 as shown in Supporting Information section A.
Although currently we do not know the experimentally-decided values for these two key
parameters, we believe that they could be studied and measured by appropriate methods in
the future. All the parameters and their values are shown in Supporting Information section
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3.3.1 Comparison with experiments in Qing and Wyman (2011b) and investigation of

effects of substrate morphology

The total substrate loading was 0.2g of AFEX-treated corn stover in 10 mL reaction
volume. The amount of cellulose, and xylan were about 39.6% and 24.5% by weight
respectively. Spezyme CP cellulase (CP) (16.1 mg protein/g glucan), Novozyme 188 beta-
glucosidase (BG) (3.16 mg protein/g glucan), Multifect xylanase (MX) (16.1 mg protein/g
glucan) and a non-commercial beta-xylosidase (BX) (32.2 mg protein/g glucan) were used
in the experiments. The commercial enzyme Spezyme CP mainly contained endo-
glucanase (EG), cellobiohydrolase Il (CBH2), cellobiohydrolase | (CBH1) and endo-
xylanase (EX) in mass ratio 0.17:0.13:0.24:0.17 (EG:CBH2:CBH1:EX) (Nagendran et al.,
2009). Due to the current lack of the exact compositions of the other three commercial or
non-commercial enzymes, simplified compositions are used in the model: (i) MX contains
50% EX (about the same percentage of cellulases in Spezyme CP) and 50% other unknown
enzymatic species which are neglected, (ii) BG contains 100% beta-glucosidase, and (iii)
BX contains 100% beta-xylosidase. The total amount of debranching enzymes in the
commercial enzyme mixture are unknown and are believed to be, if there is any, very small

amount, thus the side chain reactions can be neglected in the substrate.

As shown in Figures 3.5A-D, simulation results for conversion times of both cellulose
and xylan agree with the experimental data very well. However, discrepancies are shown
in Figures 3.5E-F. Notice that in these two experimental conditions only BX (beta-
xylosidase) is applied, while in other conditions (A-D) either MX (contain endo-xylanases)

or MX-BX mixture is used. So the reason could be that beta-xylosidase itself may also
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have ability to hydrolyze xylan chains on solid substrate. This possible "Endo-acting"
ability of beta-xylosidase can also be found from other experiments (Banerjee et al., 2010a;

Banerjee et al., 2010b; Banerjee et al., 2010c) and need to be further studied.

We further investigate the effect of substrate composition on hydrolysis by testing
different initial percentages of cellulose and xylan with the same values of overall substrate
accessibility and the initial amount of exposed D-xylose units. The results shown in Figures
3.6A-B illustrate that decreasing the content of xylan in substrate could increase the
hydrolysis rates and the finial conversion levels of both cellulose and xylan. It seems that
the initial amount of xylan is the key factor affecting the final conversion level of substrate.
However, the most critical factor is, to be more precisely, the initial accessibility of xylan.
As shown in Figure 3.7, we test two substrates with the same amount of each component
but different conditions of accessibility and find that the substrate with higher value of
xylan accessibility can be hydrolyzed faster and reach higher level of conversion. So in
order to obtain higher conversion level of the substrate, we can either decrease the total

amount of xylan or increase the amount of accessible xylan before hydrolysis.

3.3.2 Comparison with experiments in Banerjee et al. (2010a)

The total substrate loading was 2.9 mg of AFEX-treated corn stover in 500 pL reaction
volume. The amount of glucan and xylan were 34.4% and 22.4% by weight respectively.
Hydrolysis conversion experimental data are extracted from the Table 1 and the
Supplementary Table S2 of the article. As shown in Table 3.2, the discrepancies between
the simulation results and experimental data are within 10% if considering all kinds of

inhibitions. Also, considering more inhibition effects in the simulation could decrease the
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results of conversion level. Notice that in this study only commercial enzyme CP, no beta-
glucosidase or beta-xylosidase, was used during hydrolysis, indicating that there would be
a large amount of different types of oligomers in solution. Such discrepancies may be
caused by the complex inhibition effects of oligomers on enzymes. Our model considers
common competitive inhibition effects (gluco-oligomers on cellulases and xylo-oligomers
on hemicellulases) and "crossover"” inhibition effects (xylo-oligomers on cellulases and
gluco-oligomers on hemicellulases). The discrepancies may indicate that some of the
assumed values of the inhibition parameters are not accurate, especially those crossover
inhibition parameters. Although recently some studies (Qing and Wyman, 2011a, b) have
been focusing on the crossover inhibition effect of different xylo-oligomers on cellulases
due to the structural similarity between D-glucose and D-xylose units. The crossover
inhibition effects still need to be further investigated, especially the unclear inhibition

effects of gluco-oligomers on hemicellulases.

3.3.3 Comparison with Experiments in Kumar and Wyman (2009)

The glucan loading was 0.1g of AFEX-treated poplar solids in 10 mL reaction volume.
The amount of glucan and xylan were about 46.6% and 15% by weight respectively.
Spezyme CP cellulase (CP) (28.1 mg protein/g glucan) and Novozyme 188 beta-
glucosidase (BG) (5.5 mg protein/g glucan) were used in the experiments. In the study, the
accessibility of cellulose during hydrolysis was measured by the amount of adsorbed
CBH1. The mass loading of purified CBH1 was 75 mg per g glucan initially contained in
the poplar solids. As described in the article, there were four stages during the process of

hydrolyzing AFEX-pretreated poplar. When the conversion level of glucan (cellulose)
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reached 35.2%, 45%, 65%, 85%, the conversion level of xylan respectively reached 55%,

70%, 80%, 85%.

Simulation results as shown in Table 3.3, are in great agreement with the experimental
data. It was concluded in the study that the cellulose accessibility would not change much
before late stage, which is confirmed by the simulation results. The reason for this constant
cellulose accessibility for a long period of hydrolysis time could be partially due to the time
evolution of substrate morphology. Before hydrolysis, the initial percentage of xylan is
higher in the outer layers than inner layers. As hydrolysis proceeds, surface layers will be
ablated by enzymes and underlying layers become exposed and accessible. Although the
total amount of accessible substrate will keep decreasing due to the shrinkage of the surface
area, the amount of accessible cellulose could remain stable for a long time period as the

percentage of cellulose keeps increasing.

3.4 Conclusions

A novel mechanistic model has been developed for the enzymatic hydrolysis of
hemicellulose-cellulosic substrates for the first time. This model couples the enzymatic
fragmentation kinetics of surface-exposed and enzyme-accessible chains of both cellulose
and hemicellulose within the substrate to rate equations describing the time evolution of
substrate morphology, resulting from the hydrolytic ablation of solid substrate surface
externally and internally. To describe the morphology of hemicellulose-cellulosic
substrate, the concepts of smallest accessible compartment (SAC) and smallest accessible
void (SAV) are adopted and further developed. Geometric functions based on SAC

elementary layer variables are developed to keep track of the volume and surface substrate
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materials for both cellulose and hemicelluloses. We then use a randomly distributed
population of SAC geometry classes to represent the random distribution of accessible
surface geometries commonly seen in real substrates. The intertwining feature of the
cellulose and hemicelluloses with substrates is depicted by distribution functions of

hemicellulose along SAC elementary layer variables.

The forgoing morphological concepts are then integrated with enzymatic chain
fragmentation and solubilization. The hydrolytic time evolution of the SAC structures is
modeled by a surface layer ablation formalism which couples the hydrolytic shrinkage of
SAC units to the enzymatic ablation of surface-exposed, both cellulosic and hemicellulosic,
chains. A general site concentration formalism is developed considering the fact that
hemicellulose chains consist of different types of monomer units and side groups connected
to backbone chains. The reactions involving beta-enzymes in solution and the inhibition
effects caused by soluble oligomers are also incorporated into the model. Three case studies
are carried out for the numerical simulation of enzymatic hydrolysis process. These cases
are carefully selected from literature experiments to use enzyme mixture of both cellulases
and hemicellulases to hydrolyze wood biomass pretreated by AFEX, which is believed to
retain majority of the cellulose and hemicellulose content in the biomass. The simulation
results show that this general modeling framework has the capability to simulate the
hydrolysis process, up to total completion, of hemicellulose-cellulosic substrates. The
effectiveness of the detailed mechanistic model is clearly illustrated by the good agreement
between the simulation results and experimental data. Further numerical analysis with

changed substrate morphology and inhibition gains some insights on how the distribution
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and intertwining of cellulose and hemicellulose would affect the enzymatic hydrolysis

performance.
Nomenclature

By : molar volume prefactor for substrate

By »: molar volume prefactor for class-c SACs

d4: ablation dimension for substrate

d, .- ablation dimension for class-c SACs

fup,o+ fraction of type-p sites on type-p chains exposed on class-c SAC surfaces, =

xu,p,a/xM,p,a

fE,p,o+ fraction of L-end broken sites on type-p chains exposed on class-c SAC surfaces,
= ZifLUL.,p,o

F,: overall fraction of exposed monomer units of substrate

F, - fraction of exposed monomer units of class-c SACs

Jupc- Native fraction of type-p sites on type-p chains contained in class-c SACs

gk p,o- Native fraction of L-end broken sites on type-p chains contained in class-c SACs,
= ZigLUi,p,a

H, -(1): concentration of type-p chains with length-1 exposed on class-c SAC surfaces
(mM)

I, , (1): oligomer adsorption coefficient for (x, p, [) EO complexes (1/mM)

k, k': number of monomer units contained in a chain
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kx , (ky,p): site position from L-end (R-end) which can be cut by exo-L (exo-R) enzymes,
=2 (=2)

[: chain length, equal to the number of monomer units contained in a chain

(1), average chain length for type-p chains exposed on class-c SAC surfaces

L5, - minimum insoluble chain length for type-p chains, =7

I, (lgp): length of L- (R-) terminal segment for type-p chains, = ky , + 1 (S ky, + 1)
lirp:=lp+lg,—1

lc »: cut-off length for type-p chains, = Ig , + max(l, ,, lg,) — 2

lgp: = max(lL,p, lR,p) -1

Ly, p- Substrate adsorption coefficient for (x, u, p) ES complexes (1/mM)

My p: population size of SAC geometric class

N, o (k): average number of type-p sites per type-p chain of class-c SACs

AN s

o p,oCk, k') increment of type-u” sites of type-p main chains produced by a cut on a

type-p chain generating a (k, k") type-p chain fragment pair

AN : mean increment of type-u' sites per type-u site being cut on type-p chains

wup,o-
exposed on class-c SAC surfaces
AN, » +(k): production factor of soluble oligomers

ANH,M,p,J(k): production factor of chain lengths

pO  pW  p® .

por Bipor Pupe: contributions to B, ;(ulk, k', +1) for finding type-p sites on class-o

SAC surfaces from the Interior, L-terminal and R-terminal segments
B, +(1): probability of a randomly selected insoluble type-p chain, exposed on a class-o

SAC surface, to contain I monomer units
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P, 5(k, k', ¢): probability that a bond randomly selected from the "super type-p chain" is a
C-bond, and that this bond is located k and k" monomer units from its nearest L-end and
R-end, respectively

P, 5(ulk, k', {): probability for a randomly selected bond from the "super type-p chain™ to
be of type-u site, given that the bond is a (-bond; and given that it is located k and k'
monomer units from its nearest L-end and R-end, respectively

P, 5(k, k'|u, +1): probability for a randomly selected intact bond of given type-p site to be
located k monomer units from the L-end and k' monomer units from the R-end of a type-
p chain exposed on a class-c SAC

Q,,+- native length distribution of type-p chains contained in class-c SACs

R,: negative rate of monomer units loss from class-c SACs into solution (mM/min)

R, - production rate of type-u sites on type-p chains exposed on class-c SAC surfaces
(mM/min)

Rs (1) production rate of soluble oligomers contained [ monomer units dissolved from
type-p chains exposed on class-c SAC surfaces (mM/min)

Ry p,(D): production rate of surface-exposed type-p chains of length [ on class-c SAC
surfaces (mM/min)

R, (1 = k, k). rate at which surface-exposed type-p chains of length [ exposed on class-
o SAC surfaces are being cut into two type-p chain fragments of length k and k', from the
L-ends and R-ends of the original type-p chains respectively. (mM/min)

S;: type-i side groups

u,: total concentration of type-k enzymes (mM)
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U;: index of broken site types L and R

U;;: index of intact site types N, X and Y

v, concentration of free type-k enzymes in solution (mM)

X, pc- CONcentration of type-p sites on type-p chains exposed on class-c SAC surfaces
(mM)

Xg,p,c- CONCentration of insoluble type-p chains exposed on class-6 SAC surfaces (mM)
Xs,p,c- total concentration of monomer units dissolved from the type-p chains exposed on
class-c SAC surfaces (mM)

xs,,(1): concentration of oligomers dissolved from the type-p chains and contained !
monomer units

X, total concentration of monomer units exposed on the substrate surface (mM)

Xy o concentration of monomer units exposed on class-c SAC surfaces (mM)

Xum,p,o- CONCENtration of monomer units belonging to type-p chains exposed on class-c SAC
surfaces (mM)

xy - total concentration of monomer units contained in the substrate (mM)

Xy - concentration of monomer units contained in class-c SACs (mM)

Xy, p,e+ CONcentration of monomer units belonging to type-p chains contained in class-o
SACs (mM)

Yup,o- cONcentration of free type-p sites on type-p chains exposed on class-c SAC surfaces
(mM)

¥s,p(D): concentration of free oligomers dissolved from type-p chains and containing [

monomer units
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Zyeu p,0- CONCENtration of (x, i, p) ES complexes exposed on class-c SAC surfaces (mM)
z,.,(1): concentration of (x, p, 1) EO complexes in which oligomers containing [ monomer
units (mM)

B, footprint of type-k enzymes

.- geometrical factor accounting for surface curvature effect

k. index of enzyme types

p- index of chain types

Yiewp- Cutting rate coefficient for (i, u, p) ES complexes (cuts per (x, i, p) ES complex
per time)

A layer number variable of class-c SACs

Aco,: cut-off layer of class-c SACs (the largest layer of class-c SACs containing the
smallest amount of hemicelluloses)

u, 1> index of site types (N-, O-, X-, Y-, L-, R-, J-)

o. index of SAC classes

®o,p,c- fraction of O-sites on type-p chains of class-c SACs

@y, - average fraction of type-i monomer units contained in type-p chains

®;,p- average ratio of side groups to the total number of monomer units contained in the
backbones of type-p chains

Py p,0- fraction of exposed monomer units contained in type-p chains of class-c SACs
5M,p: overall fraction of exposed monomer units belonging to type-p chains of substrate
@y , - fraction of monomer units belonging to type-p chains contained in class-c SACs

@y ,: overall fraction of monomer units belonging to type-p chains contained in substrate
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0 (Al): heavy-side step function, =1 if Al > 0,=0if Al < 0

¢, molar fraction of monomer units contained in class-c SACs, = xy ,/xy

¢ integrity variable with { = +1(—1) indicating intact (broken) bond, in the "super type-
p chain" construction of fragmentation probability

w,,: weight factor for type-p bond site: =1 for intact bond sites, =1/2 for broken bond sites,

=0 for side bond sites
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Figures

S (Cellulose

w Hemicelluloses

Figure 3.1 Structural illustration of cellulose and hemicelluloses in substrates. The core is crystalline cellulose
elementary fibril (CEF). The size (i.e. the number of cellulose chains contained) and shape of the CEF are still in debate.
The stricture model of CEF shown here is the 36-chain square shape model. Other models of CEF are not listed here.
There is no close relationship between the structure of SAC and CEF
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Figure 3.2 Structural illustration of cellulose and hemicelluloses in substrates. The core is crystalline cellulose
elementary fibril (CEF). The size (i.e. the number of cellulose chains contained) and shape of the CEF are still in debate.
The stricture model of CEF shown here is the 36-chain square shape model. Other models of CEF are not listed here.
There is no close relationship between the structure of SAC and CEF
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2\3\4\ 5\6\7

Figure 3.3 Schematic illustration of the partitioning of an SAC into elementary layers. Each layer is represent by a A-
value such that the layer with the highest A-value is the first (i.e. outermost) to be removed due to solubilization by
attacking enzymes during hydrolysis. The SACs of same geometric class have a same highest A-value
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Figure 3.5 Simulation results compared with experimental data from Qing and Wyman (2011b). Solid lines represent
simulations results of cellulose conversion. Dash lines represent simulations results of xylan conversion. Filled circles
represent experimental data of cellulose conversion. Blank circles represent experimental data of xylan conversion
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Figure 3.6 Model results testing the impact of initial substrate composition on hydrolysis. The total substrate loading is
0.2g in 10 mL reaction volume with CP (16.1 mg protein/g glucan) and BG (3.16 mg protein/g glucan) for all three cases.
The initial percentages of cellulose and xylan are shown in figures

CP+BG
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Figure 3.7 Model results using two different groups of values of accessibility. The total substrate loading is 0.2g in 10
mL reaction volume with CP (16.1 mg protein/g glucan) and BG (3.16 mg protein/g glucan) for both two cases. The
initial percentages of substrate components for two cases are 5.7% for xylan and 57.6% for cellulose. The #1 accessibility
set is: 0.0530 (cellulose); 0.5337 (xylan) and 0.1051 (total). The #2 accessibility set is: 0.2270 (cellulose); 0.0381 (xylan)
and 0.2066 (total)
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Supporting Information (SI)

Section A: SAC Geometric Functions

The expression of x;,(4) can be written as

xy (1) = ByA%a (A1)

where d is the ablation dimension and By, is the molar volume prefactor. x;, is dependent
on 4 with a simple power law. The assumed power low behavior x;, (1) « 194 shows that
the shape of SAC will be preserved during hydrolysis (Zhou et al., 2009). To keep track of

monomer units exposed on the SAC surface, we have

() = 1y () — 2y (A = 1)OA — 1) (A.2a)
with
01 —1) = {3:0 3 j g h (A.2b)

To represent the random distribution of SAC sizes, we use the parameter of SAC geometric
class, which is labeled by ¢ with 6=1, 2..., Mmp Where Mwp is the population size of SAC
geometric classes. So that xy, ;(4), the total concentration of monomer units contained in
class-c SACs, and xy (1), the concentration of enzyme-accessible monomer units

exposed on the surfaces of class-c SACs are given by

xV,o(lo) = BV,UAdA'(r (A3)

xM,O'(/lO') = xV,O'(AO') - xV,O'(Aa - 1)@(2'0 - 1) (A4a)
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with

(1L, 2,>1
6, —1) = {o, 0<1,<1 (A4b)

where By, is the molar volume prefactor for class-c SACs, and dy, is the ablation

dimension factor for class-c SACs. xy, , and x,, , must obey the relationships written as
Xy =Yg xV,a(Aa) (A.5)
Xy = Qg xM,a(/la) (A.6)

We use two parameters to describe the enzyme accessibility, which are F,, the overall
fraction of enzyme-accessible monomer units, andF, ;, the fraction of enzyme-accessible

monomer units for the class-o SACs. Their expressions are given by

g Aa’
Fao(Ae) = ’;’:’U—((M) (A7)
=t =358 Fag(ds) (A8)

where &, = xy ,/xy. The value of F, can be directly observed before enzymatic hydrolysis

and used as an initial input value, that is, FA(O), in the model, and decide the initial value of
¢, We use the assumption of the Gaussian distribution for the total molar concentration of

monomer units per geometric class, and then have

3 = exp [-(F520)2 2] / T exp [ - (52 ) (A9)
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By adjusting the two Gaussian distribution parameters A,,, and Ay,;4, a proper initial
distribution of the molar monomer concentration per geometry class can be obtained to

match the value of FA(O).

Section B: Derivation of Surface Layer Ablation Rate Equations

In order to derive the surface layer ablation rate equations, we first define —R >0 as

1,0

the loss rate of type-u sites belonging to type-p chains exposed on class-oc SAC surfaces,
and —R, > 0 as the total loss rate of monomer units exposed on class-c SAC surfaces into

solution. So that we can obtain

Zu p u u p,0 = xV J(AO'(t)) alaxV,J (Aa)ia (Bl)

where d,_ is shorthand for the derivative d/d, . The removal of a small fraction of a layer

during a short time interval dt will result in a removal of dx(fm) =0, Xy cdAs
monomer units from the SAC surface by chain fragmentation and then result in a change

(f m)

of SAC exposed surface area by dxy .~ = 0; xmsdA, monomer units. The net

concentration of newly exposed monomer units at the surface, resulting from the removal

of overlaying monomer units and the change of surface area, is thus

dx (exp) —dx (fra)+d (fra) —(a/l,,xVa aAUxM'U)d/lg

= —R,(1— 03, %p,0/01,%y 5 )dt
(B.2)

Based on Eq. (B.2), the net concentration of newly exposed sites is given by
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dx(&?) = dx(SP by s (Ag = D Gppe(As) (B.3)

where g, ,+(4s) is the native site fraction functions representing the fraction of type-p
sites contained in type-p chains in the interior of the class-c SACs. g, ,+(4,) can be
treated as a layer-independent parameter, which means g, , +(15) = Gup.6c(As) = Gup,o-
In addition, we denote g , , as the native L-end (or R-end) broken site fraction of type-p

chains in class-c SACs, which has such relationship Y.; g, o6 = 2i 9ry . po = 9Ep,c AN
L l

can be obtained from the degree of polymerization of type-p chains DF,.

Combining the surface exposure contribution dxg,:‘;) with the surface fragmentation
- (fra)
contribution dx, , ;' given by
(ra) _
dx, s = Rupodt (B.4)

we can obtain the net increment of type-p surface sites, that is, dx, ,, = dxg[: Y4

dx (&P

wp.o» and the rate function Equation (3a). Then from Eg. (B.1) we can immediately

obtain the changing rate of 1,, which is Equation (3b).
Section C: Enzyme Adsorption and Inhibition Equilibriums

The first step for an enzyme molecule to cut an intact bond is to form an enzyme—substrate
(ES) complex, that is, to adsorb a bond site exposed on SAC surfaces. The cutting rate for
a intact bond site of type u« in a chain belonging to type p, having already adsorbed an
enzyme molecule on the surface of an SAC belonging class o, is thus given by the product

of rate coefficient and ES complex concentration, v, , o Zy . 0,0+ Here x represents the type
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of enzymes; z,.,, , - represents the concentration of (i, 1, p) ES complexes on class-c SAC
surfaces; and y,., , represents the cutting rate coefficient (in the unit of cuts per second per

ES complex), which is identical for all the geometric classes. It is assumed that the ES
complex formation process is much faster than the bond cutting kinetics. Therefore, the
enzyme adsorption quasi-equilibrium is maintained at the SAC surfaces during hydrolysis

and given by

Zyup,o — Lx,u,p UxYu,p,o (C.1)

where y, , » is the molar concentration of free type-p sites contained in type-p chains on
class-c SAC surfaces, v, is the concentration of free type-x enzymes and L, , is the

substrate adsorption coefficient which is the inverse of the conventional desorption

equilibrium coefficient.

As hydrolysis proceeds, some enzyme molecules may also be inhibited by soluble
oligomers to form enzyme-oligomer (EO) complexes in solution. This type of enzyme

adsorption equilibrium in solution can be written as

Z;c,p(l) = Ix,p(l)vKYS,p(l) (C.2)

with 1 < I <l ,. Here, z,,(0) is the concentration of (x, p,[) EO complexes in which
each oligomer contains [ monomer units, I, ,(1) is the oligomer adsorption coefficient;
¥s,p(D) is the molar concentration of free oligomers contained [ monomer units and
dissolved from type-p chains, and v, is the same parameter as in Equation (C.1). As
described in Supporting Information section B, z, , , , and z, ,(1) can be calculated and
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expressed in terms of x, ,, and xs ,(I) by solving enzyme adsorption and inhibition

0.0

equations.

The construction of R , (1) describes the reactions between oligomers and beta-enzymes
and requires the solutions of the enzyme adsorption and inhibition equilibriums. In this
model, the reaction mechanism of beta-enzymes in solution is simplified as: a free oligomer
which contains [ monomer units can adsorb and be hydrolyzed by its corresponding beta-
enzymes into a monomer unit and an oligomer containing [ — 1 monomer unit(s). So the

expression of Rg ,(1) can be written as

lsp—1
y}c,p(z) ’ ZK,p(Z) + Zzs,p VK,p(l) ’ Zx,p(l)' =1
Rso(D) = { Vi p (D * 2, p (D) + Vi p (L + 1) - 2, , (L + 1), 2<1<l,-2 (C3
_yK,p(l) ' ZK,p(l)l = ls’p -1

where ¥, , (1) is the oligomer cutting rate coefficient. Note that in this model, only beta-
enzymes could hydrolyze oligomers in solution after forming EO complexes with them in
solution. So for endo- and exo- enzymes, their corresponding values of y,. , (1) are 0, which
means they are inhibited by forming EO complexes with oligomers. And for any monomer
unit, y,,(1) is also 0 which means all the enzymes will inevitably be inhibited by
monomer units during hydrolysis. Furthermore, both the cutting rate coefficient y, , (1) and
the oligomer adsorption coefficient I, ,(I) have two dimensions representing the enzyme

types and the chain types.
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The free enzyme and surface site concentrations v, andy, ,are related to their total

concentrations u, and x,, , 5, respectively, by way of the total enzyme and total site balance

relations:

U = Ve + Xppo Ziupo T Lpit Ziep (D) (C.4)
x5, (1) = Y5, (D) + X 2y p (1) (C.5)
Xupo = Yupo T L Zeupo + Liw o' fupoPrZiy o' o (C.6)

where ﬁl,p,(,:xu,p,a/xm,a. The last term in the Equation (C.6) arises from the fact that the
footprint area of a surface-adsorbed enzyme molecule is far greater than the average surface
area of a bond site. Hence, a type-k enzyme molecule, bound to a type-p' surface site, will
in effect cover up, and obstruct access to some number (B,.) of other surface sites that are
located in spatial proximity to the type-u' binding site. Due to the current lack of value of
B, Tor each type enzymes discussed in this work, we simply use the value of cellulase, that

is, 39, for all the enzymes.

Equations. (C.1), (C.2), (C.4), (C.5) and (C.6) can then be solved simply by iteration in
order for v, Y, p.6+ Zicup,o @Nd z, ,(1). Combining the mass action and balance relations,

the general form of enzyme adsorption and inhibition equilibrium can be shown as

Uy

14X 00,0 L pYup,ot2pl,pDYs,p (D)

(C.7)

U

V(D) = —22l__ (C.8)

1+, I, p (DVi
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Yipo = ZLbo (C.9)

Xu_'p(l‘l'zﬂl‘pl GHI‘pI’UTI)“I‘pI)

Xup =1+ Dk Ly, pVk (C.10)

Yup = Dk ﬂKLK,M,va (C.11)
Xu,p,o

Hu',p’,a = ﬁ (C.12)

To calculate v, and y, , , as functions of u, and x,, , , this system of coupled non-linear

equations can be solved iteratively, starting from the initial guess

v =

YOW) = x5, (D) (C.13)

0
Ly = %p0
Section D: Site Number Increments and Chain Site Distribution Model

AN (k, k") can be expressed as

w.po

AN, (kK'Y = Ny p o (k) + Ny p o (k") = Ny p o (k + k) (D.1)

where N, , »(k) denotes the average number of type-p sites per insoluble type-p chain of

class-o SACs for k = [ ,, with N

po(K) =0 fork <ls,, and AN/

o' po (k. k') is thus the

difference of the number of type-pu sites belonging to type-p chain caused by a cut.

The specific functional form of N, , ;(k) depends on the distribution of site types along a
type-p chain. So we construct the site distribution model based on the assumption that O-

sites are randomly distributed with a uniform probability ¢, ,, over all (I — 1) intact
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bonds within a type-p chain. By straightforward site counting, we thus construct N,, , 5(1)

for any insoluble type-p chain with [ > [ , = 7

(L= 1Dpo,p,0 m=0
Pu,p M= Ly, Ry,
Nﬂ,p,a(l) =< (1 - (pO,p,a)(pUi,p(pUj,p U= XUij’ YUij (DZ)
(=31 = P0,,0)PuioPu,0 = Ny,
o), U=

Here, @y, , is the average molar ratio of the type-i monomer units to all the monomer units
contained in the backbone of a type-p chain, and ¢, , is the average molar ratio of the

type-Ji side groups to all the monomer units contained in the backbone of a type-p chain.
Both of them actually characterize the natural composition of the type-p chains which can
be easily obtained from literature and used in the model. Based on Equations (D.1) and

(D.2),we can easily obtain the detailed expression of AN (k,k").

u'.p.o
Section E: Derivation of Chain Fragmentation Probabilities

This section shows the derivation of how to express B, ;(k, k'|u, +1) in terms of P, ;(1)
and B, ;(ulk, k', +1). Here, P, ;(1) is defined as the probability of a randomly selected
insoluble type-p chain, exposed on a class-c SAC surface, to contain [ monomer units, and
P, s(ulk, k', +1) is the probability for a randomly selected intact bond to be of site type x
on a type-p chain, provided that the site is located kK monomer units from the L-end and k'
monomer units from the R-end of the type-p chain. B, ;(ulk, k', +1) describes the

distribution of different site types along a type-p chain (relative to the chain ends).
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In order to express P, ;(k, k'|u, +1) in terms of B, (1) and B, ;(ulk, k', +1), first, let us
consider a random sample of type-p chains, with random chain lengths and a very large
sample size NL —o. Let these NL type-p chains be concatenated, in random order, into a
"super type-p chain" where the R-end of each individual chain is connected to the L-end
of its right neighbor chain by a fictitious bond, referred to as a "—1-bond", and the real
internal bonds between monomer units contained in each chain are referred to as "+1-
bonds". Hence, we are assigning to each bond site on the "super type-p chain™ a "bond
integrity” variable ¢, with { = +1 for intact bond site types Ny, Xy;o Yoy, and O,and ¢ =
—1 for broken bond site types Ly, and R, between adjacent chain ends (i.e. for a pair of

adjacent L, R-sites).

Then, let us consider the average chain length for type-p main chains (), 5, that is, the
average degree of polymerization (DP), for type-p chains exposed on class-c SAC surfaces.

(I),,+ can be expressed in terms of the L-end broken site fraction of type-p chains fz , 5,

or the concentration of type-p chain xg , 5, given by
. 1
<l)p,a =221 le,a(l) = E = xM,p,a/xE,p,a (E.1)

In Equation (E.1), f¢ - comes from the site type fractions f, , 5, which is, for any site type

belonging to type-p chains on class-c SAC surfaces, defined by

fu,p,a = xu,p,o/xM,p,o (E.2)

Based on the "uniform segment exposure™ assumption (Zhou et al., 2009), the number of

left chain ends must equal the number of right chain ends, that is ; x;,, , s = XiXry po =
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Xg,p,o- AlSO, because of the relationship between L, and Xy, site groups, and between Ry,
and Yy, site groups, we can get X fu,, p.oc = Xij fxy, .0 /(1 = Qo0,p0) AN i fry p.0 =

Yij fyuij,p,,, /(1= @o,p), SO that f¢ , ~ can be expressed as

fE,p,a = ZifLUi,p,a = ZifRUi,p,a (E.3)

Next, we denote P, ;(k, k’, {) as the probability that a bond randomly selected from the
"super type-p chain" is a {-bond, where (is either +1 or —1, and that this randomly selected
¢-bond will be located k = 1 monomer units from its nearest L-end and be located k' > 1

monomer units from its nearest R-end. The expression of B, . (k, k', ) is given by:

{Pp,o(k' k', +1) = fE,p,JPp,a(k + k,) (E.4)

B ok, k', =1) = fg 5o o (K)Fy 6 (k)
This can be derived from the "super type-p chain" construction as follows: for { = +1,
P, s(k, k', +1) is a joint probability for two conditions meeting at the same time: the first
one is that the bond located kK monomer units to the left of the randomly selected {-bond
should be a "—1-bond"; the second one is that the adjacent k 4+ k' monomer units to the
right of that "—1-bond" should form a single contiguous chain of length | = k + k. The
probabilities for these two conditions are fg , , and P, ;(k + k), respectively, hence the
joint probability P, ;(k,k’,+1) is the product of fz ,, and B, ;(k + k). For { = —1,

P, s(k,k',—1) can be derived by a similar way. And it can be easily verified that

Zk,k',{ Pp,a(k; k', () =1.
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Next, we introduce the conditional site type probability, given the type-p chain fragments,
denoted by B, ,(ulk, k', {) which is the probability for a randomly selected "super type-p
chain" bond to be of site type p, given that the randomly selected bond is a {-bond; and
given that it is located k and k" monomer units from its nearest "—1-bond" to the left and
to the right, respectively. Just like N, , - (k), the conditional type-p chain site probabilities
P, -(ulk, k', {) depend on the distribution of type-p sites along the type-p chains. In fact,
for purposes of the fragmentation Kinetics B, ,(ulk, k',¢) comprises the complete
mathematical description of the chain site distribution model. The values of

B, s(ulk, k', +1) and N, ,, (k) are not independent of each other: for any type-p chain site
distribution, B, ;(ulk,k’,{) must be normalized to X, P, (ulk,k’,{) =1, and
P,(ulk,k’,+1) and N, ,,(k) must obey the following general chain site number

counting relations for all intact bond site types:
NupoD) =0 -1, +1) T4 B o(ulk, 1 — k,+1) (E.5a)
for U= NUL'j’XUij’ YUL'j’ O with

1,  Al>0
@(Az)z{o TR (E.5h)

)

where B, ,(ulk, k', +1) completely determines N, , (k) for site groups Ny, Xy Yoy 0.
Based on the chain site model N, , (1), we thus assign the site groups Ny, Xu;;» Yu,; O of

the intact type-p chain bonds to the corresponding "super type-p chain +1-bonds”, while

formally Ly, and Ry, are randomly assigned to each "super type-p chain —1-bond™ with
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probability ¢, , /2 corresponding to w, = 1/2 for site groups formally Ly, and Ry, .

Then P, ;(ulk, k', {) can be written as

Booulk, k', 0) =

(67,+190,p,0 ,u=0
8¢ -19Pu,po/2 1= Ly, Ry,

) 5§,+15k,kx,p(1 - (pO,p,a)(pUi,p,O'(pUj,p,a JU = XUL.]. (E6)
5{,+15k’,ky'p(1 - (pO,p,o)(pUi,p,J(pUj,p,o =Yy

\O¢,+1 (1 - 5k,kx,p) (1 - 5k’,ky_p) (1- (pO,p,o)(pUi,p,J(pUj,p,o U= Ny,

Finally, we can construct the conditional type-p fragmentation probability, given the site
type, P, - (k, k'|u, ¢), defined as the probability for a randomly selected bond in "super
type-p chain" to be located k and k" monomer units from its nearest "—1-bond" to the left
and to the right, respectively, given that the bond is a {-bond and that it is of site type u.

By Bayes’ theorem, we have

, _ Poo(Ufk, k', 0Py sk )
PP,O'(k' k |[t, {) - Pp,a(ﬂ'o (E7)
where the unconditional site type probability P, ;(u, {) is given by:
6z 41/, U= Ny. , Xy, Yy..,0
{+1/up,o U U U
P ,() = 1P,k k', Q) = Yooy E.8
p,o(ﬂ {) Zk,k p,O'( ﬂ Z) {65’_1fu’p’a/2 ,‘Ll — LUL., RUL ( )

P, s(k, k'|u, {)is defined only when B, ;(u,{) > 0. The fragmentation probabilities are
normalized as Yy, X-1Po(k k' lu,{) =1 . So we obtain the expression of

P, ;(k,k'|u,+1) in terms of P, (1) and P, ;(ulk, k', +1), given by
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Tos p (ulke K, +1)By o + k') (E.9)
wp,o

P, o(k, k' |u, +1) =

By using Equation (E.9), the expression of AIVS#,p,,,(k) can be written as

ANS,u,p,J (k)

fE,p,a

f [¢Ui,p,a(pUj,p,a(1 - (pO,p,a)] [2 - 5k,kx_p - 5k,ky_p - Pp,a(k + kX,p) - Pp,a(k + kY,p)] U= NUU
wp,o

fep,
= { r:: [¢Ui,p,a¢Uj,p,a(1 - (pO,p,a)] [5k,kX,p + Pp,a(k + kX,p)] U= XUij

fEp,
pr z [(pui,p,a(pUj,p,a(l - ¢0,p,a)] I:(Sk,ky,p + Pp,a(k + kY,p)] U= YUl-]-
wp,o

(E.10)

Section F: Detailed Expression of the Surface Sites Increment Factor AN, , , »
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Section G: Derivation of Production Factor of Oligomer

As P, ;(k,k'|u, +1) can be expressed in terms of B, ;(I) and P, ;(ulk, k', +1), we can

obtain

f ,P,0 (o] ! ! 1A
e Rt potel oo (1K, K, +1) 4 By o (k' ko + D] By o (K + ) (G.1)

ANS,u,p,o(k) =

By using the "Chain End Decomposition™ theory (Zhou et al., 2009) we can separate the
effects of the near-chain-end sites, which can be cut by both exo- and endo-enzymes, from

the chain interior sites, which can only be cut by endo-enzymes. B, ;(u|k, k', +1) can then

be decomposed into left end (L), right end (R) and interior (I) contributions of the type-p

main chain, which can be written as

Po(ulk, k', +1) = PY) 4+ 0, ,(K)PL 5 (k) + O p (k)P (k") (G.2)

where 0, ,(k) = 0(l,, — k) and Og , (k") = O(lg, — k") are the cut-off factors dividing
a type-p chain into three parts with [, , = ky , + 1and lg , = ky, + 1. Also, k' + k >
lirp =l,p+1gp,—1and B, ;(ulk, k', +1) = P‘fg,a is independent of k and k' when

there are k > 1, , and k' > I ,. Based on the functional form, we can obtain in detail the

values of three contributions for each hydrolysable intact bond site, shown as
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which then can be used to obtain the detailed expressions of AIVS,ﬂ,p,,,(k).

(( P;f,?,g = (1 - (pO,p,O')(pUi,p,O'(pUj,p,a
< Pu(,ﬁ)),a(k) = —5k,kx,p(1 - (pO,p,J)(pUi,p,o(pUj,p,J U= Ny,
\PH(,I;?(,(k’) = _5k’,ky_p(1 - (pO,p,o)(pUi,p,J(pUj,p,o
( P, =0
19 P;l(,lb),a(k) = 5k,kx,p(1 - (pO,p,J)(pUi,p,o(pUj,p,J U= Xy, (G.3)
\ P;L(,I;)?J(k,) =0
( PO =0
) Plt(,l;),a(k) =0 U= YUL-]-
L \P;L(,I;)?J(k,) = ‘Sk’,ky,p(l - (pO,p,O')(pUi,p,O'(pU]-,p,O'

Section H: Derivations of Chain Concentration Rate Equations and Rate Equations

Closure

In order to find the solution for P, ;(I) with [ <, ,, a new rate equation system

developed for type-p chains concentration variables H, (1) by defining H, ;(1)

is

P,s(Dxg e » With H, (1) = 0 for I < ,. Here, xg , 5 is the concentration of insoluble

type-p chains, as discussed in Supporting Information section D. All the surface site

concentration variables now could be expressed in terms of H, ;(I) by using xy ,, =

Z‘;‘;lsp IH, () and x, 5 = Z;"’:lSPNM,p,U(l)Hp,U(l). Analogous to the site ablation rate

equations, the rate equations of H, (1) is given by

Hos@) = Ri o) = Rt ) Pat 0By = DCpg Ao =1/ D jQpo(iidg = 1)

jzls,p

(H.1)
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where Ry , 5(1) is the changing rate of type-p chains of length [ due to bonds cutting, and
the second term of the equation above gives the rate of exposure of new type-p chains due
to the removal of overlaying material. @, +(l, A5) is the type-p chain length distribution of
the native substrate material in each layer of class-c SACs, which obeys the delta-function

native type-p chain length distribution Q,4(l,45) = 5l,Dpp. Qps(l,A5) has a close

relationship with the native site fraction g, , 5, Which is given by

o =1/ |24, 1000 (L A0)| (H.2)
gu,p,o(lo) =YEpo Z(lx;lgrp Nu,p,a(l)Qp,a(l; As) (H.3)

As described in Supporting Information section G, Ry ,, (k) can be written by

Rigpo (D) = — Z R,o(l =k k') + z z [Ros( = D) + Ry oG = LK)

kk'=1 k=1 j=1+1
(H.4)
with
Ryo(l = k,k") = Xy VieypZicupoboo (ke k', +1) 8y i (H.5)

R, (1 = k, k") is denoted as the rate at which surface-exposed type-p chains of length
on class-oc SACs are being cut into two type-p chain fragments of length k and k', from
the L-end and R-end of the original type-p chains respectively. As P, ;(k, k'|u, +1) can be

expressed in terms of P, ;(1) and P, ;(ulk, k', +1), we can rewrite Ry, , (1) as
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RH,p,a = ZK,;L Vx,u,pzx,u,p,aANH,u,p,o(l) (H.6)

By using the "Chain End Decomposition” (Zhou et al., 2009) theory, we can obtain

= fEpo
ANH,u,p,a(l) = f:w'::'g [AH,u,p,a(l) + BH,u,p,a(l) + DH,u,p,a(l)] (H-7a)
where
AH,u,p,a(l) = _N,u,p,a(l)Pp,a(l) (H.7b)

Bitupa(D) = [2B05 + 0,,(DPL (D) + 0k (DR, O|[1 — Zioi Bo ()] (H.T0)

l+lEp

Ditpa ) = Tt Poo(D] 01,0 = DB = D + 0r (i — DBGLG = D] (H7d)

with Iz , = max(l,,,lg,) — 1. The detailed expression of ANy , , »(1) can be obtained

by combining Equations (H.7a), (H.7b), (H.7c), (H.7d) and (D.2), written as

A[VH,u,p,o'(l)
f l
Epa[(pulpo(pulpa(l (pOpo)]|: Zzpp,a(k) - (l_3)Pp,a(l)_Pp,a(l+kX,p)_Pp.d(l+kY,p) e =NUij
_1f
- Epo[(PUlpa(PU,pa(l ¢Opo‘)][ a(l+kX,p)_Pp,0'(l)] s =XUi}'
f
EPO' [(pU,pa(pU} D, 0'(1 Po,p, 0)] [ a(l + kY,p) - Pp,o(l)] U= YUij

(H.8)

To solve the chain concentration rate equations for H, (1) at short chain lengths from [ to
the cut-off length I ,, it is necessary to use the value of B, ; (1) at chain lengths from [ to
lcp + lg,. Obviously, the length ranges of [ are different for H, (1) and B, 5 (1), which
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will make the equation system redundant. So in order to solve H, (1) with the length range
of [, < 1 <, by using B, ;(I) with the same length range, the Local Poisson (LP)

approximation scheme (Zhou et al., 2009) is used here for P, (1), so that we have

Po(D) = Py o(lcp)[Poo(le,p)/Pos(lcp = 1)](l_lc'p) (H.9)

forlc, +1<1<l;,+lg,. By using Equation (H.9) with the relationship F, (1) =
H,s(D)/xgps, a closed ordinary differential equation (ODE) system for the site

concentration formalism is completed.
Section I: Parameters

All parameters are categorized into four groups and showed in four tables respectively. The

first group in Table 11 includes £ and 51\(,,%,1, which describe the initial substrate

morphology i.e. the enzymatic accessibilities of the whole substrate and xylan, respectively.
Based on the values of these two parameters we can obtain the enzymatic accessibility of
cellulose. We believe that the values of these two parameters could be measured by using

reliable experimental techniques in the future. However, there are currently no values for

these two parameters. So we adjust the values for qu(o) and & based on the values of

M, Xyl
enzymatic accessibility of cellulose, which is commonly measured in experiments. The
values we used were from the literature (Zhu et al., 2009a; Zhu et al., 2009b). Based on the
experiments by Zhu et al. (2009b), the enzymatic accessibility of cellulose was 0.243 for
DA-pretreated corn stover and 0.0238 for non-pretreated corn stover. Thus we believe that

the value of the enzymatic accessibility of cellulose for AFEX-pretreated corn stover, as
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well as poplar, should range from 0.0238 to 0.243. The values of the enzymatic

accessibility of cellulose we used in the model were 0.0832, 0.0998 and 0.0753.

The second group is adsorption and kinetic parameters and shown in Table 12. The values
of Linguus Lixews Liveu Lanew s Laxew s Loy Lanew @d Lz xgu , Which
describe the adsorption equilibrium between cellulose-sites and cellulases, were adopted
from the work of Zhou et al. (2009b) with referenced experiments. Ly y xyi, L1x xyi
Liyxyi» Lanxyts Laxxyts Loy xyir Lanxy and Lsx x,; are parameters describing the
adsorption equilibrium between xylan sites and cellulases. The values for these parameters
were all set to be 0 as we assume that if there is no effective adsorption between enzyme
molecule and bond site leading to bond cleavage, the parameter of adsorption equilibrium
would be set to 0. For the same reason, Ly y s Lax giur Lay cius Ls,nciu Lsxcius Ls,y g
Lsnxyi Lsyxyts Lenxyts Lexxyts L7up and Lg, ,, Which describe the adsorption
equilibrium between sites and enzymes having no adsorption relationships, were also set
to be 0. Ly n xy1s Lax xy: @Nd Lyy xy,; describe the adsorption equilibrium between Endo-
acting xylanases and xylan sites and the values of these parameters were from the
experiments by Qing and Wyman (2011). The values of kinetic parameters y; y g, ¥1.x,61u:
Yiv.cuuw Y2.x,61w Y3y, Yanxyl Yaxxyt @1d Yoy xy came from the literature (Banerjee et
al., 2010a; Banerjee et al., 2010b) which used AFEX-pretreated corn stover as substrate.
The relationship among these parameters was from the work by Zhang and Lynd (2006) in
which the activity ratio of EG:CBH2:CBH1 was 5:2:1. For ineffective adsorptions that
cannot lead to bond cleavage, the corresponding kinetic parameters would be 0. So the

values of v1 n xy1: Yixxyt: Yiy.xyls V2N Yay.ciur V2N xyls Y2,xxy00 Y2,0,xy0s V3N,Glus
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YaxGiu» YaNxyls Y3xxyl» Y3yxyls YanGiu: Yaxcu and Vaycn, Were all set to be O.
Currently, there are no reliable values of the adsorption and kinetic parameters of Exo-
acting xylanases. So we assumed that values of Ls y iu, Ls x,6iu» Ls,y,cuur Ls v xyt: Lsx xyi»
Lsy xyi» Lo gius Le x,6iur Loy ciur Len xyir Lex xy1 and Lgy x,; Were equal to the values of
corresponding parameters of Endo-acting xylanases. However, these parameters did not
affect the simulation results since it is assumed that commercial enzyme mixtures do not

contain significant amount of Exo-acting xylanases.

The third group is inhibition parameters and shown in Table I3. I; ;,,(1), I 61, (1) and
I3 61, (1) are D-glucose (G1) inhibition parameters for EG, CBH2 and CBH1 respectively,
and their values were from the work by Levine et al. (2010). Similarly, I; 6,,,(2), I7,61.(2)
and I3, (2) are cellobiose (G2) inhibition parameters for EG, CBH2 and CBH1
respectively, and their values were from the work by Tolan and Foody (1999). There are
limited reported values for cello-oligomers (G3-G6) inhibition parameters for cellulases.
The values of I 61, (3), Lcu(3) ) B3eu(3) s e, L), eu(®), Iau(5),
I 61u(5), I3,61u(5), 11 61 (6), 15 61, (6) and I3 g1, (6) Were based on the values of I ¢;,,(2),
I 61 (2) and I3 1, (2) as well as the experiments by Lo Leggio and Pickersgill (1999)
which describe the relationship among cello-oligomers (G2-G6) inhibition parameters for
cellulases. Currently, there are no reliable values of the D-xylose (X1) inhibition
parameters for EG, CBH2 and CBHL1 respectively. So we assumed that values of I; y,,;(1),
I x,1 (1) and I3 x,,; (1) were equal to I g1, (1), 15,61, (1) and I3 g;,, (1) respectively due to
the similarity between the structures of these two monomer units. I; x,;(2), I x,,(2) and

I3 x,,(2) are xylobiose (X2) inhibition parameters for EG, CBH2 and CBH1 respectively,
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and their values were from the work by Ntarima et al. (2000). The values of I; x,,(3),
L xy1(3)s I3 xy1(3), Iy xy1(4)s 12 xy1(4)s I3 x91(4), 11,xy1(5)s 12, x1(5), I3 xy1(5), 11, x41(6),
I5,x,:(6) and I3 y,,(6) were based on the values of I; xy;(2), I x,:(2) and I3 x,,(2) as
well as the experiments by Lo Leggio and Pickersgill (1999) which also described the
relationship among xylo-oligomers (X2-X6) inhibition parameters for cellulases. I, ¢, (1)
is D-glucose (G1) inhibition parameter for Endo-acting xylanases which currently do not
have too much reliable values. So we assumed that value of I, ¢;,, (1) was equal to I g, (1)
due to the same inhibitor. For the same reason, the values of cello-oligomers (G2-G6)
inhibition parameters for Endo-acting xylanases, which are I ¢;,,(2), 14,614, (3), I4,61u(4),
1461, (5) and I ¢;,,(6), were all determined. The values of D-xylose (X1) and xylobiose
(X2) inhibition parameters for Endo-acting xylanases I, x,,; (1) and I, x,;(2) were based
on the work by Ntarima et al. (2000). The values of I xy;(3), I xy:1(4), 14 x,:(5) and
14 x,1(6) were based on the value of I, x,,;(2) and the experiments by Lo Leggio and
Pickersgill (1999) which described the relationship among Xxylo-oligomers (X2-X6)
inhibition parameters for Endo-acting xylanases. Currently, there are no reliable values for
the inhibition parameters of Exo-acting xylanases. So we assumed that the values of
inhibition parameters of Exo-acting xylanases were equal to the values of corresponding
inhibition parameters of Endo-acting xylanases. However, these parameters did not affect
the simulation results since we did not consider Exo-acting xylanases as enzyme species in

any commercial enzyme.

The fourth group is parameters about beta-enzymes and shown in Table 14. I ;,, (1) and

17 1.(2) are the D-glucose (G1) adsorption (or inhibition) parameter for beta-glucosidase
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(BG) and the cellobiose (G2) adsorption parameter for BG respectively. The values of these
parameters were from the experiment by Chauve et al. (2010). I7 xy,(3), I7x,1(4),
I7 x,1(5) and I x,,,(6) are cello-oligomers (G3-G6) adsorption parameters for BG. Their
values were based on the value of I ;;,,(2) and the experiments by Yazaki et al. (1997)
which described the relationship among cello-oligomers (G2-G6) inhibition parameters for
BG. Igxyi(1), lgxy1(2), Isxy1(3), Igxy1(4), Igxyi(5) and Igx,,(6) are D-xylose and
xylo-oligomers (X2-X6) adsorption parameters for beta-xylosidase (BX). Their values
were from the work by Rasmussen et al. (2006). Currently, there are no reliable values for
the xylo-oligomers (X1-X6) adsorption parameters for BG and cello-oligomers (G1-G6)
inhibition parameters for BX. We only considered the inhibitions of X1 for BG and G1 for
BX and did not consider other “crossover" oligomers adsorption for beta-enzymes in the
model. We assumed that the values of I, x,,;(1) and Ig g5, (1) were equal to Iy, (1) and
I7 x,:(1) respectively due to the same inhibitors. The value of BG Kinetic parameter
Y7,6uu(2) for cellobiose (G2) was from experiment by Chauve et al. (2010). y7 xy:(3),
Y7.xy1(4), ¥7,x51(5) and y; x,,(6) are BG Kinetic parameters for cello-oligomers (G3-G6),
their values were based on the value of y,;;,,(2) and the experiments by Yazaki et al.
(1997) which described the relationship among BG kinetic parameters for cello-oligomers
(G2-GB). ¥oxyi1(2)+ Vouyi(3) \ Vouyi(4) , Vexyi(5) and ¥gxyi(6) are BX kinetic
parameters for xylo-oligomers (X2-X6) and their values from the work by Rasmussen et
al. (2006). As we did not consider other "crossover" oligomers adsorption for beta-enzymes

in the model, the corresponding kinetic parameters were all set to be 0
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Table.l1 Key simulation parameters

Qing and Wyman (2011) Banerjee et al. (2010a) Kumar and Wyman (2009)
Parameter Value Parameter Value Parameter Value

E©® 0.1051 F 0.1431 E© 0.1046
By ot 0.55 By ot 0.50 By xyt 0.60
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Table.12 Adsorption and kinetic parameters

Parameter

Value
(1/mM)

Ref.

Parameter

Value
(2/min)

Ref.

Ll,N,Glu Ll,X,Glu Ll,Y.Glu

Ly nxyt Lixxyt Liyxy

LZ,N,Glu LZ,Y,Glu

LZ,X,Glu

Lo nxyt Laxxyt Lzy,xyt

L3,N,Glu L3,X,Glu

L3,Y,Glu

L3y xyt Lsx.xy1 L3y xyl

L4,N,Glu L4,X,Glu L4,Y,Glu

Y1,n,6lu V1,x,6lu V1,Y,Glu

3317

(Banerjee
etal.,
2010a;
Zhang and
Lynd,
2006)

Y1,Nxyl V1,x.xy1 Y1,v,Xy1

Y2,NGlu V2,y,Glu

(Zhou et
al., 2009a)

(Zhou et

V2,x,Glu

1399

(Banerjee
etal,
2010a;
Zhang and
Lynd,
2006)

al.,
2009a)

Y2,Nxyl Y2,x,xy1 V2,v, Xyl

Y3.N,Glu V3,x,Glu

(Zhou et
al., 2009a)

V3y,Glu

699.7

(Banerjee
etal,
2010a;
Zhang and
Lynd,
2006)

Y3.Nxyl V3.x.xy1 V3,y.xy1

YaN,Glu Ya,x,6lu Yay,Glu

(Zhou et
al., 2009a)

Lanxyt Laxxyt Loy xyl

0.574

(Qing
and
Wyman,
2011;
Zhang
and
Lynd,
2006)

Yan xyl Yax xyl Yay xyl

50.12

(Banerjee
etal,
2010a;
Zhang and
Lynd,
2006)
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Lsngiu Lsx.cuu Lsycu 0
Ls N xyt Lsyxyt 0
Ls x xy1 0.574
Len,Giu Lexcuu Leycu 0
Le v xyt Lexxyt 0
Ley xy1 0.574
L7.u,p L&u.p 0

Assumed

V5.N,Glu V5,x,Glu Vsy,Glu 0

V5N xyl Vs, xyl 0
Vs5.x,xy1 50.12

YeN,Glu Ve,x,Glu Vey,Glu 0

Ye,N,Glu Ve,x,Glu 0
Ye,v.xyl 50.12

V7.up Yaup 0

Assumed
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Table.13 Inhibition parameters

Value

Parameter (W/mMm) Reference Parameter Value (1/mM) Reference
Levine et al., Levine et al.,
Iy (1) T o) Tagru(1) 0.032 et
(Tolan and (Tolan and
Il,Glu(Z) 0.13 FOOdy, 1999) IZ,Glu(z) I3,Glu(2) 0.13 FOOdy, 1999)
1,61 (3) 0.3 L61u(3) I3,61(3) 0.3
(Lo Leggio
L g (4) 0.37 and I (%) I 61u(4) 0.37 (Lo Leggio and
Pickersgill, Pickersgill,
1999; Tolan 1999; Tolan and
1,61 (5) 0.44 and Foody, L6 (5) I5,61u(5) 0.44 Foody, 1999)
1999)
I1,61u.(6) 0.51 L2,614.(6) 13,61 (6) 0.51
Iy xy1(1) 0.06 Assumed I xy1(1) I3 5, (1) 0.032 Assumed
11,Xyl(2) 2 IZ,Xyl(Z) 13,Xyl (2) 2
11,Xyl(3) 2 ) IZ,Xyl(3) 13,Xyl(3) 2
(Lo Leggio (Lo Leggio and
and Pickersgill
L1 xy1(4) 4 Pickersgill, Lo xy1(4) I3 xy1(4) 4 Kersgi’t,
) . 1999; Ntarima
1999; Ntarima et al., 2000)
et al., 2000) "
I xy1(5) 10 I xy1(5) I3 x31(5) 10
11,Xyl(6) 11 IZ,Xyl(6) 13,Xyl (6) 11
Iy 6, (1) 0.06 Assumed Is 61, (1) Ig 61y (1) 0.032
L (2) 0.13 Is 61 (2) 1o 61u (2) 0.13
I4,Glu(3) 0.3 (Lo Legg|0 IS,Glu(g) I6,Glu(3) 0.3
and
Pickersgill,
g (4) 037 1999: Tolan Is 6u (4) T o1u(4) 037
and Foody, Assumed
l461u(5) 0.4 1999) Is61(5) I Gt (5) 0.4
Iy 61.(6) 0.51 15,61, (6) 16,61 (6) 051
Ntarima et al.,
Taei (1) 04 | (NEOTSS Tt (1) T eyt (1) 0.4
Lo Leggio
Toin (2) ogs | (toles Ty ) Io 1 (2) 0.85
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Lo xy1(3) 15
Ly xy1(4) 2
Ly, xy1(5) 4
L4,xy1(6) 45

Pickersgill,
1999; Ntarima
et al., 2000)

IS,Xyl(3) 16.Xyl(3) 15
15 xy1(4) Lo, xy1(4) 2
I5,xy1(5) Ig xy1(5) 4
I5,xy1(6) Ig xy1(6) 45
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Table.l4 Beta-enzymes parameters

Value

Parameter (W/mMm) Reference Parameter Value (1/min) Reference
Chauve et al., .
I7 61 (1) 0.294 ( 2010) Y761 (1) 0 Determined
Chauve et al.,
L7 61u(2) 1.136 Y7,61u(2) 1897 ( 2010)
I7,61,(3) 3.846 Y7,61(3) 1738.9
(Chauve et al.,
17,61u(4) 4 2010; Yazaki ¥7.61u(4) 14228 (Chauve et al.,
etal., 1997) 2010; Yazaki et
I7.61u(5) 2.174 ¥6(5) 895.8 al., 1997)
17,61, (6) 1.449 ¥7,61(6) 843.1
L7 xy1 (1) 0.417 Assumed Y7.xy1(1) 0
17, xy1(2) 0 Y7,xy1(2) 0
17, x1(3) 0 Y7.xy1(3) 0
L7 xy1(4) 0 Not considered Y7.xy1(4) 0
17 xy1(5) 0 Y7,xy1(5) 0
17, xy1(6) 0 Y7,xy1(6) 0
Ig 61, (1) 0.294 Assumed Ysiu(1) 0 Determined
Ig 6 (2) 0 Vs (2) 0
Ig 6 (3) 0 Y8,61u(3) 0
Ig g (4) 0 Not considered Ve (4) 0
Ig,G1u.(5) 0 Y8,61u(5) 0
Ig 61u(6) 0 V8,61 (6) 0
Ig xy1(1) 0.417 Yexy1 (1) 0
(Rasmussen et
al., 2006)
’ Rasmussen et
loxn(2) 25 Yo (2) 1897 (

al., 2006)
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Ig xy1(3) 5
Ig xy1(4) 6.25
Ig x1(5) 10
Ig x,1(6) 125

Yexy1(3) 1250.3
Yexy1(4) 1164.1
Yexyi(5) 1293.4
Y8.xy1(6) 862.3
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Abstract

A general approach is presented to optimize the composition of enzyme mixture for
substrate conversion and monosaccharides yield during simultaneous enzymatic hydrolysis
of cellulose and hemicellulose. This approach applies a novel mechanistic model which
not only considers the morphology of the substrates, including the composition, degree of
polymerization and enzyme accessibility, but also a wide range of enzyme kinetics during
the hydrolysis process, including, but not limited to, endoglucanase | (EG1),
cellobiohydrolase | (CBH1), cellobiohydrolase 11 (CBH2), endo-xylanase (EX), p-
glucosidase (BG) and B-xylosidase (BX). This approach also considers adding enzymes at
different time points during the hydrolysis process and investigates its effects on substrate
conversion and monosaccharides yield. This approach is capable of predicting the optimal
composition of enzyme mixtures during the simultaneous hydrolysis of cellulose and
hemicelluloses in different types of lignocellulosic substrates. The effectiveness of the

approach is demonstrated on the hydrolysis of Avicel and AFEX-pretreated corn stover.
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4.1 Introduction

Biofuels have received enormous attention over decades due to the potential of
decreasing the reliance on fossil fuels globally and reducing the greenhouse gas emissions.
The US seeks to replace 20% of its current gasoline usage with alternative fuels by 2022,
which would increase the US alternative fuel production to 36 billion gallons (Gu et al.,
2013). Recently, more research efforts have been focusing on the second generation
biofuels. Compared with the first generation biofuel, the second generation biofuel can
reduce the greenhouse gas and have higher energy security level (Singhania et al., 2014).
Moreover, the second generation biofuels are mainly generated from the lignocellulosic
biomass so that the competition between food and biofuel production will become less

(Cherubini et al., 2009).

Enzymatic hydrolysis, which biochemically converts biomass into mono- and oligo-
saccharides, is a critical process of producing biofuels. However, the high cost caused by
the enzyme loading is a major barrier of the industrial application (Klein-Marcuschamer et
al., 2012). In order to reduce the total enzyme loading and make the biofuel production
process more economical, many studies have been focused on developing enzyme mixtures
that have optimal synergistic kinetics for the hydrolysis of lignocellulosic substrates (Berlin
et al., 2007; Banerjee et al., 2010a; Banerjee et al., 2010b; Gao et al., 2010; Zhang et al.,
2010; Levine et al., 2011; Billard et al., 2012; Singhania et al., 2014). For example, Berlin
et al. (2007) developed optimal enzyme mixtures with commercial enzymes for the
hydrolysis of dilute acid-pretreated corn stover, Gao et al. (2010) designed optimal enzyme

mixtures with six core enzymes from Trichoderma reesei, Aspergillus niger, and
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Aspergillus nidulans for the hydrolysis of AFEX-pretreated corn stover and Banerjee et al.
(2010a) developed optimal enzyme mixtures with ten accessory and six purified core
enzymes from Trichoderma reesei and Trichoderma longibrachum for the hydrolysis of

AFEX-pretreated corn stover.

However, because of the variety of the lignocellulosic substrates, designing the optimal
enzyme mixtures for each type of substrate will consume a large amount of enzymes and
require tremendous experimental efforts. In this study, a general approach is presented to
decide the optimal composition of enzyme mixtures for different lignocellulosic substrates
during hydrolysis. The basis of this approach is a novel mechanistic model which not only
considers the morphology and all the hydrolysable components (i.e. cellulose and
hemicelluloses) of each lignocellulosic substrate, but also a wide range of enzyme kinetics
during the hydrolysis process. Moreover, this approach for the first time considers the
effect of adding enzymes at different time points during the hydrolysis process, and
investigates such effect on substrate conversion and monosaccharides yield. Some
experimental studies have shown that delaying the adding time of some enzymes could
increase the total conversion level of the substrates (Qing and Wyman, 2011), probably
because some parts of the substrate are not accessible for enzymes at the beginning of
hydrolysis and the activity of free enzymes in solution keeps decreasing during the process
of hydrolysis. This general approach can predict the composition of optimal enzyme
mixtures either for the conversion level of total substrates or the yield of certain saccharide
products during the simultaneous hydrolysis of cellulose and hemicelluloses in different
types of lignocellulosic substrates. The predicted results can provide systematic

information for the further experimental studies of developing optimal enzyme mixtures.
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4.2 Methods
4.2.1 Morphology of lignocellulosic substrates

Lignocellulosic substrate morphology is described by the recently introduced concept
"Smallest Accessible Compartment” (SAC) (Zhou et al., 2009b; Zhang et al., 2014). SAC
is @ minimal volume that is delimited by enzyme-accessible surfaces and contains several
elementary layers. The geometries of SACs are mapped to a population of SAC classes,
which are indexed by o. These SAC classes represent different SAC sizes and differ by the
initial number of SAC elementary layers A,, which is a variable and will keep decreasing
due to the substrate surface ablation by enzymes. In addition, some SACs may contain
different types of polysaccharide chains (i.e. cellulose and hemicellulose chains), which
are indexed by p. These SACs will have a fraction of type-p chains, which is set as a
function of A, represented by @, ,(A,). The fraction of type-p chains may also vary in
different SAC classes and its initial value is represented by CDg,p(Ammax). Gaussian
distribution is applied for SAC concentrations and the initial fraction of type-p chains in
all SAC classes. It also decides the initial fraction of accessible substrate in each SAC class,
represented by F; . This is the ratio of exposed substrate on the surfaces of class-c SACs
to the total substrate contained in class-c SACs and can then be used to calculate the overall

initial accessibility of the substrate F), which can commonly be measured in experiments.
4.2.2 Reactions of enzyme mixture

During the process of enzymatic hydrolysis, different enzyme species will adsorb on

different linkages between monosaccharide units in the solid substrates and cut the solid
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polysaccharide chains. Based on the "Site Formalism" (Zhou et al., 2009a; Zhang et al.,
2014), the linkages were classified into seven major groups of "sites", which are N-, O-,
X-, Y-, L-, R- and J-sites. N-sites could only adsorb and be cut by endo-acting enzymes
(e.g. endo-glucanase and endo-xylanase). X-sites could adsorb and be cut by either endo-
acting or exo-L-acting enzymes (e.g. Cellobiohydrolase 1), while Y-sites could adsorb and
be cut by either endo-acting or exo-R-acting enzymes (e.g. Cellobiohydrolase I). J-sites
could adsorb and be cut by debranching enzymes. O-sites were blocked sites and could not
adsorb any enzyme. L- and R-sites represented the non-reducing and reducing ends of
polysaccharide chains respectively. They were both broken and could not adsorb any
enzyme. It is worth mentioning that these sites can be further divided into sub-groups based
on different endo- or exo- enzymes. These site concentrations can be used to represent the
amount of substrate materials and are tracked in the model (thus referred to as Site
Formalism) considering their changing rates due to hydrolytic reactions. Compare to the
"Chain Formalism" (i.e. tracking concentrations of chains of various length), the "Site
Formalism" is more general and advanced, thus easier to be extended to include different

types of hemicellulose chains.

After soluble oligosaccharides are released into solution from the solid substrate, beta-
enzymes will hydrolyze them into monosaccharides. However, oligosaccharides and
monosaccharides can also adsorb other enzymes that act on the solid substrates and thus
cause the inhibition effects (Levine et al., 2010; Zhang and Zhou, 2014). Besides, the

activity of enzymes will also decrease as hydrolysis proceeds, as described by Eq. (1) and

Eq. (2).
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Here, u,(t) is the concentration of active enzyme « in solution at time point ¢, u o iS
the concentration of enzyme added into solution, t, is the adding time of enzyme k and
ti1,2 is the half-life of enzyme x. During the process of enzymatic hydrolysis, the surface
layer of each SAC is ablated to release oligosaccharides into solution, which exposes the
underneath SAC layers to enzymes. The enzymatic ablation of solid surface will naturally
cause the shrinkage of SAC surface area and lead to a decrease of accessible sites for free

enzymes. All these features are properly considered in our hydrolysis model.
4.2.3 Model parameters and optimization procedure

In this study, the model was applied to predict the optimal enzyme mixtures for Avicel
and AFEX-pretreated corn stover hydrolysis. The cellulose (glucan) content of Avicel was
set as 100%, the DP value of glucan chains was set as 300 and the initial enzymatic
accessibility of Avicel F was set as 0.6% (Zhang and Lynd, 2004, 2006; Zhou et al.,
2010). For corn stover, the ammonia fiber expansion (AFEX) pretreatment is a unique
pretreatment because it mainly cuts the linkages between lignin and hemicelluloses and
relocates extractable lignin to the substrate surface, which causes little destruction of
cellulose and hemicelluloses of the lignocellulosic substrates (Chundawat et al., 2011). The
cellulose (glucan) content was set as 39.6%, and the hemicellulose (xylan) content was set

as 24.5% (Qing and Wyman, 2011). The DP values of glucan and xylan chains were set as
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6800 and 300 respectively (Kumar et al., 2009). The lignin content and its effects were
neglected during the enzymatic hydrolysis. The initial enzymatic accessibility of AFEX-

corn stover F{ was set as 10.51%, which was from the work of Zhang et al. (2014).

The model has the capability of considering all the possible enzyme species involved in
the hydrolysis process. In this study, six typical enzyme species were considered for both
Avicel and AFEX-pretreated corn stover hydrolysis, including endoglucanase | (EG1),
cellobiohydrolase | (CBH1), cellobiohydrolase 11 (CBH2), endo-xylanase (EX), p-
glucosidase (BG) and B-xylosidase (BX).The values of kinetic and adsorption parameters
for EG1, CBH1, CBH2 and EX were from the work of Banerjee et al. (2010b) and Zhang
and Lynd (2006), and the values of inhibition parameters for these enzymes were from the
work of Tolan and Foody (1999), Lo Leggio and Pickersgill (1999) and Ntarima et al.
(2000). For BG and BX, the values of kinetic and adsorption parameters were from the

work of Chauve et al. (2010), Rasmussen et al. (2006) and Yazaki et al. (1997).

The objective of enzymatic hydrolysis process being optimized (i.e. best process
performance) could be either substrate conversion (e.g. glucan conversion for Avicel
defined as yield of total soluble oligomers including from glucose to cellohexaose) or
monosaccharides yield (e.g. glucose yield for Avicel) at 72 hours of hydrolysis. The total
enzyme amount (i.e. mg enzyme per gram biomass) was fixed when the composition of the
enzyme mixture was optimized to maximize the selected objective. The composition of the
enzyme mixture, represented by w, was set as a 6-elementarray. Each element, denoted by
w, (k=1~6), represented the mass fraction of an enzyme species in the mixture and always
satisfied the relationship ), w, = 1. The effect of total enzyme amount on the optimal
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enzyme mixture composition was also investigated. The optimization procedure was based
on iterative simulation over the feasible domain of the mass fraction array w. When w was
changed as a model input, the simulation would obtain different results of final substrate
conversion and monosaccharides yield. By comparing the results of these simulation, the
composition of optimal enzyme mixture could be determined. To greatly reduce the
solution time, wy, (i.e. each dimension of w) was first set to change by an interval of 10%
during the loop to obtain a sub-domain of w for the possible range of optimal enzyme
mixture. Then the model was simulated iteratively again within the obtained sub-domain
to refine the optimal enzyme mixture by setting the mass fraction w,.changing interval as
1%. The total hydrolysis time was set as 100 hours and three situations of total enzyme
loading were tested for both Avicel and AFEX-pretreated corn stover, which were 7.5, 15

and 30 mg enzyme/g glucan.

After the composition of the optimal enzyme mixtures for substrate conversion and
monosaccharides yield were determined, each enzyme species was then tested as being
added to solution at different time points (versus being added at time zero all together) to
investigate the adding time effects on hydrolysis process. The solution procedure was also
based on iterative simulation over the feasible domain of the adding time array for enzyme
species. The adding time domain was set from time 0 to 48 hours. The interval of the time
points was set as 6 hours at first to obtain a sub-domain where the effects were positive
(i.e. higher substrate conversion or monosaccharides yield). Then the model was simulated
iteratively again within the obtained sub-domain to refine the time points by setting the

interval as 0.5 hour.
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4.3 Results and Discussion

4.3.1 Enzyme optimization and adding time effects for Avicel hydrolysis

The optimal compositions of enzyme mixture for glucan conversion and glucose yield
in all cases of Avicel hydrolysis were determined based on the simulation results. Figure
4.1 shows the ternary plots (i.e. can only show mass fractions of three main enzyme
components) of glucan conversion and glucose yield at 72 hours with enzyme loadings of
7.5, 15 and 30 mg enzyme/g glucan and Table 4.1 shows the predicted optimal enzyme
mixture compositions for glucan conversion at 72 hours with enzyme loadings of 7.5, 15
and 30 mg enzyme/g glucan. The supplementary section provides the optimal enzyme
mixture compositions for glucan conversion at 24 and 48 hours with enzyme loadings of

7.5, 15 and 30 mg enzyme/g glucan.

It can be found that EG1 is the dominant enzyme in cellulose hydrolysis, followed by
CBH2 and CBH1. This phenomenon agrees with the experimental evidence from many
studies on Avicel hydrolysis (Tomme et al., 1988; Nidetzky et al., 1994; Zhang and Lynd,
2004) and the predicted results agree with those from the work of Levine et al. (2011),
although in the work the enzyme parameters came from Trichoderma longibrachiatum,
Taleromyces emersonii, and Trichoderma reesei. As enzyme loading increases from 7.5 to
15 mg enzyme/g glucan, the optimal enzyme composition for glucan conversion of Avicel
will have an increased mass fraction of EG1 and decreased mass fraction of CBH2. This is
likely because as the enzyme loading increases, the amount of accessible sites for exo-
acting enzymes is not changed too much at the beginning of hydrolysis, but EG1 can create

more additional accessible sites that exo-acting enzymes can adsorb on as hydrolysis
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proceeds. However, as the enzyme loading increases from 15 to 30 mg enzyme/g glucan,
the mass fraction of EG1 will decrease and the mass fraction of CBH2 will increase in the
optimal enzyme mixture for glucan conversion. This observation shows that although EG1
is critical of acting synergistically with CBH2 and CBHL1 to increase the hydrolysis rate, it
is not true that the more endo-acting enzymes the better synergy with the presence of exo-
acting enzymes. Also, the BG mass fraction in the optimal mixture increases from 0 to 2%.
In fact, when the enzyme loading reaches 30 mg enzyme/g glucan and the hydrolysis time
is long enough (>48 hours), it is necessary to involve BG in the optimal enzyme mixtures
for glucan conversion (shown in the supplementary section). The reason may be that as the
glucan conversion level increases, more gluco-oligomers (i.e. from glucose to
cellohexaose) will be released into solution and cause severe inhibition effects so that it is
more important to lower the inhibition effects by adding BG to hydrolyze gluco-oligomers
with high inhibitory ability into glucose that has lower inhibitory ability (Lo Leggio and
Pickersgill, 1999; Tolan and Foody, 1999). Many studies have shown that the hydrolysis
rate will be significantly limited without BG (Banerjee et al., 2010a; Zhang et al., 2010;

Qing and Wyman, 2011), which agree with the simulation results.

For the purpose of maximizing the glucose yield from cellulose hydrolysis, BG becomes
more critical than some other cellulases like CBHI. From the ternary plots shown as Figure
4.1D-F, the mass fraction of BG in the optimal enzyme mixtures for glucose yield always
ranges between 0.1 and 0.3. This agrees with the study of Zhang et al. (2010) which showed
9.1 mg enzyme/g glucan Spezyme CP (cellulase) with 1.45 mg enzyme/g glucan
Novozyme 188 (BG). In addition, because the BG takes large fraction of the enzyme

mixture, the mass fraction of EG1 in the optimal enzyme mixtures for glucose yield
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increases as the total enzyme loading increases to enhance the synergy activities between

EG1 and CBH2.

The enzyme adding time effects during hydrolysis was investigated after analyzing the
optimization of enzymes for Avicel hydrolysis. For endo- and exo- acting enzymes, no
positive effects can be found on either glucan conversion or glucose yield if adding these
enzymes later. However, adding BG later will be beneficial for increasing the glucose yield
after long time period of hydrolysis, as shown in Figure 4.2. Compared with adding BG at
the beginning of hydrolysis, if BG is added at 24 hours the glucose yield after 100 hours
will increases from 52% to 63%. Besides, before the hydrolysis time reaches 48 hours, the
later the adding time point of BG, the higher the glucose yield will be. These observations
are reasonable because it is assumed in the model that no soluble gluco-oligomers exists
before hydrolysis, meaning that there is no need for too much BG at the beginning of
hydrolysis. In addition, BG has a shorter half-life, so adding BG too early will waste its
activity a lot. Therefore, it is reasonable to delay the time of adding BG into solution in

order to increase the glucose yield.

4.3.2 Enzyme optimization and adding time effects for AFEX-pretreated corn stover

hydrolysis

The optimal enzyme mixture compositions for substrate (i.e. "glucan+xylan")
conversions and monosaccharides (i.e. "glucose+xylose") yields in all cases of AFEX-
pretreated corn stover hydrolysis were determined based on the simulation results. Figure
4.3 shows ternary plots of substrate conversion and monosaccharides yield, and Table 4.2

shows the predicted optimal enzyme mixture compositions for substrate conversion at 72
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hours with enzyme loadings of 7.5, 15 and 30 mg enzyme/g glucan. The supplementary
section provides optimized enzyme mixture compositions for substrate conversion at 24

and 48 hours with enzyme loadings of 7.5, 15, and 30 mg enzyme/g glucan.

It can be found that for maximum substrate conversion, CBH2 is the dominant enzyme
at enzyme loading of 7.5 mg enzyme/g glucan and EX becomes the dominant one at
enzyme loadings of 15 and 30 mg enzyme/g glucan. Then for maximizing the
monosaccharides yield, CBH2 is the dominant enzyme at enzyme loadings of 7.5 and 15
mg enzyme/g glucan and EX becomes the dominant one at enzyme loading of 30 mg
enzyme/g glucan. Not like CBH2, CBHL1 is not necessary in the optimal enzyme mixture
for substrate conversion, probably because CBH2 was set to have higher catalytic rate than
CBHL1 in the model based on the studies of Nidetzky et al. (1994) and Zhang and Lynd
(2004). However, when the enzyme loading reaches 30 mg enzyme/g glucan, the mass
fraction of CBH2 becomes less and CBH1 becomes a necessary species in the optimal
enzyme mixture. The reason may be that as the concentration of CBH2 becomes too high,
the accessible X-sites at the non-reducing ends of glucan chains for CBH2 will become
insufficient so that substituting CBH1 for certain amount of CBH2 may become beneficial
to higher substrate conversion level. It is worth noticing that some studies of the enzyme
optimization for lignocellulose hydrolysis also showed that CBH1 had higher catalytic rate
than CBH2 (Banerjee et al., 2010a; Banerjee et al., 2010b; Gao et al., 2010), and the
simulation results might be totally different if the kinetic parameter settings of CBH1 and
CBH2 are changed. So the catalytic abilities of CBH1 and CBH2 still need to be further

investigated by experiments.

121



It can be also found that EG1 has a much lower mass fraction than EX in all cases of
AFEX-pretreated corn stover hydrolysis. The main reason may be that the rate of EX1
hydrolyzing xylan is faster than that of EG1 hydrolyzing cellulose. So less EGL1 is needed
in the enzyme mixture to hydrolyze AFEX-pretreated corn stover. Then the influence of
the enzyme accessibility F on the results of enzyme optimization was investigated (shown
in the supplementary section). The results show that as F{ becomes larger the mass
fractions of EG1 and CBH2 will also become larger but the mass fraction of EX will
become smaller. The study of Gao et al. (2010) showed that the optimal enzyme
composition of hydrolyzing AFEX-pretreated corn stover for substrate conversions was
27-30% CBH1, 17-20% CBH2, 29-35% EG1, 14-15% EX, 2-6% BX and 1-5% BG. The
comparison between the simulation results and the experimental data indicates that the
enzyme accessibility of AFEX-pretreated corn stover is critical to determine its optimal

enzyme composition and needs more experimental studies to determine.

The enzyme adding time effects during AFEX-pretreated corn stover hydrolysis was
investigated. Again, no positive effects can be found on either substrate conversion or
monosaccharides yield if adding endo- or exo- acting enzymes later. Figure 4.4 shows the
glucose yields of AFEX-pretreated corn stover when BG is added at different time points,
and the xylose yields of AFEX-pretreated corn stover when BX is added at different time
points. Like the adding time effect of BG in the Avicel hydrolysis process, adding BG later
in the hydrolysis process of AFEX-pretreated corn stover can increase the glucose yield.
However, it can be also found that adding BX later will not be beneficial for increasing the

xylose yield. Compared with adding BX at the beginning of hydrolysis, there will be a
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decrease in xylose yield if BX is added at 24 and 48 hours. The reason may be that the
production rates of soluble xylo-oligomers are very fast at the beginning of hydrolysis since
most xylan locates on the outer part of the substrate and is easy to hydrolyze. Without the
presence of BX, these soluble xylo-oligomers will remain in solution and act as stronger
inhibitors of EG1, CBH1 and CBH2 which not only slows down the hydrolysis rate of
cellulose but also xylan (Qing et al., 2010). Therefore, it is necessary to add BX in solution
at the beginning of hydrolysis to hydrolyze the soluble xylo-oligomers early enough and
reduce the inhibition effects. In addition, Figure 4.5 shows the simulation results of adding
BG, EX and BG+EX at 8 hours. It can be found that to maximize the glucose yield, it is
more beneficial to add BG+EX later than adding only BG or EX later. But there is no such
effect that can be found for the xylose yield, which indicates that adding EX and BX at the
beginning of AFEX-pretreated corn stover hydrolysis may be the best way to only

maximize the xylose yield.

4.4 Conclusions

We have applied our newly developed mechanistic modeling of lignocellulose
hydrolysis as a tool to optimize enzymes for the yield of saccharide products and
conversion of substrates. The model predicted the optimal enzyme mixture compositions

and enzyme adding time during the hydrolysis of Avicel and AFEX-pretreated corn stover.

For Avicel hydrolysis, EG1 was found to be the dominant enzyme in the optimal
enzyme mixture for glucan conversion. But as the total enzyme loading increased from 7.5
to 30 mg enzyme/g glucan, the mass fraction of EG1 would first increase then decrease in

the optimal enzyme mixture. In the case of high enzyme loading (30 mg enzyme/g glucan)
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and long hydrolysis time (>48 hours), BG should be included in the optimal enzyme
mixture for glucan conversion to reduce the inhibition effects by gluco-oligomers. And for
maximizing the glucose yield from cellulose hydrolysis, the mass fraction of BG would be

between 10% and 30%.

For AFEX-pretreated corn stover hydrolysis, CBH2 was predicted to be the dominant
enzyme for maximum substrate conversion. But in the case of high enzyme loading (30 mg
enzyme/g glucan), CBH1 was shown to replace certain amount of CBH2 in the optimal
enzyme mixture for substrate conversion although its catalytic rate was lower than CBH2.
And in almost all the cases of AFEX-pretreated corn stover hydrolysis, the mass fraction
of EG1 was much lower than that of EX in the optimal enzyme mixture for substrate

conversion or monosaccharides yield.

From the analysis of the enzyme adding time effects, no positive effects were found in
both Avicel and AFEX-pretreated corn stover hydrolysis if adding endo- or exo- acting
enzymes later, but adding BG later would increase the glucose yields in the hydrolysis of
both substrates. However, adding BX later would not increase the xylose yield in AFEX-
pretreated corn stover hydrolysis. It was also found that adding BG and EX together and
later in AFEX-pretreated corn stover hydrolysis would increase the glucose yield more

than adding only one of them later, but no such result was found for the xylose yield.
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Supporting Information (SI)

Table S.1. Optimized enzyme mass fraction predictions for Avicel hydrolysis

A
Time EGL CBH1 CBH2 BG Glucan
Conversion (%)
24 0.58 0.00 0.42 0.00 24.7
48 0.62 0.00 0.38 0.00 393
B
Time EG1 CBHL1 CBH2 BG Glucan
Conversion (%)
24 0.64 0.00 0.36 0.00 432
48 0.70 0.00 0.30 0.00 52.3
c
Time EG1 CBH1 CBH2 BG Glucan
Conversion (%)
24 0.62 0.00 0.38 0.00 62.8
48 0.64 0.00 0.32 0.02 85.2
D
Time EG1 CBH1 CBH2 BG Glucose
Yield (%)
24 0.40 0.00 0.40 0.20 15.9
48 0.40 0.00 0.38 0.22 24.1
E
Time EG1 CBH1 CBH2 BG Glucose
Yield (%)
24 0.46 0.00 0.36 0.18 317
48 0.48 0.00 0.32 0.2 46.6
F
Time EG1 CBH1 CBH2 BG Glucose
Yield (%)
24 05 0.00 0.32 0.18 53.4
48 0.52 0.00 0.26 0.22 735

Predicted optimized enzyme mass fractions are presented for the hydrolysis of Avicel substrate with predicted
optimized glucan conversion (%), and predicted optimized glucose conversion (%) for a given time of hydrolysis
(24, 48, 72 hours). A&D - 7.5 mg enzyme/g glucan, B&E - 15 mg enzyme/g glucan, C& F - 30 mg enzyme/g glucan.
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Table S.11. Optimized enzyme mass fraction predictions for AFEX pretreated corn stover

hydrolysis
A
Time EG1 CBH1 CBH2 EX BG BX Glucan + Xylan Conversion (%)
24 0.10 0.00 0.60 0.28 0.00 0.02 275
48 0.10 0.00 0.55 0.33 0.00 0.02 39.0
B
Time EG1 CBH1 CBH2 EX BG BX Glucan + Xylan Conversion (%)
24 0.08 0.00 0.55 0.35 0.00 0.02 48.7
48 0.08 0.00 0.45 0.45 0.00 0.02 62.6
C
Time EG1 CBH1 CBH2 EX BG BX Glucan + Xylan Conversion (%)
24 0.08 0.00 0.45 0.45 0.00 0.02 76.9
48 0.07 0.00 0.40 0.50 0.00 0.03 92.9
D
Time EG1 CBH1 CBH2 EX BG BX Glucose + Xylose Conversion (%)
24 0.05 0.00 0.50 0.33 0.08 0.04 22.7
48 0.06 0.00 0.52 0.27 0.12 0.03 30.5
E
Time EG1 CBH1 CBH2 EX BG BX Glucose + Xylose Conversion (%)
24 0.06 0.00 0.53 0.30 0.08 0.03 414
48 0.06 0.00 0.45 0.36 0.10 0.03 53.1
F
Time EG1 CBH1 CBH2 EX BG BX Glucose + Xylose Conversion (%)
24 0.07 0.00 0.44 0.35 0.10 0.04 68.7
48 0.06 0.00 0.37 0.44 0.10 0.03 83.4

Predicted optimized enzyme mass fractions are presented for the hydrolysis of AFEX pretreated corn stover with
predicted optimized glucan + xylan conversion (%), and predicted optimized glucose + xylose conversion (%o) for
a given time of hydrolysis (24, 48hours). A &D - 7.5 mg enzyme/g glucan, B&E - 15 mg enzyme/g glucan, C& F -
30 mg enzyme/g glucan.
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Table S.111. Optimized enzyme mass fraction predictions for AFEX pretreated corn
stover hydrolysis using reduced cellulase adsorption parameters

Cellulase Adsorption Divisor | EG1 | CBH1 | CBH2 | EX | BG | BX | Glucan + Xylan Conversion (%)

15 0.09| 0.00 | 0.37 |0.51|0.00|0.03 66.7
2.0 0.10| 0.00 | 0.37 |0.50|0.00|0.03 66.2
10 0.20| 0.00 | 0.33 |0.44|0.00|0.03 62.0
50 0.32| 0.00 | 0.26 |0.38|0.00|0.04 54.8

Cellulase Adsorption Divisor | EG1 | CBH1 | CBH2 | EX | BG | BX | Glucose + Xylose Conversion (%)

1.5 0.06 | 0.00 | 0.41 |0.38|0.11|0.04 55.7
2.0 0.06 | 0.00 | 0.43 |0.36|0.11|0.04 55.2
10 0.11| 0.00 | 0.40 |0.34|0.11|0.04 50.0
50 0.21| 0.00 | 0.34 |0.32|0.08 | 0.05 454

Predicted optimized enzyme mass fractions are presented for the hydrolysis of AFEX pretreated corn stover using
reduced cellulase adsorption parameters. Predicted optimized glucan + xylan conversion (%), and predicted
optimized glucose + xylose conversion (%) are presented at 72 hours of hydrolysis for a 15 mg enzyme/g glucan
enzyme loading. A &E-cellulase adsorption parameters divided by 1.5, B &F—cellulase adsorption parameters
divided by 2, C &G-cellulase adsorption parameters divided by 20, D & H-cellulase adsorption parameters

divided by 50.

Table S.1V. Optimized enzyme mass fraction predictions for AFEX pretreated corn
stover hydrolysis using increasedF?

EG1 CBH1 CBH2 EX BG BX Glucan + Xylan Conversion (%)
0.09 0.00 0.44 0.45 0.00 0.02 77.0
0.08 0.00 0.43 0.34 0.12 0.03 61.4

Predicted optimized enzyme mass fractions are presented for the hydrolysis of AFEX pretreated corn stover using
decreased F§ = 0.1599. Predicted optimized glucan + xylan conversion (%), and predicted optimized glucose +
xylose conversion (%) are presented at 72 hours of hydrolysis for a 15 mg enzyme/g glucan enzyme loading.
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Glucan Conversion (%)

Time CBH2 Added
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40 60 80 100
Time (hr)
Figure S.1 Time addition of CBH2. CBH2 was modeled as being added to solution at 0, 6, and 12 hours for the hydrolysis

of AFEX pretreated corn stover. Enzyme fractions were at the optimized glucose + xylose conversion (AFEX pretreated
corn stover) titer at 15 mg enzyme/g glucan and 72 hours.
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Figure S.2 Time addition of EG1. EG1 was modeled as being added to solution at 0, 12, and 24 hours for the hydrolysis
of AFEX pretreated corn stover. Enzyme fractions were at the optimized glucose + xylose conversion (AFEX pretreated
corn stover) titer at 15 mg enzyme/g glucan and 72 hours.
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Figure S.3 Time addition of EX. EX was modeled as being added to solution at 0, 24, and 48 hours for the hydrolysis of

AFEX pretreated corn stover. Enzyme fractions were at the optimized glucose + xylose conversion (AFEX pretreated

corn stover) titer at 15 mg enzyme/g glucan and 72 hours.
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Table S.V. Substrate Parameters

Avicel AFEX pretreated Corn Stover
Parameter Value Ref. Parameter Value Ref.
(Zhou et al.
F 0.006 2009b; Zhang F 0.1051 (Zhgggf)t "
and Lynd 2006)
— — Zhang et al.,
DY xy1 0 Assumed DY xy1 0.55 ( 20% 2)
(Zhou 2009b; (Kumar et al
DP Cellulose 300 Zhang and Lynd DP Cellulose 6800 "
2006) 2009)
. bP N/A Assumed . oP 200 Assumed
Hemicellulose Hemicellulose
Table S.VI. Adsorption parameters
Parameter Value (L/mmol) Ref.
LgG,N,Glus LEG1,X,Gluw LEG1,Y,Glu 560
Leg1,nxyb LEGx Xyl LEG Y X1 0
LcBhz N Glu LeBHz,Y,Glu 0
Learzx Glu 950 _
(Nidetzky et al., 1994)
LCBHZ,N,Xyl' LCBHZ,X,Xylr LCBHZ,Y,Xy] 0
Lcr1N Gl LeBH1X Glu 0
LcBH1Y.Glu 1410
LCBHl,N,Xyl' LCBHl,X,Xyl' LCBHl,Y,Xyl 0
LEX,N,Glu' LEX,X,Glu' LEX,Y,Glu 0
(Zhang et al., 2014)
Lex N xyl LEx x xy1» LEX Y,Xy1 0.574

This represents the equilibrium adsorption constant of enzymes EG1, CBH1, CBH2, EX to sites N, X, Y for glucan
and xylan chains.
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Table S.VII. Activity parameters

Value (mmol bond cleaved mmol
Parameter PR Ref.
enzyme? min't)
YEG1,N,Glw YEG1,X,Glus YEGLY,Glu 2.475
(Zhang and Lynd, 2004)
YEG1,N Xyl YEG1X Xyl YEG1,Y Xyl 0
YCBH2,N,Glw YCBH2,Y,Glu 0
YCBH2,X,Glu 9.28
YcBH2,N,Xyl» YCBH2,X,Xyl» YCBH2,Y Xyl 0
(Zhang and Lynd, 2006)
YCBH1,N,Glu» YCBH1,X,Glu 0
YCBH1,Y,Glu 5.44
YCcBH1,N,Xyl» YCBH1,X,Xyl» YCBH1,Y Xyl 0
YEX,N,Glu» YEX,X,Glu» YEX,Y,Glu 0
(Zhang et al., 2014)
YEX,NXyl» YEX X Xyl YEX,Y Xyl 8.771

This represents the specific activity of the enzyme-substrate complex of EG1, CBH2, CBH1, EX on sites N, X, Y
with glucan or xylan chains.
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Table S.VIII. Beta-Enzyme Parameters

Value

Value (mmol bond

Parameter (1/mM) Reference Parameter e(rtmlze;ﬁqiTnanl) Reference
Igg,Gm(1) 0.294 YBG,G1u(1) 0
Igg,Gm(2) 1.136 YBG,G1u(2) 1897
Ipg,cu(3) 3.846 YBG,Glu(3) 1738.9
Igg G (4) 4.000 YBG,Glu(4) 1422.8
Igg,G(5) 2.174 YBG,G1u(5) 895.8
Igg G (6) 1.449 YBG,G1u(6) 843.1
Ipg.xy1(1) 0.417 YBGxy1 (1) 0
Iggxy1(2) 0 YBGxyl(2) 0
Iggxy1(3) 0 YBGxy1(3) 0
Iggxy1(4) 0 YBGxyl1(4) 0
Iggxy1(5) 0 YBGxy1(5) 0
Igg xy1(6) 0 YBGxy1(6) 0
(Zhang et al., (Zhang et al.,
Igx,Gu(1) 0.294 2014) YBx,Glu(1) 0 2014)
Ipx,Gru(2) 0 YBx,Glu(2) 0
Ix G1u (3) 0 Yex,6lu(3) 0
IpxG1u(4) 0 YBx,Glu(4) 0
Igx,Gru(5) 0 YBx,Glu(5) 0
Igx,G1u(6) 0 YBx,Glu(6) 0
Ipx,Gru(1) 0.417 YBxxy1(1) 0
Ipx xy1(2) 2.500 YBxxy1(2) 1897
Ipxxy1(3) 5.00 YBxxy1(3) 1250.3
Ipxxy1(4) 6.250 YBx xy1(4) 1164.1
Ipx xy1(5) 10.000 YBx xy1(5) 1293.4
Ipx xy1(6) 12.500 YBx,xy1(6) 862.3

143




Table S.1X. Half-life of enzymes.

Parameter Value (hour) Ref.
tEG11/2 425
tcBH2,1/2 425 (Levine et al., 2010)
teBH1,1/2 425
tex,1/2 125 (Hakulinen et al., 2003)
tgg,1/2 125 Assumed
tex,1/2 125 Assumed
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Table S.X. Inhibition Parameters

Parameter (;//zl]l:\;) Ref. Parameter (Y/ﬂﬁ) Ref.
Ie61,6tu (1) 0.06 Iepu1,6u (1) cpuz,61 (1) 0.032

Ie61,6tu(2) 0.13 Iep1,61u(2)lcrz,61(2) 0.13

Ie61,61u(3) 0.3 Ie1,61u(3)cpuz,61(3) 03

Ie61,61u(4) 0.37 Iepu1,6u(H)lcpuz,cr(4) 0.37

Ig61,61u(5) 0.44 Ieu1,61u(5)lcBuz,61(5) 0.44

Ie61,61u(6) 0.51 Icpu1,61(6)IcBHz,61.(6) 0.51 (Zhang et
IEGI,Xyl (€9) 0.06 ICBHl,Xyl (1)ICBH2,Xy1 €Y 0.06 al., 2014)
Igg1xy1(2) 2 Iepu1xy1(2)lcprz xy1(2) 2

IgG1,xy1(3) 2 Iegn,xy1(3)cpH2,xy1(3) 2

IgG1,xy1(4) 4 Iepr,xyt(4)cph2,xy1(4) 4

Igg1,xy1(5) 10 Icu1xy1(5) ez xy1(5) 10

IgG1,xy1(6) 11 (Zhang et al., IeH1,xy1(6) cBH2,xy1(6) 11

lexor(1) 0.06 2014)

Igx g (2) 0.13

Igx 6 (3) 0.3

Igx,ru(4) 0.37

Igx G (5) 0.44

Igx 61 (6) 051

Igx xy1(1) 0.4

Igx xy1(2) 0.85

Igx xy1(3) 15

Igx xy1(4) 2

Igx xy1(5) 4

Igx xy1(6) 4.5
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Abstract

The "Anaerobic Digestion Model No.1" (ADM1) was modified in the study by
improving the bio-chemical framework and integrating a more detailed physico-chemical
framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the
discrepancies in the original bio-chemical framework between the carbon and nitrogen
contents in the degraders and substrates. More inorganic components and solids
precipitation processes were included in the physico-chemical framework of ADM1. The
modified ADM1 was validated with the experimental data and used to investigate the
effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on
anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion
process might exist an optimal initial concentration of inorganic nitrogen for methane gas

production in the presence of calcium ions, magnesium ions and inorganic phosphorus.
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5.1 Introduction

The "Anaerobic Digestion Model No.1" (ADM1) developed by the International Water
Association (IWA) task group is a mathematical model mainly describing the biochemical
processes involved in anaerobic digestion (Batstone et al., 2002; Batstone et al., 2006). The
whole process of anaerobic digestion can be divided into five steps, which are
disintegration, hydrolysis, acidogenesis, acetogenesis and methanogenesis. First,
composite particulate substrate is disintegrated into carbohydrates, proteins, lipids, soluble
and particulate inerts in the disintegration step. Then carbohydrates, proteins, and lipids are
hydrolyzed into monosaccharides (MSs), amino acids (AAs), and long chain fatty acids
(LCFAS) in the hydrolysis step (Vavilin et al., 2001). Next in the acidogenesis step, MSs
and AAs are degraded by acidogenic bacteria into dissolved hydrogen, carbon dioxide and
volatile fatty acids (VFAS), such as propionic acid, acetic acid, butyric acid and valeric
acid. Then in the acetogenesis step, these VFAs, as well as some LCFAs from the
hydrolysis step, are converted into acetates, dissolved hydrogen and carbon dioxide by
acetogenic bacteria. Finally in the methanogenesis step, acetates from the acetogenesis step
are converted by aceticlastic methanogenic bacteria into dissolved methane, while
dissolved hydrogen and carbon dioxide are converted by hydrogen-utilizing methanogenic
bacteria into dissolved methane. During the whole process of anaerobic digestion, all the
bacteria (or component degraders) gradually decay and become inactive. These inactive
degraders maintain in the reactor as a part of substrate and involve in anaerobic digestion
with the original composite particulates. ADM1 employs a set of 24 differential rate
equations to describe the bio-chemical processes involved in anaerobic digestion. The

disintegration, hydrolysis and bacterial decay steps are represented by first order Kinetics,
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while all the other steps are represented by Monod-type kinetics. Besides, ADML1 includes
several inhibition factors such as LCFAs, dissolved hydrogen and ammonia (Angelidaki et
al., 1993; Chen et al., 2008; Schievano et al., 2010; Zonta et al., 2013). In conjunction with
the rate equations, 24 dynamic state concentration variables are set for the components
involved in anaerobic digestion. These rate equations can be solved simultaneously and
have complete mass balances over all components in the solid, gas and liquid phases if

appropriate initial values are determined for the concentration variables.

The ADM1 modeling framework is a powerful tool that has been applied in the
industrial process design and optimization for wastewater treatment (Batstone and Keller,
2003; Biernacki et al., 2013; Girault et al., 2012; Mairet et al., 2011; Parker, 2005; Shang
et al., 2005). Many researches of anaerobic-digestion-involved processes are also based on
the application of ADM1 modeling framework, especially the process of methane
production (Antonopoulou et al., 2012; Hafez et al., 2010; Parawira et al., 2008; Takiguchi

et al., 2004).

However, many deficiencies of the original ADM1 have been noted since its
publication. First, the ADM1 does not accommodate complete component mass balances
over the nitrogen and carbon components, which can result in the discrepancies between
the carbon and nitrogen contents in the biomass and those in the composite particulate
material (Blumensaat and Keller, 2005). Second, the ADM1 does not consider too much
physico-chemical processes which are not directly mediated by microbes but can affect the
bio-chemical processes of anaerobic digestion (Horiuchi et al., 2001; Loewenthal et al.,

1989; Loewenthal et al., 1991; Mikkelsen and Keiding, 2002). The most critical physico-
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chemical processes omitted in the ADML are the solids precipitation processes caused by
metal ions. The main reason of excluding the solids precipitation processes from the ADM
is that the range of precipitating ions is wide, which leads to a large number of precipitate
types (Ekama et al., 2006). Also, the presence of some types of metal ions may have
inhibition effects on the precipitation processes involving other metal ion types. In
addition, precipitates formed by same ions may exist two different forms: amorphous
precipitates and crystalline precipitates, which have different formation mechanisms,
precipitation kinetics and the rate-limited factors (Koutsoukos et al., 1980). Third, the
ADM1 does not consider phosphoric acid and phosphate as components involved in the
physico-chemical processes of anaerobic digestion. It has been shown in many studies that
metal ions and phosphate may cause solids precipitation, such as struvite (MgNH4PQO,),
affect the pH of the anaerobic digestion circumstances and have strong effects on bio-

chemical processes as well as physico-chemical processes (Britton et al., 2005).

The deficiencies of the original ADM1 will unavoidably limit the ability of the model
to precisely represent the changing rates of some of the components and to correctly predict
the final concentrations of these components. Recently, many studies have focused on
developing a more complicated anaerobic digestion model (Fedorovich et al., 2003;
Musvoto et al., 2000a; Musvoto et al., 2000b; Sotemann et al., 2005a; Sotemann et al.,
2005b). However, most of them do not consider critical inorganic components and physico-
chemical processes in all three phases. In this study, the original ADML1 is extended to
incorporate more inorganic components, such as metal ions and phosphates, and more
physico-chemical processes, such as the association/dissociation processes of carbonate

and phosphate ions and the solids precipitation processes of metal ions. Integrating a more
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detailed physico-chemical framework into ADM1 can enhance its abilities of keeping track
of the change of circumstances pH value and each component involved in anaerobic
digestion. The modifications to the original ADM1 may contribute useful information for
its further development. After the model validation, the improved ADML1 is used to
investigate the effects of some dissolved metal ions and inorganic components on the whole
process of anaerobic digestion. Findings of the investigation may be useful for the design
and scale-up of anaerobic digestion units for waste water treatment and biogas production

processes.

5.2 Methodology

The structures of the modified AMD1 are shown in Tables 5.1-5.5. The entire model
can be categorized into two bio-chemical framework and physico-chemical framework and
contains totally 47 dynamic state variables representing the concentrations of 47
components in three phases during anaerobic digestion. In addition, the model describes
38 possible bio-chemical and physico-chemical processes involved in anaerobic digestion.
The kinetic rate of each process is represented by pj and the detailed expressions are given
in the supplementary material and the parameter values can be found in the work of

Batstone et al. (2002).

5.2.1 Bio-chemical framework

Anaerobic digestion mainly includes two extracellular steps (i.e. disintegration and
hydrolysis) and three intracellular steps (i.e. acidogenesis, acetogenesis and

methanogenesis). In the intracellular steps, inorganic carbon is the carbon source for, or a
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product of, the uptake of sugars, amino acids, propionate, acetate and hydrogen, while
inorganic nitrogen is the nitrogen source for the uptake of sugars, amino acids, LCFA,
valerate, butyrate, propionate, acetate and hydrogen. However, the original ADML1 did not
consider the inorganic carbon and nitrogen changes for some possible processes, especially
the decay processes of component degraders. Since the decaying component degraders
remain in the reactor and involve in the anaerobic digestion processes together with the
original composite particulates, the carbon balance and nitrogen balance must be closed by
adding balance terms of inorganic carbon and nitrogen for the bacteria decay processes. In
the work of Blumensaat and Keller (2005), two balance terms were introduced to resolve
the discrepancies between the carbon and nitrogen contents in the degraders and substrates,
which were Eq. (1) (used to close the carbon cycle) and Eqg. (2) (used to close the nitrogen
cycle). These two terms describe inorganic carbon and nitrogen releases caused by the

decay of degraders and the effects on the total dissolved inorganic carbon and nitrogen

contents.
Vio,j = — Yi=13,17~23Ci Vi, 1)
VU33,j = — Yi=13,17~23 Ni Vi, j (2)

5.2.2 Physico-chemical framework

5.2.2.1 Liquid-gas processes

Liquid-gas transfer processes were originally incorporated in ADM1 as major physico-
chemical processes. Hydrogen (H2), methane (CH4) and carbon dioxide (CO2) were

considered in the reactor not only in liquid phase, but also in gas phase and represented as
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dynamic state concentration variables in the ADM1.At steady-state the relationship
between the partial pressure of each biogas component in gas phase and its concentration
in liquid phase was described by the Henry's law as Eq. (3). However during the dynamic
anaerobic digestion process each biogas component in the reactor would become
supersaturated in liquid phase and transfer into gas phase, which was described by the gas

transfer rate equation shown as Eq. (4).

0= Sliq,i,ss - KH,inas,i,ss (3)

pr,i = k1ai(Siiqi — Ku,iPgas,i) (4)

The concentrations of biogas components were obtained by solving the gas transfer rate
equations together with the differential rate equations in liquid phase describing the bio-
chemical processes. Due to the fact that liquid-gas transfer of ammonia (NH3) may occur
in high pH solution, NHs is introduced in the ADML1 as a new component of biogas in this

study as shown in Table 5.3.

5.2.2.2 Liquid-liquid processes

The original ADM1 incorporated 6 acid-base reactions which described the acid/base
equilibria of acetic acid/acetate, propionic acid/propionate, butyric acid/butyrate, valeric
acid/valerate, dissolved carbon dioxide/bicarbonate and ammonium/ammonia. When
considering the acid-base reactions in ADM1, 6 original dynamic state concentration
variables (i.e. valerate, butyrate, propionate, acetate, inorganic carbon and inorganic

nitrogen) were separated into 6 pairs of acid/base variables, generating 6 additional
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variables in the model. The acid-base reaction rates were applied to the differential

equations of the 6 pairs of acid/base variables as shown in Eq. (5).

Pai = kai,i(SiiquStiqi — Ka,iSiigHi) (5)

To better describe the acid-base reactions and their effects on other processes, more
inorganic components and acid/base equilibria are incorporated into the original ADM1
model as shown in Table 5.5. First, the inorganic carbon components in liquid phase
include dissolved carbon dioxide (CO), bicarbonate (HCO3") and carbonate (CO3z*) for
considering the carbonate precipitation process together with the equilibrium among the
three inorganic carbon components (CO2/HCO3/COs%). Second, phosphate (PO.*),
hydrogen phosphate (HPO.?), dihydrogen phosphate (H2POs) and phosphoric acid
(H3POg) are introduced in the model as inorganic phosphorus components for considering
the phosphate precipitation together with the equilibrium among the four inorganic
phosphorus components (POs*/HPO4%/H,PO4/H3sPQ4). Furthermore, the charge balance
equation is used to calculate the concentration of H* (Sy) so as to keep track of the pH
value. As shown in Eg. (6), the total concentration of cationic ions is always equal to the
total concentration of anionic ions. S, and S, represent the inert cationic and anionic
ions respectively with no changing rate terms in the model. The concentration of OH" (S, 4)

is always equal to 10~1* divided by S, based on the acid/base equilibrium of water.

Scar + Snua + 28ug + 2Sca + Sy — San — Sva/208 — Spy, /160 — S50, /112 =S4/

64 — SHC03 - 2SCO3 - 3SP04 - 2SHPO4 - SH2P04 - SOH =0 (6)
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5.2.2.3 Liquid-solid processes

Solids precipitation processes are major liquid-solid processes that were not included in
the original ADML1. The presence of the precipitates could affect other physico-chemical
processes and even the bio-chemical processes. To improve the model's ability to describe
the non-biologically mediated processes during anaerobic digestion, Eq. (7) is introduced

in the original ADML1 to describe the formation rate of precipitates.

d

M.A =k MM AP )Y — K 1/v]?
dt . vtiv— 1r,My4Ay— ([ ] [ ] ) Sp,MysAy—

(7)

In Eq. (7) [M™*] and [A%~] are the concentrations of M™* and A%~ ions respectively;
k;,Mw a4, and 1’(5'1[,,,\41]+ 4, are the precipitation rate constant and solubility product
respectively. v* and v~ are the total number of cationic and anionic species respectively
with mv* = av~and v = v* + v~. The precipitation processes are irreversible in the
model so Eq. (7) will have valid value only if the value of [M™*]"*[A%~]"" is larger than
Ks/p,Mv+A,,_' In this study, calcium ions (Ca?") and magnesium ions (Mg?*) are considered
as two types of M™* ions that will cause 5 major types of precipitates based on the
reactions shown in Table 5.6. Not like the common methods of modeling precipitation
which usually use simple rate equations based on the pseudo-equilibrium with first order
rate coefficients, the form of Eq. (7) is based on the fundamental relationship used for
crystallization process (Koutsoukos et al., 1980), which can better describe the mechanisms

of solids precipitation
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5.3 Results and Discussion

5.3.1 Model validation

In order to testify the accuracy and the predictive ability of the physico-chemical
framework of the modified model, the model outputs were compared with experimental
data measured at 25°C in the work of Musvoto et al. (2000a). As can be seen in Figure 5.1
and Figure 5.2, the model results accurately predict the changing trends of inorganic
components and pH value in the batch reactor, and exhibit good agreement with the
experimental results. The comparison demonstrates that the model is able to accurate
predict the changes of physico-chemical processes involved inorganic components. Such
ability enables the further application of the model for investigating the effects of the

inorganic components on the entire anaerobic digestion process.

5.3.2 Effects of inorganic components on anaerobic digestion

In this section, the validated model was used to investigate the effects of dissolved Ca?*,
Mg?*, inorganic phosphorus (Pi) and inorganic nitrogen (Ni) on anaerobic digestion in
batch reactor. Compared with the original ADM1, dissolved Ca?*, Mg?* and P; were new
components and Ni had different rate equations. The temperature was still set at 25°C so

that it would not influence the precipitation rates of metal ions.

First the impacts of dissolved Ca?" and Mg?* on anaerobic digestion were examined by
removing one or both of their initial concentrations. As shown in Figure 5.3a-b, the
presence of Ca?* and Mg?* in liquid phase not only affects the formation rate of precipitates,

but also the release rate of gases, especially ammonia (NHs) gas, indicating that the liquid-
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gas processes could be affected by the liquid-solid processes during anaerobic digestion.
To better understand how Ca?* and Mg?* impact biogas release and precipitates generation
during anaerobic digestion, different initial ratios of Ca*to Mg?* were tested with a fixed
total concentration in the model. As can be seen in Figure 5.3c, higher initial ratio of Ca*
to Mg?* result in slower production rate of ammonia gas. In addition, the generation process
of each type of precipitate also changes significantly as the initial ratio of Ca?* to Mg?*
decreases. As shown in Figure 5.3d, at the 2:1 initial ratio of Ca?* to Mg?*, only two types
of precipitate, struvite (MgNH4PO4) and Cas(POa4)2, are generated, but when the initial ratio
decreases to 1:2, CaCOsz will be generated as another type of Ca®* precipitate with
Ca3(P0O4)2 and MgNH4PO, together. The simulation results in Figure 5.3d reveals that
substituting Mg?* for Ca?* may increase the formation rate of CaCOs in the presence of

PO4* although the precipitation rate of Caz(POs)2 is much faster than CaCOs.

Then the effect of dissolved Pi was examined by changing its initial concentration.
Dissolved P; was composed of 4 components in the new model, which were phosphate
(PO*), hydrogen phosphate (HPO4?), dihydrogen phosphate (H2PO4) and phosphoric
acid (HsPO4). Among these 4 components, POs* and HPO4? were involved in both liquid-
liquid and liquid-solid processes of anaerobic digestion while others were only involved in
the liquid-liquid processes. However, as shown in Figure 5.3a-c, the finial yields of
methane (CHa4), carbon dioxide (CO2) and ammonia (NH3) in gas phase can also be
influenced by the initial concentration of dissolved Pj, indicating that the presence of P; in
liquid phase has a noticeable effect on liquid-gas processes of anaerobic digestion.
Furthermore, as shown in Figure 5.4d, the total concentration of acetate and acetic acid

(SactSHac) Will have different changing trends as the initial concentration of Pi changes in
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liquid phase, indicating that the presence of Piin liquid phase may affect bio-chemical
processes of anaerobic digestion such as the uptake of acetate, the decay of acetate
degraders (Xac) and the generation of CHs in liquid phase. In addition, as demonstrated in
Figure 5.3a, increasing the initial concentration of P; will decrease the final yield of CH4
gas. As the initial concentration of Pi becomes higher, less CaCOz and MgCO3z will form in
solid phase, as shown in Figure 5.4f, and more CO3? will remain in solution, which will
increase the concentration of CO; in liquid phase as well as gas phase and thus affect the

concentration of CHa in gas phase.

Next the effect of dissolved Niwas examined also by changing its initial concentration.
Dissolved Niwas originally considered in the ADM1 model as NH4* and NH3 which were
only involved in bio-chemical and liquid-liquid processes. In this study, NHs" was
considered to be able to form precipitate with Mg?* (Britton et al., 2005) and NH3; was
considered as a components in both liquid and gas phase. Since dissolved N; is involved in
all kinds of anaerobic digestion processes in the model, changing the initial concentration
of dissolved Niwill inevitably affect the yields of many components in liquid, gas or solid
phase. As shown in Figure 5.5a, neither increasing nor decreasing the initial concentration
of Ni in liquid phase can increase the yield of CHa in gas phase, indicating that for CH4 gas
production during anaerobic digestion there may be an optimal initial concentration of
dissolved Ni in the presence of Mg?*, Ca?* and dissolved Pi. If the initial concentration of
Ni is too high, large amount of NHz may remain in solution after Mg?* being precipitated
and result in strong inhibition effect on the production of CHs in liquid phase. Besides,
high concentration of NHz in liquid phase may also cause high percentage of NHz in gas

phase and thus affect the content of CH4 gas. However, as shown in Figure 5.5f, if the
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initial concentration of N is too low, no CaCOz will form in solution. The reason may be
that low initial concentration of N;j leads to low initial pH in solution, which will inhibit the
formation of CaCOs in solution. So large amount of COs* will remain in solution after
Ca?* being precipitated, which will increase the concentration of CO; in liquid phase as

well as gas phase and affect the content of CH4 gas.

To understand how dissolved Ni and P; together can impact the yield of CH4 gas during
anaerobic digestion, different initial dissolved N;j to P;i ratios (Ni:Pi) were tested with
different fixed initial concentrations of dissolved Niand Pi (Ni+Pi) in the model. Several
specific measurement results about the initial N;:P; ratio were found in the literature. For
example, in the work of Musvoto et al. (2000b) the initial N;:P; ratios in real situations were
from 2.21 to 9.21. So it is believe that the initial Ni:P; ratio differs case by case and varies
in a very large range in real situations. As shown in Figure 5.6a, increasing the initial Ni:P;
ratio will have a positive effect on the final yield of CH4 gas. Then the initial concentration
of "Ni+P;" was set as 10% of the original value. As shown in Figure 5.6b, higher initial
Ni:Pi ratio will also result in higher yield of CHa4 gas in the 1st day and after the 3rd day.
However during the 1st and 3rd day, the CH4 gas production rate with lower initial Ni:P;
ratio becomes a little faster, which results in more CH4 gas during this time period. After
that the initial concentration of "N;+P;" was set as 1000% of the original value. As shown
in Figure 5.6¢, the effect of initial N;:P; ratio will become significantly different compared
to those with lower initial "N;+P;" concentrations. As the initial N;:P; ratio increases, the
yield of CHs gas will drop a lot, meaning that in the case of high initial "Ni+P;"

concentration, high initial Ni:P; ratio may have negative effect on the yield of CHa gas.
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These simulations reflect the complex combination effects of dissolved Pi and N; on the

yield of CH4gas in the presence of Mg?* and Ca?*.

5.4 Conclusions

The original ADM1 has been modified by improving its bio-chemical framework and
integrating a more detailed physico-chemical framework. The modified ADM1 was
validated by a set of experimental data and used to investigate the effects of dissolved
calcium and magnesium ions, inorganic phosphorus and nitrogen on anaerobic digestion
in batch reactor. The modifications improved the ADM1's ability to keep track of the biogas
production in gas phase, the pH value in liquid phase and the precipitates in solid phase,
and provided a way of developing a complete anaerobic digestion mathematical model in

future.

Nomenclature

Ai: acid-base reaction index involving i component
Ci: carbon content of component i (kmole/kgCOD)
foroduct substrate: Yield of product on substrate

I component index

J: process index

Ni: nitrogen content of component i (kmole/kgCOD)
Pi: precipitation process index involving i component
Ssu: suger (monosaccharides) (kgCOD/m?®)

Saa: amino acids (kgCOD/m®)
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Sta: fatty acids (long chain) (kgCOD/m?3)
Sva: valerate (kgCOD/m?3)

Shu: butyrate (kgCOD/m?)

Spro: propionate (kgCOD/m?®)

Sac: acetate (kgCOD/m?®)

Sh2: hydrogen gas (dissolved) (kgCOD/m?®)
Scra: methane gas (dissolved) (kgCOD/m?)
SHcos: bicarbonate (M)

Snhz: ammonia gas (dissolved) (M)

Si: inerts (dissolved) (kgCOD/m?®)

Shva: valeric acid (kgCOD/m?®)

Shpu: butyric acid (kgCOD/m?3)

Shipro: propionic acid (kgCOD/m?3)

Shac: acetic acid (kgCOD/m®)

Sco2: carbon dioxide gas (dissolved) (M)
SnH4: @ammonium (M)

Sca: calcium ions (M)

Smg: magnesiumions (M)

Sharoa: phosphoric acid (M)

Shzpoa: dihydrogen phosphate (M)
Shpoa: hydrogen phosphate (M)

Spos: phosphate (M)

Scos: carbonate (M)
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Ti: liquid-gas transfer process index involving i component
vij: rate coefficients for component i on process j

Xec: composites (kgCOD/m?®)

Xeh: carbohydrates (kgCOD/m?®)

Xpr: proteins (kgCOD/m?)

Xii: lipids (kgCOD/m3)

Xsu: suger degraders (monosaccharides) (kgCOD/m?)
Xaa: @amino acids degraders (kgCOD/m?3)

Xta: LCFA degraders (kgCOD/m?)

Xea: valerate and butyrate degraders (kgCOD/m?3)
Xopro: propionate degraders (kgCOD/m?3)

Xac: acetate degraders (kgCOD/m?®)

Xuz: hydrogen degraders (kgCOD/m?®)

Xi: inerts (particulate) (kgCOD/m?)

Y substrate: Yield of biomass on substrate

pj: Kinetic rate of process j
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S.1. Expressions of kinetic rate terms
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