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How Much Is Enough? Minimal Responses of Water
Quality and Stream Biota to Partial Retrofit Stormwater
Management in a Suburban Neighborhood

Allison H. Roy'*, Lee K. Rhea?, Audrey L. Mayer?, William D. Shuster?, Jake J. Beaulieu?,
Matthew E. Hopton?, Matthew A. Morrison®, Ann St. Amand®

1U. S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, Massachusetts, United States of America,
2 U. S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, United States of America, 3 School of Forest Resources and Environmental
Science and Department of Social Sciences, Michigan Technological University, Houghton, Michigan, United States of America, 4 SABIC, Mt. Vernon, Indiana, United States
of America, 5 PhycoTech, Inc., St. Joseph, Michigan, United States of America

Abstract

Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens)
that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from
impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale
stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to
encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km? Shepherd Creek catchment
in Cincinnati, Ohio (USA). In 2007-2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four
experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of
the subcatchments, we sampled monthly baseflow water quality, and seasonal (5x/year) physical habitat, periphyton
assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment
implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6%
to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental
subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were
trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental
sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health,
and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment
(e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional
treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed
to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of
stream ecosystems.

Citation: Roy AH, Rhea LK, Mayer AL, Shuster WD, Beaulieu JJ, et al. (2014) How Much Is Enough? Minimal Responses of Water Quality and Stream Biota to Partial
Retrofit Stormwater Management in a Suburban Neighborhood. PLoS ONE 9(1): €85011. doi:10.1371/journal.pone.0085011

Editor: Maura (Gee) Geraldine Chapman, University of Sydney, Australia
Received April 22, 2013; Accepted November 22, 2013; Published January 17, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CCO public domain dedication.

Funding: The project was largely funded by the U. S. Environmental Protection Agency (USEPA) through the Office of Research and Development (ORD). Field
sampling was conducted by USEPA employees and volunteers and supported in part by Pegasus Technical Services, Inc. under EPA Contract # EP-C-05-056. The
auction, installation, and maintenance of rain gardens and rain barrels was funded by the USEPA’s ORD under the Scientific, Technical, Research, Engineering and
Modeling Support (STREAMS) contract EP-C-05-061, Task Order 8 to TetraTech, Inc. Biotic identification was funded by the USEPA’s ORD through simplified
acquisitions to PhycoTech, Inc. in 2003-2004 (3C-R312-TTSA) and 2007-2010 (EP10C000111), to EnviroScience, Inc. in 2005-06 (EP05C00134), and Rhithron
Associates, Inc. in 2007-2010 (EP07C000170 and EP10C000110). As such, the funders had a role in study design, data collection and analysis, decision to publish,
and preparation of the manuscript.

Competing Interests: The work was undertaken by USEPA employees. One of the authors, Ann St. Amand, conducted lab analysis of periphyton for this study
under a contract with the USEPA. The paper has undergone peer review through USEPA and the U. S. Geological Survey to ensure that there is no
misrepresentation of findings, and the paper makes no recommendations about policy or management. The use of trade names or products does not constitute
endorsement by the U.S. Government. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the USEPA.
This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: aroy@eco.umass.edu

Introduction routed directly into rivers, lakes, and oceans. This conventional
design of urban drainage systems reflects concerns about human
Rapid urbanization and the ongoing conversion of landscapes health and safety, but largely ignores threats to aquatic ecosystem
from natural habitats to industrial, commercial, and residential health that stem from stormwater runoff [3,6].
land uses to support a growing human population remain the most The urban stream syndrome describes changes in stream
salient threats to natural ecosystems [1-3]. Aquatic ecosystems ecosystems associated with urbanization, a subject that has been
that drain urban areas are particularly vulnerable due to their low increasingly studied in the last few decades (see reviews by [7-9]).
position in the landscape [4]. In most urban and suburban areas, These changes primarily arise from stormwater runoff from
untreated stormwater runoff from impervious surfaces is typically impervious cover—particularly impervious cover that is directly
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Stream Responses to Stormwater Retrofit

Table 1. Catchment area and land cover based on cumulative piped catchments draining to each site.

Total Forest
Area  Cover’ 5 A
Site (ha) (%) TIAZ (%) DCIA® (%) 2007 Installations 2007 & 2008 Installations
Before During  After Density
(<2007) (2007-08) (2008) Barrels Gardens (#/ha) Barrels Gardens Density (#/ha)
Sub1 28.0 43.8 19.9 11.6 11.2 10.4 50 20 25 84 33 4.2
Sub2 57.9 46.3 16.3 9.0 8.7 8.1 68 27 1.6 123 55 3.1
Sub3 68.9 68.0 13.1 7.3 7.2 71 32 23 0.80 42 26 1.0
Catch 183 62.6 13.1 74 7.2 7.0 100 50 0.82 165 81 1.3
Sub4 249 66.4 11.2 54 54 54 1 1 0.08 1 1 0.08
Sub5 34.8 64.2 121 73 73 73 0 0 0.00 0 0 0.00

"Forest cover is based on topographic catchment.

gardens within each subcatchment.
doi:10.1371/journal.pone.0085011.t001

connected to streams by stormwater pipes [6]— which alters
stream hydrology, water chemistry, and biotic communities. High
magnitude, flashy flows in urban streams can scour stream beds
and erode stream banks, thus reducing habitat quality. Further-
more, the extreme high flows can wash out aquatic biota and low
lying riparian vegetation, whereas reduced base flows can reduce
in-stream habitat and alter stream ecosystem function [10]. Runoff
that enters urban and suburban streams often contains increased
toxicants, ions, and nutrients, along with higher temperatures,
reduced oxygen saturation, and organic material that can alter
biotic structure and ecosystem function (production, nutrient
uptake, leaf breakdown, etc.) relative to streams in natural
landscapes [7]. While there are other catchment stressors (e.g.,
point sources, septic systems, riparian degradation) and in-stream
stressors (e.g., impoundments, water withdrawals, stream burial)
assoclated with urbanization [9], stormwater runoff is a dominant
source of impairment of ecological structure and function in most
urban catchments. As such, comprehensively managing storm-
water runoft’ with the goals of mimicking pre-disturbance flow
regimes, improving water quality, and ultimately improving
ecosystem health is a leading approach to urban stream restoration
[5,6,11,12].

There is an increasing movement throughout the world to
address runoff’ through decentralized stormwater management
[6,13-15]. This management approach can include small-scale
tools that capture and detain (e.g., detention and retention basins),
infiltrate (e.g., pervious pavements, rain gardens), and filter (e.g.,
biofiltration swales, wetlands) runoff on individual parcels
throughout a landscape [16-18]. These tools are implemented
through new development (often referred to as low impact
development, LID) [15] or retrofitting of already-developed areas.

To date, there have been no reports of the effectiveness of
decentralized stormwater management for improving stream
water quality and biota in suburban catchments. Most assessments
are limited to measurements of hydrology and water quality within
individual treatment practices [18,19] (see also www.bmpdatabase.
org) and modelled effects of installations throughout catchments
[20-22]. There have been some catchment-scale studies compar-
ing LID and conventional practices in new developments [23,24],
but no catchment-scale retrofits of existing developments. This is
due in part to the distribution of impervious surfaces within
catchments, and the legal, economic, and logistical difficulty of
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2Total impervious area (%) includes all impervious surfaces identified by air photos and site visits [38].
3Directly connected impervious area (DCIA) was calculated by subtracting the rooftop area draining to rain barrels installed in 2007 and 2008.
“Stormwater management installations includes number of rain barrels and rain gardens installed in 2007 and overall (2007 & 2008), and the total density of barrels and

implementing stormwater management practices at a scale
appropriate for improvement [25,26]. The research presented
here and another study currently underway in Australia [27] are,
to our knowledge, the first attempts at assessing stream responses
to retrofit stormwater management at the catchment scale.

Like many large, older US cities, the metropolitan area of
Cincinnati, OH has an aging stormwater infrastructure that uses
common combined sewer overflows, which lead to both an
environmental and legal (e.g., consent decree) need to address
stormwater management [28]. Thurston et al. [29] wused
Cincinnati to demonstrate that decentralized stormwater abate-
ment was likely to be less expensive than a centralized (e.g., deep
tunnel) solution to the water quality and quantity problem. Thus, a
multidisciplinary study was designed that 1) assessed the legal,
economic, and scientific challenges associated with decentralized
stormwater management [25], and 2) developed and tested a
stormwater management strategy within a small, suburban
catchment. Rain barrels (up to four per property) and rain
gardens (one per property) were offered to eligible residents (i.e.,
owner-occupied and within the experimental area) through a
voluntary, reverse auction where bids consisted of the stormwater
management practice(s) and a financial subsidy (if desired). The
lowest cost bids at locations with the highest potential environ-
mental benefits were prioritized. Winning homeowners received
the bid amount, free stormwater management practices, installa-
tion, and maintenance for three years [30]. The voluntary nature
of the auction avoided private property rights issues while
providing financial incentives to property owners for installation
and increasing stakeholder ownership [25]. The project placed 81
rain gardens and 165 rain barrels on ca. 30% of the eligible
properties within the headwaters of the Shepherd Creek catch-
ment in 2007 and 2008 [30]. The rain barrels resulted in an
overall decrease in directly connected impervious area (DCIA)
from 7.4% to 7.0% in the catchment, and 11.6% to 10.4% (Subl),
9.0% to 8.1% (Sub2), and 7.3% to 7.1% (Sub3) in the
Experimental subcatchments (Table 1). Rain gardens did not
change the DCIA, but offered additional capacity to capture
overland runoff.

The objective of our study was to determine if the retrofit
stormwater management imposed as a result of the economic
auction would result in measurable shifts in the ecological
condition of streams in the Shepherd Creek catchment. We
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assessed habitat conditions, baseflow water quality, and the
biological assemblage (periphyton and macroinvertebrates) at
various sites along tributary streams within the catchment. For
the hydrometric portion of the Shepherd Creek study, Shuster &
Rhea [31] demonstrated a small but significant effect of
decentralized stormwater management on stream hydrology,
reflected by a decrease in runoff volume in treatment subcatch-
ments. Given the small change in hydrology and small reduction
in % DCIA, combined with levels of impervious cover above
published thresholds of impairment [6,32], we expected minimal
or no responses of water quality and biota to stormwater
management.

Methods

Study design

We used a modified before-after—control-intervention (BACI)
study design, where the intervention was the installation of
treatments (rain barrels and rain gardens) on select parcels within
the catchment. The modified paired-catchment BACI design
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relied on comparison of the difference between responses of
Control and Experimental subcatchments for three periods to
determine if significant treatment effects were present [33-35].
Typically only a pre-treatment and experimental period are used
in a BACI design, but because implementation of the treatments
spanned 16 months, we also included a transition period. Six study
sites were sampled within the Shepherd Creek catchment,
including four Experimental sites (Subl, Sub2, Sub3, Catch) and
two Control sites (Sub4, Sub5; Figure 1). Access to field sites Subl,
Sub2, Sub3, and Catch was granted by private landowners. Sites
Subb and Subba were in the Mt. Airy Forest, and permission was
granted by the Cincinnati Park Board. Sub4 was in the road right-
of way. Multiple Experimental and Control sites were used to
minimize potential confounding of location-specific differences
with treatment effects [36,37]. Total impervious area (TTA) in the
Shepherd Creek catchment was 13.1%, with just over half (7.4%)
of the TIA directly connected to stormwater or combined sewer
pipes (Table 1) [38]. The five subcatchments (24.9-68.9 ha)
ranged from 11.2-19.9% TIA, with a corresponding range of
43.8-68.0% forest cover (Table 1).
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Figure 1. Shepherd Creek catchment and subcatchments in Cincinnati, Ohio (USA). Sub1 was nested within Sub2, Sub4 was nested within
Sub3, and all of the subcatchments drained to the catchment outlet (Catch). Sub 5a was discontinued in 2006. Rain barrels and rain gardens were

installed throughout the catchment except in Sub4 and Sub5.
doi:10.1371/journal.pone.0085011.g001
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Table 2. Variables used in statistical models.

Stream Responses to Stormwater Retrofit

Variable Type Description

Period fixed, numeric study period (Before treatment =0, During treatment=0.5, After treatment=1)

Site fixed, class study sites (Sub1-5, Catch); nested in Group

Group fixed, numeric Control (Sub4, Sub5=0) and Experimental (Sub1, Sub2, Sub3, Catch =1) sites

Round random, class sample collection dates grouped in 7-day windows

Sample random, class sample event (year and month) (ordination analyses only)

Group*Period fixed, class interaction of study period and group; indicates significant effect of stormwater
treatment

Axis fixed, class NMS axis number (ordination combined axes analysis)

Axis*Period fixed, class interaction of NMS axis and study period (ordination combined axes analysis)

Axis*Group fixed, class interaction of NMS axis and study sites (ordination combined axes analysis)

doi:10.1371/journal.pone.0085011.t002

Sites were sampled five times per year from April through
October from 2003 through 2010, with a few exceptions. Subb
was moved downstream in 2005 due to lack of sufficient flow at
Subda. Sub4 was added in April 2005 to provide an additional
Control, and Subl was discontinued in October 2009 following
sewer repair that drastically changed stream baseflow hydrology.
Stormwater treatment installation occurred in June through
September 2007 (Phase 1) and July through September 2008
(Phase 2). Sample periods were therefore designated as Before
(prior to June 2007), During (June 2007 through September 2008),
and After (October 2008 and later), in respect to treatment
installation. There was no new road or building construction in the
study area during the study period, but there were some
potentially significant events, including: road and sewer repair in
Subl in 2006 and 2008, roadside vegetation clearing along Sub4
in summer 2007, and invasive riparian plant removal in Sub) in
summer 2007.

Physical and chemical characteristics

Basic morphometric, geomorphic, and water quality parameters
were measured five times/year within the 61-m sample reach
during biotic sampling. We calculated approximate values for
average width, average depth, wetted area, and surface velocity
based on field measurements. Additional physical attributes
included estimates of: % riffle, % pool, % run, large wood
density, % small wood, % large wood, % detritus, bed texture (%
bedrock, cobble, gravel, sand, silt), and % canopy cover following
the EPA Rapid Bioassessment Protocols (RBP) Physical Charac-
terization data sheet [39]. Water quality measurements were taken
with a YSI 6600 data sonde (YSI, Inc., Yellow Springs, OH,
USA), and included: water temperature, conductivity, dissolved
oxygen, pH, oxidation-reduction potential, and turbidity. YSI data
sondes were calibrated within 24 hours of use and tested
immediately following return from the field. Measurements from
water quality probes that did not pass post-deployment calibration
checks were not used. Finally, we calculated two visual assessment
habitat evaluation scores: EPA’s Rapid Bioassessment Protocols
Quantitative Habitat Assessment (QHEI) [39], and the Primary
Headwater Habitat Evaluation Form (HHEI) [40] that is
specifically designed for streams with water depths <40 cm.

Water quality sampling was also conducted monthly during
baseflow conditions. In addition to measuring the water quality
parameters described above, grab water samples were filtered with
a 0.45-um filter for total dissolved phosphorus (T'DP), dissolved
organic carbon (DOC), and dissolved metals (Al, Fe, Mn, Cu, Zn).

PLOS ONE | www.plosone.org

TDP and DOC were preserved with sulfuric acid, and dissolved
metals were preserved in nitric acid. Unfiltered grab samples were
collected for analysis of nutrients (nitrate/nitrite nitrogen, ammo-
nium nitrogen, dissolved inorganic nitrogen, total Kjeldahl
nitrogen, total phosphorus, ortho-phosphate, TDP), total organic
carbon (TOC), total recoverable metals (Al, Fe, Mn, Cu, and Zn),
and base cations (Na, Mg, K, Ca). Nutrients and TOC were
preserved with sulfuric acid, and metals and base cations were
preserved with nitric acid. Suspended sediment concentration
(SSC), anions (CI, Br, F, SO4, NOs3, and ortho-POy), and alkalinity
samples were unpreserved. For SSC, the 250-mL sample was
filtered through a pre-washed and pre-weighed 1.5-um glass-fiber
filter, dried to a constant weight, and re-weighed following ASTM
Method D3977-97 [41]. Analyses for nutrients, metals, anions,
and cations were performed by EPA Region 5 Central Regional
Laboratory (Chicago, IL) using standard EPA protocols as follows:
EPA Method 353.2 for nitrate/nitrite nitrogen, EPA Method
350.1 for ammonia nitrogen, EPA Method 351.2 for total Kjeldahl
nitrogen, EPA Method 365.4 for total and dissolved phosphorus,
EPA Method 415.1 for total organic carbon, EPA Methods 200.2
(digestion) and 200.7 (analysis) for metals and base cations, and
CRL Method AIG045 for anions, based closely on EPA Method
300.1.

Periphyton

Periphyton samples were collected from submerged rocks
throughout the 61-m study reach. Cobbles were removed from
the stream and a 13.2-cm? area on each rock, designated with a
PVC ring, was brushed with a toothbrush for 2 min. Rocks and
brushes were then rinsed with stream water into a 500-mL bottle.
Algae from all rocks within a reach were composited into a single
bottle and placed in the dark on ice.

In the laboratory, 20-30 mL of the periphyton slurry was
filtered onto ecach of two glass fiber filters and frozen for
subsequent analysis of chlorophyll @ using a multi-wavelength
spectrophotometer following EPA’s Method 446.0 [42]. An
additional 50 mL of sample was preserved in 1% gluteraldehyde
for biomass analysis. The sample was later filtered onto a pre-
ashed glass fiber filter (47 mm, PALL Type A/E, 1-um pore size).
Filters were dried at 105°C to a constant weight, weighed for dry
weight, ashed in a muflle furnace for 1.5 hours at 500°C, wetted,
re-dried at 105°C, and re-weighed to obtain ash-free dry mass
(AFDM). The remaining algal sample was preserved in 1%
gluteraldehyde for identification. All algae (diatoms and soft algae)
were identified and enumerated to the genus level by PhycoTech,
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Inc., consistent with Standard Methods 10200 and 10300 [43].
Three permanent slide mounts were made with 2-hydroxypropyl
methacrylate (HPMA), and all slides were examined using a
stratified counting procedure (200x and 400x for soft algae,
1000 x for diatoms and picoalgae) to a minimum of 400 natural
units [44].

Algal indices were calculated based on densities of cells per cm?
and included total density, density of major orders (Bacillario-
phyta, Chlorophyta, and Cyanophyta), relative proportions of the
major orders, taxa richness, Shannon diversity, and percent of
sample in the dominant taxon. A periphyton index of biotic
integrity (PIBI) developed for the mid-Atlantic region of the
United States was calculated that incorporated nine metrics
(phosphatase activity metric excluded) [45].

PLOS ONE | www.plosone.org

Table 3. Physical and chemical variable summary statistics and ANOVA results for Group*Period interaction.
Variable Lambda’ N Min Max Mean StDev P
Habitat®
DO (mg/L) 1.45 206 0.350 13.15 7.1 2.98 0.087
HHEI score* 1.80 204 51.0 99.0 81.3 8.55 0.722
Oxidation reduction potential (mV) 1.35 190 1.80 392 195 77.3 0.501
Conductivity (mS/cm) =155 210 0.280 253 1.00 0.394 <0.001 HxE
Temperature (°C) 1.90 210 5.68 253 15.8 4.68 0.218
Turbidity (NTU) —0.250 154 0.100 19.9 8.71 5.40 0.042 *
Closed canopy (%) 2.50 199 5.00 90.0 60.9 224 <0.001 Frx
Mean depth (m) —6.25 201 0.019 0.600 0.074 0.066 0.067
Filamentous algae (score) -1.25 88 1.00 4.00 1.76 0.830 0.017 *
Wetted reach area (m?) -1.30 203 4.30 366 100.07 61.75 0.744
Riffle habitat (%) 1.90 179 5.00 90.0 50.9 20.2 0.331
QHEI score® 1.50 204 55 175 113.97 23.53 0.702
Water Quality®
Alkalinity (mg CaCO3/L) —7.00 293 100 350 251 40.7 0.240
Chloride (mg/L) —1.80 273 0.100 856 147 125 0.228
Calcium (mg/L) 3.10 279 1.40 182 99.4 424 0.010 *
Dissolved organic carbon (mg/L) 0.55 282 1.90 35.2 9.95 7.59 0.216
Iron (mg/L) —5.70 285 0.002 3.42 0.287 0.342 <0.001 i
Magnesium (mg/L) —1.00 255 0.100 354 19.4 6.22 0.104
Nitrate (mg/L) —6.55 271 0.020 10.7 1.40 1.58 0.858
pH 0.500 278 6.07 10.2 7.79 0.507 0.623
Sulfate (mg/L) —5.20 242 0.100 222 833 37.6 0.015 *
Suspended sediment concentration (mg/L) —-1.75 286 —8.22 459 7.84 8.75 0.842
Total dissolved phosphorus (mg/L) =200 277 0.040 0.620 0.185 0.099 0.539
Total organic carbon (mg/L) —2.05 281 1.80 37.3 11.6 8.74 0.526
Temperature (°C) 2.40 272 0.090 25.2 129 7.02 0.831
Zinc (dissolved) (ug/L) -2.10 232 0.010 127 21.0 18.4 0.482
"Lambda is value for the exponential transformation.
2%%xp<0,001, *P<0.05.
3Habitat variables (including some water quality variables) were sampled five times per year during biotic sampling events.
“HHEI score from Ohio Environmental Protection Agency Primary Headwater Habitat Evaluation Index [40].
QHEI score from Rapid Bioassessment Protocols Quantitative Habitat Assessment for high gradient streams, and filamentous algae score (range 0-4) is from RBP
benthic macroinvertebrate field sheet [39].
SWater quality variables were sampled monthly during baseflow conditions.
doi:10.1371/journal.pone.0085011.t003

Macroinvertebrates

Macroinvertebrates were collected using two methods: 1) a
triangular dip net (500-um mesh) used to collect a composited,
multi-habitat sample in the entire 61-m reach, and 2) a bucket
sampler (0.053-m? within three replicate  depositional/riffle
habitats. The net samples were considered ideal for capturing
macroinvertebrate diversity and relative abundance [39], whereas
the bucket samples were used to determine macroinvertebrate
densities in riffle habitats that are most sensitive to disturbance
[46]. Net samples were collected five times/year in conjunction
with periphyton and habitat sampling, and bucket samples were
collected during three sampling events per year (spring, summer,
autumn). Bucket samples were taken by pushing an open bucket
mnto the bed sediment, surrounding the bucket-sediment interface
with a custom-made canvas skirt to enclose the area, and
scrubbing each large rock into the water contained in the bucket.
The bed sediment was then disturbed for 10 sec. using a trowel,
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followed by 10 sec. of sweeping with a small dip net (500-um
mesh), and repeated for a total of three times. All samples were
emptied into wash basin, elutriated, poured through a 500-um
sieve, and preserved in 70% ethanol.

In the lab, macroinvertebrates were subsampled to a minimum
of 300 individuals and identified to lowest possible taxonomic unit
(typically genus or species), enumerated, and measured (body
length or shell width). All midges (Diptera: Chironomidae) and
oligochaetes were slide-mounted for identification. To address
differences in taxonomic resolution among three contractors, we
lumped taxa to a common taxonomic level (e.g., genus or family)
or assigned lower classification levels as appropriate (e.g., where
there was only one genus in a family found at our sites).
Macroinvertebrate biomass was calculated using published length-
mass relationships (e.g., [47]) to generate AFDM for each taxon.
Several macroinvertebrate indices were calculated for analysis.
Abundance, relative abundance, richness, and biomass were
calculated for Chironomidae, EPT (Ephemeroptera, Plecoptera,
and Trichoptera), insects only, and all taxa. We calculated the
abundance, relative abundance, and biomass of the isopod
Asellidae (typically the most abundant taxon in each sample),
the proportional abundance and biomass of the dominant taxon in
each sample, and Shannon diversity.

Statistical analysis

Data analyses were performed using SAS version 9.2 (SAS
Institute, Cary, NG, USA). Prior to any analysis, each analyte (e.g.,
water quality parameters, habitat measures, periphyton and
macroinvertebrate indices) was screened for outliers using scatter
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plots and histograms; Box-Cox transformed for normality using
SAS proc Transreg; normalized using SAS proc Standard; and
analyzed using SAS proc Mixed and SAS proc HPmixed. Less
than 10 percent of data were excluded as outliers at this stage.
Each analyte was then evaluated separately using a simplified
“screening” model including study period (Period as Before,
During, or After treatment implementation), sample site (Site), and
sample group (Group as Control or Experimental) with the
“influence” option selected to identify suspicious data points. For
the most part, we could not differentiate outliers due to human
error from system noise. We believe that the outliers do more to
obscure real signals than reflect actual conditions, and therefore
have we have omitted them from further analysis.

After data cleaning was completed, separate analyses were
performed for each analyte to assess the responses of individual
variables to treatment using SAS proc Mixed. Model parameters
included Period, Site, Group, Group*Period interaction, and
sampling round (Round as sampling dates grouped in 7-day
windows) (Table 2). Period and Group were coded in the model as
a numerical, fixed main effects, Site was coded as a fixed effect
nested within Group, and Round was coded as a random effect.
The Group*Period interaction was used to assess for significance
of treatment effects.

We used non-metric multidimensional scaling (NMS) to
ordinate taxonomic data and express differences in assemblage
structure across samples. Species-specific periphyton abundances
and macroinvertebrate abundances and biomass (for bucket
samples only) were log (x+1) transformed and extreme biomass
outliers (3 samples) were removed prior to ordination. The NMS
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ordination was configured with the Sorensen distance measure
and step down in dimensionality, and run in PC-ORD™ (Version
6, MjM Software Design, Gleneden Beach, OR, USA). The
ordination axes were tested for fixed effects of Period, Group, Site
(nested in Group), and Group*Period interactions, and random
effect of Sample (month, year) using SAS proc Mixed. The
combined axes for each analyte type (periphyton, macroinverte-
brate abundance, and macroinvertebrate biomass) ANOVA
included fixed effects for Period, Group, Group*Period, Axis,
Axis*Period, and Axis*Group. Due to the ordination step, the
statistical model was slightly altered, but equivalent to that used for
non-ordinated data. In all cases, a significant Group*Period
interaction indicated a significant effect of stormwater treatment
installation (Table 2).

For all results, we used a P<0.05 cut-off for designating
significance. Following the recommendations of Moran [48] for
diverse ecological data and in the interest of maintaining detailed
analyses, we did not correct for multiple comparisons (e.g., using
sequential Bonferroni). Therefore, we caution the reader to tend
toward a more conservative interpretation of tests that may be
affected by Type I error, even for P-values<<0.05. All raw data and
SAS codes are available in EPA’s STORET database (http://
www.epa.gov/storet/).
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Results

Landscape conditions, habitat, and water quality

Most of the headwater streams had a mix of gravel, cobble, and
boulder substrate with high amounts of fine sediment deposition in
the pools. The QHEI habitat scores reflected the mix of substrates
and high proportion of riffle habitats, although most sites had
suboptimal conditions due to high sediment deposition, poor
vegetative protection, and moderately unstable banks (Table 3).
Baseflow water quality varied considerably across sites and
seasons, but on average streams had elevated nutrients (nitra-
te = 1.40 mg/L; total dissolved phosphorus=0.620 mg/L), and
high conductivity. Both natural (e.g., limey parent material as
calcium =99.4 mg/L) and anthropogenic (e.g., road salting and
domestic wastewater as chloride = 147 mg/L) sources of ions likely
contributed to high conductivity (Table 3).

There was a significant effect of treatment (rain garden and rain
barrel installations) on several habitat and water quality param-
eters (Table 3). Conductivity (Fig. 2A), iron (Fig. 2C), and sulfate
(Fig. 2D) increased in the Control sites through time, with no
apparent change or a decrease (iron) over the corresponding
periods in Experimental sites. Calcium concentrations were similar
in Control sites Before and After installations, but decreased in
Experimental sites through time (Fig. 2B). Canopy cover was lower
in the During and After periods (vs. Before), corresponding to the
vegetation removal that occurred at the Control sites in 2007
(Fig. 3A). The qualitative filamentous algae score was much higher
in the During period than Before and After treatment at the
Control sites, whereas the Experimental sites did not experience a
similar fluctuation through time (Fig. 3B).

Periphyton

Over seven years, 107 periphyton genera were identified.
Average periphyton densities were highest in April prior to leaf-out
(15.4 M cells cm™?) and lowest May/June (8.0 M cells cm™?).
Chlorophyll @ was also highest in April (52.6 mg m ™ ?) compared
to other scasons (average range: 5.31-9.29 mg m™ 7). In contrast,
algal AFDM was similar across seasons (range 43.2-49.2 ¢ m™?),
but varied across sites (range 38.3-62.2 ¢ m™ 2, Sub3-Sub3). The
periphyton were numerically dominated by Cyanophyta (cyano-
bacteria) in the family Chroococcaceae, encompassing 83% of the
total cell density. This dominance was consistent across sites (site
averages 78-85%), but increased throughout the growing season
from 63% in April (before leaf-out) to 92-94% in June through
October. Numerically, the cyanobacteria were dominated by small
pico-periphyton <2 pum. Within Bacillariophyta (diatoms), Navi-
cula (51.6%), Nitzchia (14.0%), Amphora (9.3%), Gomphonema (9.1%),
and Achnathes (5.7%) were the most common genera. Average
Shannon diversity (1.43-1.54) and PIBI scores (21.4-24.8) were
similar across sites, and generally reflected degraded stream
conditions.

Analysis of the five individual periphyton metrics that met the
statistical criteria revealed no significant treatment effects (Table 4).
NMS ordination of cell densities of periphyton taxa revealed a
visible shift between samples Before, During, and After treatment
installations in the 3-dimensional solution (Fig. 4). Further analysis
of the individual axes showed significant Period effects for all three
axes separately, and a significant effect of Group (Control vs.
Experimental) for axis 2 (Table 5). However, there were no
significant effects of Group*Period (treatment) for any of the NMS
axes separately or combined (Table 5).
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Macroinvertebrates

We collected 189 unique macroinvertebrate taxa across all
samples and sites. Assemblages were dominated by the Asselid
isopod Lirceus that composed 60% of the abundance of all net
samples and 39% of bucket samples. Oligocheata worms (8.7%
and 28.8%, respectively) and the chironomid Tanytarsus (5.1%
and 12.6%, respectively were the second and third most abundant
taxa, respectively). Other common taxa (composing >2% of the
abundance) included the chironomids Diamesa, Paratendipes, and
Orthocladius, and Ostracoda crustaceans. On average (% SD), the
bucket samples were composed of 29.6+24.8% Chironomidae,
26.8%224.5% Asellidae, and 5.2%26.7% EPT taxa (Table 4). Across
the six sites, there was a range in average total richness (20-27),
EPT richness (0.5-5), and Shannon diversity (1.61-2.29) in bucket
samples, with Subl consistently reflecting the most degraded
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Table 4. Biotic variable summary statistics and ANOVA results for Group*Period interaction.
Variable Lambda'’ N Min Max Mean St Dev P
Periphyton
% Dominant diatom —0.400 218 20.2 100 55.0 17.9 0.375
% Motile diatom 1.00 212 3.90 100 522 25.8 0.602
PIBI® 1.75 216 0.100 37.8 213 6.79 0.415
Shannon diversity 0.050 218 0.740 2.78 1.48 0.376 0.218
% Eutraphentic diatom 3.00 210 4.30 100 63.2 26.0 0.402
Macroinvertebrates®
Abundance (bucket)
% Chironomidae —2.75 102 1.04 89.9 29.6 248 0.088
Chironomidae richness 0.550 102 1.00 19.0 8.87 4.38 0.053
% EPT? —7.00 77 0.101 354 5.17 6.69 0.324
EPT richness -3.70 77 0.500 8.00 2.79 2.3 0.786
Shannon diversity 235 104 0.220 3.08 2.14 0.561 0.267
Insect richness 1.20 104 3.00 33.0 16.1 6.22 0.002 *x
% Asellidae =315 103 0.179 83.9 26.8 245 0.400
Total richness 0.800 104 7.00 45.0 24.0 6.70 0.009 *x
Abundance (net)
% Chironomidae —4.20 215 0.276 96.2 21.1 211 0.254
Chironomidae richness —1.05 215 1.00 23.0 7.18 4.16 0.705
EPT richness —2.25 144 0.500 7.00 242 1.51 0.420
Shannon diversity 1.70 220 0.176 3.14 1.72 0.702 0.143
Insect richness —0.45 220 1.00 320 13.9 6.56 0.932
% Asellidae 0.050 210 0.293 97.4 445 323 0.503
Total richness —0.15 220 5.00 42.0 213 7.53 0.924
Biomass (bucket)
Chironomidae richness 0.700 102 1.00 20.0 9.21 4.52 0.058
% EPT —7.00 76 0.007 704 7.72 12.1 0.478
Shannon diversity 1.05 104 0.188 2.63 1.46 0.512 0.019 *
% Insecta -1.15 104 0.561 96.5 41.0 30.9 0.318
% Dominant taxon —0.550 104 19.4 97.3 55.0 19.3 0.029 *
% Asellidae —2.70 103 0.015 854 284 263 0.243
"Lambda is value for the exponential transformation.
2#%p<0.01, *P<0.05.
3PIBI is the Periphyton Index of Biotic Integrity [45].
“Macroinvertebrate variables were calculated separately for multi-habitat net samples (based on abundance data) and bucket samples in riffle habitats (represented as
abundance and biomass).
SEPT represents taxa in the orders Ephemeroptera, Plecoptera, and Trichoptera (considered sensitive to disturbance).
doi:10.1371/journal.pone.0085011.t004

conditions, and Catch having the highest diversity and richness of
sensitive EPT  taxa. Although net samples captured more
individuals, richness and diversity metrics were slightly higher in
the quantitative, bucket samples. Density of macroinvertebrates
within bucket samples ranged from 94 to 48,648 individuals m™?
(average density 2,892 individuals m %) and biomass ranged from
5.5 to 81,951 mg AFDM m™? (average biomass 1,986 mg AFDM
m™?) across samples.

There were few significant effects of treatment (Group*Period)
on the individual macroinvertebrate abundance and biomass
variables (Table 4). Insect richness (Fig. 5A) and total richness
(Fig. 5B) from bucket samples tended to increase through time in
the Control sites, whereas the Experimental sites had lower
richness in the During period compared to Before and After.
Shannon diversity (based on biomass from bucket samples) was
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Figure 4. Non-metric multidimensional scaling ordination for
periphyton abundances. Assemblages were different for Control (C)
and Experimental (E) sites (Axis 2) and comparing Before (B), During (D),
and After (A) installation of stormwater management (Axes 1, 2, and 3;
Table 5). The 3D solution explained 71.5% of the variation, and the final
stress was 19.3.

doi:10.1371/journal.pone.0085011.g004

highest in the During period for the Control sites and Before
treatment for the Experimental sites (Fig. 5C). Percent dominant
taxon based on biomass from bucket samples (a variable that
should increase with disturbance) was lowest in the During period
for the Control sites and highest During treatment for the
Experimental sites (Fig. 5D).

Macroinvertebrate assemblages collected from riffle habitats
were distinct based on Group (Control vs. Experimental) and Site
(Table 5) based on the ordination of taxa abundance (Iig. 6) and
biomass (Fig. 7). There was also a significant Period effect for
abundance (combined axes) and biomass (axis 1 and combined
axes; Table 5). Only macroinvertebrate abundance axis 3 revealed
a significant effect of stormwater treatment (Group*Period,
P=0.002, Table 5).

Discussion

Stream responses to rain garden and barrel installations
As expected, the installation of rain barrels and rain gardens on
30% of the properties in the Experimental catchments resulted in
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Table 5. ANOVA results for ordination axes.

Effect’ Axis P Effect Axis P

Periphyton
Group 1 0.151 Site(Group) 1 0.495
Group 2 0.006 **  Site(Group) 2 0.232
Group 3 0.510 Site(Group) 3 0.108
Group All 0.370 Site(Group) All -
Period 1 0.014 * Group*Period 1 0.913
Period 2 <0.001 ***  Group*Period 2 0.146
Period 3 <0.001 ***  Group*Period 3 0.311
Period All 0.755 Group*Period  All 0.983

Macroinvertebrate Abundance®

Group 1 0.085 Site(Group) 1 0.434
Group 2 <0.001 ***  Site(Group) 2 0.009 **
Group 3 <0.001 *** Site(Group) 3 <0.001 ***
Group All 0.032 * Site(Group) All -

Period 1 0.295 Group*Period 1 0.497
Period 2 0.532 Group*Period 2 0.977
Period 3 0.163 Group*Period 3 0.002 **
Period All 0.024 * Group*Period  All 0.815

Macroinvertebrate Biomass
Group 1 0.291 Site(Group) 1 0.006 **

Group 2 <0.001 *** Site(Group) 2 <0.001 ***

Group 3 0.463 Site(Group) 3 0311
Group All 0.237 Site(Group) All -

Period 1 0.008 **  Group*Period 1 0.624
Period 2 0.231 Group*Period 2 0.097
Period 3 0.369 Group*Period 3 0.934
Period All <0.001 ***  Group*Period All 0.989

'See Table 2 for variable descriptions.

2x%p<0,001, **P<0.01, * P<0.05. - indicates effect not tested in combined axis
model.

3Macroinvertebrate abundance and biomass were based on bucket samples in
riffle habitats.

doi:10.1371/journal.pone.0085011.t005

very few responses in stream water quality, periphyton, and
macroinvertebrate metrics relative to Control sites. The few
significant results that were detected should be interpreted with
caution, given the high number of comparisons and potential risk
of Type I error. Despite the high number of samples, with only
four experimental and two Control sites there was low statistical
power, a challenge of BACI designs [35]. Nonetheless, the few
detected responses are notable given the study design and
relatively small amount of stormwater runoff’ mitigated in the
catchment.

There was a statistically significant effect of stormwater
treatment on a few baseflow water quality variables, generally
reflecting reduced water quality through time at Control sites. The
small reduction in runoff volume from Before to After treatment
[31] may have stabilized the water quality in the Experimental
sites over a period of time when conditions in the Control sites
were deteriorating. Rain gardens and barrels captured runoff,
thereby reducing the likelihood of pollutant mobilization and
transport, and potentially decreasing the total mass of pollutants
delivered to streams during higher-flow storm conditions [49,50].
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Figure 5. Macroinvertebrate variables before, during, and after treatment for control and experimental sites. Mean (*= SE) back-
transformed values are reported for insect richness (A) and total richness (B) based on riffle bucket samples, and Shannon diversity (C) and %
dominant (D) based on biomass values for riffle bucket samples. P-values reflect results of ANOVA for Group*Period interaction; only significant biotic

models (P<<0.05) are included (Table 4).
doi:10.1371/journal.pone.0085011.g005

In addition to capturing and detaining stormwater, rain gardens
can play a role in filtration of pollutants [51,52], and may
contribute to overall reduced pollutant loading to streams, with
some potential for improved baseflow water quality [49], although
this mechanism was untested in our study.

There was no significant effect of treatment on the algal
community, as examined through individual periphyton metrics
and ordination of cell densities by taxon. This is not surprising
given the lack of a response of nutrients (nitrogen and phosphorus)
to treatment, and that these systems are not significantly nutrient
limited [53]. The qualitative filamentous algal score was much
higher in the Control sites in the During period (June 2007
through September 2008), which corresponded to the removal of
trees and shrubs within the riparian zones at both Control sites.
Loss of riparian cover increased the duration and intensity of light
reaching the stream, potentially also increasing stream tempera-
ture locally, and could have triggered the increase in the relative
proportion of filamentous green algae in the Control sites [53,54].
The lower scores for the After period may be a reflection of algal
sloughing during the After period, which had higher precipitation
and flows compared to the During period.

The few significant treatment effects on the macroinvertebrate
assemblage were not intuitive, and may be explained by multiple
factors independent of the stormwater management. In the
Control sites, there was an increase in richness and diversity
through time, and lower percentage of dominant taxa in the
During period. These patterns may reflect the periphyton
responses, especially if increases in filamentous algae provided
habitat, food, or increased nutrient uptake to support new taxa
and higher diversity in the Control sites. In contrast, the
Experimental sites demonstrated lower richness and diversity,
and higher percentage of dominant taxa in the During period,
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compared to Before and After. It is possible that the reductions can
be attributed to differences in low flow hydrology over the course
of the study. Whereas high storm flows can directly alter
macroinvertebrate communities through physical washout [55],
small streams such as those in our study are more likely structured
by seasonal variation in stream flow. The two Control streams
(Sub4 and Sub)) had two of the three smallest catchment areas,
and dried to pools nearly every summer, whereas the other sites
remained perennial, which may explain why the Control sites had
the lowest overall richness and diversity. However, in 2007 and
2008 (when the stormwater management devices were being
installed), all six streams dried to pools in the summer. The lack of
permanent flow and associated fluctuations in temperature likely
resulted in loss of taxa in the Experimental sites that require
flowing water, and these taxa may have already been missing from
the Control sites [56,57].

Why were there so few responses to stormwater

management?

Although the installation of rain gardens and rain barrels
represented a widespread retrofit management effort, it is likely the
number and capacity of installations were simply insufficient to
elicit any response from the water quality or biotic measures. The
management effort targeted runoff’ from rooftops and driveways
on private properties, which comprised a majority (53.2%) of the
total impervious area in the Shepherd Creek catchment. However,
even if the 30% of properties that received treatments captured all
of the runoff from rooftops and driveways on those properties
(which we know was not the case), it would not reduce the effective
impervious area (EIA) or DCIA in the subcatchments to below the
threshold (1-14% EIA [6], 2% TIA [32]) of expected biotic
impairment (See Fig. 2.2.2 in [58]). The range in impervious
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Figure 6. Non-metric multidimensional scaling ordination for
macroinvertebrate abundances from bucket samples. Assem-
blages were different for Control (C) and Experimental (E) sites (Axes 2
and 3) and comparing Before (B), During (D), and After (A) installation of
stormwater management (all axes combined; Table 5). The 3D solution
explained 86.2% of the variation, and the final stress was 16.1.
doi:10.1371/journal.pone.0085011.g006

(11.2-19.9%) and forest (43.8-68.0%) cover across sites may have
also masked detection of responses to treatments. Furthermore,
our management approach did not address runoff from streets,
which comprised 22.7% of the total impervious area, but had a
proportionally higher amount of impervious cover directly
connected to storm sewers [38]. Streets were therefore likely to
have a disproportional impact on streams, and their lack of
treatment may have masked the benefits provided by the rain
gardens and rain barrels. Walsh et al. [59] demonstrated that it is
possible for streams with ~10% imperviousness to have good
ecological condition if stormwater is infiltrated throughout the
catchment. Thus, it i3 conceivable to achieve in-stream improve-
ments in the Shepherd Creek catchment if we (1) increase the
number of properties with management practices, (2) ensure all
impervious surfaces on the property are routed to rain gardens, (3)
increase the capacity of management devices, and (4) mitigate
runoff from streets with high proportions of connected impervious
cover.

PLOS ONE | www.plosone.org

1

Stream Responses to Stormwater Retrofit

°
°
o %
—~ A [ ]
X A‘ A
~ AT g A A
D [ ° %oo.'ofoAAo.
o A% AO&xAA A
A Ay
L - %%AA‘A.
> N
< A A OAA A
a4
A
h o, 4
A, &% &
A
o
A
A
° oA
Axis 1 (33.9%)
ocs *
® CD A
® CA
A E-B
& A ED
| AEA ° A
8, ko A @
™ |A A.‘ A
K% ] ° - A
< o
< A © ."“A
o
A AOO zh‘A‘z.
A
a OCAA% M.,o A
A A A
Y s
[*N A A
e
b A

Axis 1 (33.9%)

Figure 7. Non-metric multidimensional scaling ordination for
macroinvertebrate biomass from bucket samples. Assemblages
were different for Control (C) vs. Experimental (E) sites (Axis 2) and
comparing Before (B), During (D), and After installation of stormwater
management (Axes 1, 3, and all; Table 5). The 3D solution explained
84.3% of the variation, and the final stress was 15.8.
doi:10.1371/journal.pone.0085011.g007

In addition to the lack of hydrologic capacity of installed
stormwater treatment devices, there are other possible reasons for
the lack of water quality and biotic responses. First, there could
have been an overwhelming influence of other stressors, despite
the reduced stormwater volume. Although in-stream hydrology is
tightly linked to water quality and biotic health in suburban and
urban streams, water quality and other stressors (e.g., dispersal
barriers, riparian forest loss, channelization) can shape biotic
communities independently of stormwater runoff [9]. In the
Shepherd Creck catchment, some of the properties have private
septic tanks, and poorly maintained or malfunctioning systems can
increase nutrients and bacteria, especially during low-flow
conditions [60]. Road salt inputs were extremely high in the
catchment, and although this can be partially mitigated by
capturing runoff, salt concentrations and conductivity remained
high despite restoration efforts. It is possible that these and other
aquatic and terrestrial stressors were not mitigated by restoration
efforts, thus preventing improvement in periphyton and macro-
invertebrate assemblage integrity.
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Over the seven-year study, there were many changes in the
catchment unrelated to the project that may have masked
responses associated with stormwater management. The Shepherd
Creek project involved county and city organizations (e.g.,
Hamilton County Soil and Water Conservation District, Hamilton
County Engineers Office, Cincinnati Metropolitan Sewer District,
and Cincinnati Parks) in effort to maximize potential effectiveness
of the project. Despite this, a few road maintenance, sewer
maintenance, and tree removal projects occurred during the study
period. These changes can increase variability in response
variables and reduce the potential to detect improvements in the
catchment. Because tree removal (to improve road visibility in
Sub4 and for management of invasive species in Subb) occurred at
the same time as installation of stormwater management devices, it
was difficult to separate the causes of any biotic responses. In
addition, landowners likely made changes in their landscaping,
watering, and other practices independently of the project. Given
that it is unrealistic to prevent these non-target changes in
suburban catchments, future studies will likely have to do
additional improvements, matching the scope of management to
the type and extent of disturbance, in order to detect a response.

The lack of detectable responses may also be explained by the
high spatial and temporal variability of the biotic variables, which
is typical in small, hydrologically-complex urban catchments [61].
In the spatial dimension, there are large differences in macroin-
vertebrate [46] and periphyton [62] taxa found across habitats. By
targeting sample collection to riffle habitats (macroinvertebrate
bucket samples) and hard substrates (periphyton samples), our
study minimized this within-reach variation, although habitat was
still likely an important factor influencing differences across sites.
We observed high intra- and inter-annual variability in both the
periphyton and macroinvertebrate assemblages. Although these
were accounted for in the statistical model (Round), the additional
variable in the model can minimize the power to detect a response,
a disadvantage of this hybrid designed-observational study with
numerous unavoidable nuisance effects. Moreover, research
suggests that weather variability (on a small scale) and climate
variability (on a larger scale) may drive assemblages [56,57,63,64]
and override responses to localized hydrologic management in
some years. As mentioned before, we experienced drought
conditions during the installation phase (late 2007 & early 2008),
which may explain biotic responses in the During period. It is
likely the low flows, combined with other stressors (water quality,
temperature, sedimentation) in the catchment, interacted in
complex ways to control biotic assemblages and ultimately prevent
any detectable response to stormwater management.

Whereas improvements in hydrology were expected almost
immediately following restoration, subsequent improvements in
water quality and biotic integrity may take much longer. This
study included three years of post-restoration monitoring after the
initial installations (Phase 1), and only two years of monitoring
after all of the installations were complete (i.c., following Phase 2).
Existing, sediment-bound pollutants may take several years to
process before streams experience improved water quality from
reduced loading [65] and contaminated groundwater reservoirs
can maintain high levels of contaminates in streams decades after
the pollutant source has been eliminated [66]. Although periph-
yton have relatively short life cycles and are more sensitive to
short-term shifts in water quality than macroinvertebrates [39,62],
their assemblages are structured by habitat and substrate, neither
of which changed during our study. Similarly, macroinvertebrates
may display a delayed response to increased detention of
stormwater runoff because it takes time for critical resources
(e.g., food, habitat) to improve [67]. Furthermore, the multi-year
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life cycles of many macroinvertebrates and their modes of dispersal
suggests that recovery may take several years [39]. Even in studies
where in-stream habitat enhancement has restored habitat
diversity, some researchers have shown limited recovery of
macroinvertebrates that can be explained by other, persistent
stressors [67-69]. Even if instream conditions are suitable, aquatic
invertebrates that have terrestrial adults need good riparian
habitat and dispersal corridors across the landscape to persist [70].

Conclusions

Although this study represents a sizeable effort to control
stormwater runoff on private properties throughout a catchment,
the stream responses to the retrofit management were limited to
localized responses of a few variables. These results are not
surprising given the number of rain gardens and rain barrels and
the capacity of these stormwater devices relative to the impervious
surfaces in the catchment. There is an obvious need for additional
controlled studies where stormwater management practices are
installed at higher densities to capture a greater volume of
stormwater to determine the extent of stormwater management
necessary to improve ecosystem health. A large-scale stormwater
restoration is currently underway in the Little Stringybark Creek
catchment in Melbourne, Australia [27], and more studies of this
scope are needed despite the logistical and financial challenges of
implementing and monitoring catchment-scale restoration [26].

The focus of this paper was on the effects of stormwater
management on stream water quality and biota. However, the
success of stream restoration should not only be measured in terms
of improved ecosystem health [71], but in other benefits that can
be derived. This study took a multidisciplinary approach to
designing and implementing catchment-scale management, pro-
viding economic and social benefits that extend beyond the
ccosystem responses [28]. The auction revealed substantial
landowner interest and the potential for mitigating stormwater
at much lower costs than centralized options. There were
additional contributions to ecosystem services such as flood
protection and water supply that extend beyond stream ecosystem
benefits. For example, the 165 rain barrels installed resulted in
water savings in cases where residents used the outside water
source for watering that would otherwise come from potable
sources. The 81 rain gardens included only native plant taxa, so
the installations contributed to increases in native flora and wildlife
habitat in the neighborhood. Additional benefits included
generating public awareness of stormwater issues and the
connection between human activities and environmental quality.
Overall, it is clear that management efforts designed to mimic
natural ecosystems will provide a variety ecosystem and other
benefits, yet the extent of retrofit stormwater management
necessary to restore healthy streams remains to be determined.

Acknowledgments

The design, planning, implementation, and contract management for the
Shepherd Creek project took place over nearly 10 years with the help of
numerous people in the USEPA: H. Cabezas, M. Clagett, T. Hoagland, P.
Parikh, M. Taylor, J. Templeton, and H. Thurston, and from county and
city offices: M. Alam, B. Bohl, M. Flanders, T. Gilday, ]J. Godby, L. Parker,
H. Utrata-Halcomb, and W. Wimmer. Thanks to the following individuals
for assisting with field sampling, laboratory processing, and data entry: B.
Morris, R. Burrows, M. Clagett, A. Dybas, N. Fudge, M. Goss, K. Head,
D. Kowalski, H. Lubbers, J. Milanovich, N. Patel, D. Pennington, J.
Rebholz, J. Shaffer, K. Taulbee, Y. Zhang.

January 2014 | Volume 9 | Issue 1 | 85011



Author Contributions

Conceived and designed the experiments: WDS ALM AHR MAM.
Performed the experiments: AHR ALM MAM JJB AS WDS MEH.

References

1.

o

20.

21.

22.

23.

24.

26.

Alig RJ, Kline JD, Lichtenstein M (2004) Urbanization and the US landscape:
looking ahead in the 21* century. Landsc Urban Plan 69: 219-234.

. Grimm NB, Facth SH, Golubiewski NE, Redman CL, Wu J, et al. (2008) Global

change and the ecology of cities. Science 319: 756-760.

. United Nations (2011) World Urbanization Prospects: The 2010 Revision. New

York: UN Department of Economic and Social Affairs, Population Division.
Available: http://esa.un.org/unpd/wpp/index.htm. Accessed 3 August 2012.

. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream

ecosystems. Annu Rev Ecol Evol Syst 35: 257-284.

. Walsh CJ (2000) Urban impacts on the ecology of receiving waters: a framework

for assessment, conservation and restoration. Hydrobiologia 431: 107-114.

. Walsh CJ, Fletcher TD, Ladson AR (2005) Stream restoration in urban

catchments through redesigning stormwater systems: looking to the catchment to
save the stream. ] North Am Benthol Soc 24: 690-705.

. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Evol

Syst 32: 333-365.

. Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, et al. (2005)

The urban stream syndrome: current knowledge and the search for a cure.

J North Am Benthol Soc 24: 706-723.

. Wenger SJ, Roy AH, Jackson CR, Bernhardt ES, Carter TL, et al. (2009)

Twenty-six key research questions in urban stream ecology—An assessment of

the state of the science. ] North Am Benthol Soc 28: 1080-1098.

. Konrad CP, Booth DB (2005) Hydrologic changes in urban streams and their

ccological significance. American Fisheries Society Symposium 47: 157-177.

. Booth DB, Jackson CR (1997) Urbanization of aquatic systems: degradation

thresholds, stormwater detection, and the limits of mitigation. J Am Water
Resour Assoc 33: 1077-1090.

. Burns MJ, Fletcher TD, Walsh CJ, Ladson AR, Hatt BE (2012) Hydrologic

shortcomings of conventional urban stormwater management and opportunities
for reform. Landsc Urban Plan 105: 230-240.

Sieker I (1998) On-site stormwater management as an alternative to
conventional sewer systems: a new concept spreading in Germany. Water Sci

Technol 38: 65-71.

. Ando AW, Freitas LPC (2011) Consumer demand for green stormwater

management technology in an urban setting: the case of Chicago rain barrels.
Water Resour Res 47: W12501. doi:10.1029/2011WRO011070.

. Ahiablame LM, Engel BA, Chaubey I (2012) Effectiveness of low impact

development practices: literature review and suggestions for future research.
Water Air Soil Pollut 223: 4253-4273.

. United States Environmental Protection Agency (1991) Construction site

stormwater discharge control: an inventory of current practices. EPA 883-R-
91-100. Washington, DC: US EPA Office of Water. Available: http://www.epa.
gov/npdes/pubs/owm017.pdf. Accessed 17 April 2013.

. Urbonas B, Stahre P (1993) Stormwater best management practices and

detention for water quality, drainage, and CSO management. New Jersey: PTR
Prentice Hall. 449 p.

. Dietz ME (2007) Low impact development practices: a review of current

research and recommendations for future directions. Water Air Soil Pollut 186:
351-363.

. Hunt WF, Davis AP, Traver RG (2012) Meeting hydrologic and water quality

goals through targeted bioretention design. J Environ Eng (New York) 138: 698
707.

Perez-Pedini C, Limbrunner JF, Vogel RM (2005) Optimal location of
infiltration-based best management practices for storm water management.
J Water Resour Plan Mgmt 131: 441-448.

Gilroy KL, McCuen RH (2009) Spatio-temporal effects of low impact
development practices. ] Hydrol 367: 228-236.

Lee JG, Selvakumar A, Alvi K, Riverson J, Zhen JX, et al. (2012) A watershed-
scale design optimization model for stormwater best management practices.
Environ Model Softw 37: 6-18.

Bedan ES, Clausen JC (2009) Stormwater runoff quality and quantity from
traditional and low impact development watersheds. ] Am Water Resour Assoc
45: 998-1008.

Line DE, Brown RA, Hunt WF, Lord WG (2012) Effectiveness of LID for
commercial development in North Carolina. ] Environ Eng (New York) 138:
680-688.

. Parikh P, Taylor M, Hoagland T, Thurston H, Shuster W (2005) At the

intersection of hydrology, economics, and law: application of market
mechanisms and incentives to reduce stormwater runoff. Environ Sci Policy 8:
133-144.

Roy AH, Wenger SJ, Fletcher TD, Walsh CJ, Ladson AR, et al. (2008)
Impediments and solutions to sustainable, watershed-scale urban stormwater
management: lessons from Australia and the United States. Environ Manage 42:
344-359.

PLOS ONE | www.plosone.org

Stream Responses to Stormwater Retrofit

Analyzed the data: LKR AHR. Wrote the paper: AHR LKR ALM WDS
JJB MEH MAM AS.

27.

28.

29.

30.

31.

32.

33.

34.

36.

37.

38.

39.

40.

41.

42.

43.

44.

46.

47.

48.

49.

50.

Fletcher TD, Walsh CJ, Bos D, Nemes V, RossRakesh S, et al. (2011)
Restoration of stormwater retention capacity at the allotment-scale through a
novel economic instrument. Water Sci Technol 64: 494-502.

Mayer AL, Shuster WD, Beaulicu JJ, Hopton ME, Rhea LK, et al. (2012)
Building green infrastructure via citizen participation: a six-year study in the
Shepherd Creek (Ohio). Environ Pract 14: 57-67.

Thurston HW, Goddard HC, Szlag D, Lemberg B (2003) Controlling
stormwater runoff with tradable allowances for impervious surfaces. ] Water
Resour Plan Mgmt 129: 409-418.

Thurston HW, Taylor MA, Shuster WD, Roy AH, Morrison MA (2010) Using a
reverse auction to promote household level stormwater control. Environ Sci
Policy 13: 405-414.

Shuster WD, Rhea LK (2013) Catchment-scale hydrologic implications of
parcel-level stormwater management (Ohio USA). J Hydrol 485: 177-187.
King RS, Baker ME (2010) Considerations for analyzing ecological community
thresholds in response to anthropogenic environmental gradients. J North Am
Benthol Soc 29: 998-1008.

Green RH (1979) Sampling design and statistical methods for environmental
biologists. Chichester: Wiley. 257 p.

Stewart-Oaten A, Murdoch WW, Parker KR (1986) Environmental impact
assessment: Pseudoreplication in time? Ecology 67: 929-940.

. Faith DP, Humphrey CL, Dostine PL (1991) Statistical power and BACI designs

in biological monitoring: comparative evaluation of measures of community
dissimilarity based on benthic macroinvertebrate communities in Rockhole
Mine Creek, Northern Territory, Australia. Aust ] Mar Freshwater Resour 42:
589-602.

Underwood AJ (1991) Experimental designs for detecting human environmental
impacts on temporal variations in natural populations. Aust ] Mar Freshwater
Resour, 42, 569-587.

Underwood AJ (1992) Beyond BACI - the detection of environmental impacts
on populations in the real, but variable, world. J Exp Mar Bio Ecol 161: 145—
178.

Roy AH, Shuster WD (2009) Assessing impervious surface connectivity and
applications for watershed management. J] Amer Water Resour Assoc 45: 198—
209.

Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment
protocols for use in streams and wadeable rivers: periphyton, benthic
macroinvertebrates, and fish. Second Edition. EPA 841-B-99-002. Washington,
DC: Environmental Protection Agency. Available: http://water.epa.gov/
scitech/monitoring/rsl/bioassessment/index.cfm. Accessed 18 April 2013.
Ohio Environmental Protection Agency (2002) Field Evaluation Manual for
Ohio’s Primary Headwater Habitat Streams. Version 1.0. Ohio EPA Division of
Surface Water, Columbus, Ohio. Available: http://www.in.gov/idem/files/
headwater_oh_phwh_man.pdf. Accessed 18 April 2013.

ASTM (1997) Standard test methods for determining sediment concentration in
water samples. Philadelphia: American Society for Testing and Materials.

Arar EJ (1997) Method 446.0, In vitro determination of chlorophylls a, b, cl,
+c2 and pheopigments in marine and freshwater algae by visible spectropho-
tometry. Revision 1.2. Washington, DC: U. S. Environmental Protection
Agency.

Rice EW, Baird RB, Eaton AD, Clesceri LS (2005) Standard methods for the
examination of water and wastewater. 21* Edition. American Public Health
Association, American Water Works Association, and Water Environment
Federation. Available: http://www.standardmethods.org/. Accessed 18 April
2013.

PhycoTech (2011) Technical approach to algal identification. PhycoTech, Inc.,
St. Joseph, Michigan. Available: http://www.phycotech.com/technical.html.
Accessed 3 August 2012.

. Hill BH, Herlihy AT, Kaufmann PR, Stevenson JR, McCormick FH, et al.

(2000) Use of periphyton assemblage data as an index of biotic integrity. J North
Am Benthol Soc 19: 50-67.

Roy AH, Rosemond AD, Leigh DS, Paul MJ, Wallace JB (2003) Habitat-specific
responses of stream insects to land cover disturbance: biological consequences
and monitoring implications. J North Am Benthol Soc 22: 292-307.

Benke AC, Huryn AD, Smock LA, Wallace JB (1999) Length-mass relationships
for freshwater macroinvertebrates in North America with particular reference to
the southeastern United States. ] North Am Benthol Soc 18: 308-343.

Moran MD (2003) Arguments for rejecting the sequential Bonferroni in
ecological studies. Oikos 100: 403-405.

Davis AP, Hunt WF, Traver RG, Clar M (2009) Bioretention technology:
overview of current practice and future needs. J Environ Eng (New York) 135:
109-117.

Li H, Sharkey LJ, Hunt WF, Davis AP (2009) Mitigation of impervious surface
hydrology using bioretention in North Carolina and Maryland. ] Hydrol Eng 14:
407-415.

January 2014 | Volume 9 | Issue 1 | 85011



51.

52.

53.

54.

56.

57.

58.

59.

60.

Hatt BE, Fletcher TD, Deletic A (2009) Hydrologic and pollutant removal
performance of stormwater biofiltration systems at the field scale. ] Hydrol 365:
310-321.

Trowsdale SA, Simcock R (2011) Urban stormwater treatment using bioreten-
tion. J Hydrol 397: 167-174.

Beaulieu JJ, Arango CP, Balz AD, Shuster WD (2013) Continuous monitoring
reveals multiple controls on ecosystem metabolism in a suburban stream.
Freshwater Biol. doi:10.111/fwb12097.

DeNicola DM, Hoagland KD, Roemer SC (1992) Influences of canopy cover on
spectral irradiance and periphyton assemblages in a prairie stream. ] North Am

Benthol Soc 11: 391-404.

. Poff NL, Ward JV (1989) Implications of streamflow variability and

predictability for lotic community structure: a regional analysis of streamflow
patterns. Can J Fish Aquat Sci 46: 1805-1818.

Williams DD (1996) Environmental constraints in temporary freshwaters and
their consequences for the insect fauna. J North Am Benthol Soc 15: 634-650.
Clarke A, MacNally R, Bond N, Lake PS (2010) Flow permanence affects
aquatic macroinvertebrate diversity and community structure in three
headwater streams in a forested catchment. Can J Fish Aquat Sci 67: 1649
1657.

Thurston HW, Roy AH, Shuster WD, Cabezas H, Morrison MA, et al. (2008)
Using economic incentives to manage stormwater runoff in the Shepherd Creek
Watershed, Part I. EPA/600/R-08/129. Washington, DC: U.S. Environmental
Protection Agency.

Walsh CJ, Fletcher TD, Burns MJ (2012) Urban stormwater runoff: a new class
of environmental flow problem. PLOS ONE 7: 45814. doi: 10.1371/
journal.pone.0045814.

Arnscheidt J, Jordan P, Li S, McCormick S, McFaul R, et al. (2007) Defining
sources of low-flow phosphorus transfers in complex catchments. Sci Total
Environ 382: 1-13.

PLOS ONE | www.plosone.org

14

61.

62.

63.

64.

66.

67.

68.

69.

70.

71.

Stream Responses to Stormwater Retrofit

Kaushal SS, Belt KT (2012) The urban watershed continuum: evolving spatial
and temporal dimensions. Urban Ecosyst 15: 409-435.

Rosen BH (1995) Use of periphyton in the development of biocriteria. In: Davis
WS, Simon TP, editors. Biological assessment and criteria: Tools for water
resource planning and decision making. Boca Raton: Lewis Publishers. pp. 209
215.

Bradley DC, Ormerod SJ (2001) Community persistence among stream
invertebrates tracks the North Atlantic Oscillation. J Anim Ecol 70: 987-996.
Jackson JK, Fureder L (2006) Long-term studies of freshwater macroinverte-
brates: a review of the frequency, duration, and ecological significance.
Freshwater Biol 51: 591-603.

. Meals DW, Dressing SA, Davenport TE (2010) Lag time in water quality

response to best management practices: a review. J Environ Qual 39: 85-96.
Hamilton SK (2012) Biogeochemical time lags may delay responses of streams to
ecological restoration. Freshwater Biol 57: 43-57.

Louhi P, Mykra H, Paavola R, Huusko A, Vehanen T, et al. (2011) Twenty
years of stream restoration in Finland: little response by benthic macroinver-
tebrate communities. Ecol Appl 21: 1950-1961.

Lepori F, Palm D, Brannas E, Malmqvist BB (2005) Does restoration of
structural heterogeneity in streams enhance fish and macroinvertebrate
diversity? Ecol Appl 15: 2060-2071.

Palmer MA, Menninger H, Bernhardt E (2010) River restoration, habitat
heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biol
55 (Supplement 1): 205-222.

Smith RF, Alexander LC, Lamp WO (2009) Dispersal by terrestrial stages of
stream insects in urban watersheds: a synthesis of current knowledge. J North
Am Benthol Assoc 28: 1022-1037.

Bernhardt ES, Palmer MA (2007) Restoring streams in and urbanizing world.
Freshwater Biol 52: 738-751.

January 2014 | Volume 9 | Issue 1 | 85011



	How much is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood
	Recommended Citation
	Authors

	pone.0085011 1..14

