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Abstract

The research reported in this dissertation investigates the impact of grain boundaries,

film interface, and crystallographic orientation on the ionic conductivity of thin film

Gd-doped CeO2 (GDC).

Chapter 2 of this work addresses claims in the literature that submicron grain bound-

aries have the potential to dramatically increase the ionic conductivity of GDC films.

Unambiguous testing of this claim requires directly comparing the ionic conductivity

of single-crystal GDC films to films that are identical except for the presence of sub-

micron grain boundaries. In this work techniques have been developed to grow GDC

films by RF magnetron sputtering from a GDC target on single crystal r-plane sap-

phire substrates. These techniques allow the growth of films that are single crystals

or polycrystalline with 80 nm diameter grains. The ionic conductivities of these films

have been measured and the data shows that the ionic conductivity of single crystal

GDC is greater than that of the polycrystalline films by more than a factor of 4 over

the 400-700oC temperature range.

Chapter 3 of this work investigates the ionic conductivity of surface and interface

regions of thin film Gd-doped CeO2. In this study, single crystal GDC films have

been grown to thicknesses varying from 20 to 500 nm and their conductivities have

been measured in the 500-700oC temperature range. Decreasing conductivity with

xv



decreasing film thickness was observed. Analysis of the conductivity data is consistent

with the presence of an approximately 50 nm layer of less conductive material in every

film. This study concludes that the surface and interface regions of thin film GDC

are less conductive than the bulk single crystal regions, rather than being highly

conductive paths.

Chapter 4 of this work investigates the ionic conductivity of thin film Gd-doped

CeO2 (GDC) as a function of crystallographic orientation. A theoretical expression

has been developed for the ionic conductivity of the [100] and [110] directions in

single crystal GDC. This relationship is compared to experimental data collected

from a single crystal GDC film. The film was grown to a thickness of ≈300 nm

and its conductivity measured along the [100] and [110] orientations in the 500-700oC

temperature range. The experimental data shows no statistically significant difference

in the conductivities of the [100] and [110] directions in single crystal GDC. This

result agrees with the theoretical model which predicts no difference between the

conductivities of the two directions.

xvi



Chapter 1

Introduction

Growing energy demand and volatility in fuel prices has motivated interest in devel-

oping efficient, fuel flexible energy converters. Fuel cells have the potential to fill this

role due to their high efficiencies in directly converting chemical energy to electricity.

Solid oxide fuel cells are a type of fuel cell that is well suited to handling a wide

variety of fuels and exhibit high conversion efficiencies. It is necessary to further

improve the cost, efficiency and lifetime of SOFCs. The cost and life time of SOFCs

can be improved by reducing their operating temperature from high temperatures

(800-1100oC) to intermediate temperatures (500-700oC). This reduction in temper-

ature reduces cost by allowing the use of less expensive metals, instead of ceramic

components, for "balance of system" components and increases the lifetime by re-

ducing harmful diffusion between the fuel cell components. However, the reduction
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in temperature also reduces the "kT" available to assist the thermally activated pro-

cesses occurring in the fuel cell components and thereby reduces the efficiency. Fuel

cells are electrochemical devices that convert chemical energy to electricity. The three

active components of a fuel cell are the anode, cathode and electrolyte. The anode

and cathode act as catalysts to the reduction/oxidation reactions that occur at the

interface between them and the electrolyte. The electrolyte conducts ions between

the electrodes and acts as a barrier for gas and electron flow. The efficiency of a fuel

cell is, in general, a function of the current density, J, defining the conditions of oper-

ation. The electrolyte resistance is one of four types of mechanisms that reduce the

efficiency of fuel cells. Fuel cell efficiency can be expressed by dividing the observed

voltage, V(J), by the Nernst voltage, ENernst. The observed voltage produced across

a fuel cell operating with a current density "J" is determined by the Nernst voltage

minus four loss terms as shown in Equation 1.0.1.

V (J) = ENernst − ηParasitic − ηActivation − ηOhmic − ηConcentration (1.0.1)

The η terms are related to different loss mechanisms. ηParasitic losses arise from

electron and gas leakage across the electrolyte. ηActivation losses are due to kinetic

limitations of reactions occurring at the boundary between electrodes, fuel/oxidant,

and the electrolyte (the "triple phase boundary"). ηOhmic losses result primarily from

resistance to ionic motion in the electrolyte. ηConcentration describes losses are due to

having insufficient amounts of the fuel/oxidant available at the triple phase boundary

2



due to mass transport limitations. The plot of observed voltage versus current density

is the polarization curve. A typical fuel cell polarization curve identifying the regions

in which each loss dominates is shown in Figure 1.1.

Figure 1.1: Typical fuel cell polarization plot.

This study focuses on the electrolyte and, consequently, the ohmic loss term, ηOhmic.

The expression for the ohmic loss as a function of electrolyte resistance is:

ηOhmic = J
L

σi
= J ∗ rarea (1.0.2)
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Where J (A/cm2) is the current density, L (cm) is the length of ionic travel in the

electrolyte, σi (1/Ω-cm) is the ionic conductivity of the electrolyte, and rarea (σ-

cm2) is the area specific resistance of the electrolyte. Equation 1.0.2 indicates that

ηOhmic can be reduced by decreasing the length of ionic travel in the electrolyte or

increasing the ionic conductivity. This study concentrates on determining the impact

of grain boundaries and interfaces on the ionic conductivity of the material. The

ionic conductivity of the electrolyte can be expressed as the product of the charge

carrier concentration, [Vo
oo] (oxygen vacancies/cm3), the charge on each carrier, "q"

(Coulombs), and the mobility of the charge carriers, µ (cm2/V-sec) as shown in

Equation 1.0.3.

σi(T ) = Voqµ (1.0.3)

Gadolinia doped Ceria (GDC) is a SOFC electrolyte material with comparatively

high ionic conductivity at intermediate temperatures (500-700oC). It has the same

cubic fluorite structure of undoped CeO2 (CEO) shown in Figure 1.2.

An increase in the ionic conductivity of CeO2 occurs upon doping with Gd due to

an increased density of oxygen vacancies that occurs to maintain charge neutrality.

One oxygen vacancy is created for every two Trivalent Gadolinium atoms that replace

quad-valent cerium atoms in the crystal structure according to Equation 1.0.4.

Gd2O3

−−−→
CeO2 2Gd′Ce + V oo

O + 3Ox
O (1.0.4)
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Figure 1.2: Cubic Fluorite structure of GDC.

This relationship can be used to estimate the number of oxygen vacancies, but vacancy

clustering and environmental influences (oxygen partial pressure and temperature)

prohibit accurate quantitative use.

The ionic conduction in the electrolyte occurs by the vacancy mechanism. Oxygen

vacancies, created through the doping process, allow the movement of oxygen ions

through the GDC structure. Oxygen ions hop from vacancy to vacancy in the di-

rection of the decreasing chemical potential gradient. For fuel cells, this gradient is

caused by the difference in oxygen concentrations at the two sides of the electrolyte.

Ions must overcome a potential barrier, called the Gibbs Free Energy of migration

(∆Gm), to move into the neighboring vacant lattice site. The height of this barrier,

5



∆Gm, is determined by the electric static repulsive forces on the ion due to the nearby

cations between the ion and the vacancy position. Loss due to the electrolyte, ηOhmic,

is very small when "kT" is large compared to the barrier energy, but increases as the

two values become comparable.

The commonly accept equation expressing the ionic conductivity in terms of the

oxygen vacancy fraction, nv, and height of the migration barrier, ∆Gm (∆Gm=∆Hm-

∆SmT, is shown in Equation 1.0.5.

σi(T ) = (1−Nv)Cqµi =
Nv(1−Nv)Czq

2a2ofνo
6kT

exp(
∆Sm
k

)esp(
−∆Hm

kT
) (1.0.5)

Where Nv is the fraction of equivalent oxygen sites that are vacant (unitless), C is the

concentration of oxygen sites (sites per cm3), q is the charge on an ion (2*1.602*10−19C),

µi is the ion mobility (cm2V−1sec−1), z is the coordination number for the oxygen sites

(6), ao is the lattice spacing (2.72x10−8 cm in GDC), f is a correlation factor (0.65

for cubic lattices), νo is the vibrational frequency of the lattice (about 1012-1013), k is

Boltzmann’s constant (8.617*10−8eV/K), T is temperature (K), ∆Sm is the entropy

of migration (∆Sm/k 2.3), and ∆Hm is the enthalpy of migration (eV). Inspection

of Equation 1.0.5 shows that many of the terms can be expressed as constants that

depend on the type of electrolyte material and do not change with Nv and ∆Hm. The

only variables for this GDC electrolyte system are Nv and ∆Hm.

6



While experimental measurement of the vacancy concentration is difficult, measure-

ment of the migration enthalpy is readily accomplished. Equation 1.0.5 can be recast

into an Arrhenius equation that can be used to extract the enthalpy of migration,

∆Hm, from σ vs. T measurements.

Ln(σiT ) =
−∆Hm

k

1

T
+ Ln[

Nv(1−Nv)Czq
2a2ofνo

6k
exp(

∆Sm
kT

)] (1.0.6)

This equation shows that by plotting ln(σT) vs. 1/T and finding the slope of the

data, the enthalpy of migration can be obtained. This analysis is commonly used for

the comparison of electrolytes.

Recently, the measurement and enhancement of the ionic conductivity of Gadolinium

doped Ceria (GDC) has been an active area of research [2–9]. Numerious researchers

have investigated the effect of grain boundaries on the ion conductivity of GDC [2–

4, 10–16] and some have reported a significant enhancement of ionic conductivity in

GDC with grain sizes <200 nm when compared to larger grained samples [3, 11–

13, 16]. Chapter 2 of this work further investigates the role of grain boundaries on

the ionic conductivity of GDC by the growth and electrical characterization of two

GDC films that differ only by the presence or absence of grain boundaries.

7



Chapter 2

Impact of the presence of grain

boundaries on the in-plane ionic

conductivity of thin film Gd-doped

CeO2

Authors: Matthew Swanson, Natee Tangtrakarn, Madhana Sunder, and P.D. Moran
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2.1 Abstract

Though reports in the literature have been interpreted as indicating that the presence

of boundaries between submicron grains has the potential to dramatically increase

the ionic conductivity of Gd-doped CeO2 (GDC) films [2–4], unambiguous interpre-

tation is hampered by the lack of a study directly comparing the ionic conductivity of

single-crystal GDC films to films that are identical except for the presence of submi-

cron grain boundaries. Techniques are developed to grow GDC films by RF magnetron

sputtering from a (10%)Gd2O3-(90%)CeO2 target onto a single crystal r-plane sap-

phire substrate that, though otherwise are largely identical, differ in that one film is

a single crystal while the other is polycrystalline with ≈80 nm diameter grains. The

ionic conductivity of these films is measured in the temperature range of 400-700oC

in the Van der Pauw geometry. Analysis of the ln(σT) vs. 1/T data reveals the single

crystal and polycrystalline GDC thin films differ primarily in that the single crystal

film exhibits a lower activation energy for ionic conduction of 0.85±0.01 eV than the

0.99±0.01 eV observed for ionic conduction in the polycrystalline film. The presence

of 80 nm grains reduces the ionic conductivity of Gd-doped CeO2 in the temperature

range of 400-700oC.

Keywords: Single crystal, Van der Pauw, SOFC, GDC
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2.2 Introduction

The ionic conductivity of submicron grained Gd-doped CeO2 (GDC) films is an area

of active investigation [2–4, 8, 15, 17] motivated by the role of the material as an

enabling electrolyte for enhanced intermediate temperature solid oxide fuel cells (IT-

SOFCs). Reports in the published literature have shown a trend of increasing ionic

conductivity with decreasing grain size for GDC in the submicron grain region [2–4].

This observation seems to have lead to the conclusion that submicron grains enhance

the ionic conductivity of GDC, but the observed enhancement has only been shown

in relation to coarser grained GDC and not to single crystal GDC. An experimental

investigation that directly tests the effects of submicron grains by comparing the in-

plane conductivity of GDC films that are largely identical except for the presence

or absence of grain boundaries would address this question, but is absent from the

literature.

In this work, the effect of submicron grain boundaries on the in-plane ionic conduc-

tion of GDC thin films is examined. The approach taken to isolate the effects of

grain boundaries on conductivity is to grow single-crystal and polycrystalline GDC

films on highly insulating r-plane Al2O3 substrates that are otherwise identical and

to make precise measurements of the ionic conductivity of the two types of films in

the temperature range of 400-700oC using the Van der Pauw geometry. While it is

straightforward to grow polycrystalline GDC films on highly insulating Al2O3 sub-
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strates by RF magnetron sputtering, methods for depositing single-crystal thin-film

GDC on Al2O3 substrates (no grain boundaries) have not been reported and so are

developed here. Growth of epitaxial single crystal GDC films would typically require

a modification of growth conditions from those employed to grow the polycrystalline

film that could potentially change the Gd-content of the deposited film and so ex-

hibit differences in ionic conductivity that are not due to the presence or absence

of grain boundaries. The approach taken here to minimize the potential impact of

these changes in growth conditions is to examine whether deposition of a ≈30 nm

un-doped single crystal CeO2 buffer layer on the Al2O3 prior to GDC film growth,

under deposition conditions that would otherwise result in polycrystalline GDC with

a sub-micron grain size, can engender the growth of single crystal GDC.

2.3 Experimental Methods

The GDC films that are the subject of this study were grown by RF magnetron

sputtering from a (10%)Gd2O3-(90%)CeO2 target. Deposition parameters were held

constant at the following values to ensure equal dopant concentrations in the films:

A power density of 19.1 Watts/sq inch was applied to the target, a substrateŰtarget

distance of 9 cm was maintained, and an environment consisting of Ar/O2 in a ratio

of 4:1 was kept at 5 mTorr during growth on a substrate held at a temperature of

830oC. One set of films was grown to ≈300 nm directly on a 2" diameter r-plane
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sapphire substrate while the other set was grown to the same thickness on a 38 nm

un-doped single crystal (001) CeO2 buffer layer that had been previously deposited

on a 2" diameter r-plane Al2O3 substrate. The methods developed to grow single

crystal (001) CeO2 have been described in a previous publication [18].

Atomic force microscopy (AFM), X-ray diffraction (XRD), and spectrally resolved

optical reflectance were used to structurally characterize the GDC films. The surface

morphology of the films and the presence or absence of sub-micron grains in the GDC

films were characterized using the phase contrast mode of atomic force microscopy.

X-ray diffraction scans were used to determine the orientation of the thin films and

whether the films were single crystal or polycrystalline. The precise thickness of each

set of films was measured by spectrally resolved optical reflectance. The wafers were

then diced into 1 cm x 1 cm squares for subsequent electrical characterization.

Conductivity data was recorded as a function of temperature for 7 data points between

400-700oC. The temperature dependence of the ionic conductivity was measured by

attaching four Pt wires to the four corners of the samples with ≈1 mm triangles of

platinum paint in the Van der Pauw geometry. The Van der Pauw method has the

advantage over other four-point conductivity tests in that it more robustly results

in precise conductivity measurements from thin films free from potential impact on

the measurement of contact resistance, uniform probe spacing, or sample size [19].

Though no special measures were taken to block electronic conduction while mea-
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suring ionic conductivity values, the electronic conductivity is taken to be negligible

since the electrolytic domain boundary occurs at an oxygen partial pressure that is

roughly 17 orders of magnitude lower than that used in this experiment [8]. Each

measurement of the conductivity at a given temperature is the result of averaging 3

sets of eight measured voltages. The uncertainties reported for the conductivity mea-

surements represent the standard deviation of 3 conductivity measurements obtained

by 24 voltage measurements for each film at each temperature, so that the data re-

ported here summarize the result of 336 individual voltage measurements. Since data

reported here was recorded from one polycrystalline sample and one single crystal

sample, the uncertainties reported do not capture any differences in the measurement

results that could occur due to differences between samples or in electrode geometries.

These differences are unlikely to be significant in that the film deposition process is

quite reproducible and previous studies [20] have demonstrated that small variations

in the type of electrode geometry employed in this study does not significantly perturb

the measurement results.

2.4 Results and Discussion

Atomic force microscopy, X-ray diffraction, and spectrally resolved reflectance char-

acterization reveal that the two sets of films differ in that the film grown on the CeO2

template is single crystal, whereas that grown directly on the sapphire substrate is
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polycrystalline. The morphology of the GDC film grown on the 38 nm undoped (001)

CeO2 template is shown in the AFM data of Figure 2.1, whereas that of the film

grown directly on the sapphire substrate is shown in the AFM data in Figure 2.2.

The boundaries between the ≈80 nm diameter polycrystalline grains that are imaged

in the phase contrast AFM image of Figure 2.2 are absent in the phase contrast AFM

image in Figure 2.1. The symmetric θ/2θ X-ray diffraction data from the two het-

erostructures in Figure 2.3 demonstrate that the film grown on the un-doped CeO2

template is oriented with its (001) orientation normal to the surface, as is the thin

single crystal (001) template. In contrast, the grains in the polycrystalline GDC film

grown directly on the sapphire substrate are primarily oriented with their (111) direc-

tion normal to the surface with a smaller volume fraction of the grains assuming an

(001) orientation. X-ray diffraction φ-scans probes the in-plane orientation of a film

by recording the azimuthal angle (φ) at which crystallographic planes whose normal

are inclined to the surface occur. The φ-scan data shown in Figure 2.4 recorded from

the (001)-oriented GDC film demonstrates that the film is indeed single crystal. This

is confirmed by the presence of four well-defined peaks from the (204) planes of the

film separated by 90o, as would be expected from a single crystal (001)-oriented GDC

film. The (001) GDC film is therefore confirmed as being single crystal with a single

domain of in-plane crystallographic orientation. There are no grain boundaries in

this film. In contrast, φ-scans recorded from the (111) oriented film for which the

AFM phase contrast data indicated boundaries between ≈80 nm grains showed no
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evidence of well-defined peaks at specific azimuthal angles. The intensity was weak

and independent of azimuthal angle φ, indicating that the polycrystalline film con-

sisting of grains whose orientation is predominately (111) in the direction normal to

the interface exhibit a random in-plane orientation: The film grown directly on the

sapphire substrate is polycrystalline with a fiber texture (consisting of grains with a

strongly preferred orientation in one direction and a random orientation in the other

two directions). The relatively narrow full-width-at-half-maximum (FWHM) of the

x-ray diffraction (002) rocking curve data (FWHM = 0.37o) recorded from the single

crystal (001) GDC film shown in Figure 2.5 is taken as evidence of excellent crys-

talline quality in that the narrowest rocking curve data that the authors have found

reported in the literature [21] for epitaxial GDC films grown on other substrates had a

FWHM = 0.6o. The broader FWHM (1.76o) of the (111) rocking curve data recorded

from the polycrystalline film in Figure 2.5 is a measure of the angular distribution

of the grain orientations. This breadth, though of course broader than that of the

single crystal film, indicates a very strong fiber texturing of the polycrystalline film.

The AFM data recorded from both films indicate a surface roughness (RMS) less

than 1% of the film thickness, indicating that these films are well within the criteria

for a homogeneous film for assuring the accuracy in Van der Pauw measurements of

the conductivity. The relative intensity of the Gd peak and the Ce peaks in Energy

dispersive spectroscopy (EDS) data recorded in an electron microscope did not vary

significantly between the two samples, indicating that the Gd content of the two films
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are equivalent. Though quantitative interpretation of the the EDS data is difficult,

it appears as if the Gd concentration in both films is approximately 2 to 3 times the

composition of the target, a deposition-condition-dependent difference between film

and target composition that has been reported by other researchers [22] who have

deposited GDC films by RF sputtering. Spectrally resolved optical reflectance mea-

surements demonstrate that the two films have thicknesses that agree to within 3%.

In short, as expected from employing identical growth conditions, the two films are

largely identical except for the presence of boundaries between 80 nm grains in one

film that are not present in the other film.

The measured conductivity vs temperature data for the single crystal GDC film are

summarized in Table 2.1, and that for the polycrystalline film is summarized in Ta-

ble 2.2. The two sets of ln(σT) vs 1/T data are plotted in Figure 2.6 and are charac-

terized by a slope and intercept from which an activation energy for the conduction

mechanism can be extracted. These data are reported in Table 2.3. The precision

resulting from using 336 measurements to characterize the temperature-dependent

conductivity of single crystal and polycrystalline GDC is reflected in the high linear-

ity of the two sets of ln(σT) vs 1/T data. This is seen by inspection of the R-values

very close to 1, the low standard error in the y-estimate of the regression, and the low

uncertainties in the extracted values of the intercept and slope in Table 2.3. Conduc-

tivity values for the polycrystalline film are lower than those of the single crystal film

by a factor of 4 at the higher temperatures, and by more than an order of magnitude
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Figure 2.1: The surface morphology of the ≈300 nm (001)-oriented single-
crystal GDC film grown on the single crystal CeO2-buffered r-plane sapphire
substrate. a) 5x5 µm 3D height image with y axis increment = 12 nm/div.
b) 5x5 µm phase contrast image c) 1x1 µm 3D height image data with y
axis increment = 12 nm/div d) 1Œ1 µm phase-contrast image. No grain
boundaries are apparent in the single-crystal film.

at the lower temperatures. The activation energies extracted from the ln(σT) vs. 1/T

data for the single crystal and polycrystalline GDC thin films are 0.85±0.01 eV and

0.99±0.01 eV, respectively. The larger activation energy for the polycrystalline film as
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Figure 2.2: The surface morphology of the ≈300 nm thick highly oriented
(111) polycrystalline GDC films grown on as received r-plane sapphire sub-
strate. a) 5x5 µm 3D height image with y axis increment = 12 nm/div. b)
5x5 µm phase contrast image c) 1x1 µm 3D height image data with y axis
increment = 12 nm/div d) 1x1 µm phase-contrast image. The polycrystalline
film consists of sub-micron grains.

compared to the single-crystal film is consistent with a carrier mobility reduced by an

increased potential energy barrier for charge carrier transport due to having to cross
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Figure 2.3: Comparison of θ/2θ XRD data from the ≈300 nm GDC film
grown on the as-received Al2O3 substrate (denoted as "(111) GDC"), with
the data for the ≈300 nm GDC film grown on the un-doped 38 nm CeO2-
buffered substrate (denoted "(001) GDC") and the data recorded from a the
35 nm single-crystal (001) CeO2 buffer layer with no subsequent GDC growth
(denoted as "(001) CEO"). The GDC grown on the as-received sapphire is of
mixed orientation, with most of the film consisting of (111)-oriented material
where the GDC grown on the buffered substrate consists entirely of material
with a (001) orientation.

a boundary between ≈80 nm diameter single crystal regions in the polycrystalline

GDC. These data clearly demonstrate that the boundaries separating ≈80 nm grains

degrade the conductivity of GDC films in the temperature regime between 400 and

700oC.

Single crystal GDC films have been shown here to be more conductive than the

polycrystalline films over the temperature range of 400-700oC. The ln(σT) vs 1/T

19



Figure 2.4: XRD φ- scan data for the ≈300 nm (001) GDC grown on the
buffered sapphire substrate. The 4-fold symmetry of the asymmetric (204)
GDC peaks shows the in-plane epitaxial relationship between the GDC film
and the sapphire substrate and demonstrates that the (001) GDC film is
single-crystal.

Table 2.1: Single crystal (001)-oriented GDC without grain boundaries:
Summary of data used to calculate the temperature dependent conductivity.

Temp 1000/T I RSheet ρ Σ Ln(σT)
(oC) (K−1) (nA) (Ω/�) (Ω-cm) (Ω-cm)−1

702 1.03 50 8.467E5 ±7E2 24.0 ±0.2 4.16E2 ±3E4 3.703 ±.007
650 1.08 50 1.406E6 ±2E3 39.9 ±0.3 2.50E2 ±2E4 3.141 ±.007
598 1.15 50 2.454E6 ±1E3 69.7 ±0.5 1.43E2 ±1E4 2.526 ±.007
544 1.22 50 4.6961E6 ±7E3 133.4 ±0.9 7.50E3 ±5E5 1.813 ±.007
487 1.32 50 1.0681E7 ±7E3 303 ±2 3.30E3 ±2E5 0.919 ±.007
433 1.42 10 2.747E7 ±4E4 780 ±6 1.28E3 ±1E5 -0.100 ±.007
378 1.54 10 8.636E7 ±1E4 2450 ±20 4.08E4 ±3E6 -1.326 ±.007

data from these two films are compared to those reported in the literature [1, 3, 15,

17, 21, 23] for high conductivity thin-film GDC measured between 400 and 700oC in

Table 2.4 and Figure 2.7. The comparison demonstrates that the single crystal film
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Figure 2.5: a) Rocking curve of (111) peak of highly oriented polycrystalline
GDC with ≈300 nm thickness and b) Rocking curve of (002) plane of the
epitaxial GDC film. Scans were done with count time = 2, step size = 0.05o

for (111) GDC. The lower step size = 0.015o is used for (002) GDC at the
same count rate.

Table 2.2: Polycrystalline (111)-oriented GDC with sub-micron grains:
Summary of data used to calculate the temperature dependent conductivity.

Temp 1000/T I RSheet ρ σ Ln(σT)
(oC) (K−1) (nA) (Ω/�) (Ω-cm) (Ω-cm)−1

699 1.03 500 2.0976E6 ±7E2 61.7 ±0.4 1.62E2 ±1E4 2.756 ±.007
647 1.09 200 3.8333E6 ±7E2 112.7 ±0.8 8.87E3 ±6E5 2.097 ±.007
594 1.15 50 7.580E6 ±1E3 223 ±2 4.49E3 ±3E5 1.361 ±.007
540 1.23 50 1.700E7 ±2E4 500 ±4 2.00E3 ±1E5 0.487 ±.007
487 1.32 50 4.222E7 ±1E4 1241 ±8 8.06E4 ±5E6 -0.494 ±.007
432 1.42 10 1.3102E8 ±7E4 3850 ±30 2.60E4 ±2E6 -1.699 ±.007
377 1.54 10 4.6949E8 ±3E4 13,800 ±90 7.24E5 ±5E7 -3.057 ±.007

exhibits conductivities in this temperature regime that are as high or higher than

any of the films that have reported conductivity enhancements due to the presence

of sub-micron grains in this temperature range (Figure 2.7). The ln(σT) vs 1/T data
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Figure 2.6: The plot of ln(σT) as a function of 1000/T of (111) GDC
polycrystalline film with boundaries separating submicron grains and (001)
epitaxial film with no grain boundaries. The presence of the grain boundaries
significantly reduces the ionic conductivity of GDC over the entire tempera-
ture range.

Table 2.3: Polycrystalline (111)-oriented GDC with sub-micron grains:
Summary of data used to calculate the temperature dependent conductivity.

Film (-)Slope Intercept R-Factor Std error ∆Hm

(x10−3K) in Ln(σT)
Polycrystalline(111) GDC 11.43 ±0.03 14.53 ±0.08 0.9998 0.03 0.99 ±0.01
Single crystal(001) GDC 9.83 ±0.007 13.80 ±0.09 0.9997 0.03 0.85 ±0.01

recorded from the single crystal GDC grown here is in very close agreement with that

recorded for single crystal GDC in the study by Chen et al. [1]. This further confirms

our results of higher conductivity in single crystal GDC than polycrystalline in the

400-700oC temperature range.

22



Table 2.4: A comparison of GDC Ln(σT) vs (1/T) data for thin film GDC in
the literature. Activation energy (Ea), conductivity (σ), and the Y-intercept
(ln(σT)), were extracted by analyzing published plots of literature data.

Ref. %Gd Crystallinity Grain Size Thickness Growth technique/ Ea Ln(σT)
(nm) (nm) Temp. (eV)

Joo [23] 21 (111) poly. 40 - PLD 700oC 0.83 13.17
Bera [17] 19.2 (111) poly. 8 180 MBE 652oC 0.91 14.71
Bera [17] 8.4 (111) poly. 8 180 MBE 652oC 0.86 13.27
Chen [1] 20 epi. - 300 PLD 830oC 0.86 14.04
Chen [1] 20 epi. - 300 PLD 830oC 0.82 12.95
Suzuki [3] 20 rand. poly. 36 110-630 Spin coating 1.3 15.81
Suzuki [3] 20 rand. poly. 9 110-630 Spin coating 1.02 13.74
Rupp [15] 20 rand. poly. 65 500-800 PLD room temp. 0.98 13.83
Rupp [15] 20 rand. poly. 78 300-400 Spray pyrolysis 0.97 14.09

Figure 2.7: The total conductivity of submicron grained GDC samples as
a function of a reciprocal of temperature (T)x1000 for the highest published
data sets collected in the 400-700oC range. Values given under the researchers
name provide the reported grain size for each data set. Epitaxial, single
crystal GDC data provided by Chen et al. [1] aligns almost identically with
the single crystal data from this study, but were not included in the plot for
clarity.
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The data reported here does not rule out the potential for an enhancement of ionic

conductivity in GDC due to grain sizes much smaller than 80 nm. A broader review

of published ln(sT) vs 1/T data for both thin-film and bulk oxide electrolytes in the

literature, including data taken in temperature ranges other than the 400-700oC range

studied in this work, shows trends of decreasing ionic conductivity with decreasing

grain size for grains that are tenths of a micron or larger [24–27] and increases in

ionic conductivity with decreasing grain size for grains that are in the nanometer

range [2–4, 18]. If these differences are not due to changes in the GDC other than

the grain size, the trends would suggest that multiple mechanisms for ionic transport

may be present and that the dominate mechanism may change as a function of grain

size. If the resistance to ionic motion were to be highest when crossing a grain

boundary, lower when traveling through the bulk, and lowest when traveling along

a grain boundary, the different dependencies of the volume fraction of each path

on grain size could explain the changing behavior [10] of the conductivity versus

grain size relationship found in the literature. For example, inspection of Figure 2.7

shows that if the data from Suzuki et al. are excluded, there would appear to be a

trend suggesting that when grain sizes are reduced to ≈10 nm, the reduction in ionic

mobility due to ions having to cross grain boundaries is offset by an increase in ionic

mobility due to ions traveling along grain boundaries. The high ionic conductivities

observed for single crystal GDC films reported here along with the potential for

the Gd-content in the films to change with changes in deposition conditions that
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are intended to only change grain size indicates that such a hypothesis can only be

rigorously tested through a systematic comparison of data taken from single crystal

and fine-grained GDC films that, though grown under identical conditions, possess

quantifiable differences in volume fractions of the intra-grain, across-grain-boundary,

and along-grain-boundary ionic conduction paths. Sets of ln(σT) vs 1/T data taken

from single-crystal and polycrystalline GDC films grown with different grain sizes by

the methods described above would be one approach to obtain such a data set. Work

is underway to make and analyze these measurements.

2.5 Conclusions

In summary, methods have been developed to grow GDC films on sapphire substrates

that that are largely identical except for the presence of boundaries separating 80 nm

diameter grains or the complete absence of grain boundaries. Conductivity data

recorded in the temperature range of 400-700oC indicate that the ionic conductivity

of the single crystal GDC film in this temperature range is as high or higher than

high-conductivity polycrystalline GDC films studied in the literature whose large ionic

conductivity was attributed to the presence of sub-micron grains. The mobility of

the charge carriers was significantly reduced in the polycrystalline sample over all

temperatures, leading to a reduction in the conductivity over the entire temperature

range. Direct comparison of the conductivity vs. temperature data for single crystal
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and polycrystalline GDC thin films showed that the presence of boundaries separating

≈80 nm diameter grains does not enhance, but rather reduces the in-plane ionic

conductivity of the GDC film.

∗

∗Reprinted from Solid State Ionics, Vol 181, M. Swanson, N. Tangtrakarn, M. Sunder, and P.D.
Moran, Impact of the presence of grain boundaries on the in-plane ionic conductivity of thin film
Gd-doped CeO2, 379-385, 2010, with permission from Elsevier.
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3.1 Abstract

Literature reports suggest that the surface and interface regions of thin film Gd-

doped CeO2 (GDC) may act as highly conductive paths for ionic transport [2, 28].

However, no study has been published that directly tests the impact of the surface

and interface on the total ionic conductivity of single crystal thin film GDC. In this

study, single crystal GDC films have been grown to thicknesses varying from 20 to

500 nm and their conductivities have been measured in the 500-700oC temperature

range. Decreasing conductivity with decreasing film thickness was observed. Analysis

of the conductivity data is consistent with the presence of an approximately 50 nm

layer of less conductive material in every film. This study concludes that the surface

and interface regions of thin film GDC are less conductive than the bulk single crystal

regions, rather than being highly conductive paths.

Keywords: GDC, Thin film, Single crystal, Interface conductivity

3.2 Introduction

The ionic conductivity of a Gadolinium doped Ceria (GDC) film surface and interface

at temperatures between 500-700oC is of interest [2, 3, 10, 21, 22, 28] due to the

application of the material as an electrolyte for intermediate temperature Solid Oxide
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Fuel Cells (SOFCs). Though little work has been performed to determine the effect

of a film surface and interface on the conductivity of a GDC film, the effects of grain

boundary interfaces on the conductivity of GDC have been studied by numerous

groups [10, 29–33]. These studies have come to the following conclusions as to the role

of grain boundaries: grain boundaries are less conductive than the bulk [10, 29], they

approach the conductivity of the bulk for dopant concentrations above 15% [30–32],

and they are a smaller component of the total conductivity at higher temperatures

[10, 33]. Furthermore, recent results [2–4] have shown a trend of increasing ionic

conductivity in GDC with decreasing grain size. However, even with the conductivity

enhancement, polycrystalline GDC with an approximately 80 nm grain size is still

a factor of at least 4 less conductive than single crystal GDC over the 400-700oC

temperature range [9].

Efforts to further understand the effects of grain boundaries on the ionic conductivity

of GDC have turned researchers [9, 21, 34] towards the investigation of single crystal

GDC. These studies have provided insight into the effects of grain boundaries on the

ionic conductivity of GDC, but none of the studies have investigated the effects of the

surface or interface on the conductivity of GDC. It has been asserted in the literature

that the exceptionally high ionic conductivity observed in thin GDC films is due

to the surface or substrate/film interface acting as a high conductivity path for ions

[2, 28]. Those studies were not performed on single crystal GDC and, therefore, could

not separate the impact of the ionic conduction along the surface and interface from
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that along or across grain boundaries. A study to extract the surface and interface

contributions to the total ionic conductivity of GDC single crystal films would resolve

this question, but is absent from the literature. This work addresses the need for such

an analysis.

In this work, the impact of the GDC film surface and interface on the in-plane ionic

conductivity of GDC films is examined. Though a film’s conductivity could be af-

fected by the surface or interface, the remainder of this paper will refer to such

contributions as interface effects for clarity. The approach to separate the impact of

the film interface from the "bulk" and to isolate its contribution from that of grain

boundaries is to fabricate a series of single-crystal GDC films of varying thickness

on highly insulating r-plane Al2O3 substrates and measure their conductivities over

the 500-700oC temperature range. The conductivities are then directly compared to

determine if a greater volume fraction of the interface region enhances or reduces the

ionic conductivity of the films. The films’ conductivity data are analyzed by plotting

the conductance versus thickness. These data are analyzed to deduce the conductivity

and the thickness of the interface region and that of the "bulk" region of the film.
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3.3 Experimental Methods

The GDC films were grown on single crystal sapphire substrates using RF magnetron

sputtering. An approximately 40 nm single crystal CeO2 buffer layer was first de-

posited on the sapphire substrates to promote the growth of single crystal GDC. A

sputtering target with composition (10%)Gd2O3(90%)CeO2 was used along with de-

position parameters that have previously resulted in single crystal GDC films. The

details of the growth process were reported in earlier publications [9, 18]. All depo-

sition parameters except growth time were held constant to ensure consistent com-

position between films. The growth time was varied over a factor of 20 to produce 5

films with thicknesses of 20, 44, 110, 278 and 500 nm.

The GDC thin films were structurally characterized using X-ray diffraction (XRD).

XRD φ-scans were used to determine the in-plane crystallographic orientation and to

verify that the films were single crystal. XRD θ/2θ scans were used to determine the

out-of-plane crystallographic orientation. The films were then diced into 1 cm2 pieces

for the conductivity measurements. Care was taken to cut all the films along the same

directions in order to ensure that the in-plane orientation of the single crystal GDC

films would be consistent during the conductivity measurements. Spectrally resolved

optical reflectance was used on each 1 cm x 1 cm sample to determine the thickness

accurately.
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Conductivity data was recorded in air over the 500-700oC temperature range in 5oC

intervals. The conductivity measurements were performed by painting opposite sides

of the 1 cm2 samples with platinum paste and connecting the conductive paste to the

measurement equipment using platinum wires in a 4-wire bar geometry. Each sample’s

resulting data set consisted of approximately 50 conductivity versus temperature

points. Conductivity data was taken for multiple samples at every film thickness and

the data for each thickness group was found to agree within 3%. Only one data set

was used from each film thickness in the final plots and analysis.

3.4 Results and Discussion

X-ray diffraction and spectrally resolved optical reflectance show all five films to be

single crystals that differ in film thickness. Symmetric θ/2θ X-ray diffraction data,

shown in Figure 3.1, demonstrates that the GDC films are oriented with the [001]

direction normal to the surface, as is the thin single crystal [001] CeO2 template.

The θ/2θ data from the thickest film (500 nm) was used to calculate an out-of-plane

lattice parameter of 5.432±0.007Å. This value agrees with the reported value of 5.428

[35] within the uncertainty of the measurement. The samples are expected to be fully

dense from the epitaxial growth process used to make the films. φ-scans showed four

well-defined peaks from the asymmetric (204) planes indicating that the films have

a single orientation in the plane of the film and are single crystals. The φ-scan data
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from the 500 nm film is shown in Figure 3.2. The azimuthal angle of the φ-scans at

which the peaks of the (204) planes occurred were used to orient the electrodes so that

measurements were taken along the [110] direction in the GDC thin films. Spectrally

resolved optical reflectance measurements of the films’ thicknesses agreed closely with

the expected values calculated from the growth times and previously measured growth

rate. The uncertainty of ± 3 nm in the film thickness measurements dominate the

uncertainty in the conductance data reported for the thinnest films.

Figure 3.1: Symmetric θ/2θ X-ray diffraction data from the 500 nm GDC
film showing the [001] out-of-plane orientation. The center peak is from the
sapphire substrate.

33



Figure 3.2: XRD φ-scan data for the 500 nm (001) GDC film. The 4-fold
symmetry of the asymmetric (204) GDC peaks shows that a single in-plane
epitaxial relationship exists between the GDC film and the sapphire substrate
demonstrating that the film is a single-crystal.

The measured conductivity vs temperature data collected for the five single crystal

films are shown in an Arrhenius plot in Figure 3.3. The slope and intercept values

from the Arrhenius plots have been extracted and the corresponding activation ener-

gies calculated. These data are reported in Table 3.1. The small uncertainties in the

Arrhenius plot slope and intercept values as well as R values that are close to one re-

flect the precision of the data resulting from roughly 200 conductivity measurements.

The data shows a clear trend of decreasing conductivity with decreasing film thick-
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ness for the films that are 100 nm and thicker. The two films that have thicknesses

less than 100 nm show a dramatic reduction in their conductivities as compared to

those of the thicker films. The conductivities of these two thinnest films do not dif-

fer by more than the experimental uncertainty in the measurements. Conductivity

measurements performed on samples consisting of only the undoped CeO2 confirmed

that the conductance of the buffer layer was negligible compared to even the thinnest

GDC film.

Figure 3.3: Arrhenius plot showing conductivity of five films of varying
thickness. Uncertainties are less than the symbol size unless otherwise shown.
The conductivities of the two thinnest films are dramatically reduced com-
pared to those of the thicker films.
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Table 3.1: Conductivity data for single crystal GDC films with varying
thickness. The uncertainties represent 1 standard deviation in the fit of the
data.

Film Thickness (-)Slope Intercept R-Factor ∆Hm

(nm) (eV)
500±3 9.31±0.02 13.41±0.01 0.99985 0.80±0.01
278±3 9.57±0.02 13.58±0.02 0.99978 0.82±0.01
110±3 9.91±0.02 13.84±0.03 0.99982 0.85±0.01
44±3 9.68±0.01 12.80±0.05 0.99997 0.83±0.01
20±3 9.10±0.06 12.02±0.11 0.99998 0.78±0.01

Inspection of Table 3.1 shows that there is a significant decrease in ln(σT)-intercept for

the two thinnest films. The ln(σT)-intercept is a function of the carrier concentration.

Its reduction indicates that the carrier concentration is lower for the two thinner films

than the thicker films. The activation energies appear to be relatively constant over

the range of thicknesses. The observed drop in conductivity for the thinnest films

suggests that the interface has a significant effect on the conductivity of the films.

The reduction in the conductivity values for the two thinnest films motivates sepa-

ration of the interface contribution from that of the "bulk" conduction in the films.

The effect of the interface on the conductivity of the films can be observed by plotting

the conductance versus thickness of the films at a set temperature. A schematic of

this analysis is shown in Figure 3.4. If the line formed from this data passes through

the origin then no interface effect is seen in the material. However, a line that passes

above or below the origin indicates that the interface has a significant impact on the

conductivity of the films. A line that passes above the origin indicates that the inter-

face is a path of higher conductivity than that of the bulk and its intersection with

the conductance axis can be used as an estimate for the conductance of the interface
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Figure 3.4: Schematic conductance versus thickness plot showing possi-
ble impacts of a film surface/interface. Figure inset shows bulk, CB, and
interface, CI conductance paths in the two layer model.

layer. A line that passes below the origin indicates that the interface is a path of

lesser conductivity than that of the bulk and the intersection with the thickness axis

can be used as an estimate for the thickness of the layer of reduced conductivity. Fur-

thermore, by modeling the interface and bulk contributions as distinct homogeneous

layers (as shown in Figure 3.4 inset) one can solve for their specific conductivities and

thicknesses using Equation 3.4.1.

CT = CB + CI = σB ∗ lB + σI ∗ lI (3.4.1)
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Where C, σ, and l are the conductance, conductivity, and thickness of the bulk,

B, and interface, I, components of the total, T film. Conductance versus thickness

plots have been produced using the five GDC films at 500oC and 700oC (Figures 3.5

and 3.6). These plots reveal the presence of a less conductive layer spanning about 50

nm in every sample. This layer appears to decrease slightly in thickness from 500oC

to 700oC. Though only shown at 500oC and 700oC, this approximately 50 nm layer

of reduced conductivity is observed in conductance versus thickness plots over the

entire temperature range. The samples with a total thickness that is less than the 50

nm layer appear to consist entirely of this less conductive layer. The layer of reduced

conductivity may be caused by reduction on the surface of the GDC films or by

dopant segregation away from the surface. Though bulk reduction in GDC generally

occurs at much lower oxygen partial pressures [8], significant surface reduction has

recently been reported for GDC when exposed to air [36]. Segregation effects have

been suggested to lead to a depletion in near-surface charge carriers [37]. A reduction

in surface carrier concentration would be consistent with the reduction in ln(σT)-

intercept observed for the two thinnest films. Another possible explanation for the

less conductive layer would be diffusion of the Gd into the CeO2 buffer layer during

the deposition. However, this is unlikely as the maximum temperature experienced

by the films (850oC) is less than half GDCs melting point (2300oC) [38]. Additionally,

diffusion of Gd to the buffer layer should occur to a greater extent in the thicker films

that are held at the elevated temperature for up to 8 hours, while the thinner films
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experience only 1 hour of the elevated temperature. This would have produced an

apparent increase in the thickness of the less conductive layer with increasing total

film thickness, but this effect was not observed in the conductivity data.

Figure 3.5: Conductance data for 5 single crystal GDC films at 500oC.

The conductance versus thickness data has been analyzed to extract an estimate of

the interface and bulk conductivities from the total measured conductivity. The bulk

conductivity was estimated using the conductance versus thickness slope and setting

the intercept of the line to zero, as the middle line shows in Figure 3.4. This analysis

was done using the conductance data in the 500 to 700oC temperature range for the
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Figure 3.6: Conductance data for 5 single crystal GDC films at 700oC.

three films that were greater than 100 nm in thickness. The thinner films were not

used as their thicknesses are smaller than the estimated thickness of the interface

region. Theoretical bulk conductivity values were generated for each of the three film

thicknesses and there values were averaged. The calculated bulk conductivity, bulk

thickness and interface thickness values were used, along with the total conductance,

to solve for the interface conductivity (Equation 3.4.1). The ln(σT)-intercepts and

activation energies characterizing the bulk and interface conduction paths are given in

Table 3.2. The ln(σT)-intercept and activation energy for the bulk path are close to
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those obtained for the thickest film (500 nm) in this study and indicate that thicker

films were probably not necessary for this study. A comparison between the bulk

conductivity calculated in this study and the best conductivities for the ultrathin,

nanocrystalline (20-50 nm) films reporting enhancement due to surface or interface

conduction [2, 28] agree within ± 10% over the 500 to 700oC temperature range.

Therefore, the observed conductivity increase was not a enhancement compared to

the bulk GDC conductivity, but only compared to courser grained GDC films. This

suggests that the conductivity enhancement may have been caused by the increased

volume fraction of grain boundaries present in the films, but not due to the presence

of a surface and interface. Similar reports of enhanced conductivity in nanocrystalline

doped Ceria films have been reported by multiple groups in the literature [2–4, 13].

Although none of the data for the thinnest two films was used in the analysis, the

surface/interface ln(σT)-intercept and activation energy values agree well with those

of the thinnest films. This close agreement suggests that the thinnest films are made

up entirely of the less conductive layer.

Table 3.2: Extracted ln(σT)-intercepts and activation energies characteriz-
ing the bulk and interface conduction paths. This data represents the average
conductivity values calculated for the bulk and interface paths from the 110,
278, and 500 nm samples. The uncertainties represent 1 standard deviation
in the fit of the data.

Conduction Path (-)Slope Intercept R-Factor ∆Hm

(eV)
Bulk 9.35±0.01 13.51±0.06 0.99999 0.82±0.02
Interface 9.46±0.01 12.64±0.02 0.99993 0.82±0.02

The calculated bulk and interface components of the total conductivity for the 110,
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278, and 500 nm films have been replotted on the Arrhenius plot shown in Figure 3.7.

The two thinnest films were included for comparison, but no bulk component was

calculated as their conductance values lie at or below the calculated thickness of

the less conductive layer. The Arrhenius plot shows remarkable agreement between

the calculated bulk components of all three thicker films. The calculated interface

components of the thicker films exhibit the same reduction in conductivity as do the

two thinner films. Again, none of the data from the thinner two films was used in the

analysis that separated the bulk and interface conduction components. Therefore,

this analysis could be used as a predictive tool to estimate the conductivity of very

thin films as well as the impact of an interface on the total conductivity of thin films.

3.5 Conclusions

In summary, conductivity measurements have been performed on five single crystal

GDC films in the 500 to 700oC temperature range that varied only by the thickness of

the films. A clear trend of decreasing conductivity with decreasing film thickness was

observed for the films larger than 100 nm. The two thinnest films had substantially

reduced conductivity when compared to the thicker films. The measurements revealed

that the combined impact of the film surface and film/substrate interface is to reduce

the conductivity of the films. Analysis of the conductivity data suggests the presence

of a layer of reduced conductivity spanning as much as 50 nm in all of the measured
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Figure 3.7: Arrhenius plot showing the bulk and interface components of
the five GDC films. The data from the bulk component of the 500 nm film
lies directly under the bulk component of the 110 nm film.

films. Further research is required to determine the cause and location of this less

conductive layer.
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Chapter 4

Impact of the crystallographic

orientation on the ionic conductivity

of thin film Gd-doped CeO2

Authors: Matthew Swanson and P.D. Moran
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4.1 Abstract

This work investigates the ionic conductivity of thin film Gd-doped CeO2 (GDC) as a

function of crystallographic orientation. A theoretical expression has been developed

for the ionic conductivities of the [100] and [110] directions in single crystal GDC. This

relationship is compared to experimental data collected from a single crystal GDC

film. The film was grown to a thickness of ≈300 nm and its conductivity measured

along the [100] and [110] orientations in the 500-700oC temperature range. The

experimental data shows no statistically significant difference in the conductivities

of the [100] and [110] directions in single crystal GDC. This result agrees with the

theoretical model which predicts no difference between the conductivities of the two

directions.

Keywords: GDC, Thin film, Single crystal, Crystallographic orientation

4.2 Introduction

Recently, the measurement and enhancement of the ionic conductivity of Gadolin-

ium doped Ceria (GDC) has been an active area of research [2–9]. Research has

been performed to analyze the effects of grain size [2–4], dopant type and concen-

tration [5–8], and interfaces [9] on the ionic conductivity of the material. However,
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no study has been performed to determine impact of the crystallographic orientation

on the ionic conductivity of GDC. Such a study would require measurement of the

ionic conductivity of single crystal samples along known crystallographic orientations

and comparison of the measured conductivities to a theoretical model. This work

addresses the need for such a study.

This work examines the impact of crystallographic orientation on the in-plane ionic

conductivity of GDC films. The approach to determine the orientation dependence

of the ionic conductivity is to develop a theoretical model and compare its result to

experimental measurements. The approach to measure the orientation dependence

of the ionic conductivity is to grow a single crystal GDC film on a highly insulat-

ing r-plane Al2O3 substrate, characterize the film’s in-plane orientation using X-ray

diffraction, and measure the conductivity along two known crystallographic directions

in the 500-700oC temperature range.

4.3 Experimental Methods

The GDC film used in this study was grown on a single crystal sapphire substrate

using RF magnetron sputtering. The film was grown on an approximately 40 nm

single crystal CeO2 buffer layer that was presputtered on the sapphire substrate to

promote single crystal GDC growth. The GDC sputtering target had a composition
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of (10%)Gd2O3(90%)CeO2. The growth process, which results in single crystal GDC

films, has been reported in previous publications [9, 18].

X-ray diffraction was used to structurally characterize the GDC thin film. The in-

plane crystallographic orientation and verification of the film’s single crystal nature

was determined using a XRD φ-scan. The out-of-plane crystallographic orientation

was determined using a XRD θ/2θ scan. The film was then diced into 1 cm2 sam-

ples. The samples were cut so that the edges were parallel to either the [100] or [110]

crystallographic direction. In-plane conductivity measurements were performed using

silver/platinum electrodes arranged in the 4-wire bar geometry. Measurements were

taken in 5oC intervals over the 500-700oC temperature range. Details of the conduc-

tivity measurement setup, other than the electrode geometry, have been reported in

a previous publication [9]. Spectrally resolved optical reflectance was used on each

sample to determine the thickness.

4.4 Results and Discussion

The orientation dependence of the ionic conductivity can be determined theoretically

by examining the flux across a plane for each orientation. The well known formula

[39] for expressing the flux of ions, F[hkl], across a plane due to an electric field is

shown in Equation 4.4.1.

47



~F[hkl] =
β

CN
nhklNv(1−Nv)νo ~∆PE (4.4.1)

Where β is the number of nearest neighbors that lie across the flux plane, CN is the

coordination number of the ion, nhkl is the planar site density on the (hkl) plane

(sites/area), Nv is the probability that any given site is vacant (vacancy fraction), 1

- Nv is the probability that site on the left side of flux plane has an ion present, νo

is the vibrational frequency of the ion (sec−1), and ∆PE is the probability of having

sufficient energy to make a jump forward across the flux plane minus the probability

of having sufficient energy to jump backward across the flux plane. The flux across

the plane can be related to the ionic conductivity in the direction perpendicular to

that plane using Ohm’s law, J[hkl]=σ[hkl] E[hkl], and the relationship between current

density and atomic flux, J[hkl]=qF[hkl]. Where J[hkl] is the current density in the [hkl]

direction, σhkl is the ionic conductivity in the [hkl] direction, E[hkl] is the electric

field aligned in the [hkl] direction, and q is the charge on the ion. Equation 4.4.1

rewritten in terms of the orientation dependence of the ionic conductivity is shown

in Equation 4.4.2.

~σ[hkl] =
βq

CN ~E
nhklNv(1−Nv)νo ~∆PE (4.4.2)

When there is no external force acting on the ions ∆PE equal zero. However, when
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an electric field is applied ∆PE becomes nonzero and results in a net flux of ions

in the material. The form of ∆PE when an electric field is present is shown in

Equation 4.4.3.

~∆PE = e
(−∆G)
kT − e

−(∆G+ε)
kT (4.4.3)

Where ∆G is the Gibbs free energy (eV) associated with making a jump to a vacant

site, ε (eV) is the energy due to the electric field that assists ions in making jumps

with a component in the direction of the electric field, k is Boltzmann’s constant

(eV/K), and T is the temperature (K). ε can be understood as the reduction in the

energy barrier (∆G) in the forward direction and increase in the energy barrier in

the backward direction that results from the electric field acting on the charged ion.

Since ε/kT is very small (∼10−7), it can be taken out of the exponential using the

approximation ex ≈ 1 + x for very small x. Additionally, ε can be written in terms

of the electric field and planar spacing as ε = qEdhkl. Where dhkl is the spacing

between (hkl) planes and E is the electric field. These changes in ∆PE are shown in

Equation 4.4.4.

~∆PE =
qEdhkl
kT

e
−∆G
kT (4.4.4)
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Finally Equation 4.4.4 and Equation 4.4.2 can be combined to form the relation-

ship between orientation and conductivity in terms of material specific parameters

(Equation 4.4.5).

σhkl =
βdhklnhkl
CN

q2Nv(1−Nv)νo
kT

e
−∆G
kT (4.4.5)

Equation 4.4.5 can be used to calculate the ionic conductivity in the [100] direction

of single crystal GDC, σ100. Four parameters are required for the calculation of the

conductivity in the [100] direction: β, CN , d100, and n100. It may be helpful for

the reader to look back to Figure 1.2 in the introduction to view the simple cubic

arrangement of oxygen ions in GDC′s cubic fluorite structure. Figure 4.1 shows the

relative position of oxygen ions on two adjacent (100) planes in GDC. Inspection

of Figure 4.1 shows 1 path across the flux plane (β=1) out of the total 12 paths

(CN=12) available for every ion on the plane. The path has a jump distance of ao/2

(d100=ao/2). It can also be observed that there are four atomic sites for every ao2 area

on the (100) plane (n100=4/ao2). These (100) specific components can now be put into

Equation 4.4.5 to show the ionic conductivity in the [100] direction (Equation 4.4.6).

σ100 =
1

3ao

q2Nv(1−Nv)νo
kT

e
−∆G
kT (4.4.6)
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Figure 4.1: Schematic showing the relative positions of the atomic sites on
two adjacent (100) planes. The flux plane is denoted as a dashed line.

The derivation of the relationship between the conductivity and crystallographic ori-

entation for the [110] direction can be accomplished using the same method. Fig-

ure 4.2 shows the relative positions of atoms on two adjacent (110) planes.

Figure 4.2 shows 2 distinct paths for crossing the flux plane (β=2) out of the total

12 paths (CN=12) available for every ion on the plane. Both paths involve jumps

which are separated by ao/
√

22 (d110=ao/
√

22). It can also be observed that there are

four atomic sites for every
√

2ao2 area on the (110) plane (n110=4/
√

2ao2). These (110)

specific components can now be put into Equation 4.4.5 to show the ionic conductivity
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Figure 4.2: Schematic showing the relative positions of the atomic sites on
four adjacent (110) planes. The flux plane is denoted as a dashed line.

in the [110] direction (Equation 4.4.7).

σ110 =
1

3ao

q2Nv(1−Nv)νo
kT

e
−∆G
kT (4.4.7)

Comparison of Equations 4.4.6 and 4.4.7 shows no difference in the predicted con-

ductivity along the two directions. One factor that could possibly change this result

would be interaction energies between vacancies. If such interaction energies resulted

in vacancy groupings that are more or less probable than that predicted statistically,
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then the conductivities in the two direction may not be equal. With the theoretical

prediction made it is now time to examine the experimental results.

X-ray diffraction and spectrally resolved optical reflectance were performed on the

GDC film and showed it to be a single crystal with a thickness of≈300 nm. Symmetric

θ/2θ X-ray diffraction data from the film demonstrates that the GDC film is oriented

with the [001] direction normal to the surface, as is the thin single crystal [001] CeO2

template. φ-scans showed four well-defined peaks from the asymmetric (204) planes

indicating that the film has a single orientation in the plane of the film and is single

crystal. The azimuthal angle of the φ-scan at which the peaks of the (204) planes

occurred were used to orient the electrodes so that measurements were taken along

the [100] and [110] directions in the GDC thin film.

Comparison has been made between the conductivity data of the two orientations for

each of the three films. The conductivity data for the three samples of each orientation

were averaged and the standard deviation of the averages calculated. This data is

shown in 40oC intervals in Table 4.1.

Table 4.1: Comparison of the average conductivity data for the [100] and
[110] orientations in the 540 to 700oC temperature range. The uncertainties
represent 1 standard deviation in the fit of the data.

Temp [100] Ave. Conductivity [110] Ave. Conductivity σ100/σ110

(oC) (Ω−1*cm−1) (Ω−1*cm−1)
700 3.53E-2 ± 0.21E-2 3.32E-2 ± 0.08E-2 1.06
660 2.42E-2 ± 0.14E-2 2.29E-2 ± 0.07E-2 1.05
620 1.60E-2 ± 0.09E-2 1.51E-2 ± 0.05E-2 1.06
580 1.02E-2 ± 0.06E-2 9.49E-3 ± 0.35E-3 1.07
540 6.09E-3 ± 0.40E-3 5.67E-3 ± 0.22E-3 1.07
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Inspection of Table 4.1 shows an ≈6% increase in the conductivity of the [100] di-

rection compared to the [110] direction. However, the ≈6% difference is on the same

order as one standard deviation in the [100] conductivity data indicating that there

is not a statistically significant difference between the two data sets. This result does

not rule out the possibility of differing conductivities in the [100] and [110] directions,

but it does imply that any difference must be relatively small. One would be confident

in the distinction between the two data sets if there was no overlap in two standard

deviations of each data set (95.4% of the data for each set should fall within this

range). Given the current uncertainly in the data, a ≈20% difference in the conduc-

tivities would be required to meet this criteria and show that the two data sets are

independent of each other. This study concludes that the conductivities in the [100]

and [110] directions does not differ by more than 20%.

4.5 Conclusions

In summary, conductivity measurements have been performed on single crystal GDC

films along the [110] and [100] crystallographic orientations in the 500 to 700oC tem-

perature range. The average conductivity of two data sets, containing three samples

of each orientation, were compared and no statistically significant difference was ob-

served. The theoretical model presented in this work also predicts no difference in

the conductivities of the two directions. This study concludes that it is unlikely that
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there is any difference between the conductivities in the [100] and [110] directions of

single crystal GDC, and if a difference does exist it must be less than ≈ 20%.
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Chapter 5

Discussion: Cause of the reduced

conductivity observed in samples with

grain boundaries and the reduced

conductivity surface/interface layer

Author: Matthew Swanson
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5.1 Introduction

This chapter presents the most likely causes for the reduced conductivity observed

in polycrystalline GDC samples compared to single crystal sample and the reduced

conductivity observed in the surface/interface layer of the single crystal films.

5.2 Explanation of the reduced conductivity observed

in the polycrystalline GDC compared to the sin-

gle crystal GDC GDC

The conductivity data for the single crystal and polycrystalline films showed that the

presence of 80 nm grain boundaries significantly reduces the film’s total conductivity.

This result can be understood by comparing it to the greater body of work in the lit-

erature. It is well known that the ionic conductivity of GDC increases with decreasing

grain size for very small grains (<100 nm) and decreases with decreasing grain size

for larger grains (>200 nm) [3, 10–13, 16, 40]. This ionic conductivity versus grain

size relationship can be explained by considering the relative volume fraction of along

grain boundary, across grain boundary and bulk grain regions in samples with differ-

ing grain sizes. Each region has its own migration enthalpy and carrier concentration
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and, hence, a region specific conductivity. The migration enthalpy for ions traveling

along grain boundaries is likely to be significantly less than the migration enthalpy

for ions traveling in the grain bulk. This is due to the reduced number of bonds on

the ion traveling along the grain boundary and has been observed for a number of

other solid state ion conductor systems. However, the migration enthalpy for ions

traveling across a grain boundary is significantly larger than that of the bulk of the

grain. This has been observed by many groups and explained in terms of a space

charge layer that the ion must travel across [2, 31, 41].

For grain sizes greater than 200 nm the across grain boundary region makes up

less than 1% of the total cross-sectional area of the sample and does not contribute

significantly to the total ionic conduction. For these grain sizes (>200 nm), increased

conductivity can be realized by increasing the grain size because larger grains reduce

the number of across grain boundary jumps that an ion must make. However, for very

small grain sizes (<100 nm) the along grain boundary region becomes a significant

fraction of the total cross-sectional area. This increase in fraction of along grain

boundary area with a lower migration enthalpy is probably the cause of the observed

trend of increasing conductivity with decreasing grain size for the small grains. For

the 80 nm grain size studied in this work it appears that the reduction in the ionic

conductivity due to crossing grain boundaries still outweighs the enhancement due

to the reduced migration enthalpy along grain boundaries. This results in an overall

lower conductivity in the 80 nm grain size sample than the single crystal sample.
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However, literature data shows the conductivity of 10 nm grain size GDC samples

to be about the same as the conductivity measured for single crystal samples in this

study. This suggests that around 10 nm the conductivity enhancement gained from

ions traveling along grain boundaries compensates for the conductivity reduction due

to ions crossing grain boundaries. These results also suggest that samples with grain

sizes less than ten nanometers will likely have a higher total conductivity than single

crystal GDC. However, no sample has been produced so far with a higher conductivity

than the single crystal GDC and it may be very difficult to maintain grain sizes

smaller than ten nanometers while the device is operated at elevated temperatures.

Therefore, the conclusion of this study is that single crystal GDC will provide the

highest conductivity currently available for a given device. Polycrystalline GDC with

the smallest possible grain size should be used as a substitute for single crystal GDC

when it is not possible to engineer the use of single crystal GDC.

5.3 Explanation of the reduced conductivity in the

interface layer of GDC films

The conductivity data for the five GDC films with varying thicknesses suggests the

presence of a reduced conductivity interface layer present in each film. The film

interface and bulk regions were compared and showed that the activation energy
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for ionic transport is approximately the same in both regions, but the mobile carrier

concentration appears to be significantly less in the interface layer. A reduction in the

mobile carrier concentration could be caused by a reduction in the Gd concentration

in this region. Reduced Gd concentration would decrease the lattice parameter of the

structure and, therefore, should be observable as a peak shift in the XRD θ/2θ data.

The θ/2θ data will now be analyzed to determine if such a shift is present.

Figures 5.1 and 5.2 show the θ/2θ plots for the (002) and (004) reflections. The peak

positions of the three thickest films agree within the experimental uncertainty. Using

the median peak position of the three films results in a calculated lattice parameter of

5.435Å. The lattice parameter should scale linearly with the doping content according

to Vergard’s Rule. A number of research groups [42–45] have empirically determined

this relationship for GDC and their results are in fairly close agreement. One of the

equations relating the lattice parameter to the mole fraction of Gd2O3 is given below

(Equation 5.3.1).

a = 5.40606 + 0.00206X (5.3.1)

Where a is the lattice parameter (Å) and X is the mol% of Gd2O3. This formula

predicts that the three thicker films have a composition of 15%Gd2O3 85%CeO2.

This is a 5 mol% higher Gd composition than the target composition (10%Gd2O3
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90%CeO2). However, although the composition of the films used in this study have

never been quantitatively determined, EDS data collected from the films suggests a

higher composition in the films than the sputtering target. Other researchers [22]

that also deposited GDC films by RF sputtering found their films to have about 50%

more Gd content than that of their sputtering target. Therefore, based on the XRD

data and the results from the literature, it is likely that the true "bulk" composition

of our thick films is close to 15 mol% Gd2O3.

Figure 5.1: Plot of the θ/2θ data for the (002) reflection of the five GDC
films and the CEO buffer layer.
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Figure 5.2: Plot of the θ/2θ data for the (004) reflection of the five GDC
films and the CEO buffer layer.

The two thinnest GDC films have peak positions which are much closer to that of

the undoped Ceria peak. The exact peak positions for these two films are difficult to

determine because the peaks are convolved with the CEO peaks for the underlying

Ceria buffer layer. However, it is clear that these peak positions are much closer to

the undoped Ceria peak than they are to the three thicker films. This indicates that

there is a significant reduction in the amount of Gd present in the two thinnest films.

A reduction in the Gd content for the first ≈50 nanometers of the films could be a

result of beginning the film growth before equalibrium conditions have been reached
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and would explain the observed reduced conductivity interface layer observed in all

of the GDC films.

5.4 Conclusions

In summary, the reduction in conductivity observed for the polycrystalline GDC

samples when compared to the single crystal sample is caused by highly resistive

across grain boundary regions. The reduction in the conductivity observed for the

interface layer is likely due to a reduction in the Gd doping content present in the

first 50 nm of every GDC single crystal film.
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Chapter 6

Summary

In this work the effects of grain boundaries, interfaces and crystallographic orientation

on the ionic conductivity of Gadolinium doped ceria were investigated. Methods to

dice and prepare samples for high temperature, in-plane conductivity measurements

were developed. A high temperature conductivity measurement stand was build and

automated for making conductivity measurements over the 400-700oC temperature

range.

The effect of grain boundaries on the ionic conductivity of GDC was investigated by

the growing two GDC films that differed by the presence or absence of 80 nm grain

boundaries. The single crystal conductivity data taken in the 400-700oC indicates

that the ionic conductivity of the single crystal GDC film is as conductive or more
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conductive than the "high-conductivity" polycrystalline GDC films studied in the lit-

erature whose large ionic conductivity was attributed to the presence of sub-micron

grains. The mobility of the charge carriers was significantly reduced in the polycrys-

talline sample over all temperatures, leading to a reduction in the conductivity over

the entire temperature range. Direct comparison of the conductivity vs. temperature

data for single crystal and polycrystalline GDC thin films showed that the presence of

boundaries separating 80 nm diameter grains does not enhance, but rather reduces

the in-plane ionic conductivity of the GDC film.

The effect a film surface or interface on the ionic conductivity of GDC was inves-

tigated by comparing the conductivities of five single crystal films measured in the

500 to 700oC temperature range that differed only in their thickness. A clear trend

of decreasing conductivity with decreasing film thickness was observed for the films

larger than 100 nm. The two thinnest films had substantially reduced conductivity

when compared to the thicker films. The measurements revealed that the combined

impact of the film surface and film/substrate interface is to reduce the conductivity

of the films. Analysis of the conductivity data suggests the presence of a layer of re-

duced conductivity spanning as much as 50 nm in all of the measured films. Further

research is required to determine the cause and location of this less conductive layer.

The effect of the crystallographic orientation on the ionic conductivity of GDC was

investigated by measuring the conductivity of single crystal GDC samples along the
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[110] and [100] crystallographic orientations in the 500 to 700oC temperature range.

The average conductivity of two data sets, containing three samples of each orien-

tation, were compared and no statistically significant difference was observed. The

theoretical model presented in this work also predicts no difference in the conductiv-

ities of the two directions when ions from two planes adjacent to the flux plane are

considered for the [110] direction. This study concludes that it is unlikely that there

is any difference between the conductivity in the [100] and [110] directions of single

crystal GDC, and if a difference does exist it must be less than ≈ 20%.

In summary, this study has found that the ionic conductivity of GDC is higher in

single crystals than in polycrystalline samples. There is no theoretically expected or

experimentally observed difference between ionic transport in the [100] direction and

the [110] direction in GDC single crystals. Furthermore, for thin film GDC, the total

conductivity will be greatest for thick films (>500 nm) where the interface component

of the conductivity becomes less significant.
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Appendix A

The author of this dissertation has reproduced Chapter 2 from a publication in Solid

State Ionics [9] of which he was the primary author. The article has been included

with the permission of Elsevier. The document showing their permission is included

in this section.
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Appendix B

This section derives the relationship between the ionic conductivity in the [100] and

[110] directions for ions in a face centered cubic arrangement.

σhkl =
βdhklnhkl
CN

q2Nv(1−Nv)νo
kT

e
−∆G
kT (6.0.1)

Equation 6.0.1 can be used to calculate the ionic conductivity in the [100] direction

of single crystal GDC, σ100. Four parameters are required for the calculation of the

conductivity in the [100] direction: β, CN , d100, and n100. It may be helpful for the

reader to look back to Figure 1.2 in the introduction to view the FCC arrangement of

oxygen ions in GDC′s cubic fluorite structure. Figure 6.1 shows the relative position

of oxygen ions on two adjacent (100) planes in GDC. Inspection of Figure 6.1 shows

4 distinct paths for crossing the flux plane (β=4) out of the total 12 paths (CN=12)

available for every ion on the plane. All of the the paths involve jumps from plane 1 to

plane 2 which are separated by ao/2 (d100=ao/2). It can also be observed that there

are two atomic sites for every ao2 area on the (100) plane (n100=2/ao2). These (100)

specific components can now be put into Equation 6.0.1 to show the ionic conductivity

in the [100] direction (Equation 6.0.2).
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Figure 6.1: Schematic showing the relative positions of the atomic sites on
two adjacent (100) planes. The flux plane is denoted as a dashed line.

σ100 =
1

3ao

q2Nv(1−Nv)νo
kT

e
−∆G
kT (6.0.2)

The derivation of the relationship between the conductivity and crystallographic ori-

entation for the [110] direction is more complicated than the [100] case. Figure 6.2

shows the relative positions of atoms on four adjacent (110) planes. It can be seen

in Figure 6.2 that there are 6 distinct paths across the flux plane (β=6): one path

from plane 1 to plane 3 directly in the [110] direction, one path from plane 2 to plane

4 directly in the [110] direction, and 4 paths from plane 2 to plane 3 which are at

an angle to the [110] direction. These two different alignments of jump directions to

the [100] direction, and, hence to the applied electric field, result in different values

for the ∆PE term depending on which site across the flux plane is considered. These
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Figure 6.2: Schematic showing the relative positions of the atomic sites on
four adjacent (110) planes. The flux plane is denoted as a dashed line.

complications to the problem result in the inability to directly apply Equation 6.0.1

to the [110] case. It will be seen that a more descriptive and generalize form of

Equation 6.0.1 can be written as follows (Equation 6.0.3).

σhkl =

β∑
i=1

dihklnhkl
CN

q2Nv(1−Nv)νo
kT

e
−∆G
kT (6.0.3)

Where dhkli is the spacing between the two planes the ion jumps between for the

ith path across the flux plane. This generalized form of directional conductivity

relationship will now be derived for the case of conductivity along the [110] direction.

The conductivity in the [110] direction can be derived by considering the flux across

a plane perpendicular to the [100] direction. Figure 6.2 shows two adjacent planes on
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the left of the flux plane that each contain ions that have a nearest neighbor on the

right side of the flux plane. One can now consider the flux across the plane from three

types of flux events: (1) the ion on plane 1 jumping across the flux plane, (2) the ion

on plane 2 jumping across the flux plane, and (3) both ions simultaneously jumping

across the flux plane. These three events are "mutually exclusive" and so they can be

summed to determine the total flux across the flux plane. This relationship is shown

in Equation 6.0.4.

FTotal = FP1 + FP2 + FP12 (6.0.4)

Where FTotal is the total ionic flux, FP1 is the flux due to the representative ion

on plane 1 jumping across the flux plane, FP2 is the flux due to the representative

ion on plane 2 jumping across the flux plane, and FP12 is the flux do to both ions

simultaneously jumping across the flux plane. It can be readily observed that both

FP1 and FP2 will be dependent on the probability of having sufficient energy to

make a jump forward across the flux plane minus the probability of having sufficient

energy to jump backward across the flux plane, ∆PE. At the same time FP12 will

be depended on the square of this term, ∆PE
2, due to the requirement that both

ions have sufficient energy to make the jumps. Since ∆PE is very small (∼10−5) its

square is extremely small (∼10−9) and can be considered negligible when being added

to terms that are four to five orders of magnitude larger. Then only the the FP1 and
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FP2 components of the flux need to be considered in the calculation of the total flux.

In general the flux for an ion on any given plane can be written as the product

of three terms: (1) the planar density (nhkl), (2) the vibration frequency (νo), (3)

the probability that the ion will contribute to flux across the flux plane. The first

two terms will be constant for any geometry considered. The third term may vary

depending on the crystalographic/electric field geometry and can be further broken

down into the product of three probabilities for conditions that must all be satisfied

in order to produce a net flux across the flux plane (the conditions are emphasized

with italics): (1) probability that the ion is vibrating in the direction of a vacancy

across the flux plane (Pvib), (2) probability that the ion has sufficient energy to jump

into the vacancy (∆PE), and (3) probability that there is a vacancy in the site the

ion is vibrating towards (Pv). These probabilities are dependent on the number of

vacancies present and the alignment of the jump path with the electric field. The

approach to determine FP1 and FP2 is to sum the flux contributions from all of the

possible vacancy arrangements that could be present across the flux plane for the ions

on planes 1 and 2. The functional form of this approach is shown in Equation 6.0.5.

F = nhkl(1−Nv)νo

AT∑
j=1

Pvib(j)∆PE(j)Pv(j) (6.0.5)

Where the function is summed for all possible vacancy arrangements (AT ) and all
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three probabilities are dependent on the jth arrangement of vacancies.

FP1 has only one path across the flux plane and the probability that a vacancy is in

that site is Nv. Also the single path is directly aligned with the electric field. The

reduction in the energy barrier associated with the direct alignment with the electric

field will be called εα. The equation for FP1 is given below (Equation 6.0.6).

FP1 = 2n110νo
εα

12kT
Nv(1−Nv)e

−∆G
kT (6.0.6)

The calculation of FP2 is more complicated and requires the addition of five mutually

exclusive cases: (1) flux across the plane when the representative ion on plane 2 has

one vacant site to jump to across the flux plane (F1
P2), (2) flux across the plane

when the ion on plane 2 has two vacant sites to jump to across the flux plane (F2
P2),

(3) flux across the plane when the ion on plane 2 has three vacant sites to jump to

across the flux plane (F3
P2), (4) flux across the plane when the ion on plane 2 has

four vacant sites to jump to across the flux plane (F4
P2), (5) flux across the plane

when the ion on plane 2 has five vacant site to jump to across the flux plane (F5
P2).

An expression showing this relationship is given in Equation 6.0.7.

FP2 = F 1
P2 + F 2

P2 + F 3
P2 + F 4

P2 + F 5
P2 (6.0.7)
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Where the superscript on each term denotes the number of vacancies present on the

five possible sites to which the ion on plane 2 can jump.

F1
P2 can be determined by summing the flux contributions for the ion on plane 2

when there is a single vacancy present in each of the five possible positions across

the flux plane (four arrangements with one vacancy on plane 3 and one arrangement

with one vacancy on plane 4). This relationship is shown below (Equation 6.0.8).

F 1
P2 = 4F 1

P21 + F 1
P22 (6.0.8)

Where the second numeric subscript denotes the arrangement of the vacancy for each

of the terms. One of the arrangements has a single vacancy is on plane 4 (F1
P22)

and will have a reduction in the energy barrier of εα. The other four arrangements

(4F1
P21) are located on plane 3 and have a reduction in the energy barrier that is half

of the εα value. This energy reduction will be called εβ. Pvib will equal 1/12 for all of

the arrangements since there is only one possible vacancy location to vibrate towards

across the flux plane. For this single vacancy case, Pv, is equal to Nv(1-Nv)4. This

quantity is the probability having a single vacancy out of the 5 possible positions.

The expression for F1
P2 is shown below (Equation 6.0.9).
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F 1
P2 = n110νo(1−Nv)[4

εβ
12kT

+
εα

12kT
]N1

v (1−Nv)
4e

−∆G
kT (6.0.9)

It can be seen in Equation 6.0.9 that the flux contributions from the 4 equivalent

arrangements have been collected together. This practice of combining the flux con-

tributions from equivalent vacancy arrangements will be performed throughout the

derivation to reduce redundancy. Next one can calculate the contribution to the total

flux when two vacancies are present on the 5 possible jump positions.

There are 10 mutually exclusive vacancy arrangements that must be considered for

F2
P2. Four of the configurations (4F2

P21) have one vacancy on plane 3 and and one

vacancy on plane 4, and six configurations (6F2
P22) have two vacancies on plane 3.

This relationship is shown in Equation 6.0.10.

F 2
P2 = 4F 2

P21 + 6F 2
P22 (6.0.10)

The four configurations with one vacancy on plane 3 and one vacancy on plane 4 will

each have a 1/12 chance at approaching an energy barrier reduced by εα and a 1/12

chance at approaching an energy barrier reduced by εβ. The six configurations with

two vacancies on plane 3 will have a 2/12 chance at approaching an energy barrier

reduced by εβ. All of the vacancy configurations have the same chance of having two
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out of the five sites vacant (Pv = Nv
2(1-Nv)3). The expression for F2

P2 is shown in

equation Equation 6.0.11.

F 2
P2 = n110νo(1−Nv)[4(

εβ
12kT

+
εα

12kT
) + 6(

2εβ
12kT

)]N2
v (1−Nv)

3e
−∆G
kT (6.0.11)

There are 10 mutually exclusive vacancy arrangements that must be considered for

F3
P2 as well. Four of the configurations (4F3

P21) have three vacancies on plane 3 and

six of the configurations (6F3
P22) have two vacancies on plane 3 and one on plane 4.

This relationship is shown in Equation 6.0.12.

F 3
P2 = 4F 3

P21 + 6F 3
P22 (6.0.12)

The four configurations with three vacancies on plane 3 will each have a 3/12 chance

at approaching an energy barrier reduced by εβ. The six configurations with two

vacancies on plane 3 and one on plane 4 will have a 2/12 chance at approaching an

energy barrier reduced by εβ and a 1/12 chance at approaching an energy barrier

reduced by εα. All of the vacancy configurations have the same chance of having

three out of the five sites vacant (Pv = Nv
3(1-Nv)2). The expression for F3

P2 is shown

in equation Equation 6.0.13.
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F 3
P2 = n110νo(1−Nv)[4(

3εβ
12kT

) + 6(
2εβ

12kT
+

εα
12kT

)]N3
v (1−Nv)

2e
−∆G
kT (6.0.13)

There are 5 mutually exclusive vacancy arrangements that must be considered for

F4
P2. Four of the configurations (4F4

P21) have three vacancies on plane 3 and one

on plane 4 and one configuration (1F4
P22) with all four vacancies on plane 3. This

relationship is shown in Equation 6.0.14.

F 4
P2 = 4F 4

P21 + 1F 4
P22 (6.0.14)

The four configurations with three vacancies on plane 3 and one on plane 4 will have

a 3/12 chance at approaching an energy barrier reduced by εβ and a 1/12 chance

at approaching an energy barrier reduced by εα. The single configuration with all

four vacancies on plane 3 will have a 4/12 chance at approaching an energy barrier

reduced by εβ. All of the vacancy configurations have the same chance of having four

out of the five sites vacant (Pv = Nv
4(1-Nv)1). The expression for F4

P2 is shown in

equation Equation 6.0.15.

F 4
P2 = n110νo(1−Nv)[4(

3εβ
12kT

+
εα

12kT
) +

4εβ
12kT

]N4
v (1−Nv)

1e
−∆G
kT (6.0.15)
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There is only one arrangement that must be considered for FP2
5. This configuration

consists of all five positions occupied by vacancies (1FP21
5). This relationship is shown

in Equation 6.0.16.

F 5
P2 = 1F 5

P21 (6.0.16)

The single configuration with four vacancies on plane 3 and one on plane 4 will have

a 4/12 chance at approaching an energy barrier reduced by εβ and a 1/12 chance at

approaching an energy barrier reduced by εα. The probability that all five positions

are vacant is given by P v = Nv
5. The expression for F5

P2 is shown in equation

Equation 6.0.17.

F 5
P2 = n110νo(1−Nv)[

4εβ
12kT

+
εα

12kT
]N5

v e
−∆G
kT (6.0.17)

These flux components can now be summed according to Equations 6.0.4 and 6.0.7.

The result is shown in Equation 6.0.18
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FTotal =
n110νo(1−Nv)

12kT
e

−∆G
kT ∗

εαNv + (4εβ + εα)N1
v (1−Nv)

4+

(4εβ + 12εβ + 4εα)N2
v (1−Nv)

3+

(12εβ + 12εβ + 6εα)N3
v (1−Nv)

2+

(4εβ + 4εα + 12εβ)N4
v (1−Nv)

1 + (4εβ + εα)N5
v ]

(6.0.18)

Equation 6.0.18 can be rewritten to group the εα and εβ terms. This is shown in

Equation 6.0.19.

FTotal =
n110νo(1−Nv)

12kT
e

−∆G
kT ∗

εαNv + (εαN
1
v (1−Nv)

4 + 4εαN
2
v (1−Nv)

3 + 6εαN
3
v (1−Nv)

2+

4εαN
4
v (1−Nv)

1 + εαN
5
v + (4εβN

1
v (1−Nv)

4 + 16εβN
2
v (1−Nv)

3+

24εβN
3
v (1−Nv)

2 + 16εβN
4
v (1−Nv)

1 + 4εβN
5
v ]

(6.0.19)

The following mathematical relationship can be used to remove the various powers of

Nv (Equation 6.0.20).

X = X1(1−X)4 + 4X2(1−X)3 + 6X3(1−X)2 + 4X4(1−X)1 +X5 (6.0.20)
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Equation 6.0.19 can now be greatly simplified by the use of Equation 6.0.20. The

result is shown in Equation 6.0.21.

FTotal =
n110νo(1−Nv)

12kT
Nve

−∆G
kT [2εα + 4εβ] (6.0.21)

Substituting the expressions for εα and εβ in terms of the spacing of the planes that

the ion jumps between (dhkl) and using the generic forms of nhkl and CN results in

Equation 6.0.22.

σhkl =

β∑
i=1

dihklnhkl
CN

q2Nv(1−Nv)νo
kT

e
−∆G
kT (6.0.22)

Where dhkli is the spacing between the two planes the ion jumps between, for the ith

path across the flux plane. Inspection of Equation 6.0.3 reveals that this mathematical

construct is the same as summing the conductivity contributions from each one of

the possible nearest neighbor jumps across the flux plane. This result shows that

it is not necessary to consider all possible combination of vacancies across the flux

plane, because all combinations are already accounted for when treating the jumps

to nearest neighbor sites as independent contributions to the conductivity.

Substituting the values of n110, εα, and εβ into Equation 6.0.21 and converting the
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flux to conductivity, as shown earlier, results in Equation 6.0.23

σ110 =
1

3ao

q2Nv(1−Nv)νo
kT

e
−∆G
kT (6.0.23)

Comparison of Equations 6.0.2 and 6.0.23 shows no difference in the predicted con-

ductivity along the two directions.
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