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Synthesis, part of a Special Feature on Exploring Feedbacks in Coupled Human and Natural Systems (CHANS) 

Information and entropy theory for the sustainability of coupled human and
natural systems
Audrey L. Mayer 1, Richard P. Donovan 2 and Christopher W. Pawlowski 3

ABSTRACT. For coupled human and natural systems (CHANS), sustainability can be defined operationally as a feasible, desirable
set of flows (material, currency, information, energy, individuals, etc.) that can be maintained despite internal changes and changes in
the environment. Sustainable development can be defined as the process by which CHANS can be moved toward sustainability. Specific
indicators that give insight into the structure and behavior of feedbacks in CHANS are of particular interest because they would aid
in the sustainable management of these systems through an understanding of the structures that govern system behavior. However, the
use of specific feedbacks as monitoring tools is rare, possibly because of uncertainties regarding the nature of their dynamics and the
diversity of types of feedbacks encountered in these systems. An information theory perspective may help to rectify this situation, as
evidenced by recent research in sustainability science that supports the use of unit-free measures such as Shannon entropy and Fisher
information to aggregate disparate indicators. These measures have been used for spatial and temporal datasets to monitor progress
toward sustainability targets. Here, we provide a review of information theory and a theoretical framework for studying the dynamics
of feedbacks in CHANS. We propose a combination of information-based indices that might productively inform our sustainability
goals, particularly when related to key feedbacks in CHANS.

Key Words: CHANS; feedbacks; information theory; sustainability

INTRODUCTION
In 1987, the Bruntland Commission wrote a widely cited
definition of sustainable development: “to meet the needs of the
present without compromising the ability of future generations
to meet their own needs” (World Commission on Environment
and Development 1987:43). This definition describes coupled
human and natural systems (CHANS) in which a desired level of
human use of natural resources and ecosystem services can persist
indefinitely (Mayer et al. 2007). Because of the size and
complexity of CHANS (also known as human-environment,
human-nature, or social-ecological systems; Liu et al. 2007a) at
regional and global scales, researchers interested in their
management are continuously searching for indicators of the state
and trajectory of these systems relative to sustainability targets,
e.g., indicators such as a system’s resilience to perturbations
(Scheffer et al. 2001, Walker et al. 2004, Millennium Ecosystem
Assessment 2005, Folke 2006, Zurlini et al. 2006, Mayer et al.
2007, Mayer 2008, Brondizio et al. 2009, Orians and Policansky
2009, Angelstam et al. 2013). Here, we use the definition of an
indicator as a measured variable that is used to monitor a dynamic
system, usually relative to target values or desirable bounds (Bell
and Morse 2008, Mayer 2008). 

Many sustainability indicator systems use traditional,
disciplinary categories (i.e., ecological, social, economic; Gibson
et al. 2005), often in a pressure-state-response (PSR) or similar
framework, which focus on state variables such as mean global
temperatures or concentration of mercury in water bodies, and
known pressures such as carbon dioxide emissions or mercury
emissions from power plants (Turner 2000, Carr et al. 2007, Bell
and Morse 2008, Levrel et al. 2009, Orians and Policansky 2009,
Ness et al. 2010, Meyar-Naimi and Vaez-Zadeh 2012). However,
PSR frameworks usually involve several difficulties: (1) the
appropriate targets or goals are not necessarily known or agreed
upon; (2) equal weighting of ecological, social, and economic
indicators might not be warranted (and other weighting systems

are not well defended); and (3) these frameworks do not easily
allow for feedback-based indicators (Dawson et al. 2010).
Although feedbacks are critically important for understanding
sustainability in CHANS (Tainter 2000, Turner and Robbins
2008), feedback-based indicators are rare. Even when important
system feedbacks can be defined, multiple variables derived from
several disciplines might be involved in complex feedback
relationships that are difficult to integrate into a single indicator.
Indeed, the lack of monitoring of critical feedbacks can enhance
their influence on a CHANS through inattention to critical system
behaviors or unwarranted reactivity to noncritical ones (Dawson
et al. 2010, Biggs et al. 2012). For this reason, characterizing
transdisciplinary systems based on thermodynamics, information,
and complex systems theory is becoming popular, because these
methods can incorporate both feedbacks as indicators and
multiple disciplinary emphases without the need to prioritize
among them (Mayer 2008, Turner and Robbins 2008). 

Information theory provides an interdisciplinary framework for
investigating dynamic systems and their behaviors, including
nonlinear behaviors and relationships; understanding these
characteristics is necessary for CHANS research and
management (Liu et al. 2007a,b). For example, whereas ecology-
based disciplines focus on feedbacks generated by environmental
processes and sociology-based disciplines focus on the
implications that these feedbacks have on human societies (Turner
and Robbins 2008), an information-based approach regards all
feedbacks and their impacts on system components as neutral
with respect to human viewpoints; feedbacks are integrated into
the information measure according to their influence on the
system, without explicit disciplinary or other prejudice. The
human viewpoint is integrated when system trajectories are
considered relative to sustainability goals. 

Here, we briefly review feedbacks as they have been observed in
CHANS and then discuss the use of information theory to study
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system entropy and Fisher information. We then begin a
conversation on how information-based indices, along with
network analysis, might provide a new approach for integrating
signals from the behavior of system feedbacks into the sustainable
management of CHANS. This conceptual paper is intended to
highlight the general approach of applying Fisher information
and entropy theory to CHANS, where CHANS are described via
network theory as a dynamic system of components with a
structure of various feedback types.

FEEDBACKS IN COUPLED HUMAN AND NATURAL
SYSTEMS
Although the existence of feedbacks in CHANS and their
importance to sustainable management are readily acknowledged,
it is not uncommon for feedbacks to receive simply passing
treatment, even in models meant for managing feedbacks between
natural and human subsystems (Schlüter et al. 2012).
Occasionally, specific feedbacks are identified with enough clarity
to allow for their use as indicators. Turner et al. (2007) and Liu
et al. (2007a) provide reviews of many different case studies of
CHANS, and both reviews explicitly describe feedbacks within
these systems such that indicators could be generated. Others have
identified human-environment feedbacks in aquatic systems
(Chen et al. 2009, Roy et al. 2010, Schlüter and Herrfahrdt-Pähle
2011), agricultural systems (Hartter and Boston 2007, Lawrence
et al. 2007, Koch et al. 2008, Walsh et al. 2008), international trade
(Kissinger and Rees 2010), and regulatory systems meant to
manage these systems for sustainability (Horan et al. 2011, Biggs
et al. 2012, Rounsevell et al. 2012). Huber-Sannwald et al. (2006)
and Davidson et al. (2012) focus explicitly on these feedbacks
when developing a model and framework, respectively; however,
the influence of human activities on the drivers in the system
(another type of feedback) are not identified. In the social collapse
literature, feedbacks are occasionally described as systems of
cascading feedbacks, or “cascading devolutionary feedbacks”,
that destabilize CHANS and greatly increase the odds of collapse
or failure, with possible reorganization if  “buffering feedbacks”
are strong enough (Butzer and Endfield 2012, Dunning et al.
2012). Trophic cascades are an ecological example of the same
phenomenon (Dawson et al. 2010). Missing from this body of
literature on CHANS is an approach with which to examine many
specific feedbacks in a system holistically such that the overall
behavior of a system can provide an indication that one or more
system feedbacks are changing in intensity, scale, and/or behavior.
A methodology that could be used across many types of dynamic
systems, allowing for comparative analyses, would be even more
desirable. We argue that information theory-based approaches
might be one way to conduct such system-level analyses for
CHANS.

INFORMATION AND ENTROPY
Information theory is an interdisciplinary area of research that
focuses on understanding the nature of communication in its
broadest sense. Information is quantifiable as the amount of order
or organization provided by a message (Haken 2006); entropy is
one measure. 

The Shannon entropy of a finite sample of a random variable X
 is given by:

(1)

 In equation [1], the negative of the logarithm of the probability
mass function P is a measure of the (self-) information (I), i.e.,
the more certain an event, the less information its occurrence adds
to our understanding of the underlying process. Thus, the
Shannon entropy is the expected or average value of (self-)
information in a random variable. 

Shannon was originally concerned with communication of
messages from a sender to a receiver through a transmission line
with variable amounts of noise or uncertainty. The effect of noise
on the reliability of the message transmission can be minimized
by either increasing the redundancy of information in the message
(making it less likely that important bits would be lost, but slowing
down the message), or increasing the power (i.e., energy) used to
send the message, combating the noise directly. The theory has
been used to characterize general behavior of complex systems.
For example, ecologists use the Shannon-Wiener index (often
referred to as Shannon diversity) to measure biodiversity
(Magurran 2004); the more species there are (in more equal
numbers) in a community, the harder it is to predict to which
species the next sampled individual might belong. Whereas
physicists might prefer their systems to have low (thermodynamic)
entropy, ecosystems that have relatively high Shannon entropy
(greater diversity) may lead to more stable ecosystems (although
consensus on this issue has not been achieved; McCann 2000, Ives
and Carpenter 2007, MacDougall et al. 2013). In a system with
many species that can perform similar roles or fit into similar
guilds, the loss of one species will usually result in its place being
taken by one or more remaining species (Biggs et al. 2012). In this
case, high Shannon entropy actually signals high redundancy in
function, therefore conveying resilience to the ecosystem
(MacDougall et al. 2013). 

Entropy has its roots in thermodynamics, capturing degradation
in the quality of energy, or gradients more generally, in physical
processes (Gatenby and Frieden 2013, Michel 2013). Entropy can
also be useful in characterizing emergent ecosystem behavior,
including mechanisms for feedback in CHANS. For example, the
principle of maximum entropy (MaxEnt) can be used to derive
analytic relationships that describe the probability distributions
of metrics associated with ecosystem function such as the spatial
distribution, abundance, and energetics observed in undisturbed
natural systems (Harte 2011). The concept of maximum entropy
production (MEP) builds on MaxEnt and postulates that system
states or configurations that maximize entropy production
(degradation of gradients) are selected because they are
compatible with a greater number of environments (Dewar and
Maritan 2011). In addition, the generalized forces associated with
physical processes (diffusion, heat and energy flows, etc.) that
accompany entropy gradients (Ruth 2011) can provide pathways
through which feedback occurs in well-connected systems
(Gatenby and Frieden 2013). 

However, in terms of sustainability, the system that is most
efficient at degrading gradients under one environment does not
necessarily remain the same following changes in environmental
gradients. Ulanowicz et al. (2009) suggest that it is a diversity of
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processes (a diversity of redundant energy pathways, for example)
that makes it possible for a system to persist. Such diversity is
necessary to allow a system to adjust its organization in the face
of change. Fowler (2008) went further and argued that Shannon
diversity can be an indicator of sustainability, where management
decisions can be judged on whether they will result in the loss of
Shannon diversity. Ebeling and Volkenstein (1990) argued that
living organisms are information-processing agents, and through
evolution and self-organizing processes, energy is used to produce
and exchange information (Cabezas and Fath 2002, Kumar and
Ruddell 2010). This information production comes at the expense
of increased entropy in the larger system (Michel 2013). 

Another information theoretic measure of order is Fisher
information. Fisher information is the second moment of the
partial derivative of the logarithm of the probability density
function, and is given by: 

(2)

In the above, E[•|Θ] is the conditional expectation over values of
X given Θ, and P is the probability density function of the random
variable conditioned on the parameter Θ, equivalent to the
likelihood function for Θ. Fisher information is a measure of the
“sharpness” of the logarithm of the likelihood function at the
maximum likelihood estimate. 

Cabezas and Fath (2002) adapted Fisher information to measure
temporal order in an ecosystem. While Shannon entropy is a
global measure that decreases with the predictability of a system,
Fisher information under their formulation is a local measure that
increases with system predictability as given by its time-series
history. High Fisher information indicates a system residing in a
stable state, and low Fisher information a system residing in a
transient state. Internal negative feedbacks developed by the
system itself  serve to maintain the system in the stable state.
Therefore, these negative feedbacks may be interpreted as
increasing the order or information of the system as a whole
(Mayer et al. 2007) and as relays sending information about the
system to itself  (James 2000, Kumar and Ruddell 2010, Gatenby
and Frieden 2013). Zellner et al. (2008) used Fisher information
in a model simulating urban sprawl to identify those policies that
result in more ordered growth patterns that also reduce energy
consumption and pollution emissions. More broadly, Fisher
information has been used to monitor the resilience of numerous
complex systems in economics, medicine, biology, astrophysics,
and sociology (Frieden and Gatenby 2007). In terms of the
resilience and sustainability of CHANS, Fisher information and
Shannon entropy characterize the predictability or consistency

associated with sustainability, and the diversity necessary for
sustainability (Cabezas and Fath 2002, Mayer et al. 2007). 

As systems develop they often become more complex, governed
by increasing numbers of feedback loops. This complexity
represents a growth in information storage (Jørgensen 2006), and
feedbacks provide information to the system on its position and
trajectory (James 2000, Gleick 2011, Michel 2013). In social
systems, connections and feedbacks allow for the flow of
information among individuals and groups and for the
development and trust that creates and sustains social capital, a
critical component of resilience in CHANS (Brondizio et al. 2009,
Biggs et al. 2012). Therefore, system feedbacks affect both
predictability and diversity, and structural changes in system
feedbacks can result in changes in predictability and diversity. The
reverse can occur as well; changes in predictability or diversity
can lead to changes in feedback structure. For example, a loss of
diversity due to overharvesting of herbivorous fish can lead to
structural changes in system feedbacks in coral reef ecosystems
(Hoey and Bellwood 2011). 

To see how information theoretical concepts can connect entropic
changes to feedbacks, consider the relationship between entropy
production and constraint forces associated with thermo-physical
processes in material systems. For these systems, feedbacks are
functionally associated with the forces that accompany changes
in entropy and that bind (i.e., constrain) a system in a (relatively)
low entropic configuration. For example, a mass of sand
consisting of many individual identical grains (same number of
molecules, voids, volume, shape, mass, etc.) arranged into a
geometric configuration has significantly higher entropy (relative
to potential disturbances) than the pane of glass that results from
an energetic reduction in the entropy of that sand. These
constraint forces (in this case molecular forces such as ionic,
covalent, or van der Waals) hold the molecules in a preferred
configuration that has significantly lower entropy relative to the
collection of loose sand because of the high probability of
locating a particular molecule at a particular location. These same
constraint forces also enable the glass to have useful properties
such as transparency while transferring load (such as wind or
acoustic pressure) to supporting structures. The system of
constraint forces connecting the response of individual and
collections of molecules also provides a framework through which
information can be fed back to the system regarding its current
and future state. For example, the constraints that give the glass
the necessary stiffness to resist load also provide pathways for
feedbacks such as resonance that can result from high-pitched
sounds that shatter the glass. In contrast, the mass of unbound
and undifferentiated sand particles will readily absorb or dissipate
essentially all acoustic frequencies. 

Just as for the sand pile or the glass, CHANS are subject to
“constraint forces” in terms of their feedback structure and
similarly receive information through this structure. Consider a
CHANS in which negative interactions are of the first order and
decrease entropy to produce a gradient in the entropy that
characterizes the state change of the system. The negative entropy
gradient between these states will produce a feedback system that
increases its “stiffness” in the sense that relatively small
perturbations of one element in a two element system produce
large changes in the second element. After a sufficient number of
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interactions, an identifiable feedback structure emerges that could
be characterized as, for example, either ductile (relatively high
entropy with an associated higher capacity to absorb energy) or
brittle (relatively low entropy and prone to sudden catastrophic
failure). In this view, a disturbance could pass through the system
with relatively little impact or it could rearrange feedbacks, create
new (formerly forbidden) feedbacks, or strengthen previously
weak positive feedbacks if  the disturbance has a particular
characteristic frequency. Much as information theory helped to
measure the signal-to-noise ratio in telephone transmissions,
indices based on information theory might offer an approach to
measure how disturbance events that arrive into a CHANS
intensify, weaken, and/or rearrange feedbacks. Such indices might
be tuned to variations in feedback strength as well as
reconfigurations of elements in feedback relationships in the same
way that the number and size of cracks, and the crack tip velocity
(indicators of changes in the strength and configuration of
constraint forces) in brittle materials indicate an imminent
dramatic system state change. Although the link between these
constraint forces and entropy production are well known for
thermo-physical systems (Ruth 2011, Verlinde 2011), less is
known about their relationship in CHANS. The example
described here is intentionally simplified to illustrate the role of
entropy gradients in a thermo-physical system and their
relationship to CHANS.

A FRAMEWORK FOR FEEDBACKS AS INDICATORS IN
COUPLED HUMAN AND NATURAL SYSTEMS
Up to this point, we have been referring to feedbacks generally.
However, we advocate for the recognition of a rich taxonomy of
feedbacks. The path that a given system has taken in the past and
will take into the future is the result of a set of feedbacks that
have been acting (positive and negative), and have not been acting
(missing or forbidden), along with their intensity and scale. If
there are no fundamental changes to the system and the historical
data set is representative of a given regime of behavior, a
prediction in the next time step based on an accurate model should
have high confidence. As changes in feedbacks occur (in terms of
their structure and/or relative intensity) in response to
disturbances, new behaviors become possible, the regime of
behavior changes, and the correspondence between prediction
and system behavior is reduced. This leads to more indeterminacy
and less information. This loss of information can occur with no
change in entropy if, for example, there are no changes in the
structure of the feedbacks, but changes in their intensity. For this
reason, both measures (Fisher information and entropy) and a
clear understanding of the types of feedbacks operating in the
system are necessary. Feedback structures and their influence on
system behavior are a major focus of network theory; however,
in the interest of brevity, we only discuss a portion of this
theoretical background that is most relevant to information
theory and CHANS. For a deeper discussion of network theory
as it relates to CHANS, we refer interested readers to Patten
(1991), Fath and Patten (1998), Bondavalli and Ulanowicz (1999),
and Fath (2007).

Positive and negative feedbacks
In complex ecosystems, the two most common types of
interactions are antagonistic (such as competition or predation)
and mutualistic (such as pollination). At the population level,

these interactions constitute feedbacks; the herbivory of deer on
tree seedlings is a negative feedback. Each interaction allows
individuals to exchange information (e.g., the threat of being
eaten), and at the population level, the number of interactions
provides systemic information on the abundance of each
population. Generally speaking, negative feedbacks stabilize
systems, whereas positive feedbacks destabilize them (Veraart et
al. 2012). Occasionally destabilizing systems may be beneficial,
such as when restoring degraded systems (Chapin et al. 1996,
Twidwell et al. 2013). While discussing the multiple causes of
societal declines in the Middle East, Butzer (2012:3635) stated,
“the complexity of the social-ecological interface is as much about
inter-relationships as it is about the identification of stressors.”
He emphasized “buffering feedbacks” (negative) that lead to high
resilience of the systems and stabilization vs. “cascading
feedbacks” (positive) that lead to low resilience, instability, and
initial breakdown. 

Bascompte (2010) explains that when both positive and negative
interactions are considered simultaneously, an understanding of
the behavior of the entire system becomes possible. For example,
Thébault and Fontaine (2010) compared stability properties of
model systems under different network architectures. Trophic
networks dominated by negative trophic interactions such as
herbivory typically evolved a compartmentalized (or modular)
structure in which sets of predators and their prey rarely
interacted with other sets. Mutualistic networks dominated by
positive interactions such as pollination developed a nested
structure in which many species were connected through
interactions with other species. The systems dominated by
negative feedbacks lost persistence and resilience (where
persistence was the proportion of species remaining, and
resilience was the speed of return to equilibrium) when
connectedness and diversity increased, and vice versa for systems
dominated by positive feedbacks. If  we generalize this work to
any complex system, including a CHANS, this suggests that a
system with an abundance of positive feedbacks will be highly
connected, with a lot of information flows in many directions. In
this situation, the Shannon entropy of the system would be
relatively high. If  instead the system has a lot of negative
feedbacks, the system will have compartmentalized information
flows with lower entropy. 

The extension of these concepts to CHANS can be facilitated
through an equivalence between information theoretical entropy
and entropy of thermo-physical systems, and reference to some
of the fundamental thermo-physical thermodynamic results in
material science previously described. For example, Thébault and
Fontaine (2010) characterize alterations to network architecture
as a result of the dynamics of interactions through indices such
as diversity, connectedness, nestedness, and modularity. These
indices naturally admit to characterization in terms of entropy.
For example, consider systems for which interactions significantly
reduce the diversity of an ecosystem (e.g., the establishment of
an invasive species). This reduction in diversity can result in a stiff
system that is prone to state shifts when subjected to relatively
small energetic perturbations. Changes in indices such as
connectedness, nestedness, and modularity can be similarly
characterized relative to the feedback networks that accompany
entropy gradients associated with these state changes. For
example, cascading feedbacks that lead to failures can be
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contained by modularity (moderate connectivity) in the system
(Ash and Newth 2007, Galstyan and Cohen 2007). Whereas a
moderate level of connectivity confers higher resilience in many
systems, too much connectivity tends to reduce resilience but
increase recovery speed because disturbances can sweep quickly
through the system. This perspective may also have implications
relative to the work of May (1972), who suggested that there are
stability limits relative to the strength of interactions and web
connectance.

Missing and forbidden feedbacks
The lack of a feedback between system components can be just
as influential as positive or negative feedbacks to system resilience
and sustainability. Olesen et al. (2011) discussed the importance
of missing links (interactions that are so rare that we do not have
the opportunity to observe them), and forbidden links
(interactions that cannot occur) in mutualistic systems. They
propose several different reasons for why a certain interaction
between two species might not occur, including “spatio-temporal
uncoupling” when two species do not overlap in time or in space
so they cannot directly exchange information. Brondizio et al.
(2009) stated that an increase in “random connectivity” (that is,
new connections that are not developed evolutionarily within a
system) might increase the risk of catastrophic behaviors in
CHANS. These random connections and associated constraint
forces would provide a pathway that can enable feedbacks that
previously were missing or forbidden, and therefore, work to
destabilize the system, altering existing structures and hence the
behavioral signals transmitted to other parts of the system. If  this
results in a decrease in modularity accompanied by an increase
in connections, for example, an increase in forbidden feedbacks
would increase the entropy and decrease the information of the
system. This is generally what Rees (2006) and Young et al. (2006)
have argued with respect to globalization processes.

Intensity of feedbacks
Changes in feedback structure as well as changes in the degree or
intensity of existing feedbacks can affect system resilience (Biggs
et al. 2012). Feedbacks represent relationships between system
elements and as such are nonlinearly associated with the
constraints that drive behavior. While structural changes in
system feedbacks change the universe of possible system
behaviors, under a given feedback structure, there can be a
diversity of system behaviors resulting from changes in feedback
intensity as well. Sustainability indices based on information
theory should tell us something about these changes. For example,
several indicators of critical transitions have been proposed based
on the phenomenon of critical slowing down near a fold
bifurcation (Carpenter and Brock 2006, Dakos et al. 2008, Guttal
and Jayaprakash 2008, Scheffer et al. 2009, Lenton et al. 2012,
although see Hastings and Wyshem 2010), and indicate that this
behavior might be due to the weakening of negative feedbacks
(and relative strengthening of positive ones). However, Scheffer
et al. (2009) note that critical thresholds and regime changes can
result from other types of bifurcations and thus have associations
with different kinds of feedback responses. Information
theoretical analytic tools such as those previously described can
provide insight that can disambiguate these system behaviors. For
example, during these slowing phases, Fisher information may
temporarily increase as the system visits fewer states over time,
but then will sharply decrease once the system is rapidly
transitioning to a new state (Mayer et al. 2007).

Scale of feedbacks in time and space
Feedbacks and interactions among human and environmental
system components are likely to have characteristic time periods
and spatial extents that lend themselves to whole system
monitoring (Zurlini et al. 2006). For example, fast-paced variables
often react to more gradual changes in variables acting at larger
scales or over longer time periods (Biggs et al. 2012, Walker et al.
2012). Strengthening the negative (or stabilizing) feedbacks
changes the system’s natural frequency, thereby mitigating some
of the reactivity of the system to larger-scale drivers and lowering
the risk of collapse. In CHANS, feedbacks between human and
environmental components are common and dynamic. Some of
these feedbacks (such as the growing emissions of greenhouse
gases and the resulting climate change) have considerable time
lags, which can significantly complicate their study and
management (Liu et al. 2007a). Furthermore, increased
connectedness at large scales through international trade,
migration, and globalization might make formerly loose or
indirect feedbacks more intense and forbidden feedbacks possible
(Young et al. 2006, Liu et al. 2007a, Brondizio et al. 2009). 

The question then becomes: How can we reliably characterize
these processes? Looking through the lens of information theory,
changes in entropy or information at particular scales might be
an indicator of a gain or loss in overall resilience in systems. Both
of these measures are scale dependent, and combining data from
different scales without normalization or other compensation
techniques might reduce their utility (Mayer et al. 2006). For
example, May (1972) built upon the work of Gardner and Ashby
(1970) to suggest that for large, complex systems (systems with
many elements and high connectance), stability is possible up to
a critical level of connectance beyond which instability is assured.
This comports with the notion that constraint networks emerge
to bind system structure after a sufficient number of entropy-
reducing interactions. May (1972) also provided evidence of the
connection between emergence of structure and entropic
reduction by showing that large systems are significantly more
likely to be stable when local microstructures, which are associated
with reduced entropy, are present. Others have built upon these
concepts to suggest that these microstructures “...act as glue
keeping the whole network together” (Bascompte 2009:417).

INFORMATION, ENTROPY, AND FEEDBACKS
Thus far, we have offered a review of how feedbacks have been
treated in CHANS research and have provided an information
theory-based taxonomy of feedbacks that can provide a more
formal structure to their treatment. To apply information and
entropy for sustainable systems management, feedbacks must be
identified, data must be gathered (or models developed), and
indices such as Fisher information and Shannon diversity must
be developed to provide relevant information on the organization
and behavior of these systems. 

Identifying feedbacks in systems or, more generally, couplings
between system elements are important tasks toward
understanding sustainability in CHANS. This understanding
must be developed at multiple scales across multiple dimensions
(local to global; ecological, social, and economic). This is no small
endeavor. One way to do this is to use the methodology of
nonlinear dynamic systems suggested by Sugihara et al. (2012).
Their test for coupling between variables is based on a measure
of how well the historical record of one variable can predict the
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state of another using time delay embedding. This approach to
identifying causal relationships between variables is applicable to
systems coupled through deterministic dynamics. In contrast,
Granger causality (GC; Granger 1969), which is based on
predictability between time-series variables, assumes these are not
coupled through a dynamical system. Transfer entropy (Schreiber
2000) offers another approach to determining feedback
relationships. It measures the amount of information (reduction
in uncertainty) that knowledge of one variable provides about
another. Like GC, it assumes that information is not embedded
in the variable in question through system dynamics and is
equivalent to GC under certain assumptions (Barnett et al. 2009).
Kumar and Ruddell (2010) use transfer entropy to identify
feedbacks between vegetation and climate components, using
observations from a network of Fluxnet monitoring towers across
North America. They used Shannon entropy in a matrix of joint
and conditional probabilities to identify feedbacks and measure
their intensity (or “coupling strength”) between vegetation and
climate variables at each of the towers. Ecosystems at the colder
and drier sites exhibited tighter coupling, responding more
quickly to changes in temperature (colder sites) or precipitation
(drier sites). 

Kumar and Ruddell’s (2010) results inspired two hypotheses that
demonstrate how information theoretic indices can provide
insight to variable interactions based on the specifics of a system
such as scale effects. First, systems with greater large-scale
variability adapt through more intense and immediate feedbacks
at smaller scales, which increases information within the system;
in response, information should increase as these feedbacks
increase in strength and number. Second, feedbacks that have the
most influence in the system display “moderated variability”, or
fluctuate less than less influential feedbacks; this can be measured
using Shannon entropy (Kumar and Ruddell 2010). This balance
between high information lending stability and moderate entropy
providing resilience suggests that a sustainable state is indicated
by stable but not necessarily extreme values of information
measures for a collection of system feedbacks (Gatenby and
Frieden 2013). To study missing and forbidden feedbacks,
simulations or long-term monitoring in areas with recovering
vegetation after a disturbance could illustrate the restoration of
feedbacks and accompanying change in information and entropy
indices as these systems rebuild. Likewise, these indices could be
used to compare systems into which a forbidden link such as an
invasive species has been (un)successfully integrated. 

Entropy and information can also play a role in understanding
another important component of sustainability in CHANS:
understanding how systems adapt or reconfigure themselves in
response to change. Whereas it appears that thermodynamic
considerations indicate that systems maximizing entropy
production are favored, the system that arises will not necessarily
be compatible with sustainability. An understanding of system
vulnerability or robustness to change would be necessary, for
example, some form of measure of brittleness or ductility of
feedbacks. The roles that entropy and information have to play
in this understanding are still to be determined, but given the
complexity of feedback characteristics and behaviors, measuring
their influence on CHANS trajectories toward sustainability
goals requires a holistic approach, one that information theory
can provide.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/6626
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