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We study polarization independent improved light trapping in commercial thin film hydrogenated

amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-

resonant nano-disk structures embedded in a silicon nitride anti-reflection coating to enhance opti-

cal absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle.

Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum

is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit cur-

rent density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar

cell (NDPSC) was found to be higher than the commercial reference structure for any incident

angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associ-

ated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by sur-

face plasmon resonances. The detrimental Staebler-Wronski effect in a-Si:H solar cell can be

minimized by the additional OE in the NDPSC and self-annealing of defect states by additional

heat generation, thus likely improving the overall stabilized characteristics of a-Si:H solar cells.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4895099]

I. INTRODUCTION

Thin-film hydrogenated amorphous silicon (a-Si:H) so-

lar photovoltaic (PV) cells have the fastest energy payback

time of any Si-based PV cell.1 Amorphous silicon thin-film

solar cells with conversion efficiencies over 10% have been

reported;2 however, there is an increased interest to further

improve the efficiency and reduce the cost simultaneously

for broader commercialization and lower levelized costs of

solar electricity.3 The greatest technological challenge

encountered by a-Si:H PV is light-induced degradation of

performance known as the Staebler-Wronski effect (SWE),4

which is reversible with thermal annealing. SWE is associ-

ated with the formation of defect states in the bandgap from

exposure to sunlight, which causes a decrease in a-Si:H PV

conversion efficiency.5 It is now clear that SWE is caused by

an increased density of multiple types of defect states, which

reach saturation in device quality materials known as the

degraded steady state (DSS) after approximately 100 h of 1

sun light illumination.6–8 SWE has been studied in detail for

decades and several engineering techniques have been used

to minimize its impact including various forms of optical

enhancement9 (OE) and even in-situ annealing in photovol-

taic thermal (PVT) hybrid systems,10,11 but it has not been

eliminated. Therefore, SWE limits the thickness of the intrin-

sic (i-a-Si:H) layer, and hence the overall absorption

capacity of an a-Si:H PV cell.

Recent advances in plasmonics provide a new technique

to improve the optical enhancement in a-Si:H PV devices and

further reduce the negative effects of SWE. Employing plas-

monic nanostructures in PV is garnering broad interest12

because resonant plasmonic nanostructures are capable of pro-

ducing optical enhancement in absorption by supporting mech-

anism like Fabry-Perot resonance, guided modes, localized

surface plasmon resonance (LSPR), or increased scattering.

Their application has also been studied for PV design, which

can result in broadband, polarization independent, and wide

angle absorption for ultrathin active absorbing layers

(<100 nm).13–21 Three major geometries with associated

enhancement mechanisms have been proposed: (i) plasmonic

nanostructures on top, (ii) plasmonics nanostructures embed-

ded into the active layer, or (iii) textured back contact.22,23 For

the latter, it has been reported that depositing a-Si:H on such

textured or patterned surfaces results in higher defects density

and hence reduces open circuit voltage (Voc), short circuit cur-

rent density (Jsc), and thus the conversion efficiency.24,25

Therefore, top surface texturing or front nano-patterned reso-

nant metallic nanostructures coupled with the active semicon-

ductor seems to be a more promising option for optical

absorption enhancement in the active layer while minimizing

the defect density and at the same time facilitating the feasibil-

ity of commercial production of high efficiency a-Si:H PV

devices. Massiot et al.21 have theoretically demonstrated

broadband absorption in their ultrathin (<100 nm) a-Si:H solar

cell using sub-wavelength nano-patterned horizontal nano-

wires, which also managed to reduce the effect of SWE in

a-Si:H. However, their design presents a number of practical

limitations. First, plasmonic enhancement is a near field

a)Author to whom correspondence should be addressed. Electronic mail:
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enhancement and, therefore, the strong electric field enhance-

ment due to surface plasmons or guided modes tends to be

strongly localized near the metal/semiconductor interface (or

even the buffer layer). In the case of commercial a-Si:H cells,

it is the top p-a-Si:H and contact layer made from indium tin

oxide (ITO), which absorbs enhanced near field more

strongly.21 Second, the effects of absorption in the highly de-

fective doped regions of p and n-a-Si:H layers are also not con-

sidered in most of the available literature. This is a

fundamental omission, since the p-i-n device was developed so

that the relatively low-defect density i-layer minimizes losses

from the electron-hole pair generation in the higher defect den-

sity doped layers.26 These doped layers have a substantial

thickness by surface plasmonic standards as they are usually

15–25 nm thick, and hence can account for a significant

amount of the “enhanced” optical absorption while not making

a major contribution to carrier collection. The ability of device

designers to compress the doped layer thicknesses further is

limited by the design requirement to generate a suitable elec-

tric field to separate the solar photo-generated charge carriers.

The optical absorption in the p or n a-Si:H layer is largely con-

verted into heat via recombination of electron hole pairs rather

than charge carrier separation.27

In this paper, a design approach is presented to improve

the performance characteristics of a-Si:H commercial solar

cells by employing the advantages of resonant plasmonic

nano-structures and also combat the negative effects of

SWE. We have taken into account the effects of absorption

in p and n a-Si:H layers of a commercial structure and

applied the technique of optical enhancement in i-a-Si:H

layer using resonant plasmonic nano-structures without alter-

ing the parameters of the semiconductor layers. We have

studied the effect of introducing nano-patterned metallic

structures on the absorption characteristics of commercial a-

Si:H solar cell (for each individual layer) and also discussed

the associated physical mechanism for optical enhancement.

II. METHODS

The complex refractive index of p-a-Si:H, i-a-Si:H, n-a-

Si:H, and aluminum doped zinc oxide (AZO) layers of com-

mercial a-Si:H solar cell (fabricated by ThinSilicon,

Mountain View, CA) was measured using a J.A. Woollam

variable-angle spectroscopic ellipsometer (Fig. 1(a)). The re-

fractive index of both silver and silicon nitride (Si3N4),

which functions as an anti-reflection coating (ARC), was

taken from Ref. 28 and ITO was taken from SOPRA data-

base.29 Optical responses of the reference cell and nano-disk

patterned solar cell (NDPSC) were obtained through a fully

vectorial finite element based commercial software package

COMSOL Multiphysics RF module v4.3b in frequency do-

main coupled with MATLAB R2012a. For normal incidence

response, both reference and NDPSC solar cells were simu-

lated using periodic boundary conditions for the vertical

boundaries due to periodic arrangement of unit cell and were

excited (excitation port) from air above the ARC (ITO for

reference solar cell) and output port was set in air below the

silver ground plate. The absorbance in individual layers was

calculated from the power loss density function in

COMSOL, and this absorbance in i-a-Si:H layer of solar

FIG. 1. (a) The measured value of

complex permittivity for p, i and n a-

Si:H layers using spectroscopic ellips-

ometry. (b) Reference structure, the

top layer is ITO of 70 nm thickness,

followed by p-a-Si:H of 17.5 nm thick-

ness, then i-a-Si:H of 350.5 nm thick-

ness, after that n-a-Si:H of 22.5 nm

thickness, followed by AZO of 100 nm

thickness and the last is a silver ground

plate of 200 nm. (c) The plot for ab-

sorbance against wavelength for all the

layers in reference structure.

093103-2 Vora et al. J. Appl. Phys. 116, 093103 (2014)
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cells was used to calculate theoretical absorbed power den-

sity in NDPSC and reference structure, for incident AM 1.5

reference solar spectrum using the equation

Pi�a�Si:H ¼
ð

AðkÞEAM1:5ðkÞdk; (1)

where Pi-a-Si:H is the absorbed power density (measured in

W/m2) in the i-a-Si:H layer for AM 1.5 reference solar spec-

trum, A(k) is absorbance (i.e., the ratio of total absorbed

power to input optical power) in i-a-Si:H layer as a function

of wavelength, and EAM1.5(k) is the spectral irradiance as a

function of wavelength (obtained from NREL30). The OE is

defined and calculated using the expression

OE ¼ ðPi�a�Si:HðNDPSCÞ=Pi�a�Si:HðRefÞ � 1Þ � 100; (2)

where the subscripta “NDPSC” and “Ref” denote NDPSC so-

lar cell and reference cell, respectively. Assuming that all

photo-generated carriers are collected, the theoretical maxi-

mum short-circuit current density (JSC) can be calculated

using the expression

Jsc ¼
ð

q

hc
A kð ÞkEAM1:5 kð Þdk; (3)

where q is the electron charge, c is the speed of light in vac-

uum, h is the Planck constant, and EAM1.5(k) is the spectral

irradiance. The oblique incidence response of both reference

and NDPSC was modeled for their respective structures

using periodic boundary condition with Floquet periodicity

for incidence angle up to 80� with normal.

Individual layers of the reference cell are depicted in

Fig. 1(b), the top layer is an ITO of 70 nm thickness, which

is a lossy contact layer, also serving as an ARC. Then, p-a-

Si:H is 17.5 nm thick, followed by i-a-Si:H which is

350.5 nm and n-a-Si:H as 22.5 nm, AZO of 100 nm thickness

and the back silver reflector is 200 nm thick. The optical

response of reference structure for normal incidence is

shown in Fig. 1(c).

III. RESULTS AND DISCUSSION

We are presenting a design approach to maximize the

absorption in i-a-Si:H layer of commercial a-Si:H solar cell

(at normal and oblique incidence) and simultaneously reduce

the effects of undesirable SWE by replacing the top contact

layer (ITO) with an array of silver nano-disk patterned struc-

tures embedded into a silicon nitride ARC. This particular

geometry of nano-disks was selected due to its top structure

axial isotropy that leads to a polarization independent optical

response. Other sub-wavelength geometry were explored

such as a 1-D nanowire array, a 2-D grid structure, and nano-

sphere patterns, but the nano-disk geometry worked most

effectively to increase absorption and provide a polarization

independent response. In this paper, this concept is presented

using silver nano-disks of diameter 240 nm and height

50 nm, embedded into silicon nitride ARC of thickness

60 nm, as shown in Fig. 2(a). The period of the unit cell is

550 nm and a 10 nm thick ITO layer serves as a buffer layer

to stop the diffusion of silver into the p-a-Si:H. The ITO

layer also aids in fine tuning the resonance towards shorter

wavelengths. This NDPSC design has feature parameters

that are scalable for commercial viability using fabrication

techniques like nano-imprint lithography31 or extreme ultra-

violet lithography suitable for subwavelength size features

for plasmonic applications in solar cells.12 It was found that

the silicon nitride ARC layer performed best by maximizing

absorption when it was 60 nm thick, which is consistent with

Massiot et al.21 The ITO layer was preferred to be kept

10 nm in thickness such that it would minimize the parasitic

Ohmic losses, simultaneously fulfill the purpose as a buffer

layer, and to tune the resonance towards a blue shift. The op-

tical response of NDPSC for all layers at normal incidence is

displayed in Fig. 2(b) with absorbance in the i-a-Si:H refer-

ence for comparison. The short circuit current density for

both reference structure and NDPSC at normal and oblique

incidence, calculated using Eq. (3), is plotted in Fig. 3.

The commercial reference structure in Fig. 1(b) is

designed such that the stack of semiconductor and dielectric

layers sandwiched between transparent conductive oxide

FIG. 2. (a) Nano-disk patterned a-Si:H thin-film solar cell A) nano-disk, diameter: 240 nm, height: 50 nm B) ITO layer, height: 10 nm, C) p-layer, height:

17.5 nm, D) i-layer, height: 350.5 nm, E) n-layer, height: 22.5 nm, F) AZO layer, height: 100 nm, G) silver layer, height: 200 nm, H) ARC (silicon nitride),

height: 60 nm. Silver nano-disk is embedded in the silicon nitride ARC. The boundary of the top section is shown by black line. (b) The plot for absorbance

against wavelength for all the layers in NDPSC, the absorbance in i-a-Si:H layer of reference structure is shown in a dashed line for comparison and very low

absorbance in n-a-Si:H layer is not shown.

093103-3 Vora et al. J. Appl. Phys. 116, 093103 (2014)
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(TCO) and back silver reflector supports broad Fabry-Perot-

like resonance32,33 to maximize the absorption in the i-a-

Si:H layer. The integral in Eq. (1) for this reference structure

is evaluated to be 268.9 W/m2 which is the absorbed power

density in the i-a-Si:H layer of the reference for AM 1.5

spectra. This reference structure is strongly absorbing in the

500–600 nm region of the solar spectrum; however, the

absorption in the i-a-Si:H layer falls sharply for wavelength

greater than 600 nm. The parasitic losses in the ITO buffer

increase significantly at blue (k< 350 nm) and red

(k> 600 nm) regions of solar spectrum, resulting in up to

38.2% of the total absorbance at 660 nm. The increased para-

sitic loses at blue (wavelength< 350 nm) region of solar

spectrum in the ITO can be accounted by substantial increase

in the attenuation coefficient of ITO,29 mainly due to

approaching band edge of ITO, causing escalated parasitic

losses for blue spectrum. Whereas, at red (wavelength

> 600 nm) regions of solar spectrum, observed absorbance

peaks in the ITO mainly result from reflections from multiple

layers of the reference structure. When the electromagnetic

field reflected from the top interface of the i-a-Si:H layer

constructively interferes with the field incident from inside

the i-a-Si:H layer, as a result of reflection from the bottom

interface of the i-a-Si:H layer, absorbance peaks occur. On

the other hand, if these waves destructively interfere, dips in

the absorbance spectra appear.

It is evident from Fig. 2(b) that the NDPSC outperforms

the reference for all parts of the solar spectrum, especially in

the region of 550–720 nm because of a multi-resonance

response. The absorbed power density in the i-a-Si:H layer of

NDPSC calculated using Eq. (1) is 318.7 W/m2, which is

approximately 18.5% higher than the reference. At normal

incidence, the NDPSC is found to have a JSC of 14.0 mA/cm2

as compared to 11.7 mA/cm2 for the reference cell, which is a

19.7% enhancement in JSC.

Optical absorption in NDPSC and reference is a function

of incidence angle (from normal) and polarization; therefore,

JSC depends on incidence angle and polarization and has been

illustrated in Fig. 3. The JSC in the NDPSC is always higher

than the reference structure for both the Transverse Electric

(TE) and the Transverse Magnetic (TM) polarizations (except

a negligible difference near 80�), and Jsc for both TE and TM

polarizations was found to be similar for all incidence angles;

making the NDPSC structure almost polarization independent

to the incident light. For the reference structure, the Jsc for TE

and TM polarizations was found to be similar for all incidence

angles, except around 60� where Jsc was found to be �5%

higher for the TM polarization as compared to the TE polar-

ization. However, Jsc is not truly incidence angle independent

and it was found that the JSC in both NDPSC and reference

cells, for both TE and TM polarizations decreased gradually

with increasing angle of incidence, and both plunge sharply

after 60� and nearly converge at 80�; producing JSC of

�6.5 mA/cm2.

It has been reported that increasing the thickness of the

metal patterned for plasmonic photovoltaic applications can

significantly increase reflectance from top surfaces and

increase Ohmic losses in the metal in the form of heat.21,34

However, it was found that when the height of the nano-disk

patterned structure was systematically increased from 10 nm

to 50 nm, the OE of NDPSC increased from 7.9% to the

maximum of 18.5% at 50 nm thickness. This can be attrib-

uted to improved impedance matching to the impedance of

free space achieved by the top section (ARC and nano-disk

structure (NDS) combined) as a result of reduced geometric

skin depth with increasing nano-disk thickness.12,35,36 It is

important to note from Fig. 2(b), that the nano-disk patterned

structure improves the performance for a broad part of fre-

quency spectrum, but itself becomes more lossy at shorter

wavelengths (k< 400 nm). At shorter wavelengths, losses in

both nano-disk and p-a-Si:H layer increases significantly. At

these shorter wavelengths, the p-a-Si:H layer accounts for

major absorption instead of in the i-a-Si:H; the resultant

recombination losses are dissipated as heat. This is the major

drawback for ultrathin broadband a-Si:H photovoltaic cells,

evident from Fig. 2(b), especially when the plasmonic pat-

terned structure improves overall absorption in the semicon-

ductor region; however, quite a significant portion of that

absorption is shared by the ITO, p- and n-a-Si:H layers, pro-

ducing heat by recombination.

In order to explore the possibility of broadband response

with the current commercial solar cell structure, we

FIG. 3. Plot for the short circuit cur-

rent density in NDPSC and reference

solar cell, for both TE and TM polar-

izations as a function of angle of inci-

dence from normal. The short circuit

current density in the NDPSC for both

TE and TM polarizations is similar and

always higher than the short circuit

current density of reference solar cell

at all angles (except a negligible differ-

ence near 80�) and it converges to that

of reference cell at 80�.

093103-4 Vora et al. J. Appl. Phys. 116, 093103 (2014)
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simulated the p-layer having the same thickness as in com-

mercial structures, 17.5 nm, with periodic boundaries on ver-

tical sides and perfectly matched ports for top and bottom

surfaces of the p-layer as shown in Fig. 4(a). Its response is

shown in Fig. 4(b). It can be observed that the p-layer is not

lossy for 550–730 nm; however, for 300–550 nm, the p-layer

becomes very lossy and accounts for major absorption at

lower wavelengths near 300 nm. Therefore, it can be

concluded that with the current p-i-n or n-i-p design with a

p-layer on top of the active absorbing layer with respect to

the solar source, broadband absorption for 300–730 nm is not

achievable.

The optical response of NDPSC has several resonant

peaks which need to be analyzed to understand the physical

mechanism responsible for such an enhancement. We ana-

lyzed the field distribution (Fig. 5) at all the peaks in optical

response of NDPSC, i.e., for wavelengths at 550 nm, 590 nm,

650 nm, 670 nm, and 700 nm. This analysis reveals the pres-

ence of Fabry-Perot like resonance inside the i-a-Si:H layer,

which is similar to the field distribution as reported by

Varadan et al.37 To better understand the nature of the reso-

nance, the NDPSC in Fig. 2(a) was modeled as a Fabry-

Perot resonator, having i-a-Si:H as a cavity medium. The

section comprising the n-layer, AZO, and ground plate was

modeled as a bottom reflector. The top section comprising

the p-layer, ARC, ITO, and nano-disk patterned structure

was modeled as a lossy top reflector. For qualitative analysis,

we considered the simple equation for Fabry-Perot model,

describing the resonance condition in such a cavity by

L ¼ mk

2

ffiffiffi
e0

2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e00

e0

� �2
s

þ 1

0
@

1
A

1=2
; (4)

where L is the length of the cavity, k is the wavelength in

free space, e0 and e00 are the real and imaginary coefficients

of complex relative permittivity (of the form er¼ e0 � je00) of

the cavity, and m is an integer. When the peaks of NDPSC

were analyzed using Eq. (4) for optical response of the

NDPSC at 550 nm, 590 nm, 650 nm, 670 nm, and 700 nm

wavelengths, the calculated cavity length was found to be

363.8 nm, 337.6 nm, 382.1 nm, 327.4 nm, and 349.1 nm,

respectively. For a 700 nm wavelength, a cavity length of

349.1 nm resulted in good agreement with the thickness of

the i-a-Si:H layer as 350.5 nm. For other wavelengths, the

results are convincingly close to the thickness of i-a-Si:H

layer. At other wavelengths, the small difference in the cav-

ity length can be attributed to (i) the indistinguishable boun-

daries between the mirror and cavity medium due to the

presence of inhomogeneous structure in top reflector/mirror

and (ii) infringing near field produced by surface plasmons

in the vicinity of metallic nano-disk patterned structure. At

shorter wavelengths (k< 550 nm), the Fabry-Perot resonance

is not sustainable for large cavity lengths because of very

large value of e00 of i-a-Si:H. This is confirmed from the ab-

sorbance in n-a-Si:H layer, which results in less than

0.0001% of total absorbance in spite of having similarly

large value of imaginary part of permittivity as i-a-Si:H

layer. This indicates that the incident solar radiation is not

able to reach the n-a-Si:H layer, and is being absorbed before

that or reflected. We should note that substantially large e00

FIG. 4. (a) The p-a-Si:H layer of NDPSC. (b) Absorbance (A), reflectance

(R), and transmittance (T) of the p-a-Si:H layer having matched ports (top

and bottom), for thickness 17.5 nm.

FIG. 5. Ex � “x” component of electric field in NDPSC at resonance wavelengths of (a) 700 nm, (b) 670 nm, (c) 650 nm, (d) 590 nm, and (e) 550 nm. The

NDPSC is excited by wave having electric field, E, in the x direction, wave vector, k, along negative z direction, and magnetic field, H, along the y direction.

The field distribution resembles Fabry-Perot resonance in the i-a-Si:H layer as a cavity medium. The Fabry-Perot resonance is responsible for major enhance-

ment at all the resonance peaks.
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can also lead to poor impedance matching, which may be

difficult to improve.36,38 This qualitative analysis is simple,

without exploring the detailed parameter space, yet convinc-

ingly close to the results obtained by numerical computation

using COMSOL in our work, and is similar to the method

employed by Massiot et al.32

To further understand the reason behind the excitation

of multiple Fabry-Perot resonances in the NDPSC, the top

section of NDPSC as portrayed in Fig. 2(a) (comprising of

the ARC, nano-disk, ITO, p-a-Si:H layer and 5 nm of i-a-

Si:H layer) was carefully investigated. In Fig. 2(b), it can be

noted that there are few prominent metallic absorbance peaks

around 600 nm, 660 nm, and 700 nm suggesting field

enhancements due to metallic NDS. In order to further inves-

tigate the cause of these sharp absorbance peaks produced by

the nano-disk patterned structure, we analyzed the current

density distribution at the absorbance peaks near the nano-

disk surfaces, as shown in Fig. 6. These resonances, which

can be identified by their field distribution (Fig. 6) in the top

section of NDPSC, are responsible for the excitation of

Fabry-Perot resonances. The significance of the existing

plasmonic resonances in the top section residing at the metal-

lic surfaces is to aid in design consideration and tuning of

Fabry-Perot resonance around that region, such that the

NDPSC can be modeled as a Fabry-Perot resonator with a i-

a-Si:H layer sandwiched between the bottom mirror and the

top section with reflectivity and surface impedance tuned by

excited plasmonic resonances at the metallic surfaces.

Therefore, at wavelengths of 550 nm, 590 nm, 650 nm,

670 nm, and 700 nm in the absorbance spectra, the top sec-

tion of the NDPSC aids in a strong resonance condition lead-

ing to almost perfect total absorbance by matching the

surface impedance with that of free space. The nano-disk

structure creates this impedance matched condition through

excitation of surface plasmons between the Ag/ITO and Ag/

Si3N4 interfaces. On the basis of Fig. 7, it can be observed

that when there is a resonance-like condition in an Ag nano-

disk, the reflectance from NDPSC is reduced to zero, creat-

ing a perfect total absorbance condition in which a major

fraction of the total absorption is shared by the i-a-Si:H

layer. This confirms that the nano-disk aids in the impedance

matching of the surface impedance of NDPSC with the im-

pedance of free space. This impedance matching condition

owing to excitation of surface plasmons due to nano-disk

helps in exciting a Fabry-Perot resonance in NDPSC where

the i-a-Si:H layer acting as a cavity media. A similar mecha-

nism has been recently studied in detail in the context of

metamaterial perfect absorbers using a perfectly impedance

matched sheet,39 interference theory,40–42 and grating

theory43 models.

It can be noted that in the NDPSC structure, the surface

plasmons produced at the interface of Ag/ITO also contrib-

ute to some enhancement, especially around 650 nm,

670 nm, and 700 nm as evident from the field distribution (Ez

– “z” component of electric field) in Fig. 8. The near field

enhancement due to surface plasmons produced at Ag/ITO

interface extends from the ITO and p-a-Si:H layer to the i-a-

Si:H layer causing enhanced absorption especially at

650 nm, 670 nm, and 700 nm. The near-field absorption is

stronger in i-a-Si:H layer as compared to the ITO and

p-doped layer, which have low e00 and extremely small thick-

ness compared to the i-layer. In most plasmonic solar cell lit-

erature,12–16,19,21–23,33 it is mainly this near field effect that is

thought to be responsible from optical absorption enhance-

ment. In contrast, we employ the plasmonic effect primarily

for impedance tuning to excite strong Fabry-Perot resonan-

ces32,37 in the i-layer. It can be noted here that the thin ITO

buffer layer aids in tuning the resonance towards a blue shift

as also reported by Massiot et al.32 For shorter wavelengths,

FIG. 6. Current density distribution near the nano-disk surfaces at resonance wavelengths of (a) 700 nm, (b) 660 nm, and (c) 600 nm. The arrows and color

show the direction and magnitude of the current density in the given planes. At 700 nm and 600 nm, the majority of the surface plasmon polaritons are excited

at the Ag/Si3N4 interfaces while at 660 nm the majority resides at Ag/ITO interface. The planes shown correspond to the planes where the majority of the sur-

face plasmon polaritons reside.

FIG. 7. When there is resonance condition in Ag nano-disk, indicating the

excitation of surface plasmons at Ag/ITO interface, there is an impedance

matching condition with free space and therefore reflectance from the

NDPSC almost drops to zero and aids in enhanced absorption in the i-a-Si:H

layer.
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the absorption in the i-layer appears to be dominated by the

large absorption coefficient of a-Si:H instead of a plasmonic

enhancement or Fabry-Perot resonance.

We also simulated the effect of increasing the period of

the unit cell (up to 1.5 lm) while keeping the other parame-

ters fixed, to observe its effect on absorbed power density in

the i-a-Si:H layer. It was found that the absorbed power den-

sity in the i-a-Si:H layer for the AM1.5 spectrum reached a

maximum at a 550 nm period, and then exponentially

reduced to the bulk value with no metallic patterned nano-

disk, shown in Fig. 9. This result validates the argument that

the effect of optical enhancement in the i-a-Si:H layer due to

combined mechanisms of near field plasmonic enhancement

and Fabry-Perot resonance is due to nano-disk metallic pat-

terned structure.

The total absorbed power density (i.e., absorbed power

density corresponding to whole structure, for a solar AM 1.5

spectrum of 300–2500 nm) was found to be higher for

NDPSC (615.5 W/m2) as compared to the reference cell

(471.3 W/m2). The difference between total absorbed power

density and absorbed power density in the i-layer is the mini-

mal power density converted into heat. Numerically, for the

NDPSC cell, this is equal to 296.8 W/m2 and 202.4 W/m2 for

the reference, which is a substantial difference of at least

46.6%. It should be noted that this calculation of total

absorbed power density does not account for wavelengths

larger than 2500 nm and lower than 300 nm, and other loss

mechanism like recombination, conduction losses, etc. With

these additional wavelengths and other loss mechanisms

accounted for, the absorbed power density that is converted

into the heat in the case of the NDPSC cell is larger than the

reference. We calculated the temperature of the reference

structure to be 55.9 �C based on the report by Skoplaki

et al.,44 subsequently the additional nearly 50% power den-

sity converted into heat for NDPSC is expected to increase

the operating temperature of the NDPSC cell over the refer-

ence cell appreciably. It has been observed that SWE is re-

versible in nature and the efficiency of the a-Si:H solar cell

can be returned to its initial state by heating the cell at

150 �C for 4 h, which leads to an annealing of defect states.4

However, the defect states can also anneal at lower tempera-

tures over more extended time.7,45 Therefore, the heat pro-

duced in the cell during normal operation in the case of

NDPSC, which is at least 46.6% more compared to the refer-

ence, may aid in reducing the detrimental effects of SWE

significantly by faster self-annealing and provide an

improved absorber for solar PVT hybrid systems.

It should be noted that the concept of utilization of addi-

tional generated heat for SWE compensation and defects

state annealing is applicable to all types of plasmonics based

thin film a-Si:H solar cell, not just limited to NDPSC. Any

type of plasmonics based thin film a-Si:H solar cell having

OE more than its corresponding reference will also enhance

total absorption, and hence additional heat will be generated.

It should be noted that SWE defects can even be annealed at

room temperature7 and that any additional heat will increase

the rate of defect state annealing. There are many literature

reporting on plasmonics based thin film a-Si:H solar cell;

however, none of them have discussed SWE compensation

and defects state annealing using additional generated heat

through this approach. We are reporting this concept for the

first time. It must be further noted that in this study, we have

chosen a specific commercial design to demonstrate the con-

cept of achieving higher optical absorption and SWE com-

pensation; however, this concept of achieving higher optical

absorption in active layer and subsequently higher OE and

SWE compensation is valid for any type of commercial thin

film a-Si:H solar cell.

To analyze the electrical characteristics of both the refer-

ence cell and NDPSC, their current density vs. bias voltage

curves (J-V curves, Fig. 10) for the reference cell and NDPSC

were obtained by numerical computations performed in

COMSOL Multiphysics v4.3b for the system of equations

described by Wang et al.46 The short circuit current density

FIG. 8. Ez field distribution in NDPSC at resonance wavelengths of (a) 700 nm, (b) 670 nm, and (c) 650 nm. The NDPSC is excited by wave having electric

field, E, in the x direction, wave vector, k, along negative z direction, and magnetic field, H, along the y direction. The strong field distribution just below the

Ag disk indicates surface plasmon resonance at Ag/ITO interface producing near field penetrating into the i-a-Si:H layer responsible for partial enhancement

and also impedance matching with free space and aiding in excitation of Fabry-Perot resonance.

FIG. 9. The plot for absorbed power density in i-a-Si:H layer of NDPSC ver-

sus period of unit cell. The absorbed power density for AM 1.5 spectrum is

maximum at 550 nm period and it exponentially decreases with increasing pe-

riod converging towards the bulk value without any metallic nanostructure.
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for the reference cell was found to be 10.95 mA/cm2 and

13.27 mA/cm2 for NDPSC, which is almost an improvement

of 21.2%. It was found that the current density in NDPSC was

higher than the reference cell for all values of bias voltage;

however, the open circuit voltage was similar for both the ref-

erence cell and the NDPSC, nearly equal to 0.82 V. On the ba-

sis of Fig. 10, it is evident that the NDPSC outperforms the

reference cell in current density characteristics. It should be

noted that this short-circuit current density is different from

and smaller than the maximum theoretical short-circuit current

density discussed earlier (calculated using Eq. (3)), on the

account of recombination and other loss mechanisms in

calculations.

As the results have shown fabrication of NDPSCs

appears to be a technically viable method of improving

a-Si:H PV performance. However, extremely high-

tolerance fabrication of geometrically acceptable nano-

structures is non-trivial. Conventional techniques like

e-beam lithography, x-ray lithography, ion beam lithogra-

phy, nano-imprint lithography, and extreme ultraviolet

lithography although feasible are currently economically

prohibitive for solar cell mass-manufacturing for areas of

1 m square and larger. To overcome this challenge, we

recommend adapting a well-tested method for size-

controllable nanostructure array formation using self-

assembled polystyrene beads.47–49 In this nanosphere

lithography method, polystyrene beads are applied to the

surface of the PV and close packed through self-

assembly. The size of the columns and the spacing is

controlled by selection of the initial bead sizes and subse-

quent reactive ion etching. In this way, the nano-disk pat-

tern shown in Fig. 2(a) can be fabricated over large areas

of thin-film solar cells at reasonable expenses.

To explore the impact of fabrication imperfections, a

detailed sensitivity analysis was also performed for a mini-

mum of 610% variation in the dimensions and parameters

for the critical films and features, computed independently,

and then in combinations. The change in optical enhance-

ment was less than 2% of the optimum case for the parame-

ters described in Fig. 2(a).

IV. CONCLUSIONS

In summary, we have discussed a front layer design for

a-Si:H solar cell based on a multi-resonant plasmonic nano

structure to significantly improve the optical performance of

commercial a-Si:H solar photovoltaic cells and simultane-

ously combat the detrimental effects of SWE. The effects of

absorption in the ITO, p and n-a-Si:H layers were considered

and the absorption was maximized in i-a-Si:H layer for a

commercial a-Si:H solar cell, without changing the parame-

ters of semiconducting layers. We have numerically demon-

strated the multi-resonant, polarization independent, and

optically enhanced response in a commercial cell design by

introducing an array of metallic nano-disk patterned struc-

tures embedded in a silicon nitride anti-reflection coating

that facilitate an absorption enhancement in i-a-Si:H layer

over a significant (450 nm< k< 720 nm) fraction of the solar

spectrum. Due to the axial symmetry of nano-disk structure,

polarization independence is achieved. The total enhance-

ment in optical absorption for AM 1.5 solar spectrum was

found to be 18.5% higher than the reference cell and exhibit-

ing a modeled JSC of 14.0 mA/cm2 compared to 11.7 mA/

cm2 for the reference, an improvement of 19.7%. The

NDPSC was also found to be superior in optical absorption

at all angles of solar radiation incidence up to 80�. The Jsc in

NDPSC was also found to be similar for both TE and TM

polarizations for all incidence angles from normal up to 80�

when they finally merged with that of reference. We also

demonstrated that it is not possible to get a broadband

absorption response for the 300–550 nm part of spectrum for

the p-i-n design due to the highly lossy p-a-Si:H layer.

Therefore, this multi-resonant response is so far the best

response that can be achieved for conventionally designed

and commercialized a-Si:H solar cells using plasmonic nano-

structures. The substantial additional heat generated by the

NDPSC can contribute to reducing SWE and improving the

electrical characteristics of the a-Si:H commercial solar cell

by self-annealing of defect states. The associated mechanism

of optical enhancement in the NDPSC can be attributed to

combined plasmonic and Fabry-Perot resonance by nano-

disk structures.
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