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Abstract  

This study investigates whether the timing of magma mixing phenomena could be 

related to explosivity and style of volcanic activity. Lava flow and tephra samples, 

derived from observed, energetically-diverse eruptions, from Pacaya and Fuego 

volcanoes (Guatemala), were studied, the Volcanic Explosivity Index (VEI) was used as 

an indicator of eruption intensity. Polarized light microscopy and Scanning Electron 

Microscopy (SEM) techniques were used for textural and geochemical measurements. 

Results are interpreted as evolution of mixing through changes in textures of plagioclase 

and olivine crystals. These suggest that boxy-cellular plagioclase (high frequency in VEI 

0 samples) is associated with brief mixing residence time prior to the eruption, while 

sieve and spongy textures in plagioclase (high frequency in VEI 1-2 samples) reflect 

heating by recharge events with a hotter melt, and reflect longer time in the magma 

chamber prior to the eruption. CSD data lead to a model to explain the increase in 

explosivity. Crystal size distributions with a significative step that derive from a single 

mixing event correlates with low intensity eruptions (VEI 0-1) because convection is 

hindered by the dissolution of the microcrysts, while multiple or prolonged events of 

mixing gives a more linear curve resulting in a high content of phenocrysts that make 

convection difficult, increasing the explosive potential (VEI 2). Besides, CSDs analysis 

show how the residence time in the shallow magma chamber increase from VEI 0 to VEI 

2 samples. As a result, this study could assert that the number of mixing events that 

determine the final CSDs shape, and the magma mixing-to-eruption duration is 

proportional to the explosivity of the volcanic event. 
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1 - Introduction 

1.1 - Postulate of research  

Eruption explosivity dynamics are a target of volcanic research (Sparks & 

Aspinall, 2004; Newhall, 2000) and observations including magma mixing in particular 

have illuminated modifications in eruptive style (Sparks & Sigurdsson, 1977; Kremers et 

al, 2012).  

Mixing of magmas can involve two end-members and result in blending and 

mingling. Blending is homogeneous mixing to form a chemically and physically 

intermediate magma. Mingling is a heterogeneous mixture, with some portions of the two 

end-member magmas and incomplete mixing, with spatially different parts of each 

magma still present. The extent of mixing depends on the physical and thermal properties 

of both magmas, especially density and viscosity (Bardintzeff, 1992; Laumonier et al., 

2014). 

In this work we investigate whether microscopic evidence and chemical-physical 

parameters for magma mixing can be used to explain variations in explosivity at 

volcanoes which exhibit variable activity without variation in magma composition. 

Mixing can transfer heat from a hot magma to a cooler one (Tsuchiyama, 1985), this can 

increase convection and vesiculation in the magma chamber and possibly break a brittle 

surface carapace, leading to explosive eruption (Sparks & Sigurdsson, 1977). The extent 

of magma mixing and heat exchange (Ruprecht & Bachmann, 2010), where mixing can 

transfer heat homogeneously into the cooler magma decreasing viscosity (resulting in less 

explosive eruption). Or alternatively a mafic melt might not reduce the viscosity of the 

silicic magma, but instead increase pressure (generating more explosive eruption). Can 

mixing evidence be related to eruption intensity at a specific volcano? How can this be 

related to eruptive heating, viscosity and crystallinity? In this research two basaltic 

volcanoes were selected, each with variable eruptive style and intensity, to see if ejecta 

and lava flows show mixing effects with similar and correlative variability.  
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The Volcanic Explosivity Index (VEI), devised by Newhall and Self (1982), is 

used as an indicator of intensity and selected samples of variable VEI, both lava flow and 

tephra, from Fuego and Pacaya volcanoes in Guatemala for analysis. Polarized light 

microscopy, Scanning Electron Microscopy (SEM), secondary electron images, energy 

dispersive x-ray analyses (EDS), CSDs and thermodynamic models are used to examine 

the relationship between mixing/mingling and VEI.  

 

1.2 – Volcanism of Pacaya and Fuego 

1.2.1 – Geodynamic setting  

Fuego (~3700 m elevation) and Pacaya (~2500 m) are two of Central America’s 

most regularly active volcanoes, located only 31 kilometers apart, along the volcanic 

front of Central America formed by subduction of the Cocos Plate beneath the Caribbean 

Plate (Carr et al., 1984). Geochemical and mineralogical data of lava and pyroclastic 

rocks of the volcanic front are calc-alkaline in composition, typical of subduction zones. 

Variation plots follow trends of high-Al basalts and basaltic andesites to dacite (Carr et 

al., 1982) and there are at large volumes of rhyolitic pumice at Atitlán and several other 

back arc centers (Rose et al., 1987). Although the volcanic front is marked by andesitic 

vents, the Fuego and Pacaya samples studied here are basalt and basaltic andesite. 

1.2.2 – Pacaya volcano 

Pacaya volcano (Fig. 1.1; Eggers, 1971) is located 30 km S of Guatemala City, on 

the rim of Amatitlán caldera (Wunderman & Rose, 1984). The volcanological complex of 

Pacaya is characterized by several volcanic cones including Cerro Grande, Cerro Chino, 

Pacaya Viejo, Pacaya, and Cerro Chiquito (Eggers, 1971). The Mackenney cone of 

Pacaya volcano is situated at the southern part of this volcanological complex and this 

feature was built up since 1961 enkarging the west side of Pacaya (Rose et al., 2013, see 

especially fig. 2, p. 3). 
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The Pacaya Complex has likely formed over many millennia and may consist of a 

series of active and quiescent eruptive periods (Kitamura & Matias, 1995; Eggers, 1972). 

In this study we investigate samples from an active period between 1961 and 2015 (Rose 

et al. 2013).  The composition of magma erupted during this period is monotonous hi-Al 

basalt to basaltic andesite, with a substantial crystal content marked mainly by 

plagioclase and olivine (Bardintzeff & Deniel, 1992; Rose et al. 2013). The activity style 

ranged from effusive lava flows with tiny ashy explosions to energetic fire fountaining 

events with convective columns up to 20 km high (VEI from 0 to 3), and continuous 

degassing activity.  

 

 

Fig. 1.1 - Pacaya volcano, active vents. It is possible to see the great eruptive fracture in the central part.  

 

Like its mineralogy, the geochemistry of Pacaya lavas is monotonous without 

remarkable geochemical differences, but the eruptive style changes. If chemical 

composition remains the same, but the erupted materials show textural signs of mixing, 

this is consistent with a possible mixing control of eruptive style. 
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1.2.3 – Fuego volcano 

Fuego Volcano (Fig. 1.2; Carr et al., 2002) is a stratovolcano built on the southern 

flank of the Fuego-Acatenango volcanological complex. It may be about 17 ka in age, the 

latest in a N-S series of vents which are older toward the N, away from the subduction 

zone. Its activity is marked by clustering of eruptions (Martin & Rose 1981), and 

evidence for magma mixing (Berlo et al., 2012). Trace-element data are consistent with 

fractionation from two chemically different magma bodies (Chesner & Rose, 1984). 

Samples studied here are all erupted in the last few decades, as Fuego has had subplinian 

activity interspersed with years of relative calm and much smaller events (Lyons et al., 

2010), overall ranging from VEI 1 to 4.  

 

Fig. 1.2 - Fuego volcano, active vent, during a typical explosion generated from the upper crater. 

In general, the bulk magma chemical composition is in the range of 48-53 wt % 

SiO2, while crystal content is marked by plagioclase, olivine, augite, and magnetite that 

derives from fractionation of the high-Al2O3 basalts. Melt inclusion analyses shows a 

general range of H2O content that varies from 2.1 wt % to 6.1 wt % (Sissons & Layne, 

1993; Roggensack, 2001; Wade et al., 2008; Lloyd et al., 2014). Increasing in volatile 

content seems to be related to a change in the eruptive style (Lyons et al., 2010). 
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2 – Sample selection 

Ten samples of lava and tephra from Pacaya volcano and three samples of tephra 

from Fuego volcano were used for this work. Five samples of Pacaya lava were collected 

by Otoniel Matías (2009) and Conway (1994), during 1972-2000. Three thin sections of 

tephra (scoria) from Pacaya were made in the Sample Preparation Laboratory of the 

Michigan Technological University, from samples collected by M.J. Carr and Enrique 

Molina, on 24 April 1985. Three thin sections of tephra from Fuego collected by Sam 

Bonis, in October 1974 were made in the same laboratory. Two thin sections were used 

from scoria collected by the author in January 2015.  

Samples were chosen to represent different known degrees of explosivity (Fig. 

2.1, Tab. 2.1), to test whether post eruption sampling can detect different eruptive energy 

and eruptive style in samples. The VEI was estimated from activity-

observations/descriptions as a measure of energy. Studied samples include two samples 

of lava flow with VEI = 0 from Pacaya (1972 eruption); five samples of scoria with VEI 

= 1 from Pacaya (24 april 1985 eruption and 2014 eruption); three samples of lava flows 

with VEI = 2 from Pacaya (2000 eruption); and three samples of tephra with VEI = 4 

from Fuego (October 17, 1974 eruption). 

 

Fig. 2.1 – On the left, image showing an example of VEI 2 eruption at Pacaya volcano. It is possible to 

notice the high lava fountains and the ballistic trajectory of the pyroclasts; on the right, image showing an 

example of a very energetic and explosive eruption at Fuego volcano. 



 

18 
 

Tab. 2.1 – Table showing the volcano, sampling date, VEI and the description of the eruption for each 

selected sample. 

Sample Volcano 

 

 Collector Sample date VEI 
Description of the 

eruption 

PA-19, PA-3 Pacaya 

Otoniel 

Matías and 

Conway 

1972 0 
Lava flows with fine 

ashes emission 

PA-44, PA-45, 

PA-46 
Pacaya 

M.J. Carr 

and 

Enrique 

Molina 

1985 1 

Lava flows and small 

strombolian explosions 

with lava fountains 

ejected 20 m high 

PA-47, PA-49 Pacaya 

 

Nicola 

Mari 

2015 1 

Lava flows and 

strombolian explosions, 

lava fountains 500 m 

high 

PA-27, PA-30, 

PA-14 
Pacaya 

 

Otoniel 

Matías 

2000 2 

Lava fountains in 

Hawaiian style with 

pyroclasts ejected 800 

m high 

VF-74-130a,b,c Fuego 

 

Sam Bonis 
1974 4 

Energetic vertical 

explosive eruption 

column that reached the 

stratosphere, with 

blocks and generation 

of pyroclastic flows 

 

Details of the eruptive events are described in the Smithsonian GVN Website 

(http://www.volcano.si.edu/), Rose et al. (1978), Matías Gomez (2009), Rose et al. 

(2013) and Rose, WI (pers communication, 2015).  

VEI assessments of the associated samples come from field descriptions of the 

activity of the volcano. Field notes associated with the sample collectors were also used. 

http://www.volcano.si.edu/
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PA-19 and PA-3, are from an effusive event on October 17, 1972. It was 

associated with very weak explosions, with releases of fine ashes which convected to 

levels of only a few tens of meters. This event was assigned VEI of 0.  

Three Pacaya scoria samples PA-44, PA-45, and PA-46, occurred on April 24, 

1985. The eruption was more energetic than PA-19, with lava flows and small 

strombolian explosions, also characterized by gas thrusts leading to 20 m high lava 

fountains every 7 minutes. The VEI of this event was assigned 1.The sample bag 

contained this field note: “Basaltic scoria from Pacaya volcano (Guatemala). Mostly glass 

with small phenocrysts of plagioclase, olivine and pyroxene. Collected by M.J. Carr and 

Enrique Molina on 24 April 1985 (…) Scoria currently being producted looked 

essentially the same, but I decided not to attempt a real hot sample. Pele’s hair was 

abundant, but did not survive the trip down the mountain”. 

Two scoria (PA-47 and PA-49) are from the 2 March 2014 eruption of Pacaya. 

This eruption was characterized by gas thrust strombolian lava fountains that reached 500 

meters high. The convecting ash plume reached 2.4 km high, but the explosions were 

small (assigned VEI 1).  

Three lava flow samples (PA-27, PA-30, and PA-14), are from the 2000 

paroxysmal eruption (peak intensity Jan 15 2000) at Pacaya. This eruption was 

characterized by 800 m gas thrust pyroclasts and lava mountain, with convective heights 

of several kilometers. It built a 50 m high cone around its vent. This was the largest event 

that occurred at Pacaya between 1961 and 2009 (Rose et al., 2013). This event is 

classified as VEI = 2.  

Fuego’s activity is frequent and is generally more energetic than Pacaya, possibly 

because its higher stature (longer conduit) may inhibit weak eruptions from reaching the 

surface, but most of its activity rates a VEI of 1-2. The activity patterns at Fuego have 

been reported in many volcanological papers (see Martin & Rose (1981) and Rose et al. 

(2007) for summaries and overall bibliography). Three tephra samples (VF-74-130), 

resulted from the peak (Oct 17) of the October 1974 sub-plinian eruption at Fuego 
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volcano (Rose et al., 1978). These are basaltic scoria (diameters 2-4.5 cm) collected at 

Quisache, 8km NW of Fuego summit. The October 1974 eruption was marked by four 

different pulses lasting 4-17 hours each, and a total duration of 10 days. Vertical 

explosive eruption from the central crater that created a convective column that reached 

the stratosphere, generating pyroclastic flows. The total volume of pyroclastic material 

produced was around 0.2 km
3
 of high Al2O3 basalt. Although winnowing occurred, initial 

magmas were apparently rich in plagioclase phenocrysts, while the magmas erupted next 

became poor in phenocrysts. The VEI of this eruption was equal to 4. 
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3 – Methodology 

3.1 – Polarized light microscopy  

Thin sections and optical microscopy in plane-polarized light were used to 

document and quantify magma mixing features evidenced by disequilibrium textures.  

In plagioclase crystals we found: sieve plagioclase, a coarse dissolution texture 

located at the center of the crystal representing the remnant of an interconnection of 

different channels (Nelson and Montana, 1992), boxy-cellular plagioclase, a dissolution 

texture located at the center characterized by “holes” pursuing a similar shape of the main 

crystal (Gibson et al., 2003), and spongy-cellular plagioclase, a crowned dissolution 

texture surrounding the center of the crystal formed by many small holes sometimes 

containing glassy material (Andersson and Eklund, 1994).  

In olivine crystals we observed: fractured olivine, fractures related to increasing 

force as the eruptive explosivity increases (Swain & Atkinson, 1978), resorption rims, 

reaction features that generates and evolve at the rims (Claeson, 1998; Coombs and 

Gardner, 2004), and sieve olivine, a dissolution coarse texture (Anonymous, 1990) 

similar to that of sieve plagioclase. 

The percentage of each disequilibrium texture calculated for each different VEI of 

the samples analyzed were presented in form of histogram, in order to assess whether 

variations resulted from differences in eruptive energy and style.  

3.2 – SEM images acquisition and EDS analyses 

The secondary electrons, generated by SEM, were used to obtain images (SEI) of 

different parts of the samples, while the chemical microanalysis was conducted 

measuring the energy and the distribution of the intensities of the X-rays generated by the 

electronic beam in the sample, by using Energy Dispersive Spectrometry (EDS). These 

analyses were made both in a selected area and at points of interests on the surface of the 

sample (microanalysis). In EDS, analyzed an area in order to obtain the general bulk 

composition of the sample surface and a point when the primary objective was the 

composition of a single mineral or part of mineral. X-ray elemental mapping was useful 

in cases of magma mingling, to show different phases of liquids. 

In general, we conducted secondary electron images (SEI), EDS microanalyses, 

and X-ray elemental mapping of the most representative samples observed in plane-

polarized light and considering differences in VEI. The sample selected are: PA-19, PA-
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27, PA-44, PA-49, and VF-74-130a. All these samples were polished and coated, in order 

to be conductive.  

Detailed studies are available of Fuego plagioclase which demonstrate very 

complex compositional zoning related to magma movement (Anderson, 1984). Because 

of obvious zoning SEI images were collected in both the central parts and the edges of 

many plagioclase microphenocrysts, to see chemical variations of elements as Na and Ca 

from the center to the rim, possibly detecting reverse zoning due to magma mixing 

phenomena (Shcherbakov et al., 2011). 

3.3 – Image processing and CSD analysis 

We conducted CSD analysis (Higgins, 2000; Vinet & Higgins, 2010; Brugger & 

Hammer, 2010) of samples representing different VEI conditions. To create an image of 

the entire thin section we took several microphotos (including edges) and made a mosaic 

of the sample. For measurements we used ImageJ, a free image processing software 

(based on Java script), developed at the National Institutes of Health (Rasband, 1997).  

The scale is set by entering a value for the number of millimeters for a pixel scale 

factor. Polygons were drawn to include each phenocryst, crystal, and microcrystal of 

plagioclase, then the polygons were measured generating a best fit ellipse obtaining the 

area (crystal size) in mm
2 
(Fig. 3.1 and 3.2). The measurement file was exported in other 

spreadsheet software for data analysis.  
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Fig. 3.1 – Methodology of CSD measurements. (A) A normal area of the thin section; (B) Inclusion in 

polygon for each crystal and microcrystal of plagioclase. 
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Fig. 3.2 – Methodology of CSD measurements. (C) Creation of a best fit ellipse for each polygon; (D) 

Cancellation of the previous polygons with only the remaining ellipses useful for measurements. 

At the end of the process, a graph population density vs. crystal size was 

generated. In open magmatic systems there is a linear correlation between the natural 
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logarithm of the population density at size L and that size (Higgins, 2006; Marsh, 1998). 

Thus, for a single phase in the system:  

 

where n'v(L) is the population density of the crystals for size L, n'v(0) is the final 

nucleation density, G is the growth rate and τ is the residence time. By finding the 

variation in slope of the two CSDs it is possible to estimate, relatively, the residence time 

of the crystals. 

3.4 – Viscosity model 

Estimates of the viscosity for each sample of differing VEI have been made, based 

on geochemical data. In order to incorporate the temperature dependence (ƞ) of melt 

viscosity we used the Tammann-Vogel-Fulcher (TVF) equation (Giordano et al., 2008): 

Log η = A + B/T(K)−C 

where A is considered constant for all types of melts (A = -4.55±0.21), meaning that for a 

high-T all melts are at the same value of viscosity; B and C are related to compositional 

effects.  

During the eruption the temperature and volatiles drop, thus we calculated 

viscosity for each intensity (VEI 0-4) for different values of temperatures and H2O wt %, 

in order to obtain a more accurate range of results.  

Estimates for eruptive temperatures for Pacaya lavas vary in the range from 

~1000°C to  ~1100°C based on work by Bardintzeff & Deniel (1992); Bollasina et al. 

(2013); and Soldati et al. (2014). The pre-eruptive temperature for the VEI 4 eruption at 

Fuego was previously calculated in another study using a mineral equilibrium 

geothermometer and is ~ 1,050°C (Rose et al., 1978). The similarity between magma 

temperatures for Fuego and Pacaya is consistent with their very similar mineralogy and 

crystallinity. 

The pre-eruptive H2O wt. % of Pacaya magma was inferred from melt inclusions 

(Walker et al., 2003), and could be about 2 wt. %, but because of a great variability in the 

gas emission rate (Rodriguez et al., 2004) we estimate from 0 to 5 H2O wt. %. Although 

analyses of melt inclusions from the 17 October 1974 eruption at Fuego (Lloyd et al., 

2013) may have been a slightly higher in H2O than Pacaya, with a range from 1 to 4.4 wt. 

%, we estimate a range of 0 to 5 wt. % H2O. 
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4 – Results  

4.1 – Qualitative descriptions 

4.1.1 – Sample characterization  

Mineralogical paragenesis appears similar in all off the studied samples. 

Plagioclase, olivine, and magnetite phenocrysts occur in all these rocks. This mineralogy 

matches those previously reported for recent Pacaya and Fuego materials (Bardintzeff 

and Deniel, 1992; Cigala, 2013; Chesner and Rose, 1984; Roggensack, 2001; Rose et al., 

1978). Plagioclase is much more abundant than olivine and magnetite is found as 

microlites only. Detailed modal data for each group of samples can be found below in 

Section 4.2.2.   

The texture is seriate, with gradual variation from big to small phenocrysts. The 

groundmass is microcrystalline in almost all the samples, with the same mineralogy as 

the phenocrysts.  

Both plagioclase and olivine are progressively more fractured (existing as broken 

crystals) as the VEI of the samples increase.  

Polarized light microscopy reveals a variable disequilibrium features, mainly seen 

in plagioclase and olivine phenocrysts. Most of these disequilibrium textures are 

consistent with magma mixing phenomena: sieve plagioclase, inversely zoned 

plagioclase, boxy-cellular plagioclase, spongy-cellular plagioclase, embayed olivine, 

giant resorption rims in olivine, skeletal olivine, sieve olivine, and other minor textures.  

In SEI images edges and rims of the crystals depict modifications and resorptions 

due to disequilibrium between the crystals and surrounding melt. The morphology of the 

edge varies from sharp to smooth. Many holes were noticed in the minerals - typically at 

the center - and are sometimes filled by inclusions of glassy material. The groundmass 

varies from cryptocrystalline to holocrystalline.  

 

4.1.2 – Disequilibrium textures in VEI 0 

In the samples PA-19 and PA-3 from 1972, reflecting VEI 0 eruption, plagioclase 

are mostly boxy-cellular and less commonly sieved plagioclase, without resorption rims 

(Fig. 4.1). Olivine crystals show weak signs of disequilibrium (Fig. 4.2). Plagioclase 
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phenocrysts, in SEI images, have resorbed edges (Fig. 4.3) and clusters of microcrysts 

surrounding the main crystal.  

 

Fig. 4.1 – (A) Microphotograph of sample PA-19 (N//), at 2.5x: particular of boxy-cellular plagioclase, 

characterized by semi-rectangular holes distributed in the central part, following the pre-existent plane of 

A 

B 

Boxy-textures 

Boxy/sieve-textures 
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parallel striations; (B) Microphotograph of sample PA-19 (N//), at 2.5x: great example of a boxy/sieve 

plagioclase crystal, characterized by disequilibrium textures mainly distributed in the central part. 

 

 

 

Fig. 4.2 - Microphotograph of sample PA-19 (NX), at 2.5x: typical of an olivine crystal characterized by 

decompression cracks, which are visible as fractures. 
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Fig. 4.3 – Crystal of plagioclase in the central part of the thin section PA-19: (A) SEI image that shows a 

semi-euhedral crystal of plagioclase with all the borders characterized by resorption phenomena and/or 

texture due to decompression. It is possible to notice a fracture on the center and clusters of microcrystals 

that surround the main crystal; (B) Magnified SEI image of the red signed zone. 

 

4.1.3 – Disequilibrium textures in VEI 1 

Five samples from VEI 1 eruptions contain plagioclase crystals with boxy-cellular 

and sieve textures or a hybrid between these two. They have weak resorption rims and 

zonation is not clearly visible (Fig. 4.4). A large crystal of plagioclase (1.7 cm), in sample 

PA-49, has a sieve texture at its center (Fig. 4.5). All samples are full of twinned 

plagioclase. Olivine has thin rims, which can be delineated by the presence of abundant 

glassy inclusions. Fractures in olivine (that sometimes appear as small holes) are also 

better developed here than the VEI 0 sample of the same volcano (Fig. 4.6). Intergrowths 

of plagioclase and olivine are twinned and appear in almost all these samples. Panoramic 

SEI images of this sample contain two distinct types of melts that coexist in the same thin 

section area (Fig. 4.7): where glass exhibits distinct dark and light colors in transmitted 

light. Larger crystals are found in the light colored glass. These two glasses are 

interpreted as recording the process of magma mingling and/or auto magma mingling 

(Mari, 2013) in a pre-eruptive phase. To obtain chemical information about these glasses, 

EDS microanalyses and an X-ray map were obtained (Fig. 4.8). These semi-quantitative 

results show higher concentrations of Si, Al, and Ca in the lighter glass. This is consistent 

with light glass being affected by more extensive olivine crystallization, which would 

raise the Al and Ca in the silicate melt. 
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Fig. 4.4 – (A) Microphotograph of sample PA-44 (NX), at 2.5x: crystals of sieve and boxy-cellular 

plagioclase; (B) Microphotograph of sample PA-49 (NX), at 2.5x: particular of a boxy-cellular plagioclase. 
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Fig. 4.5 - Microphotograph of sample PA-49 (N//), at 2.5x: sieve-texture located at the center of a big 

phenocryst of plagioclase. 
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Fig. 4.6 – (A) Microphotograph of sample PA-44 (NX), at 2.5x: giant crystal (6 mm) of olivine with 

fractures, deeper than the thin section previously analyzed; (B) Microphotograph of sample PA-47 (NX), at 

2.5x: example of embayed skeletal olivine. 
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Fig. 4.7 - Panoramic of the sample PA-44 where it is possible to see two different parts of liquid: one more 

white (A) and one more black (B) in color. The white part is more enriched in crystals. Two EDS analyses 

were conducted in the two different areas (A and B). 
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Fig. 4.8 - X-ray elemental map of an area of sample PA-44 where it is possible to see the boundary between 

two different types of liquids. 
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4.1.4 – Disequilibrium textures in VEI 2 

Three samples from VEI 2 eruptions have more-evolved mixing textures in 

plagioclase than either VEI-0 or 1. Crystals are spongy-cellular, surrounded by thicker 

resorption rims (Fig. 4.9). Only a few cases of sieve-plagioclase are visible. Glassy 

inclusions are always noticeable, on the rims of the spongy-cellular plagioclase. The 

groundmass is heterogeneous in all the thin sections, showing evidence for mingling. 

Reverse zoning of plagioclase crystals is evident, something not observed in the samples 

from less energetic eruptions. Olivine crystals appear, in these three samples, broken, 

which could be induced by the high concentration of fractures of the crystal (Fig. 4.10). 

Reaction rims are well-developed and thicker than the samples analyzed from the VEI 1 

eruptions. SEI images detect re-melted plagioclase edges and snowflake clusters on some 

sieve plagioclase (Fig. 4.11; see explanation by Berg, 1980). This could be related to 

phenomena of magma mixing and/or supercooling. Scanning electron microscopy and 

energy-dispersive spectroscopy microanalyses suggest that these snowflake clusters have 

major Si and minor Ca and Na (consistent with plagioclase composition). 
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Fig. 4.9 – (A) Microphotograph of sample PA-27 (NX), at 2.5x: great example of the difference between 

two mixing textures in plagioclase, a giant spongy-cellular plagioclase (on the left) and a sieve-plagioclase 

(on the right). The difference is that the spongy-cellular plagioclase has disequilibrium signs on the borders, 

while the sieve-plagioclase has disequilibrium signs on the central part; (B) Microphotograph of sample 
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PA-27 (NX), at 2.5x: spectacular example of a spongy-cellular plagioclase. It is possible to notice the 

disequilibrium signs distributed on the "borders" as a crown morphology. 
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Fig. 4.10 – (A) Microphotograph of sample PA-27 (NX), at 10x: particular of a fractured olivine partially 

broken. Fractures are clearly visible; (B) Microphotograph of sample PA-14 (NX), at 10x: particular of a 

skeletal-olivine fractured. 
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Fig. 4.11 – Spectacular view of snowflake clusters of plagioclase. In particular, it is well noticeable how 

these snowflakes are generated directly from the main crystal, passing from small to large size.  

4.1.5 – Disequilibrium textures in VEI 4 

VEI 4 samples contain a more sodic plagioclase, and show hybrid spongy-cellular 

and sieve textures. Some boxy-cellular plagioclase can also be found, in minor quantities 

(Fig. 4.12). Plagioclase is surrounded by large and wide re-melted edges. Olivine crystals 

are strongly spliced and broken in different parts. Sieve olivine texture is conspicuous, 

characterized by more numerous signs of disequilibrium distributed inside the phenocryst 

centers that were not observed in samples from the less energetic eruptions (Fig. 4.13). 

Fractures in olivine, and resorption rims, are very wide and showy. Two different types 

of glass are present in many areas of the samples, one darker, with a low to medium 

degree of crystallinity, and one lighter in color, largely crystallized and containing the 

majority of phenocrysts. By using SEM-EDS microanalyses, the dark glass has a very 

low content of Si, and a relatively medium content of Na and K, while the light glass has 

a very high content in Si and low content in Fe. X-ray mapping clarifies the difference in 

composition within the two liquids (Fig. 4.14). These data reflect a magma mingling 

phenomenon with acid and basic melts. Mingling in this eruption is in accord with a 

previous work about Fuego volcano (Berlo et al. 2012). 
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Fig. 4.12 - Microphotograph of sample VF-74-130 (NX), at 10x: particular of a plagioclase crystal with 

very wide and large re-melted borders. 
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Fig. 4.13 – (A) Microphotograph of sample VF-74-130a (NX), at 2.5x: example of a sieve olivine (with a 

large resorption rim), characterized by disequilibrium signs that increase from the borders to the centre; (B) 
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Microphotograph of sample VF-74-130c (NX), at 2.5x: great example of a fractured sieve olivine 

phenocryst, characterized by many disequilibrium signs at the centre. 

 

 

Fig. 4.14 – SEI image (on the left) where the two liquids (black and white part) are mingled in 

interdigitation. On the right, three types of X-ray elemental maps conducted on this image (Si, Al, and Ca). 

4.2 – Quantitative analysis 

4.2.1 – Geochemistry  

Major element chemical compositions, obtained from XRF bulk-rock analyses, are 

presented in Table 4.1 and plotted in Fig. 4.15. Studied samples are basalts and basaltic 

andesite (Fig. 4.15). If samples are classified by the KWare MAGMA software: they 

show a trachybasaltic and tholeiitic basalt compositions (Table 4.2). 

Table 4.1 – Geochemical data of the samples, from previous works, analyzed using XRF with element 

distribution in wt %. Sources: (1) Matias-Vogel, 2009; (2) Bardintzeff and Deniel, 1992; (3) Morgan et al., 

2013; (4) Roggensack, 2001. 
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Wt% 

Oxide 

PA-19 

(1) 

PA-27 

(1) 

PA-44 

(2) 

PA-49 

(3) 

VF-74 

(4) 

SiO2 51.16 51.13 50.07 49.27 53.65 

TiO2 1.11 1.11 1.14 1.17 1.17 

Al2O3 19.56 20.75 19.22 18.96 17.22 

Fe2O3 9.15 8.52 9.78 9.78 9.67 

MnO 0.17 0.15 0.05 0.18 0.13 

CaO 9.74 10.47 9.73 9.96 8.67 

MgO 4.61 3.28 4.53 4.90 3.55 

Na2O 3.45 3.49 3.66 3.52 4.82 

K2O 0.78 0.80 0.87 0.76 0.86 

P2O5 0.23 0.24 0.30 0.26 0.26 

Total 99.96 99.94 99.35 98.76 100 

 

Fig. 4.15 – TAS diagram of the samples (green triangles) analyzed using XRF. PA-19, PA-27, and PA-49 

are classifiable as relatively much evolved basalts; PA-44 is a basaltic andesite; VF-74 is a basaltic trachy-

andesite (LaBas et al., 1986). 
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Table 4.2 – IUGS and Shand rock classification of each of the previous samples, obtained from IgPet 

software (Wohletz, 2002) . 

 

4.2.2 – Modal data 

Petrographic and modal data (Fig. 4.16) are similar in all studied rocks and also 

resemble rock studied from the same periods by other authors [Appendix D, from Eggers 

(1972), Bardintzeff & Deniel (1992), Rose et al. (2013), Cigala (2013), and Berlo et al. 

(2012)]. 

 

Fig. 4.16 – Modal and petrographic data for the samples studied in this work. 

4.2.3 – Reverse zoning chemical data 

Sample IUGS classification Shand Classification 

PA-19 Latite-Basalt (Trachybasalt) Metaluminous Silica saturated 

PA-27 Latite-Basalt (Trachybasalt) Metaluminous Silica saturated 

PA-44 Latite-Andesite (Basaltic 

trachyandesite) 

Metaluminous Silica saturated 

PA-49 Tholeitic basalt Metaluminous Silica saturated 

VF-74-130a Tholeitic basalt Metaluminous Silica saturated 



 

45 
 

In almost all the samples clear evidence of reverse zoning in plagioclase was 

observed, with an increase of Ca and decrease of Na from the center to the edge. We 

reported all chemical measurements both in core and rims of plagioclase phenocrysts, 

calculated for each sample analyzed using SEM-EDS, in Table 4.3.  

Table 4.3 – Na and Ca core-to-rim chemical measurements calculated in plagioclase phenocrysts using 

SEM-EDS. 

Sample Na Core Ca core Na rim Ca rim 

PA-19 14.91 9.88 10.60 17.50 

PA-27 13.93 3.87 11.97 10.81 

PA-44 4.01 9.27 3.39 9.75 

PA-49 0.50 20.27 0.55 23.80 

VF-74-130a 0.92 2.27 2.87 1.67 

 

4.2.4 – Disequilibrium textures vs. VEI 

Counts of disequilibrium textures in samples with differing VEI are compiled in 

Table 4.4. The textural observations regarding disequilibrium state are generally more 

numerous as VEI increase (Fig. 4.17). 

Table 4.4 – Average percentage of disequilibrium textures for each VEI analyzed. 

Disequilibrium textures VEI 0 VEI 1 VEI 2 VEI 4 

Sieve-plagioclase 10 80 20 80 

Boxy-cellular plagioclase 50 20 10 90 

Spongy-cellular 

plagioclase 

0 0 70 50 

Embayed olivine 40 70 70 80 

Spliced olivine 0 10 30 60 

Sieve-olivine 0 0 0 80 
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Fig. 4.17 – Distribution of mixing indicators in all the samples of different VEI. 

4.2.5 – Plagioclase crystal size distributions (CSD) 

Measurements of the long and short axes were made on 857 crystals of plagioclase 

for sample PA-27 (VEI 2), on 791 crystals of plagioclase for sample PA-14 (VEI 2), on 

589 crystals of plagioclase for sample PA-44 (VEI 1), on 412 crystals of plagioclase for 

sample PA-45 (VEI 1), on 5,393 crystals of plagioclase for sample PA- 19 (VEI 0), and 

on 4,053 crystals of plagioclase for sample PA-3 (VEI 0), for crystal size distributions 

analysis. The latter three samples have more measurements because of the great quantity 

of microcrystals. The single slope for each sample can be found in Fig. 4.18, while Fig. 

4.19 is comparative.  Interpretations for each curve can be found in Section 5.2. 
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Fig. 4.18 – CSD for each sample analyzed. Measurements are presented in a graph crystal size vs. 

ln(population density).  
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Fig. 4.19 - Comparative figure that shows relationship between all CSDs. 

Broken crystals could affect the CSDs changing their shape, and possibly giving 

erroneous interpretations of the magmatic system. Consequently, during the process of 

drawing polygons each crystal would be examined individually to detect if it is a 

fragment (Higgins, 2006). Areas poor of broken microphenocrysts or phenocrysts are the 

best locations for more accurate analysis (Higgins and Roberge, 2003). Collecting data 

that include many broken crystal fragments could transform the shape of CSDs: the 

population of bigger crystals will be reduced and that of smaller crystals will be increased 

(Higgins, 2006). This will affect major the smaller crystals, overall if they are not so 

abundant in the rock. 

4.2.6 – Viscosity data 

According to the eruptive temperature data, we calculated viscosity for a range of 

temperatures between 1000°C and 1100°C for Pacaya and Fuego (Table 4.5). 

 Table 4.5 – Variation of viscosity for each VEI with increasing temperature at a constant H2O content of 

2%. 
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T[C] 

 

T[K] 

Log ƞ 

VEI 0 

Log ƞ 

VEI 1 

Log ƞ 

VEI 2 

Log ƞ 

VEI 4 

1000 1273 2,23 2,11 2,35 3,98 

1050 1323 1,85 1,73 1,96 3,44 

1100 1373 1,51 1,39 1,62 2,96 

 

The value of viscosity for each VEI varies with the content in H2O, which can 

vary during an eruption. The trends show that increasing the H2O wt. % the viscosity 

decreases almost linearly (Fig. 4.20). Since this variation is very similar for each sample, 

we show here only how this occurs in sample PA-19 (VEI 0) and the other graphs can be 

found in Appendix F. Variation of viscosity related to the vesiculation index is shown in 

Fig. 4.21. Viscosity presented here is affected by the degree of crystallinity of the rock 

samples (41-51%), this means that real viscosity values are higher because of the 

medium-high content in phenocrysts (Sato, 2005; Marsh, 1981).  

 

Fig. 4.20 – Viscosity vs. temperature plot showing how the viscosity is influenced by the H2O wt % in VEI 

0 sample (PA-19). 
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Fig. 4.21 – Vesiculation vs. viscosity diagram for each VEI. 

 

5 – Discussion 

5.1 – Magma mixing signatures 

Magmatic systems at Pacaya and Fuego volcanoes are thought to have shallow 

magma bodies where mixing could occur (Kozak & Cermak, 2010; Chesner & Rose 

1984; Eggers, 1971; Berlo et al., 2012).  

For Pacaya volcano, in particular, the Cerro Chiquito cinder cone, the coexistence 

of two shallow magma chambers was proposed (Bardintzeff & Deniel, 1992). The mantle 

source of shallow magma bodies is likely the same, and their compositional gas and 

temperature differences could reflect their different ages and cooling histories before they 

mixed. There is important evidence for dynamic shallow magma at Pacaya's Mckenney 

Cone: 1) Gravity data that reveal the location of magma bodies characterized by low-

density (0.4 g/cm
3
), which are located at a depth of 100 to 200 m (Eggers, 1983); 2) Vent 

position and elevation data, in particular the relationships between vent elevation and 

volume in flow events that seems to be consistent with magma chambers within the 

McKenney cone itself (Rose et al., 2013); 3) Collapse and exploding magma bodies in 

the past, evidenced by an edifice collapse event at Pacaya during Holocene; and 4) 

Variable gas emission data, characterized by a high SO2 emission rate that emphasize the 

presence of a shallow magma chamber (Eggers, 1971; Andres et al., 1993).  

At Fuego low-frequency seismic events with singular, long codas that seem to 

correlate with the timing of tremors could be related to the convective activity and 

shallow magma chamber dynamics (McNutt & Harlow, 1983), moreover, the SO2 
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emission rate is consistent with a high level magma body that is crystallizing and 

degassing (Andres et al., 1993). Melt inclusion analyses show a modified H2O 

concentration due to diffusive re-equilibration that can occur in a shallow pressure 

magma body (Berlo et al., 2012), besides mixing may involve magma from deeper levels 

as there is evidence of rapid ascent of magma from 10 km. From trace-element analysis 

of Fuego volcanic material it was determined that the shallow magma chamber is located 

at a depth of 8-16 km and reflect evidence of input from olivine tholeiitic melts 

fractionated from a deeper magmatic source (Chesner & Rose, 1984).  

Geochemistry of samples was compared with previous study in Fig. 5.1. 

 

Fig. 5.1 – Geochemical comparison between this work and previous work at Pacaya and Fuego (Conway, 

1994; Matías Gomez, 2009; Cigala, 2013; and Roggensack, 2001) 

 

Do petrographic features reflect mixing and mingling variation that could be 

associated with style and intensity of eruptions.  
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1) Do they reflect disequilibria caused by magma mixing phenomena? ; 2) 

decompression processes (Nelson & Montana, 1992); or 3) could they reflect 

phreatomagmatism as suggested at Pacaya because of groundwater interaction with 

shallow magma (Cigala, 2013). Examples of fractured olivine crystals support the 

possibility of a magma-H2O interction, but the total absence of diktytaxitic textures due 

to phreatomagmatic events reject this hypothesis. Instead, several pieces of evidence 

including that there are likely shallow magma chambers beneath the two volcanoes, 

suggest mixing has occurred. Evidence that supports this idea are: 1) reverse zoning core-

to-rim SEM-EDS analyses of Na and Ca composition in plagioclase, that indicate contact 

within a hotter and cooler liquid, and 2) differences in the crystallinity of the 

groundmasses that could be connected to a series of mingling episodes. This clearly 

reflect chemical/thermodynamical disequilibrium in the melt; according to these 

evidences we can consider these disequilibrium textures as the product of magma mixing 

(Shcherbakov et al., 2011; Thomber & Huebner, 1985). 

The abundance and distribution of mixing textures seems to crudely correlate with 

VEI. Table 4.4 shows the distribution of each of the disequilibrium textures that we 

analyzed for each group of samples (Fig. 4.17). Samples from VEI 0 have boxy-cellular 

plagioclase (~ 50%) and fractured olivine (~ 40%), with some sieve-texture in plagioclase 

(~ 10%). The VEI 1 group is sieve-plagioclase (~ 80%) and fractured olivine (~ 70%), 

with minor boxy-cellular plagioclase (~ 20%) and spliced olivine crystals (~ 10%). The 

group of samples from VEI 2 intensity emphasizes spongy-cellular plagioclase (~ 70%) 

and fractured olivine (~ 70%) respect to the previous group, and less sieve and boxy 

textures and spliced crystals of olivine (< 30%). Finally, VEI 4 group shows a type of 

sieve-texture in olivine that not appear in any other previous group of samples and a 

relative high quantity of all the previous mixing textures (50-90 %) with large resorped 

and re-melted rims.  

Do these textures evolve during mixing? Fractured olivine, boxy and sieve 

textures in plagioclase appeared in all samples to different degrees. Spongy-texture in 

plagioclase is noticeable in the VEI 2 sample group and is less abundant with increasing 

VEI intensity of the samples. The quantity of all types of textures increases with VEI, 

except for spongy-cellular plagioclase. The evolution of plagioclase crystals in these 

groups of samples can be described as a change in disequilibrium texture type. From the 

VEI 0 to 4 group there is an increase in sieve and spongy-textures and a decrease in 

boxy-textures. Spongy-plagioclase is present mainly starting from VEI 2 samples (Fig. 

5.2). The evolution of olivine textures, from the VEI 0 to 4 group, seems to be a linear 

increase in the depth and width of the fractures (relative to crystal size), the width of the 

resorption rim, the quantity of broken crystals, and culminated by the appearance of 

sieve-olivine in VEI 4 samples (Fig. 5.3).  
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Fig. 5.2 – Evolution of mixing textures in plagioclase crystals with increasing VEI, from observations of 

thin sections. (A) VEI 0 is characterized mainly by plagioclase in boxy-cellular form, with minor sieve-

textures; (B) it is possible to see that VEI 1 have an increase in sieve-textures content with a decrease in the 

number of boxy-textures; (C) In VEI 2 mixing textures evolve in a spongy-cellular form of plagioclase, 

with minor sieve-textures; (D) in the highest VEI analyzed plagioclase is characterized by all the mixing 

textures seen previously but with evidences of re-melted borders and an exaggerate increasing in the width 

of the reaction rims. 

 

Fig. 5.3 – Evolution of textures in olivine crystals related to the explosive force with increasing VEI, from 

observations of thin sections. (A) In VEI 0 olivine present no signature of resorpted rims but light 

fracturation; (B) In VEI 1 there is an increment in the width of the reaction rims; (C) in VEI 2 it is possible 

to see how the width of both the rims and the fractures increase, and some olivine exists as broken crystals; 

(D) In VEI 4 olivine evolve with very deep fractures and reaction rims, with an high increasing in content 

of broken crystals.  

Do these mixing textures truly correlate with the degree of explosivity? Is it 

possible to infer the intensity of the eruption from these textural observations? Other 

studies suggest that these mixing processes may be related to degree of explosivity as we 

outline below. In an episode of magma mixing during the 2001 eruption of a 

trachybasaltic lava at Etna volcano, characterized by a VEI 0 intensity, Viccaro et al., 

2006 observed the same distribution of mixing textures found in Pacaya VEI 0 eruption. 

Focusing on the VEI 1 intensity samples of Pacaya, an equal frequency of sieve-textures 

and the same morphology of the fractures in olivine crystals is clearly noticeable during a 

mixing phase at Stromboli volcano in 2009 (La Felice & Landi, 2011), characterized by 

an intensity around VEI 1.5, and other two eruptions, energetically comparables, at 

Tatara-San Pedro volcanic complex (Singer et al., 1995), affected by mixing due to a 

shallow magma chamber close to input of basic magma, and during the mixing in the 

effusive VEI 1 pre-2010 eruption at Eyjafjallajökull volcano (Mari, 2013). The high 

quantity of spongy-cellular textures in plagioclase and fractured olivine in VEI 2 samples 
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of Pacaya are quite similar to three cases of magma mixing and eruptive intensity at 

Barren-Island volcano in 1994-1995 (Renjith, 2013), at Chimpa volcano (Arnosio, 2010), 

and at Maipo volcano (Sruoga et al., 2012). Mixing events of VEI 4 intensity showing the 

same textures found in the sub-plinian eruption at Fuego, with large re-melted and 

resorpted rims, can be found during the pre-eruptive condition in 2010 of Merapi 

volcano, characterized by very deep fractures in olivine and highly re-melted plagioclase 

borders (Innocent et al., 2013), as also in an energetically similar event at Payùn Matrù 

volcano (Hernando et al., 2012). 

5.2 – Interpretation of Crystal Size Distributions data 

The size distribution of plagioclase crystals have been shown to be sensitive to the 

various physical-chemical conditions (temperature, pressure, H2O pressure, ƒO2, melt 

composition) of the magmatic system (Humphreys et al., 2006; Ginibre & Worner, 2007; 

Smith et al., 2009; Viccaro et al., 2010).  

Renjith (2013) interprets the physical-chemical micro-textures of plagioclase as 

due to mixing. Intense and prolonged dissolution to generate a sieve-plagioclase 

(resorption surface) occurs when plagioclase comes into contact with a more primitive 

magma. The explanation for plagioclase having a boxy-cellular texture (coarse-sieve) is 

the dissolution due to the variable rate of adiabatic decompression of a H2O-

undersaturated magma. Spongy-cellular texture (fine-sieve) in plagioclase is seen by 

Renjith (2013) as the result of partial dissolution due to reaction with more Ca-rich melt. 

Broken crystals, as found in olivine of VEI 2-4, may result from decompression caused 

by energetic eruptions. In Table 5.1, interpretations for mixing textures are listed, leaving 

out the more obvious and known embayed textures in olivine and zonation in plagioclase.  

Table 5.1 – Descriptions of the physicochemical interpretations for each of the mixing textures, basing on 

Renjith (2013). 

Texture Physicochemical interpretation 
Sieve plagioclase Prolonged and intense dissolution for 

the contact with a more primitive 

magma 

Boxy-cellular plagioclase Dissolution due to the variation rate of 

decompression (adiabatic) of a H2O-

undersaturated magma 

Spongy-cellular plagioclase Partial dissolution due to the reaction 

with more Ca-rich melt 

Broken olivine crystals Decompression caused by strong aerial 

eruptions 
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For intensity of VEI 0 we made interpretations on CSDs derived from PA-3 and 

PA-19 samples. The CSD of PA-3 has a very high micro-phenocryst content and a level 

of nucleation density similar to the average of the other CSDs. This is interpreted to be 

the result of a higher degree of undercooling relative to the PA-19. The shape of the CSD 

seems to be related to mixing with a more mafic magma (Fig. 5.4a). Neglecting the 

abundant microlites that formed due to final decompression crystallization, it is possible 

to see that during mixing the normal cycle is likely interrupted; this event caused 

dissolution of the smaller crystals and growth of the bigger crystals (textural coarsening). 

However, by looking at the curve, mixing here is slight and relatively rapid. This event 

was followed by a process of buffering characterized first by the dissolution of small 

crystals of plagioclase, creating the coarse textures observed using polarized light 

microscopy (boxy-cellular and sieve plagioclase) and later by a crystallization phase of 

the same crystal type. In other words, the slope reflects the conditions about the cooler 

evolved magma during mixing, explaining as the normal curve is influenced by the 

entrance of a hotter less-evolved magma in the system. PA-19 CSD have the highest 

content in microlites, mainly due to initial decompression, and the remaining shape of the 

curve that remarks the same process of the previous curve, but with a steeper and rapid 

event of mixing (Fig. 5.4b) 

For VEI 1 samples we made interpretations on CSDs of PA-44 and PA-45. PA-44 

CSD have a medium-low micro-phenocryst content and higher level of nucleation density 

relative to VEI 0 samples. By looking at the shape of the curve it is possible to see the 

final decompression crystallization underlined by microlites, successively the curve is 

perturbed by a mixing event (Fig. 5.4c) which changed the linear cycle into a series of 

small steps of dissolution and crystallization of plagioclase, well visible in sieve textures. 

The number of steps indicate that input of a more basic magma occur more than once. 

PA-45 is very similar, presenting these various steps in the shape of the curve that could 

indicate plagioclase dissolution (sieve and boxy-cellular textures) and successive crystal 

nucleation. The CSD is also very close to the previous one both regarding nucleation 

density and crystallinity. 

For VEI 2 we determined CSDs for samples PA-27 and PA-14. The PA-27 CSD 

shows a final decompression state followed by an almost linear crystallization process. 

Since that we detected mixing textures in this eruption and that the content in micro-

phenocrysts is lower than the previous CSDs (with lower intensities), it is possible to 

interpret this curve according to a dynamic model on a CSD development in a study 

(Higgins & Roberge, 2003) of Soufrière Hills volcano. This study also related the 

development of the observed disequilibrium textures in this eruption to VEI. The shape of 

the CSD shows how after the initial texture development by nucleation and growth a 

mixing event occur due to the input of a more primitive magma, this event caused 

dissolution and textural coarsening (as seen in sieve and spongy-cellular textures). 

Consequently, a phase of buffering characterize further nucleation and growth of 
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plagioclase. Successively, a new input of mafic magma generated a further period of 

textural coarsening (and dissolution of microcrysts) followed by another period of 

buffering (nucleation and growth) in order to create the final CSD shape (Fig. 5.5). An 

almost similar CSD curve could characterize sample PA-14, with the difference in the 

higher level of nucleation density and undercooling. 
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Fig. 5.4 - Mixing interpretation on CSDs. (a) PA-3; (b) PA-19; (c) PA-44. Although these shapes could be 

related with two different cooling or depressurization events, we chose the mixing hypothesis by 

considering the mixing indicators described in Chapter 5.1. 

  

 

Fig. 5.5 - Alternate cycles of nucleation/growth and dissolution/buffering in order to generate coarse 

textures and the final CSD shape on sample PA-27. (1) Initial nucleation and growth with the solid phases 
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(plagioclase) that increases almost linearly; (2) interruption of the cycle by injection of mafic magma into 

the magma chamber, the smaller plagioclase crystals will dissolve while bigger crystals continue to grow 

with textural coarsening due to a period of buffering of the magma temperature; (3) restarting of the cycle 

with renewed nucleation and crystal growth; (4) new injection of mafic magma that induce the same 

process of panel (2), extending the CSD to larger crystal sizes; (5) Further nucleation and growth that gives 

the final CSD seen in erupted samples. These considerations are based on Higgins & Roberge (2003). 

Mixing events trigger a period of dissolution of plagioclase crystals and flat CSDs 

representing high nucleation and growth periods and higher crystallinity of the magma. A 

model (Fig. 5.6) that relates mixing and VEI is proposed, where mixing occurs only once 

dissolution of microcrystals slows convection of the magmatic system and the eruption is 

less explosive. Thus, VEI=0 have steeper CSDs; on the other hand, where CSDs are 

flatter (PA-44, PA-45, PA-14, and PA-27) more than one period of mixing has possibly 

occurred, consistent with the observation and analysis of disequilibrium textures  in these 

samples. In this case convection is inhibited by the great abundance of phenocrysts 

resulting from mixing induced nucleation and growth. This leads to more explosive 

eruptions. This model seems to be in accord with textural analysis, viscosity, and eruptive 

temperature of the samples.       

  

Fig. 5.6 - Proposed model for the correlation between the increase in explosivity and an increase in VEI, 

according to the shape of the CSDs. Where a single episode of mixing occurs convection is easy and the 

eruption will result less explosive, where many phases of mixing occurs convection is not easy (because of 

the abundance of phenocrysts) and the eruption will result more explosive. Indeed, phenocryst contents is 

higher in VEI=2 samples as well as viscosity. According to Ruprecht & Bachmann (2010), here we present 
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how is the higher content in phenocrysts that obstaculate the extent of mixing and heat exchange 

(increasing pressure and viscosity) resulting in more explosive eruptions. 

5.3 – Timing effect 

Magma mixing could trigger explosive eruptions, or in general for changes in 

eruptive style (Sparks & Sigurdsson, 1977; Kremers et al., 2012; Ruprecht & Bachmann, 

2010; Murphy et al., 1998).  

Based on the CSD data we consider, intrinsically, also the timing of the mixing 

processes that caused an increase in eruptive intensity and changes in eruptive style. 

Figure 5.7 shows how crystal residence, derived from the CSDs and considering a 

constant growth rates (Higgins, 2000; Higgins, 2006), increases with the intensity of 

eruption (VEI 0 to 2).  

 

Fig. 5.7 – Crystal size vs. ln(population density) showing the increasing in residence time from VEI 0 to 

VEI 2 samples. We used the main slope for each CSDs for illustration. 

What is the relationship between VEI and the crystal residence time? 

According to Sparks and Sigurdsson (1977), the intrusion of a mafic magma 

(1,100-1,300°C) into a felsic magma (750-950°C) chamber would perturb the normal 

cooling and crystallization, creating a metastable environment. Studies of vein intrusions 
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(Blake et al., 1965) show how a mafic magma intrudes into the system forming pillow-

like morphologies that increase the rate of heat transfer. A thermal wave passes through a 

substance, with radius R, in a time t given by 

 (Sparks & Sigurdsson, 1977) 

where K is the thermal diffusivity. For a normal pillow with 1 m in diameter and K = 3 × 

10
-7

m
2
s

-1
, t is ~ 29 hours. Because of the low time that the mafic magma needs to be 

thermodynamically equilibrated with the system (hours/days), the felsic magma is rapidly 

superheated. In this way, magma mixing leads to a very energetic convection in the felsic 

magma leading to a decrease in density from the base to the top of the magma chamber. 

For the formation of a convective cell the Rayleigh number (Ra) needs to exceed 660 

(Lighthill, 1953) in the equation  
 

 

where  is the coefficient of thermal expansion (= 5 × 10
-5

 deg
-1

), v the viscosity, d the 

length scale of the chamber, K is the thermal diffusivity,  is the density of the acid 

magma, g is the acceleration due to gravity, and  is the difference in temperature of the 

two magmas. For the occurrence of a typical magma mixing event the value of viscosity 

can be substituted with 10
6 

P, while d will be as 10-1000 m, and is 10-300°C. Thus, by 

using these substitution the Rayleigh equation result in 4 × 10
5
 to 10

13
: largely above the 

critical value.  

By modeling of a 2D convection cell the vertical velocity is given by  

 (Sparks & Sigurdsson, 1977) 

By substituting the results of the Rayleigh equation in a case of mixing (described 

above), the vertical velocity V will be in a range within 3.5 m d
-1 

and 3,000 m d
-1

. The 

meaning of this result demonstrate how magma mixing would generate vigorous and fast 

stirring of the felsic magma increasing the likelihood of an eruption in a time of only 

weeks or days. If the magma at the base is saturated in volatiles it became extreme 

supersaturated as it rises and, consequently, gas pressures are affected. This would also 

occur because of the high temperature of the acid magma that reduces the solubility of 

volatiles. Besides, the increase in volume of the magma chamber due to the input of 

mafic magma would increase the fluid pressure, arriving to generate fractures providing 

an explosive eruption. 

6 – Conclusion 

The goal of this work was to investigate whether  magma mixing phenomena 

influence the explosivity of mafic volcanic eruptions. Basaltic andesite samples which are 
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very similar in bulk composition and mode, but with a variety of eruption energy were 

examined petrographically.  

12 samples from two subduction zone volcanoes located adjacent to one another 

were studied. All samples had SiO2 of 49.27-53.65% and very similar contents of all 

major elements (near the boundary between hi-Al basalt and basaltic andesite). They 

were also texturally very similar with a high content of plagioclase (34-45% average, ~ 

0.5 mm average diameter) and olivine (4-7% average and 0.2 mm diameters).  Eruption 

intensities ranged from VEI 0 to 4.The samples selected are very similar to those that 

others have studied from the same volcanoes. 

Our observations focused on mixing indications that perturb and influence crystal 

growth, affecting the advanced crystallization rates and styles in the rocks. By textural 

and chemical analyses a great variability of mixing textures were detected: sieve-

plagioclase, boxy-cellular plagioclase, spongy-cellular plagioclase, fractured olivine, 

sieve-olivine, resorption rims. We used observed VEI as an indicator of eruption intensity 

for studies samples to compare each mixing texture with its degree of explosivity.  

From these data we reconstruct an evolving stage of mixing, with an increase in 

eruptive intensity, for textures in plagioclase and olivine crystals. Plagioclase 

disequilibrium textures change with increasing explosivity from boxy to sieve and 

spongy texture, while olivine show a linear increase in the depth and width of the 

fractures, the width of the resorption rims, and the quantity of broken crystals. Some of 

these textures/explosivity relationships are comparable with other volcanoes, during 

mixing episodes. 

Crystal size distributions in studied samples show more complex patterns and 

more crystals in samples erupted explosively. Crystal size distributions that derive from a 

single mixing event (with an obvious visible step in the curve) correlate with low 

intensity eruptions (VEI 0 and 1) because of the dissolution of the microcrysts and there 

is not enough remnant plagioclase growth in order to hinder convection. Multiple or 

prolonged events of mixing with several cycles of growth and dissolution that results in a 

high content of phenocrysts that make convection difficult, and the explosive potential 

increases because of overpressure in the magmatic system (VEI 2).  

The number of mixing events reflected in CSD, and the magma mixing-to-

eruption duration is apparently proportional to the explosivity of the volcanic event. The 

application of this method to determine the relationship between mixing duration and 

style and explosivity is restricted to volcanic products characterized by an intensity of 

VEI 0-4, where mixing processes are well documented and crystals are fully intact so that 

accurate CSDs can be measured. Likewise this relationship won't apply to crystal poor 

samples.  
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8 – Appendices 

 
8.1 – Appendix A _ Optical Microscopy Sample 

Preparation procedure 

 
First of all, in the process of preparation of the thin sections, it is made a cut of a 

small representative slice of the sample to analyze, isolating the superfluous part, from 
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this slice the thin section will be obtained subsequently. For this operation a diamond 

abrasive disk is used; during the cutting process the disk is continually wet with a 

cooling-liquid so that to avoid overheatings and also to remove the deposits that can be 

formed during the cutting. This phase is very delicate because needs to be careful in order 

to not create scratches or some type of microfractures in the slice of the sample, in fact 

this would be able to make the following phases more difficult and tiresome. The cut 

samples must be as the same size of the thin glass. 

In this case, the redoubt granulometry (size distribution of grains) and the high 

degree of porosity of the scoria and tephra samples made the phase of cutting almost 

impossible. To prevent this problem the samples were englobed using the EPOXY resin 

bicomponent, mixing with 12.5 ml of resin + 2.5 ml of hardening liquid. For the 

englobing phase of the resin in the sample was used a heated oven in order to facilitate 

the flowing of the EPOXY inside the pore of the samples. After 24 hours can start the 

phase of cutting, the cut residues were preserved in case of future analyses. After the 

cutting process, the "little bricks" are heated in oven at 60° C.  

Subsequently the samples are smoothed (on one side) through the lapping, using 

the carborundum (silicon carbide, SiC) as abrasive and a base of glass. In this phase it is 

important to not leave undulations or microfractures on the meaningful side of the sample, 

so diamond abrasive of 9, 6, 3, 1, 0.25 μm are used (more and more small size of SiC). 

Then the thin glasses are prepared, on which must be glues the "little bricks". The 

thin glasses were necessarily submitted to a lapping process, the final thickness requested 

is 1.200 μm. To do this was used an automatic polisher in which the setting has been 

programmed to 1.235 μm and the lapping time was planned in accord to the initial 

thickness of the thin glass.     

Once that the thin glasses are prepared, the next phase was the gluing of the 

lapped "little bricks". After at least 24 hours until the gluing phase, the following footstep 

occurred: the cutting of the "little bricks" glued on the thin glass. In the laboratory has 

been used a grinder, working through abrasive disks; the use of these disks need a 

continuous lubrication and cooling with water. At the end of this phase, was obtained a 

"little slice" of the sample with 2 mm of thickness. Successively, the lapping of the 

samples occur: the requested thickness is 1.235 μm (1.200 μm of glass + 35 μm of rock-

sample). 

 

8.2 – Appendix B _ More polarized light microscope 

images 
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Fig. 8.1 - Microphotograph of sample PA-19 (N//), at 2.5x: panoramic of the thin section where it is 

possible to see the great quantity of plagioclase crystals. 

 
Fig. 8.2 - Microphotograph of sample PA-45 (NX), at 10x: example of olivine with skeletal texture and thin 

resorption rims. 
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Fig. 8.3 - Microphotograph of sample PA-45 (NX), at 10x: particular of a clear Albite-Carlsbad twinning in 

a plagioclase crystal. 

 

 
Fig. 8.4 - Microphotograph of sample PA-46 (N//), at 10x: particular of a polysynthetic twinning of a sieve-

plagioclase. 
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Fig. 8.5 - Microphotograph of sample PA-46 (NX), at 2.5x: fractured olivine crystal twinned with a 

plagioclase crystal. Both crystals shows disequilibrium textures. 

 
Fig. 8.6 - Microphotograph of sample PA-46 (NX), at 2.5x: particular of fractured olivine crystal. 
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Fig. 8.7 - Microphotograph of sample PA-47 (NX), at 2.5x: panoramic of the sample showing an aggregate 

of sieve-plagioclase. It is possible to notice the hypocrystalline depth mass. 

 

 
Fig. 8.8 - Microphotograph of sample PA-47 (NX), at 2.5x: image showing a part of another aggregate of 

sieve-plagioclase (on the left) and an euhedral zonated crystal of olivine (on the upper right). 
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Fig. 8.9 - Microphotograph of sample PA-47 (NX), at 2.5x: it is possible to notice the two type of 

disequilibrium textures that characterize plagioclase crystals in this sample, sieve-texture (on the upper left) 

and boxy-cellular texture (on the right part). 
 

 
Fig. 8.10 - Microphotograph of sample PA-49 (NX), at 2.5x: panoramic of the sample where it is possible 

to see both plagioclase and olivine crystals characterized by disequilibrium textures. 
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Fig. 8.11 - Microphotograph of sample PA-49 (N//), at 2.5x: centre of a big crystal of plagioclase. 

 

 
Fig. 8.12 - Microphotograph of sample PA-49 (N//), at 2.5x: crystal of sieve-plagioclase included in the 

biggest crystal of the same type of Fig. 8.11. 
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Fig. 8.13 - Microphotograph of sample PA-27 (NX), at 2.5x: panoramic of the thin section, it is possible to 

see a sieve-plagioclase phenocryst (on the upper left). 

 

 
Fig. 8.14 - Microphotograph of sample PA-27 (NX), at 10x: particular of the disequilibrium signatures on 

the border of a spongy-cellular plagioclase. All these "holes" seems to be glassy inclusions. 
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Fig. 8.15 - Microphotograph of sample PA-30 (N//), at 2.5x: panoramic of the thin section, it is possible to 

see both spongy-cellular and sieve plagioclase crystals.  

 

 

 
Fig. 8.16 - Microphotograph of sample PA-30 (NX), at 2.5x: large sieve-plagioclase crystal (7 mm) with a 

high quantity of disequilibrium textures. 
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Fig. 8.17 - Microphotograph of sample PA-30 (NX), at 2.5x: other example of plagioclase crystal with 

disequilibrium textures characterized by many "holes". 

 
Fig. 8.18 - Microphotograph of sample PA-30 (NX), at 10x: euhedral crystal of olivine with fractures and a 

silica inclusion. Thermal cracking signatures are also observables. 
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Fig. 8.19 - Microphotograph of sample PA-14 (NX), at 2.5x: panoramic of the thin section, it is possible to 

see a showy spongy-cellular plagioclase (on the left) and two plagioclase twinned pursuing the Albite-

Carlsbad's law (on the upper right). 

 
Fig. 8.20 - Microphotograph of sample PA-14 (NX), at 2.5x: heap of plagioclase phenocrysts with 

prevalent spongy-cellular textures. 
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Fig. 8.21 - Microphotograph of sample PA-14 (NX), at 10x: great example of parallel striae in a plagioclase 

crystal (on the left), and a subhedral olivine crystal (on the upper right). 

 

 
Fig. 8.22 - Microphotograph of sample VF-74-130a (NX), at 2.5x: panoramic of the thin section, it is 

possible to see the big resorption rims that characterize both plagioclase and olivine minerals. 
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Fig. 8.23 - Microphotograph of sample VF-74-130a (NX), at 2.5x: particular of a sieve-olivine with 

fractures (on the left) and a skeletal-olivine (on the right). Both minerals have big resorption rims. 

 

 
Fig. 8.24 - Microphotograph of sample VF-74-130a (NX), at 2.5x: deep fractures  in an euhedral sieve-

olivine crystal, a great resorption rim is present. 
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Fig. 8.25 - Microphotograph of sample VF-74-130b (NX), at 2.5x: particular of a spliced olivine. 

 

 
Fig. 8.26 - Microphotograph of sample VF-74-130b (NX), at 10x: very deep and large fractures in an 

olivine crystal. 

 

8.2 – Appendix C _ More SEI images 
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Fig. 8.27 - Panoramic of the sample PA-19: it is possible to notice how the depth mass is microcrystalline, 

with crystals of plagioclase, olivine, and magnetite (this last characterized by high brightness). 

 
Fig. 8.28 – PA-19: Particular of a portion of the sample with high content in plagioclase microphenocrysts, 

with a general sharped shape. 
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Fig. 8.29 – PA-19: Particular of a microphenocryst of plagioclase.  

 
Fig. 8.30 – PA-19: Image that shows a type of plagioclase crystals co-grown. 
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Fig. 8.31 – PA-19: Image that show a co-growth within two plagioclase phenocrysts with sharped border. 

One of this crystal seems to be euhedral.  

 
Fig. 8.32 – Panoramic of the sample PA-44 where it is possible to see two different liquids: one more white 

and one more black in color. The white part is more crystalline.  
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Fig. 8.33 – PA-44: Magnified SEI image of the central white part in Fig. 8.32. Can be noticed how this part 

is characterized by a high content in crystals of plagioclase, and some olivine and magnetite. 

 

 
Fig. 8.34 – PA-44: SEI image of the more white part of the sample. It is possible to see many crystals of 

plagioclase and a depression located at the center. 

 



 

88 
 

 
Fig. 8.35 – PA-44: Magnified SEI image on a white part where are present a lot of plagioclase microcrysts 

with sharped and tabular shapes.  

 
Fig. 8.36 – PA-44: Particular of a phenocrysts of plagioclase, characterized by modified edge, surrounded 

by the same crystal phase.  
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Fig. 8.37 – PA-44: Particular of an euhedral microphenocryst of plagioclase. 

 

 
Fig. 8.38 – PA-44: Aggregate of plagioclase crystals. 
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Fig. 8.39 – PA-44: Particular of a bright sharped mineral of plagioclase.  

 
Fig. 8.40 – PA-44: SEI image of another area that contain the two type of liquid (white and black) mingled.  
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Fig. 8.41 – PA-44: SEI image that show the boundary between the two types of liquids.  

 
Fig. 8.42 – Panoramic SEI image of sample PA-49. It is possible to see crystals of plagioclase and, in minor 

content, olivine and magnetite. Crystals are characterized by sharped and reabsorbed edges. 
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Fig. 8.43 – PA-49: SEI image of a topographical depression filled by glass and some microcrystal.  

 
Fig. 8.44 – PA-49: Particular of the center of a big plagioclase crystal characterized by sieve-texture. The 

parallel striae are well visible.  
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Fig. 8.45 – PA-49: Particular of the boundary between a big crystal of plagioclase (on the left) and the rest 

of the sample (on the right).  

 
Fig. 8.46 – Panoramic SEI image of sample PA-27. It is possible to see a general abundance of plagioclase 

with minor content of olivine and a few crystals of magnetite. The groundmass differ from high-

concentrated crystal mushes in some parts to cryptocrystalline in other areas.  
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Fig. 8.47 – PA-27: Particular of a phenocryst of plagioclase with a singular shape and two “filaments” with 

the same composition.  

 
Fig. 8.48 – PA-27: SEI image where it is possible to notice the differences in the pattern of the groundmass 

and some microphenocrysts of plagioclase with a sharped shape.  
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Fig. 8.49 – PA-27: Magnified SEI image of a plagioclase phenocryst in Fig. 8.52. It is possible to see 

another type of crystal located on the upper part of the main crystal. By basing on the brightness it could be 

magnetite.  

 
Fig. 8.50 – PA-27: Particular of meaningful disequilibrium textures of snowflake clusters of plagioclase, 

found on a series of sieve-plagioclase phenocrysts.  
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Fig. 8.51 – PA-27: SEI image of an area characterized by the semi-absence of microcrysts in the 

groundmass. 

 

 
Fig. 8.52 – PA-27: SEI image where it is possible to notice a clear trail of snowflake textures of plagioclase 

that pass through the main crystal. 
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Fig. 8.53 – Panoramic of sample VF-74-130a. Plagioclase, olivine and magnetite crystals are well visible. 

In general, the size of the minerals varies from large to small microcrysts.  

 

 
Fig. 8.54 – VF-74-130a: Particular of sharped edge and foil shapes in plagioclase.  
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Fig. 8.55 – VF-74-130a: Particular of a subhedral phenocryst of olivine surrounded by microcrysts of 

magnetite. 

 

 
Fig. 8.56 – VF-74-130a: SEI image where it is possible to notice the same mineral phases (plagioclase, 

olivine, and magnetite) of the previous parts of the sample.  
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Fig. 8.57 – VF-74-130a: Meaningful SEI image that show two different types of liquids that coexists in the 

same sample. One more black (on the upper part) and one more white (on the lower part).  

 

 
Fig. 8.58 – VF-74-130a: Particular of the black part where it is possible to notice the semi-absence of 

phenocrysts. The degree of crystallinity is high (holocrystalline). 
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Fig. 8.59 – VF-74-130a: SEI image that shows clearly as the two liquid are mingled. In this case mingling 

is represented by a convolution within the white and black part. 

 
Fig. 8.60 – VF-74-130a: Magnification of the previous Fig. 8.59, on the white part. Phenocryst of 

plagioclase with a subhedral/anhedral morphology.  
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Fig. 8.61 – VF-74-130a: Particular of a sharped plagioclase phenocryst in the black part. It is possible also 

to notice the great resorption rim on the border. 

 
Fig. 8.62 – VF-74-130a: Particular of a xenolith of quartz with a semi-rectangular shape (on the upper left), 

in the black part.  
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Fig. 8.63 – VF-74-130a: Particular of a xenolith with a rectangular shape that could represent a mica 

(biotite or muscovite).  

 

 

8.4 – Appendix D _ Modal data from other works 

 

 
Fig. 8.64 – Modal data derived from other works (Eggers (1972), Bardintzeff & Deniel (1992), Rose et al. 

(2013), Cigala (2013), and Berlo et al. (2012)). 
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8.5 – Appendix E _ SEM characteristics 

  
For this work was used a JEOL JSM-6400 SEM, while for the image and spectra 

acquisition were used two different software, dPict7 and Revolution. Operational 

conditions included 20 kV of accelerating voltage and 39 mm of working distance. The 

acquisitions results in 1060x893 pixel images, with an average size of 928 kb, an 

horizontal resolution of 120 dpi and a vertical resolution of 120 dpi.  

 

8.6 – Appendix F _ More viscosity vs. temperature 

diagrams 

 

 
 

Fig. 8.65 – Viscosity vs. temperature plot showing how the viscosity is influenced by the H2O wt % in VEI 

1 sample (PA-49). 
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Fig. 8.66 – Viscosity vs. temperature plot showing how the viscosity is influenced by the H2O wt % in VEI 

2 sample (PA-27). 

 

 
Fig. 8.67 – Viscosity vs. temperature plot showing how the viscosity is influenced by the H2O wt % in VEI 

4 sample (VF-74-130a). 
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