CHAPTER 9-1

LIGHT: THE SHADE PLANTS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryophytes Are Shade Plants</td>
<td>9-1-2</td>
</tr>
<tr>
<td>Compensation Point</td>
<td>9-1-3</td>
</tr>
<tr>
<td>Light Quality</td>
<td>9-1-3</td>
</tr>
<tr>
<td>Light Measurement</td>
<td>9-1-4</td>
</tr>
<tr>
<td>Adaptations to Shade</td>
<td>9-1-5</td>
</tr>
<tr>
<td>Compensation Points</td>
<td>9-1-7</td>
</tr>
<tr>
<td>Sunflecks</td>
<td>9-1-9</td>
</tr>
<tr>
<td>Light Effects on Morphology</td>
<td>9-1-10</td>
</tr>
<tr>
<td>Summary</td>
<td>9-1-10</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>9-1-11</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>9-1-11</td>
</tr>
</tbody>
</table>
CHAPTER 9-1
LIGHT: THE SHADE PLANTS

Figure 1. Bryophytes growing in deep shade, with Frullania tamarisci hanging in the foreground. Photo by Michael Lüth, with permission.

Bryophytes Are Shade Plants

As in tracheophytes, bryophytes become light limited at low light intensities (Tixier 1979). For example, epiphyllous bryophyte cover increased fourfold in a clearing in Costa Rica compared to that in the dark understory (Monge-Nájera 1989). Nevertheless, bryophytes exist in places with very low light intensities (Figure 1). The atmosphere, canopy, and surrounding ground cover all contribute to diminishing the light reaching the moss surface (Figure 2), and latitude reduces the radiation reaching bryophytes near the poles.

It is their ability to make a net gain from photosynthesis at very low light intensities that permits bryophytes to live in places inhospitable to other plants. For example, herbaceous plants of a rich forest floor can retain 43-72% of the light that manages to penetrate the canopy, thus making the potential bryophyte substrate below very low in light indeed (Bodziarczyk 1992). Such total coverage becomes a competitive inhibitor for young seedlings, and even few bryophytes can tolerate such low light. But forests create an even greater toll on the light available to the soil substrate. They drop leaf litter that totally obscures the soil, making it uninhabitable for any bryophyte, and, most bryophytes seem unable to occupy the surface of this constantly changing leaf substrate. Thus, they are excluded from most of the deciduous forest floor by this inevitable litter-caused light limitation.
Chapter 9-1: Light: The Shade Plants 9-1-3

Figure 2. Irradiance at the moss surface —— and total solar irradiance ─── in PAR units for three consecutive days in central Alaska in a black spruce forest. Figure redrawn from Skré et al. 1983.

Compensation Point

Net photosynthetic gain is that net carbon which is stored; it reflects net loss of carbon as CO₂ in respiration and photorespiration. Think of it like your paycheck. Your gross income is much greater than that on your paycheck because you have taxes subtracted from it. Think of respiration as the tax and the paycheck as net photosynthesis. The level of light at which CO₂ gain by photosynthesis just equals that lost by respiration is referred to as the light compensation point, i.e., the light level at which net photosynthesis is zero. The mean annual light input must be above that level for the plant to maintain positive carbon gain. The highest intensity at which net photosynthesis increases is referred to as the light saturation point. And some bryophytes, especially some aquatic taxa, have very low light compensation and light saturation points.

In the bamboo forests (2200-3200 m asl) of Central Africa the bryophytes dry out in the daytime and regain moisture from the vapor-saturated atmosphere at night (Lösch et al. 1994). The mountain sites (2200-3200 m asl) had six times higher daily sums of PAR, temperatures 10-25°C, and relative humidities 60-100 %. Nevertheless, photosynthetic optima of lowland (rainforest) species were somewhat higher than that found for bryophytes at the mountain sites. The light compensation points were smaller (3-12 µmol photons m⁻² s⁻¹) in the lowland than in the highland species (8-20 µmol photons m⁻² s⁻¹). On the other hand, the slopes of the curves in the low light range of the lowland species were distinctly steeper than in the high light range. Bryophytes in the rainforest (800 m asl) receive extremely high ambient CO₂ due high decomposition. This CO₂ advantage, coupled with their low light requirements and optimal temperature and humidity conditions provide sufficient photosynthetic conditions for them in this dark environment. Those from the higher elevation bamboo forests and tree-heath environments can take advantage of the higher light conditions despite variable temperatures and humidities.

Light Quality

Light quality differs among habitats. In the open, plants experience the full spectrum of sunlight in what we call white light. However, in the forest, the green canopy absorbs much of the red light, reflecting and transmitting green light. These differences in wave lengths and their respective differences in energy are important in a number of plant functions, with photosynthesis being among those affected.

Federer and Tanner (1966) demonstrated these differences in various habitats. The light quality differs even between hardwoods (most deciduous trees) and softwoods (conifers). Furthermore, light quality differs between clear and cloudy days. Light among all species groups tested had an energy maximum at 550 nm, a minimum at 670-680 nm, and a very high maximum in the near infrared. The light within the canopy is both beam solar radiation and diffuse sky radiation and these are both reflected and scattered.

But how do these differences in light quality affect the bryophytes? In Physcomitrella patens (Figure 3), no inhibition was present under high light illumination (Cerff & Posten 2012). These researchers found that a combination of red and blue light is most effective in reaching high growth rates and chlorophyll formation rates.

Figure 3. Physcomitrella patens, a species that has good photosynthetic output in a combination of red and blue light. Photo by Janice Glime.
Light Measurement

Light has been measured in a variety of units, and unfortunately, most of them are not directly interconvertible because they measure different things. These different aspects of light also play different roles in physiology of bryophytes. Light wavelengths that stimulate photosynthesis are restricted to those that activate chlorophyll, whereas short wavelengths of ultraviolet light can bleach and damage chlorophyll. Other wavelengths stimulate red and yellow accessory pigments. Yellow pigments (cryptochromes) help plants measure the duration of light and respond to different wavelengths.

Traditionally, light was measured in foot candles – the intensity of light from one candle on a square foot of surface one foot from the candle. This English unit is, fortunately, easily convertible to metric units of lux (lumens per sq meter) – the intensity of light from one candle on one square meter of surface that is one meter from the candle. Thus, one lux is less bright than one foot candle, and to convert from foot candles to lux, one must multiply by 10.764.

PAR (= PhAR) units measure only photosynthetically active radiation and are based on measurements in sunlight. In general, about 45% of incoming sunlight lies within the spectral range of 380-710 nm (Larcher 1995), the range used by photosynthesis, thus the range of PAR. Ultraviolet light waves are shorter (UV-A at 315-380 nm; UV-B at 280-315 nm) and have no role in photosynthesis; they do, however, cause chlorophyll and DNA damage. Light available for photosynthesis (PAR) has been reported as photosynthetic photon flux density (PPFD), expressed as µmol m⁻² s⁻¹, or as watts per meter square (W m⁻²). The light reaching the Earth's outer atmospheric limits is 1360 W m⁻² (the solar constant). By the time it reaches Earth's surface, only 47% remains, thus making full sunlight ~640 W m⁻². This varies considerably across the face of the Earth due to reflectance, scattering, cloud cover, and global position.

At sea level, maximum intensity can reach ~1 kW m⁻², with PAR intensities of ~400 W m⁻². Full sunlight ranges ~70,000-100,000 lux (or 7,000-10,000 foot candles), with the higher number when there is a highly reflective white sand near the equator at midday or a complete snow cover on a sunny day. The generally-accepted value of maximum light is 680 lumens per watt of radiant power (Commission Internationale de l'Eclairage, Paris 1970). Fortunately, it is possible to provide a rough equivalent of PPFD at full sunlight of 1800 µmol photons m⁻² s⁻¹ because we know the spectral quality of sunlight. However, when light is measured in shade, where leaves filter out red light and transmit green, or under water, or other places where the full spectrum of sunlight is not represented in the same proportions, such a conversion is not directly possible.

Table 1 gives approximate conversions under several more predictable conditions.

Having said all this, we have only looked at one end of the spectral effect – the light source (McCree 1973). Once light strikes the leaf, it encounters not only chlorophyll pigments (actually two chlorophylls in the plant kingdom, a and b), but it also encounters accessory pigments of various mixes of yellow, orange, and red (Figure 4) occurring in cell walls, cytoplasm, and plastids. Furthermore, cell shape can bend and focus or scatter light, depending on cell wall structure.

Thus, our measurements of light are biased representations of light from the perspective of humans and not that of a plant leaf that must use that energy to activate the photosynthetic pathway. But, alas, it is the best we can do at present. This is not all bad, because the differences in response of various plants to the same measured light output give us indirect indications of differences in adaptations to light capture and cause us to probe further.
for causes. Unfortunately, lumens and lux tell us even less because we have no measure of the wavelengths being received by the plant and thus know less about what sorts of adaptations to examine. It is like a human looking at a flower that reflects UV. We don't see what the bee sees.

Table 1. Conversions between PAR (phAR) units or Klux (400-700 nm) units to µM photons m⁻² s⁻¹ for light under ~predictable spectral conditions. (From McCree 1981; Larcher 1995).

<table>
<thead>
<tr>
<th>To convert from:</th>
<th>W m⁻²</th>
<th>Klux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply by factor in column (PAR) to obtain µM m⁻² s⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>daylight (sunny)</td>
<td>4.6</td>
<td>18</td>
</tr>
<tr>
<td>daylight (diffuse)</td>
<td>4.2</td>
<td>19</td>
</tr>
<tr>
<td>metal halide lamp</td>
<td>4.6</td>
<td>14</td>
</tr>
<tr>
<td>fluorescent tube (white)</td>
<td>4.6</td>
<td>12</td>
</tr>
<tr>
<td>incandescent lamp</td>
<td>5.0</td>
<td>20</td>
</tr>
</tbody>
</table>

Adaptations to Shade

Just what is it that permits bryophytes to succeed where light levels are so low, particularly when compared to tracheophytes? Certainly simple structure is one factor. Tracheophytes are actually adapted to protect themselves from high light intensity by having a thick, waxy cuticle and an epidermis. And the palisade layer in many taxa protects spongy mesophyll from light by using chlorophyll and other pigments to absorb much of it before it reaches the photosynthetically adapted spongy tissue. Bryophytes, on the other hand, have none of these adaptations and expose their photosynthetic cells directly to the light by having only one leaf cell layer in most cases (Figure 5). Only thalloid liverworts like *Marchantia* (Figure 6) have an arrangement somewhat similar to spongy mesophyll (Figure 7), and a few mosses like the Polytrichaceae have a folded-over leaf margin surrounding leaf lamellae (Figure 8, lower), somewhat resembling palisade tissue of a tracheophyte. In fact, knowing the structure of a bryophyte, we must ask ourselves instead how they survive in the sun.

Figure 5. Upper: Leaves of Mylia anomala. Lower: Cells showing chloroplasts in one-cell-thick leaf of the leafy liverwort Mylia anomala. Photos by Michael Lüth, with permission.

Figure 6. Marchantia polymorpha ruderalis showing pores on surface. Photo by David Holyoak, with permission.

Figure 7. Cross section of thallus, through pore, of Marchantia polymorpha. Note the spongy nature of the photosynthetic layer where it is visible below the pore. Photo by Jennifer Steele, Botany Website, UBC, with permission.

Figure 8. Upper: Leaf lamellae of Pogonatum contortum, typical of those found in all members of the Polytrichaceae. Lower: Leaf lamellae with leaf lamina rolled over them in Polytrichum piliferum. Photos with permission from Botany Website, UBC, with permission.
Most bryophytes are physiologically adapted to low light intensities and therefore have low chlorophyll $a:b$ ratios (1.0-2.5:1, Mishler & Oliver 1991) compared to tracheophyte sun plants ($C_3 = 3:1$, $C_4 = 4:1$, Larcher 1983). Marschall and Proctor (2004) examined 39 moss and 16 liverwort species and determined that despite considerable variability, chlorophyll values were typical of shade plants. Median values of total chlorophyll were 1.64 mg g^{-1} for mosses and 3.76 mg g^{-1} for liverworts. Mosses had a chlorophyll $a:b$ ratio of 2.29 and liverworts of 1.99, suggesting that liverworts are more shade-adapted than mosses. The reduced chlorophyll $a:b$ ratio is due to increased levels of chlorophyll b, a typical shade adaptation that permits more trapping of photons that are then transferred to chlorophyll a. Even in those bryophytes that are sun species, the ratio tends to be low and the optimum light level likewise low. For example, *Plagiochasma intermedium* (Figure 9) has its optimum light intensity at 3500 lux with a day length of 10 hours (Patidar & Jain 1988); *Riccia discolor* has the same intensity optimum (Gupta et al. 1991). But full sunlight can be 70,000-100,000 lux.

Marschall and Proctor (2004) found that the PPFD (photosynthetic photon flux density) at 95% saturation had a median of 583 µmol m$^{-2}$ s$^{-1}$ for mosses and 214 µmol m$^{-2}$ s$^{-1}$ for liverworts, again suggesting that liverworts are adapted to a lower light regime. Not surprisingly, two *Polytrichum* (Figure 10) species had the highest values. Their system of lamellae (Figure 8) provides them with considerable surface area to exchange gas and enhance their photosynthetic capability. Other bryophytes appear to be limited by their lack of sufficient surface area for CO$_2$ uptake. Green and Snelsag (1982) report that in the thallose liverwort *Marchantia foliacea* (Figure 11) the internal air chambers do little to facilitate photosynthesis compared to *Monoclea forsteri* (Figure 12) which has a solid thallus. Rather, the spaces facilitate water retention and the authors suggest that *Marchantia foliacea* would fare better photosynthetically if it had a solid thallus in very moist environments. Presumably this would afford it more photosynthetic tissue for light capture.

Figure 9. *Plagiochasma intermedium*, a species with an optimum light intensity of only 3500 lux and 20-hour days. Jan-Peter Frahm, with permission.

Figure 10. *Polytrichum commune*. Two *Polytrichum* species have the highest photosynthetic values. Photo by A. J. Silverside, with permission.

Figure 11. Upper: *Marchantia foliacea* thallus. Lower: Cross section of thallus of *Marchantia foliacea* showing the nearly solid nature of the thallus. Air chambers occur within the green layer near the upper surface. The brown layer is a layer of arbuscular mycorrhizal fungi. Photos by Julia Russell, with permission.

Figure 12. Thallus of *Monoclea forsteri*. Photo by Jan-Peter Frahm, with permission.

Tuba (1987) explains that because poikilohydric plants must depend on atmospheric moisture to regulate their internal water content, they are most likely to photosynthesize during early morning hours when there is dew, and during rainstorms, since those are the only times...
their cells are hydrated sufficiently. These plants are most likely to be desiccated during periods of high light levels. Thus, it is logical that their chlorophyll is adjusted to low light levels and that their light compensation (Table 4) and light saturation points are low when compared to those of most flowering plants (Table 2). Nevertheless, the light compensation points seem to be slightly higher than those of shade-adapted flowering plants (Table 2), suggesting that bryophytes may benefit from occasional sunflecks (patches of light due to movement or gaps among the canopy leaves), or that we have insufficient data thus far to be making these generalities!

Table 2. Comparison of light compensation and saturation points for photosynthetic organisms from various habitats. From Larcher 1983, compiled from various authors.

<table>
<thead>
<tr>
<th>Plant group</th>
<th>Compensation light intensity I_k in Klux</th>
<th>Light saturation I_S in Klux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbaceous plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₄ plants</td>
<td>1-3</td>
<td>>80</td>
</tr>
<tr>
<td>Agricultural C₃ plants</td>
<td>1-2</td>
<td>30-80</td>
</tr>
<tr>
<td>Herbaceous sun plants</td>
<td>1-2</td>
<td>50-80</td>
</tr>
<tr>
<td>Herbaceous shade plants</td>
<td>0.2-0.5</td>
<td>5-10</td>
</tr>
<tr>
<td>Woody plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter-deciduous foliage trees and shrubs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun leaves</td>
<td>1-1.5</td>
<td>25-50</td>
</tr>
<tr>
<td>Shade leaves</td>
<td>0.3-0.6</td>
<td>10-15</td>
</tr>
<tr>
<td>Evergreen foliage trees and conifers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun leaves</td>
<td>0.5-1.5</td>
<td>20-50</td>
</tr>
<tr>
<td>Shade leaves</td>
<td>0.1-0.3</td>
<td>5-10</td>
</tr>
<tr>
<td>Understory ferns</td>
<td>0.1-0.5</td>
<td>2-10</td>
</tr>
<tr>
<td>Mosses and lichens</td>
<td>0.4-2</td>
<td>10-20</td>
</tr>
<tr>
<td>Water plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planktonic algae</td>
<td>(7) 15-20</td>
<td></td>
</tr>
<tr>
<td>Tidal-zone seaweeds</td>
<td>1-2</td>
<td>10-20</td>
</tr>
<tr>
<td>Deep-water algae</td>
<td>1-2</td>
<td>2-10</td>
</tr>
<tr>
<td>Seed plants</td>
<td><1-2</td>
<td>(5) 10-30</td>
</tr>
</tbody>
</table>

We do know that bryophytes are able to adjust to low light levels by increasing their number of chloroplasts, as demonstrated for *Funaria hygrometrica* in Figure 13.

Figure 13. *Funaria hygrometrica* cells from dim light (left) and strong light (right). Photos by Winfried Kasprik.

Compensation Points

Certainly some bryophytes are able to grow over a relatively wide range of light intensities, increasing their growth rate as the intensity increases. For example, in *Marchantia palacea* var. *diptera* (Figure 9), this growth increase occurs from 5.4 to 60 W m⁻² (Taya *et al*. 1995). However, above that level, there is a significant and rapid decrease in growth.

Table 3. Published light compensation and saturation points for bryophytes.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Comp</th>
<th>Sat</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fontinalis</td>
<td>5°C</td>
<td>15</td>
<td>Burr 1941</td>
</tr>
<tr>
<td>Atrichum</td>
<td>20°C</td>
<td>40</td>
<td>Baló 1987</td>
</tr>
<tr>
<td>Plagiomnium</td>
<td>summer</td>
<td>10,000</td>
<td>Baló 1987</td>
</tr>
<tr>
<td>Chiloscyphus rivularis</td>
<td>1500</td>
<td>25,000</td>
<td>Baló 1987</td>
</tr>
</tbody>
</table>

Table 4. Published light compensation and saturation points for bryophytes.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Comp</th>
<th>Sat</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pellia borealis</td>
<td>21°C</td>
<td>4.6</td>
<td>Szewczyk 1978</td>
</tr>
<tr>
<td>Fissidens serrulatus</td>
<td>21°C</td>
<td>7</td>
<td>Gabriel & Bates 2003</td>
</tr>
<tr>
<td>Andoa berthelotiana</td>
<td>21°C</td>
<td>8</td>
<td>Gabriel & Bates 2003</td>
</tr>
<tr>
<td>Echinodium prolincum</td>
<td>21°C</td>
<td>9</td>
<td>Gabriel & Bates 2003</td>
</tr>
<tr>
<td>Bazzania azorica</td>
<td>21°C</td>
<td>9</td>
<td>Gabriel & Bates 2003</td>
</tr>
</tbody>
</table>
Table 4. Published light compensation points, relative to natural (full sun) irradiance, for bryophytes.

<table>
<thead>
<tr>
<th>Species</th>
<th>Light Compensation (%)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drepanocladus</td>
<td>0.03%</td>
<td>Pridle 1980</td>
</tr>
<tr>
<td>Calliergon</td>
<td>0.16%</td>
<td>Pridle 1980</td>
</tr>
<tr>
<td>Fissidens serrulatus</td>
<td>~0.4%</td>
<td>Gabriel & Bates 2003</td>
</tr>
<tr>
<td>Thuidium cymbifolium</td>
<td>0.57%*</td>
<td>Hosokawa & Odani 1957</td>
</tr>
<tr>
<td>Hylocomium cavifolium</td>
<td>0.57%*</td>
<td>Hosokawa & Odani 1957</td>
</tr>
<tr>
<td>Thamnium sandei</td>
<td>0.57%*</td>
<td>Hosokawa & Odani 1957</td>
</tr>
<tr>
<td>Homaliodendron scalpellifolium</td>
<td>0.57%*</td>
<td>Hosokawa & Odani 1957</td>
</tr>
<tr>
<td>Calliergonella cuspidata</td>
<td>1%</td>
<td>Kooijman unpubl</td>
</tr>
<tr>
<td>Hylocomium splendens</td>
<td>1.7%</td>
<td>Sonesson et al. 1992</td>
</tr>
<tr>
<td>Racemitrium lanuginosum</td>
<td>~2%</td>
<td>Skré & Oechel 1981</td>
</tr>
<tr>
<td>Pleuroziun schreberi</td>
<td>~2.5-5%</td>
<td>Skré & Oechel 1981</td>
</tr>
<tr>
<td>Racemitrium lanuginosum</td>
<td>~7.5%</td>
<td>Kallio & Heinonen 1975</td>
</tr>
<tr>
<td>Sphagnum angustifolium</td>
<td>2.1%*</td>
<td>Harley et al. 1989</td>
</tr>
<tr>
<td>Sphagnum angustifolium</td>
<td>7.1%*</td>
<td>Harley et al. 1989</td>
</tr>
</tbody>
</table>

*Converted from µM m⁻² s⁻¹ assuming 1800 µM m⁻² s⁻¹ at full sunlight.
+Converted from lux, assuming full sun of 70,000 lux.

A low compensation point and a low light saturation value are typical for C₃ plants, and thus for bryophytes (Table 2). The low light compensation point in tracheophytes is in part due to the ability of C₃ plants to open their stomata quickly to take advantage of CO₂ exchange whenever sufficient light is available. However, lacking stomata, bryophytes are not limited by stomatal opening speed, so response time to take in CO₂ should not impose the same kinds of limits it does in tracheophytes. On the other hand, higher levels of CO₂ permit photosynthetic gain at high light intensities by increasing...
the light saturation point. For light energy to be used in photosynthesis, there must be sufficient CO₂ for the fixation of photosynthetic product. Otherwise, excess excitation energy can damage the photosynthetic apparatus. Therefore, we should expect to find a higher light saturation point when the CO₂ concentration is higher, as already seen for *Hylocomium splendens* (Figure 18) (100 μmol m⁻² s⁻¹ at a CO₂ concentration of 400-450 mg L⁻¹) (Sonesson *et al.* 1992). This is a relatively high level of CO₂ (but a reasonable level at the soil interface) and likewise a high level of light saturation. We will see shortly that such a high light saturation level in this CO₂-enriched environment will permit the plants to take advantage of bursts of light (**sunflecks**; Figure 19) reaching the forest floor. Again, it would appear that lacking stomata, bryophytes are positioned to be able to make immediate use of these short bursts and have the physiological apparatus to accommodate them.

Sunflecks

Importance of sunflecks (Figure 19) for forest floor tracheophytes is well known. However, bryophyte usage of these bursts of light has been largely ignored (Kubásek *et al.* 2014). These researchers suggest that the anatomy of bryophyte gametophytes would allow a more rapid induction of photosynthesis due to the one-cell thickness, lack of stomata that must be opened, and only thin cuticle. They compared 10 moss species from sun and shade sites. By providing light after dark acclimation, they found that the moss photosynthesis did indeed induce much faster than observed in tracheophytes, reaching 50% of maximum gross photosynthesis in only 90 seconds. Maximum photosynthesis occurred in only 220 seconds, compared to 500-2000 s for most tracheophytes. Shade-grown mosses had a photosynthetic capacity comparable to that of sun grown plants. *Hypnum cupressiforme* (Figure 20-Figure 21) from shade induced photosynthesis slightly faster than did those from sunnier forest gaps (Figure 22). This high photosynthetic capacity permits these forest mosses to make efficient use of sunflecks.
ppmV of CO₂. This is similar to the photosynthetic capacities of many understory tracheophytes.

Some tracheophyte physiologists have expressed surprise that shade-grown mosses do not have significantly lower photosynthetic capacity than gap-grown mosses (Jiri Kubásek, pers. comm. 5 April 2007). But consider the adaptations that cause tracheophytes to have less ability to take advantage of sunflecks. First they must open stomata, the slowest process in the induction of photosynthesis. Then, they have layers of cells to protect them from the high light intensity. And often they have a thick cuticle that reflects the sun, whereas it is thin in bryophytes. Bryophytes have none of these constraints and therefore can respond quickly to the short duration of sunfleck light. Typically, however, light saturation points for bryophytes are low compared to those of tracheophytes. Gabriel and Bates (2003) found that most of the species they examined from an evergreen laurel forest had a saturation point less than 30 µmol m⁻² s⁻¹, although the lowest among the seven species they studied was 20 µmol m⁻² s⁻¹. The highest was for *Myurium hochstetteri* (Figure 24-25), which was saturated at 68 µmol m⁻² s⁻¹. See also Chapter 9-2 for further discussion of Sunflecks.

Light Effects on Morphology

Sometimes added light can give unexpected results. Such is the case with *Calliergonella cuspidata* (Figure 26). In experiments where tracheophytes were cut, creating more exposure in a calcareous fen in the Swiss mountains, the moss *Calliergonella cuspidata* exhibited a number of morphological differences (Bergamini & Peintinger 2002). It had smaller increments in length on the main axis, shorter offshoots, greater branching density, higher number of offshoots, and greater biomass per unit length. On the other hand, there were no observable effects of increased N supply.

Summary

In general, bryophytes are adapted to low light, relative to other land plants. They do well in forests as long as they are not buried by leaf litter. Most taxa have a low light compensation point and a low light saturation point. Light is usually measured as photosynthetically active radiation (PAR), but this ignores the ability of accessory pigments to trap other wavelengths and transfer the energy to chlorophyll a.

Most bryophytes are adapted to capture of low light intensities due to their one-cell-thick leaves and lack of well-developed cuticle. Responses of bryophytes to

Figure 23. *Bryum argenteum*, a sun-tolerant moss made whitish by hyaline tips of overlapping leaves. Photo by George Shepherd, through Creative Commons.

Figure 24. *Myurium hochstetteri* habitat. Photo by Michael Lüth, with permission.

Figure 25. *Myurium hochstetteri*, the bryophyte species with the highest light saturation point among those tested in the laurel forest. Photo by Michael Lüth, with permission.

Figure 26. *Calliergonella cuspidata*, a species that has longer leaf intervals when shaded by tracheophytes. Photo by Michael Lüth, with permission.
low light are similar to those of tracheophytes, with increased chlorophylls and antenna pigments, depressed light saturation and compensation points, and deeper green color. However, some bryophytes at least do not have a lower chlorophyll \(a:b \) ratio in low light compared to high light, as would the typical tracheophyte. Rather, bryophytes in general have a lower chlorophyll \(a:b \) ratio in all light conditions than do tracheophytes. This suggests that the bryophyte, with its chlorophyll \(a \) concentrations maintaining proportionality to chlorophyll \(b \) concentrations, would be ready for brief opportunities when bright light becomes available. Liverworts seem to be better adapted to shade than mosses, with a lower chlorophyll \(a:b \) ratio, higher concentration of total chlorophyll, and lower PPFD.

Such a strategy would adapt these plants well to the forest habitat where so many reside, permitting them to take advantage of changing positions of the sun as it filters through trees and brief bursts of light as sunflecks when the wind changes the arrangement of the overarching canopy.

There is a broad range of light compensation points among bryophytes, ranging from 0.03% of full sunlight in deep water species to 7.5% in sun species. Light saturation points are likewise low, although some bryophytes seem able to use bursts of high light intensity and can increase their saturation points when higher levels of \(\text{CO}_2 \) are available.

Acknowledgments

I thank Jiri Kubásek for many email discussions about bryophytes and sunflecks.

Literature Cited

Proctor, M. C. F. 2002. Ecophysiological measurements on two pendulous forest mosses from Uganda, Pilotrichella

CHAPTER 9-2
LIGHT: ADAPTATIONS FOR SHADE

TABLE OF CONTENTS

Structural Adaptations for Light Capture .. 9-2-2
 Lamellae .. 9-2-3
 Surface Reflectance ... 9-2-4
 Altering Wavelengths ... 9-2-4
 Papillae .. 9-2-6
 Leaf Area Index .. 9-2-9
Self-shading ... 9-2-10
 Bryophyte Canopy ... 9-2-10
 Growth and Branching ... 9-2-11
Chlorophyll Fluorescence ... 9-2-14
Morphological Responses .. 9-2-14
Physiological Adaptations to Low Light ... 9-2-16
 Chlorophyll ... 9-2-17
 Other Pigments ... 9-2-19
 Chloroplast Movement .. 9-2-20
 Light and Storage ... 9-2-22
Forest Gaps ... 9-2-23
Sunflecks ... 9-2-26
Litter Burial ... 9-2-27
The Partnership Choice ... 9-2-27
Summary .. 9-2-27
Acknowledgments .. 9-2-28
Literature Cited ... 9-2-28
CHAPTER 9-2
LIGHT: ADAPTATIONS FOR SHADE

Figure 1. Hemlock hardwood forest in West Virginia, showing the absence of bryophytes among the leaf litter on the forest floor but growing on exposed rocks. Photo by Janice Glime.

Structural Adaptations for Light Capture

Among my favorite posters at the meetings of the Ecological Society of America, 1993, were the several posters on light focussing by seed plants (DeLucia et al. 1996). These illustrated principles I have considered for bryophytes but been unable to test. They found that epidermal cells (lens cells) that are rounded at the surface can focus the light in the leaf. In shade leaves, these lens cells are spherical; in the sun they are elliptical. In bryophytes, some leaves have mammillose (swollen) cells that are similar to the lens cells they describe (Figure 5). The ability of these cell surfaces to focus light on the chloroplasts has not been explored, except in the case of the protonemata of Schistostega pennata (Figure 2-Figure 4), as will be discussed in Chapter 9-5 of this volume.
Tracheophytes can move their leaves instead of their chloroplasts. In their study, DeLucia et al. (1996) found that further adjustments to the light reaching the chloroplasts of tracheophyte leaves were facilitated by leaf angles. In mesic woods, fewer than 10% of the leaves were angled more than 60°, whereas in xeric sites with high light intensity more than 75% of the leaves were angled. Leaf thickness also related to moisture, with 75% of taxa at the three most open sites having leaves more than 0.4 mm thick, while at more mesic sites less than 12% of the taxa reached such a thickness. High sunlight resulted in palisade tissue on both sides of the leaf.

In a different poster, DeLucia et al. (1996) noted attenuation of green light by 2.7 times and red light by 8 times in the air space at the palisade/mesophyll interface. By applying oil to fill the air spaces, they reduced reflectance and caused a decrease in fluorescence by 50%. They interpreted this to mean that reflectance in the air space caused more light to be available for absorbance by the chloroplasts. A thick palisade reduces the reflectance and therefore reduces the light reaching the spongy mesophyll. At light intensities of less than 30 µM m⁻² s⁻¹, the air space reflectance increased the photosynthetic rate by 30-50%, with lesser increases at higher light intensities.

If we consider the bryophyte branch to act like a leaf, these principles could be tested in bryophytes. Lens-shaped leaf cells (Figure 5) could focus light on cells of overlapped leaves that are more moist because of their internal position. Such a focussing would be facilitated by the tendency for moss chloroplasts to arrange themselves around the periphery of the cell, thus leaving the center of the cell available for focussing without increasing absorption. Can we find any correlation between the leaf or branch position of bryophytes and the light regimes under which they grow?
Surface Reflectance

Lovelock and Robinson (2002) have found that various mosses differ in their surface reflectance properties and that the differences do not correlate with pigment concentrations, suggesting that surface shape and water content may play a role in surface reflectance. In studying the Antarctic mosses *Bryum pseudotriquetrum* (Figure 10), *Ceratodon purpureus* (Figure 11), and *Schistidium antarcticum* (Figure 11), Lovelock and Robinson (2002) found that the reflectance spectra were similar to those of angiosperm leaves with chlorophyll having the major influence. The mosses likewise did not differ from angiosperms in their UV reflectance, but they did differ significantly at 526, 550, and 850 nm light wavelength and seemed to have a different cold hard band – that portion of the absorbance that correlates with the formation of the chlorophyll-protein complex that protects against freezing damage. It is no surprise that *Ceratodon purpureus* had higher concentrations of anthocyanins (Figure 12), since it is frequently red-tinged, whereas it had lower chlorophyll concentrations than the other two species. *Bryum pseudotriquetrum* (Figure 10) had higher levels of UV-absorbing pigments but lower carotenoid levels than the other two taxa, but the other two taxa had higher levels of pigments associated with photoprotection from visible light. The correlation between surface reflectance and plant pigment concentration was low, suggesting that surface structure may have played a major role in reflectance. Rehydration of dry *Schistidium antarcticum* resulted in a significant increase in the photosynthetic reflectance (Figure 11), but it is unclear as to the mechanism. The surface reflectance is highly influenced by the environmental conditions under which the mosses are growing and seems to be linked to water content and morphology of the individual plants and their clone.

Altering Wavelengths

Light is modified as it travels through the atmosphere, losing energy and lengthening the wave lengths, thus...
changing the quality of the light. This of course doesn't mean good or bad, but rather means the color composition of the light changes.

The mosses themselves also alter the light quality. They reflect the colors we see, absorb others, and transmit still others. They typically absorb blue and red light, as do tracheophytes, but they differ from tracheophytes in having a green peak that responds to the red, brown, or green coloration of various species (Bubier et al. 1997). In their study, Bubier and coworkers examined boreal forest and peatland mosses, including feather mosses (forests; Figure 13), brown mosses (rich fens; Figure 20), and Sphagnum (bogs and poor fens; Figure 14-Figure 19). They found that the mosses are typically less reflective than are tracheophytes, resulting from strong water absorption features in the range of 1.00-1.20 μm. This absorption results in reflectance peaks at ~0.85, 1.10, and 1.3 μm (NIR 1, 2, & 3). Sphagnum species have a minor absorption at 0.85 μm that is absent in all brown and feather mosses and in all tracheophytes. Furthermore, the red absorption is narrow in Sphagnum. Bubier and coworkers concluded that the overall moss reflectance in the 1.50-2.50 region is lower than that for tracheophytes because of the higher water content of moss tissue. This is further supported by the high reflectance of lichens, which typically have dry tissues.

Figure 13. *Pleurozium schreberi*, a feather moss from the forest floor. Photo by Sture Hermansson, with online permission.

Figure 14. *Sphagnum* hyaline cells & pores (SEM), a structure that may alter the light quality that is reflected and that enters the photosynthetic cells. Photo from Botany Website, UBC, with permission.

Figure 15. *Sphagnum austini*, exhibiting one of the many colors in the genus *Sphagnum*. Photo by Des Callaghan, with permission.

Figure 16. *Sphagnum balticum* (brownish red) and *S. cuspidatum* (light green) showing two contrasting colors in the genus *Sphagnum*. Photo by Jan-Peter Frahm, with permission.

Figure 17. *Sphagnum capillifolium*, one of the red species of *Sphagnum*. Photo by Blanka Shaw, with permission.
Papillae

I wonder how papillae (Figure 21-Figure 28) might fit the reflectance model. I have long thought that papillae might serve to scatter the light on a dry moss while permitting transmission on a wet one. It would seem like a relatively easy thing to test with a microscope and photometer. And does the shape of the papillae make a difference (Figure 21-Figure 28)?

Figure 18. *Sphagnum fuscum*, one of the brown species of *Sphagnum*. Photo by Andres Baron Lopez, with permission.

Figure 19. *Sphagnum magellanicum*, one of the species that becomes red in bright light. Photo by Michael Lüth, with permission.

Figure 20. *Warnstorfia exannulata*, one of the brown mosses. Photo from Biopix, through Creative Commons.

Figure 21. *Tortula muralis*, a papillose moss of open habitats. Photo from Botany Website, UBC, with permission.

Figure 22. *Tortula muralis* showing leaves that look waxy due to papillae. Photo by Christophe Quintin, through Creative Commons.

Figure 23. *Tortula muralis* leaf cell papillae. Photo by Walter Obermayer, with permission.
The role of papillae has been controversial at best. Crandall-Stotler and Bozzola (1991) have shown that at least *Andreaeobryum macrosorum* (Figure 29) leaf papillae have narrow channels through which water can enter upon rehydration. It has occurred to me that these channels might also behave as fiber optics – a notion that remains to be tested.
It is this convex surface that often is exposed to light. In papillose mosses such as *Thuidium* (Figure 30-Figure 31) and *Hedwigia* (Figure 32-Figure 35), the tops of papillae tend to remain dry, even when the leaf surface is wet, giving them that waxy or dull appearance. The tiny channels, when present, could function as fiber optics, much as the fur of a polar bear, but on a much smaller scale. Hence, the light could be focussed through the papillae onto the chloroplasts while water is obstructing and altering the light entering other parts of the cell. As can be seen in Table 1, there are lots of potential light adaptations in bryophytes that remain to be tested.
Table 1. Comparison of sun and shade leaves of bryophytes and seed plants. + = high rates or large amounts, - = low rates or small amounts, ? = unknown. [Data for seed plants (tra) from Larcher 1983, compiled from many authors, with characteristics applying to structures that don't exist in bryophytes omitted; bryophyte (bry) data based on literature presented in this volume.]

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Sun Leaves bry</th>
<th>Sun Leaves tra</th>
<th>Shade Leaves bry</th>
<th>Shade Leaves tra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area of leaf blade</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cell number</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Chloroplast number per unit area</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Density of packing of the membrane systems in the chloroplasts</td>
<td>?</td>
<td>-</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>Chemical features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Energy content of dry matter</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Water content of fresh tissue</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cell-sap concentration</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Starch</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Cellulose</td>
<td>?</td>
<td>-</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>Lignin</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Lipids</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Acids</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Anthocyanin, flavonoids</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ash</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Ca/K</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Chlorophyll a/b</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Chlorophyll a (P-700)</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>Photosystem II pigment complex</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyll/xanthophylls</td>
<td>?</td>
<td>-</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>Lutein/violaxanthin</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Functional features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photosynthetic capacity</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Respiratory intensity</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
</tr>
</tbody>
</table>

Leaf Area Index

The leaf area index (LAI) has been used to show structural responses of tracheophyte leaves to high vs low light conditions. This value represents the percentage of ground area covered by leaves, hence (total leaf area) / (area of ground). Likewise, bryophytes can exhibit a leaf area index that is directly proportional to the light intensity (Sluka 1983). Unfortunately, few measurements have been taken on bryophytes. Simon (1987) compared two desiccation-tolerant mosses with one more mesic species and found what she considered to be high LAI values. For Syntrichia ruralis (Figure 36), the LAI was 44, for Ceratodon purpureus (Figure 37) 129, and for the more mesic Hypnum cupressiforme (Figure 38) 103. These indeed seem to be enormous. By contrast, forest floor tracheophyte species in a montane forest had an LAI of only 3.8 (Schleppi et al. 1999); in a tropical cloud forest the LAI was only 1.6 in a gap less than 8 months old, increasing to the pre-gap level of 5.1 in three years (Lawton & Putz 1988). Larcher (1995) considered 4-6 to be optimal for herbaceous plants with horizontal leaves and 8-10 optimal for grasses. Asner et al. (2003) reviewed more than 1000 LAI studies from around the world and found that the maximum for an ecosystem was 18 with a mean of 5.2±4.1. The macroalga Fucus serratus (Figure 39) achieved its maximum productivity for an individual at LAI 8-10, while the community did best at 6-8 (Binzer & Sand-Jensen 2002). At the biome level, the LAI seems to range from 0.5 to 16, hardly making a showing against the high values measured by Simon (1987) for bryophytes.

Figure 36. Syntrichia ruralis, a species with a high leaf area index (LAI) compared to most tracheophytes, but not as high as forest bryophytes like Hypnum cupressiforme. Photo by Michael Lüth, with permission.

Figure 37. Ceratodon purpureus, a moss with a very high LAI. Photo by Jiří Kameníček (BioLib, Obázek), with permission.

Figure 38. Hypnum cupressiforme, exhibiting a high leaf area index. Photo by Michael Lüth, with permission.
Just why should bryophytes have such enormous LAI values? As we know from tracheophytes, leaves arranged with minimal overlap vertically will have maximal exposure to sunlight, whereas crowded leaves that overlap (having a high LAI) will cause the plant to exhibit self-shading. Furthermore, leaves that have a strong vertical orientation will have minimal direct exposure to light, thus requiring more leaves. This latter condition would seem to describe some mosses, but not the thallose or two-ranked leafy liverworts. Simon (1987) suggested that the high leaf area found in bryophytes might facilitate uptake of the high levels of CO$_2$ found near the soil surface. Other advantages might result from the vertical growth and close packing with neighbors, with clustered apical leaves taking maximal advantage of the light. On the other hand, the entire moss branch might behave much like a single leaf of a tracheophyte, with overlapping leaves protecting the chlorophyll from UV damage and maintaining moist internal spaces. New techniques for tracheophytes using models that incorporate both LAI and a foliage clumping index indicate that both measures are needed to separate sun from shade leaves (Chen et al. 2003), and it seems that this technique might permit us to explain the high leaf area index of bryophytes, where many leaves are shaded by the upper leaves of the same plant or by overlying branches of prostrate plants.

Self-shading

Because of their three-dimensional nature, plants typically shade themselves. As a result of the high leaf area index, a moss cushion is a source of rapid light extinction due to self-shading. Using Antarctic mosses, Davey and Ellis-Evans (1996) demonstrated that irradiance decreases with increasing depth within the moss – no surprise there. Furthermore, the greatest loss of light was at wavelengths around 675 nm and less than 450 nm, in the neighborhood of those portions of the spectrum causing the greatest chlorophyll activity. Of course species differed in light attenuation, with stem orientation being the most important factor, along with stem density, leaf size, orientation, and pigment content. Light penetration increased upon drying – seemingly a maladaptive trait that would permit light to damage chlorophyll, but an expected result for mosses that curl or fold their leaves upon drying. On the other hand, Davey and Ellis-Evans suggested that this deeper light penetration of dry mosses might permit photosynthesis to occur in the deeper layers (these most likely also being more moist) and thus make up for some of the photosynthetic loss in the drier apical parts.

Bryophyte Canopy

As we have just seen, not only do trees and other tracheophytes provide a canopy over the bryophytes, but the bryophytes themselves provide a canopy that alters the light reaching the lower parts of the plants. This canopy is structured differently and functions differently, relating to issues of scale and external transport of water and nutrients (Rice & Cornelissen 2014). Hence bryophytes demand different methodologies to truly understand their use of light and ultimate photosynthetic product.

Habitats vary in their light quality and intensity and the bryophytes further alter this light in the bryophyte canopy (Figure 40) (Tobias & Niinemets 2010). These authors set out to document bryophyte differences in chlorophyll, carotenoids, nitrogen concentrations, and photosynthetic electron transport capacity as they varied with the light profiles above and within populations of the moss *Pleurozium schreberi* (Figure 41). Light differences between habitats resulted in increases in chlorophyll, chlorophyll:N, and chlorophyll:carotenoids as light decreased, thus increasing the light harvesting in low light and increasing light protection in higher light. N levels in the plants were independent of light intensity. In the upper moss canopy (Figure 41) where light was at least 50-60% of the above-canopy light, changes in moss chemistry and photosynthetic output were similar to those observed in the between-habitat light gradient. However, deeper canopy layers mimicked the effects of senescence (Figure 40), with pigment and nitrogen concentrations and photosynthetic capacity decreasing with light availability. They considered the chemical and physiological variation in the moss canopy to be a balance between acclimation and senescence.
In low light, the foliage is less densely aggregated and plant density is lower, permitting greater light penetration and greater light interception per unit of leaf area (Niinemets & Tobias 2014). In healthy tissues, chlorophyll increases as light levels diminish. But one of the consequences of aging in mosses is that the tissues senesce. This senescent zone is likewise deeper in the moss mat and consequently gets less light. This senescent moss zone has reduced chlorophyll content.

Canopy architecture differs among species. Species, especially of pleurocarpous mosses, that are able to branch and from new leaves from lateral buds are able to extend into areas with greater light as well as providing more opportunities for catching sunflecks (Niinemets & Tobias 2014). One advantage is that plants in high light intensity tend to have cushion growth forms that protect them from the accompanying desiccation. Those in shaded habitats often also experience the greater moisture that permits them to spread horizontally and capture more light.

Rice et al. (2014) examined the effects of drying on light relations in ten species of Sphagnum (Figure 15-Figure 19). They found that spatial variation in the rate of photosynthetic electron transport increased during drying and in high light intensities. There was a positive relationship between that rate and light intensity, but the relationship with drying was negative, and the light and moisture interacted to create the spatial variation. Within the canopy of the moss Pleurozi um schreberi (Figure 41-Figure 41), the mat temperature reached a 9°C span. In the leafy liverwort Bazzania trilobata (Figure 42), the Lambert-Beer Law predicted the attenuation of light within the liverwort canopy.

Growth and Branching

Low light in plants often results in etiolation, elongated growth that often lacks accompanying weight gain, creating thin and often chlorotic plants with long internodes and small, rudimentary leaves. Such growth is seen in grass when a board or rug rests on it for a period of weeks. Bryophytes are no exception to this phenomenon, and increased elongation in incubators should not be mistaken for healthy plants if the plants become long and thin. For example, in one study Dicranum majus (Figure 43) had its greatest elongation at the lowest irradiance (20 µm m⁻² s⁻¹) (Bakken 1995).
In fact, van der Hoeven and During (1997) found that when plots of three pleurocarpous mosses (*Calliergonella cuspidata* (Figure 45), *Ctenidium molluscum* (Figure 46), and *Rhytidadelphus squarrosus* (Figure 47) were thinned by 50%, the original density returned rapidly, suggesting that density might be regulated by an intrinsic mechanism. Bates (1988) concluded that this dense packing is an indication of the advantage of reduced water loss in the more densely packed shoots and that this advantage outweighs the reduction in light. However, for *Ctenidium molluscum*, thinning to 50% caused increased growth, presumably due to increased photosynthesis, while its neighbors, *Rhytidadelphus squarrosus* and *Calliergonella cuspidata* gained no advantage from the same thinning (van der Hoeven 1999). The differences in morphology may account for the success of *C. molluscum* following thinning, for it has dense, overlapping leaves, compared to the spreading leaves of *R. squarrosus* and large, slightly overlapping leaves of *C. cuspidata*. These mosses, after thinning, returned rather quickly to their original density. Like Bates (1988), Van der Hoeven and During (1997) suggested that they have an intrinsic control over their density.

Pedersen and coworkers (2001) tested this moisture/light trade-off using one acrocarpous (*Dicranum majus*, Figure 43) and two pleurocarpous (*Ptilium crisata-castrensis* (Figure 48), *Rhytidadelphus loreus*, Figure 49) mosses and a leafy liverwort (*Plagiochila asplenioides*, Figure 50). Using several controlled moisture and light levels, they determined that *Dicranum majus* and *Rhytidadelphus loreus* had peak growth rates at intermediate densities where light and moisture were balanced, a relationship noted by Bergamini *et al.* (2001) as well. On the other hand, when the environment was either dark or humid, the effect of increased density was negative. *Ptilium crisata-castrensis* exhibited decreased growth rates under most experimental combinations and *Plagiochila asplenioides* seemed to be unaffected. In all cases, it required light levels that were higher than in their natural spruce forest (Figure 53) habitat before the advantages of greater density were manifest, indicating that it is competition for light that limits optimal density, not low water availability. In a similar experiment, Scandrett and Gimingham (1989) found that *Pleurozium schreberi* (Figure 40–Figure 41), *Hylocomium splendens* (Figure 51), and *Hypnum jutlandicum* (Figure 52) likewise exhibited more intraspecific inhibition from crowding in low light than in high light, but yields were higher among sown fragments in low light.
Figure 49. *Rhytidiadelphus loreus* with capsules, a species that has peak growth rates at intermediate densities where light and moisture are balanced. Photo by David Holyoak, with permission.

Figure 50. *Plagiochila asplenioides*, a species for which growth seems unaffected by light and moisture levels. Photo by Michael Lüth, with permission.

Figure 51. *Hylocomium splendens*, a species in which thinning increases branching. Photo by Michael Lüth, with permission.

One consequence of thinning seems to be increased branching (Rydgren *et al.* 1998; Pedersen *et al.* 2001). And it seems that in *H. splendens* (Figure 51), the increased light increases production of gametangia and subsequent sporophytes (Rydgren *et al.* 1998). This species had ten times as many sporophytes two years after half the bryophyte cover had been removed, compared to non-thinned plots.

We know that light is necessary to make new chlorophyll, and thus we might predict that there is a depth within a moss cushion at which the light attenuates beyond that needed for chlorophyll manufacture. Van der Hoeven, *et al.* (1993) found that chlorophyll concentration decreased down the shoot as light intensity decreased, but they considered that where only 50% of the shoot was green, the light intensity was too high to attribute the mortality of leaves to low light values. Skré and coworkers (1983), however, found that self-shading coincided with the transition from green to brown parts in *Hylocomium splendens* (Figure 51) and felt that light attenuation helped to explain the death of the green moss tissue.

Skré *et al.* (1983) showed (Figure 54) that in *Hylocomium splendens*, PAR (photosynthetically active radiation) at a depth of 3 cm in natural moss canopies is reduced to ~17%; to ~8% in *Pleurozium schreberi* (Figure 40-Figure 41); to ~12% in a mixed canopy of *Pleurozium schreberi* and *Polytrichum commune* (Figure 55); and to only 1% in *Sphagnum subsecundum* (Figure 56). Visnadi and Vital (1989) found that there were more species entangled among themselves in the indirect sunlight of the riverbank than in the river bed, where direct light was available, indicating that self-shading, and neighbor-shading, might not always be a bad thing.
Chlorophyll Fluorescence

Chlorophyll fluorescence (light re-emitted by chlorophyll molecules during return from excited to non-excited states; Figure 57) is one measure of stress in leaves. This is expressed as the ratio of variable fluorescence (Fv = difference between the maximum and minimum fluorescence) to maximum fluorescence (Fm = fluorescence resulting from flashing a leaf in the dark with bright light), known as Fv/Fm. The ratio is usually about 80% efficiency; lower measures indicate stress.

Morphological Responses

It appears that, like tree leaves, bryophytes might respond structurally to differences in light levels. Dalby (1966b) compared the leaves of the tufa-forming moss Eucladium verticillatum (Figure 58-Figure 59) from deep shade with those from the open and found that those grown in deep shade had much broader leaves, not unlike the response seen in some tree species (Figure 61).
At least some species exhibit a seasonal change in their light extinction curves that can be due to a change in leaf weight similar to that seen when tree leaves respond to high light. *Calliergonella cuspidata* (Figure 45), *Ctenidium molluscum* (Figure 46), and *Rhytidiadelphus squarrosus* (Figure 47) all exhibit a higher extinction coefficient in September than in December. In fact, the shoots are 1.5-2.1 times as heavy in September as in December, being so dense that the light intensity at the bottom of the plant approaches zero (van der Hoeven et al. 1993; Figure 62).

In culture, the thallose liverwort *Marchantia paleacea* var. *diptera* (Figure 63) exhibited an increase in growth rate with increasing light intensity over the range of 5.4 to 60 W m$^{-2}$, whereas a significant decrease occurred at light intensities $>$60 W m$^{-2}$. Many *Sphagnum* (Figure 15-Figure 19) species are high-light plants. In a growth study, weight increase of the species was greatest in unshaded conditions when the water table was low, but in shaded conditions, there was little difference with water table (Clymo 1973). However, when length was considered, plants of all *Sphagnum* species grew less in low water conditions, especially if they were also shaded – hardly an etiolation response.
Physiological Adaptations to Low Light

Although bryophytes in general seem to be shade adapted, at least in their chlorophyll ratios, there are still differences among the species that adapt them to different habitats or give them a competitive edge. For example, *Plagiomnium acutum* (Figure 64) has greater capacity to absorb and use low light, giving it a greater photosynthetic assimilation efficiency than its associate *Herpetineuron toccoa* (Figure 65) in shady and wet habitats (Li et al 1999).

Buryová and Shaw (2005) affirmed that light treatments had a greater effect of growth and other characters of *Philonotis fontana* (Figure 66) than did water. Different populations, representing different genetic variants, exhibited different patterns of plasticity of form. Variation of leaf dimensions had a strong genetic component (20-30% of total variation), but cell dimensions (Figure 67) seemed to have little genetic variation.

But what are the characteristics that enhance photosynthesis in bryophytes? Waite and Sack (2010) examined ten Hawaiian bryophyte species and quantified 35 physiological and morphological traits. The moss species, typical of shade species, exhibited low leaf mass per area and low gas exchange rate. But their light-saturated photosynthetic rate per mass did not correlate with habitat light intensity. Instead, using canopy mass, not leaf mass, other photosynthetic parameters and morphological traits did correlate with microhabitat light characters. This relationship resulted in an inter-correlation of leaf area, cell size, cell wall thickness, and canopy density. Furthermore, structural allocations such as costa size, canopy height, and mass were linked with these modifications.
But surprisingly, the chlorophyll among the species (Patidar et al. 1986). In Sphagnum fimbriatum (Figure 69), both chlorophyll \(a\) and chlorophyll \(b\) increased in dim light; in dim light at 25\(^\circ\)C, the \(a:b\) ratio increased only slightly, while at 15\(^\circ\)C, no such increase was observed (Koskimies-Soininen & Nyberg 1991). Similarly, Rincón (1993) compared six species of bryophytes under seven different light conditions and found, as expected, that the total chlorophyll was highest at the lowest level of light, but that the chlorophyll \(a:b\) ratio did not differ significantly among the treatments.

Chlorophyll

Bryophytes are C\(_3\) plants. As such, they are adapted to light capture at low light intensities. In tracheophytes, the primary adaptation to low light is to increase the antenna pigment chlorophyll \(b\). This provides more opportunities to trap light energy reaching the leaf and to transmit it to the action site of chlorophyll \(a\). Sluka (1983) supported the concept of increased chlorophyll concentrations at low light intensities in bryophytes by showing that total chlorophyll content of mosses is inversely proportional to light intensity. As in tracheophytes, it is chlorophyll \(b\) that increases in response to low light. Szarek (1994), working in the High Tatra Mountains of southern Poland, found that higher light intensities in the middle reaches of the stream did not have any effect on chlorophyll \(a\) concentrations of mosses compared to areas with less light.

In tracheophytes, this increase in chlorophyll \(b\) results in a lower \(a:b\) ratio. Thus, it is not surprising that bryophytes, as predominantly shade plants, typically have a low \(a:b\) ratio compared to tracheophytes. Mishler and Oliver (1991) reported \(a:b\) ratios of 1.00-2.5 for the xerophytic moss *Syntrichia ruralis* (Figure 36), a desiccation-tolerant moss that likewise has a higher chlorophyll concentration at low light intensities (Hamerlynck et al. 2002). Nevertheless, these \(a:b\) ratios, even for sun-grown plants, were typical of shade-adapted tracheophytes, whereas the carotenoid:chlorophyll ratio of sun plants was typical of sun-adapted tracheophytes. These acclimation responses reversed in a reciprocal transplant experiment, indicating that this species is capable of making short-term adjustments. Nevertheless, transplanted sun plants of *S. ruralis* did not perform as well in shade as did previously shade-grown plants. Hamerlynck et al. (2002) considered this to indicate that the sun-acclimated plants were able to maintain their photoprotective mechanisms, losing them only slowly, whereas the shaded plants were able to maintain activity longer, due to greater moisture, allowing them to adjust to changes rapidly following disturbance that exposed them to greater sunlight. This ability to adjust permits them to persist in their semi-arid grassland home.

Tuba (1987), as already discussed, has a different explanation. He suggests that these low \(a:b\) ratios are important because poikilohydric plants must depend on atmospheric moisture to regulate their internal water content and that such moisture is most typically available during periods of low light – during a storm or early morning. Since these plants are often desiccated during periods of high light levels, Tuba suggests that it is logical that their chlorophyll is adjusted to low light levels, but that having light compensation points slightly higher than those of shade-adapted tracheophytes permits bryophytes to benefit from occasional sunflecks.

It therefore comes as a surprise to find that the chlorophyll \(a:b\) ratio in many bryophytes does not decrease in response to low light, while the total chlorophyll increases. For example, in experiments on three species of the thallose liverwort *Riccia*, the highest chlorophyll concentrations occurred in the shade-grown *Riccia discolor*, and the lowest occurred in the floating aquatic species, *Riccia fluitans* (Figure 68), as one would expect. But surprisingly, the chlorophyll \(a:b\) ratios did not differ among the species (Patidar et al. 1986). In *Sphagnum*

Figure 68. Terrestrial form of *Riccia fluitans*. Photo by Michael Lüth, with permission.

Figure 69. *Sphagnum fimbriatum*, a species that increases both chlorophylls \(a\) and \(b\) in low light. Photo by J. K. Lindsey, with permission.

Yang and coworkers (1994) found that seventeen species of bryophytes at Yuan-Yang Lake in China had lower chlorophyll \(a:b\) ratios (mean 2.41) than the two aquatic tracheophytes sampled (mean 3.08), but that these bryophyte ratios were considerably higher than values for bryophytes reported in the literature. They considered this to be a demonstration of the ability of bryophytes to adjust their chlorophyll \(a:b\) ratio within a limited range to a higher light intensity (250 \(\mu\)mol m\(^{-2}\) s\(^{-1}\)).

As discussed earlier in the study by Marschall and Proctor (2004), chlorophyll content seems to account for liverworts being more common in shade, with more mosses able to survive in bright, open areas. Pande and Singh (1987) found higher concentrations of both carotenoids and chlorophyll in liverworts, with the exception of *Stephensoniella brevipedunculata*, compared to mosses, but in this study liverworts all came from shade and mosses from open areas. Doera and Chaudhary (1991) examined
chlorophyll content of several bryophytes and found that chlorophyll \(a \) ranged 0.402 ± 0.052 to 2.002 ± 0.700 mg g\(^{-1}\) dry mass, with chlorophyll \(b \) ranging 0.265 ± 0.067 to 1.634 ± 0.070 mg g\(^{-1}\). Lowest chlorophyll concentrations were found in the moss *Entodon prorepens* (Figure 70) (0.667 mg g\(^{-1}\) dry mass) and highest in the liverwort *Cyathodium tuberosum* (Figure 71) (3.636 mg g\(^{-1}\) dry mass), consistent with the observations of Marschall and Proctor (2004). In these bryophytes, low light intensity resulted in increase in total chlorophyll content and lower chlorophyll \(a:b \) ratio. On the other hand, Antarctic populations of *Ceratodon purpureus* (Figure 12) can decrease chlorophyll \(a:b \) ratios in high light (Post 1990). Is it any surprise that these responses are not always the same, that they differ with species, temperature, moisture content, and light level?

Martínez Abaigar et al. (1993) have compared the chlorophyll concentrations on a per unit area basis. Their results, compared to light and water availability, appear in Table 2. Examination of the table does not reveal any relationship among these species with either light availability or water availability and chlorophyll concentration. However, there seems to be a good correlation between chlorophyll concentration and submersion. Only *Schistidium rivulare* (Figure 72-Figure 73) among the emergent taxa has a high chlorophyll concentration. This might be explained by the dark coloration of the cell walls that would filter the high light intensity before it reaches the chlorophyll.
Table 2. Chlorophyll concentrations as mg m\(^{-2}\) for bryophyte species occurring in full sun, sun, shade, and deep shade and five water availabilities (I = immersed, E = emerged, D = dry; LSA = Leaf Specific Area, LSW = Leaf Specific Weight). Species are arranged from highest to lowest chlorophyll concentrations. From Martínez Abaigar et al. 1993.

<table>
<thead>
<tr>
<th>Species</th>
<th>chl mg m(^{-2})</th>
<th>light availability</th>
<th>water availability</th>
<th>LSA cm(^{-2}) g(^{-1})</th>
<th>LSW mg cm(^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schistidium rivulare</td>
<td>351±17</td>
<td>full sun</td>
<td>I-E-D</td>
<td>133±7</td>
<td>7.51±4</td>
</tr>
<tr>
<td>Fontinalis squamosa</td>
<td>341±14</td>
<td>sun</td>
<td>I</td>
<td>271±13</td>
<td>3.7±18</td>
</tr>
<tr>
<td>Fontinalis antipyretica</td>
<td>290±14</td>
<td>full sun</td>
<td>I</td>
<td>226±16</td>
<td>4.42±31</td>
</tr>
<tr>
<td>Fissidens grandifrons</td>
<td>289±13</td>
<td>full sun</td>
<td>I</td>
<td>222±4</td>
<td>4.5±08</td>
</tr>
<tr>
<td>Rhynechocegiu riparioides</td>
<td>257±4</td>
<td>deep shade</td>
<td>I-E</td>
<td>224±9</td>
<td>4.47±18</td>
</tr>
<tr>
<td>Ciclidotus fontinalioides</td>
<td>250±13</td>
<td>full sun</td>
<td>I-E-D</td>
<td>164±15</td>
<td>6.11±56</td>
</tr>
<tr>
<td>Cratoneuron filicinum</td>
<td>246±4</td>
<td>full sun</td>
<td>I-E-D</td>
<td>274±15</td>
<td>3.65±2</td>
</tr>
<tr>
<td>Fissidens grandifrons</td>
<td>244±11</td>
<td>deep shade</td>
<td>I</td>
<td>211±8</td>
<td>4.73±18</td>
</tr>
<tr>
<td>Jungermannia cordifolia</td>
<td>173±6</td>
<td>full sun</td>
<td>I</td>
<td>351±15</td>
<td>2.85±12</td>
</tr>
<tr>
<td>Hydrohypnum duriusculum</td>
<td>157±8</td>
<td>full sun</td>
<td>I-E-D</td>
<td>313±25</td>
<td>3.2±26</td>
</tr>
<tr>
<td>Scapania undulata</td>
<td>150±7</td>
<td>shade</td>
<td>I-E-D</td>
<td>262±10</td>
<td>3.81±15</td>
</tr>
<tr>
<td>Cratoneuron commutatum</td>
<td>121±10</td>
<td>full sun</td>
<td>E</td>
<td>187±25</td>
<td>5.36±72</td>
</tr>
<tr>
<td>Brachythecium rivulare</td>
<td>116±6</td>
<td>full sun</td>
<td>I</td>
<td>456±41</td>
<td>2.19±2</td>
</tr>
<tr>
<td>Pellia endiviifolia</td>
<td>97±7</td>
<td>shade</td>
<td>E</td>
<td>446±15</td>
<td>2.24±08</td>
</tr>
</tbody>
</table>

Other Pigments

Other pigments also change in response to light intensity, as shown for Rhytidiadelphus triquetrus (Figure 44), R. squarrosus (Figure 47), and Mnium hornum (Figure 75-Figure 76) (Brinkmeier et al. 1999). In these mosses biflavonoid concentration was correlated with periods of active growth and varied with light intensity. The shade-adapted liverworts in Nainital, Kumaon Himalaya, exhibited higher carotenoid concentrations than did the mosses growing in the open (Pande & Singh 1987). However, the chlorophyll:carotenoid ratio seemed not to differ, at least during the rainy season, which is the period of maximum growth. It is reasonable that carotenoid content would be adaptive to shade plants because it can serve as an antenna pigment, much like chlorophyll b, providing additional light capture capability and transferring that energy to the chlorophyll a reaction center. Such an adaptation is known not only in bryophytes, but also in tracheophytes, where total carotenoid content and β-carotene increase simultaneously with chlorophyll in the shade (Czeczuga 1987). On the other hand, lutein (deep yellow pigment) increases in the sunlight.

It is interesting that many of the pigments seem to vary together in concentration, at least in the Antarctic mosses tested (Lovelock & Robinson 2002). Total chlorophyll was correlated highly with total carotenoids (0.91), which in turn were highly correlated with each other (lutein and xanthophyll cycle pigments). Anthocyanins also correlated but somewhat less highly with chlorophyll. However, the photoprotective zeaxanthin and antheraxanthin were negatively correlated with total chlorophyll, as one would expect if chlorophyll b increases in response to low light.
Several researchers have found that hydrated mosses, unlike tracheophytes, require only a few molecules of zeaxanthin per reaction center to dissipate light energy (Bukhov et al. 2001; Heber et al. 2005). Desiccation-dependent fluorescence quenching, however, is independent of zeaxanthin and appears to be a property of the reaction center complex of photosystem II rather than the antenna system.

Chloroplast Movement

In at least some mosses, the chloroplasts move in response to light direction. This ability of chloroplasts to orient themselves in response to direction of light, thus maximizing absorption of light energy, is known elsewhere in the plant kingdom. The green alga *Mougeotia* (Figure 77) has an axial chloroplast that can rotate on its axis to face the sun. Often the two ends seem to rotate independently so the chloroplast becomes twisted in the middle. The ferns *Adiantum capillus-veneris* (Figure 78), *A. caudatum* (Figure 79), *A. diaphanum* (Figure 80), and *Pteris cretica* (Figure 81) all exhibit chloroplast movement in their leaves, responding to blue light; *A. capillus-veneris* chloroplasts also responded to red light (Augustynowlcz & Gabrys 1999). The prothallus of the fern *Dennstaedtia punctiloba* (Figure 82-Figure 83), growing in lava caves, exhibits a luminescence similar to that seen in the moss *Schistostega pennata* (Figure 2-Figure 4) (Glime & Iwatsuki, pers. obs.). In *Schistostega pennata*, chloroplasts of the protonemata orient themselves to attain maximum light, as discussed in the light subchapter on cave mosses.

Figure 77. *Mougeotia* sp, a genus with a flat chloroplast that rotates on its axis to respond to position of incoming light. Photo by Yuuji Tsukii, with permission.

Figure 78. *Adiantum capillus-veneris*, a species in which leaf chloroplasts move in response to the direction and intensity of light. Photo by Tigerente, through Creative Commons.

Figure 79. *Adiantum caudatum*, a species in which leaf chloroplasts move in response to the direction and intensity of light. Photo by Guz Hengman, through Creative Commons.

Figure 80. *Adiantum diaphanum*, a species in which leaf chloroplasts move in response to the direction and intensity of light. Photo by Phil Bendle, with permission.

Figure 81. *Pteris cretica*, a species in which leaf chloroplasts move in response to the direction and intensity of light. Photo by Forest and Kim Starr, through Creative Commons.
In protonemata of the moss *Physcomitrella patens* (Figure 84), the direction of light, intensity, and wavelength are all important to chloroplast arrangement. When the light is perpendicular to the protonema axis the chloroplasts accumulate next to the crosswalls, but when it is parallel to the protonema axis, *i.e.* perpendicular to the crosswalls, there is no accumulation of chloroplasts there (Kadota *et al.* 2000). The response depends on the intensity, with lower intensities (red light 0.118 W m$^{-2}$ or blue light 0.01-85.5 W m$^{-2}$) inducing accumulation, whereas higher ones (red light \geq 60 W m$^{-2}$ or blue light 285 W m$^{-2}$) do not. These responses are mediated by phytochrome. But the protonemata of *Physcomitrella patens* respond not only to the direction of light (Kadota *et al.* 2000), but also to mechanical stimuli (Sato *et al.* 2003). This causes the chloroplasts to accumulate on the side of the cell where contact is made – in as little as 30 minutes! Could this be an adaptation to high light by placing the chloroplasts on the side next to the substrate and therefore on the side farthest from the light source? Such a position would provide more cytoplasm to serve as a filter from UV light and high light intensity. On the other hand, it would also permit the side toward the sun to act as a focussing lens. There is so much we don't know!
Light and Storage

The ultimate consequence of changing chlorophyll concentrations and chloroplast position is an altered ability to store photosynthate. Kobe and Silander (1993) have shown that in four trees adapted to low light intensities, survivorship of juveniles in low light conditions is positively related to carbohydrate reserves and inversely related to high-light growth. This demonstrates the importance of storing carbohydrates as opposed to using all of them for growth during periods of high light. Such correlations have not been tested for bryophytes, but may relate to storage of carbohydrates in the spring before the canopy foliage appears for use of the developing sporophyte during the summer and autumn. Kobe and Silander contend that the trade-off between storage and growth relates to survivorship in low-light habitats. Rincón and Grime (1989) have shown that production of biomass is not correlated with shoot extension in five grassland bryophytes, and that it in fact can be an inverse relationship, with shoot extension occurring later, again indicating the importance of storage. Could this be related to the ability to store carbohydrates for use later in low light when IAA may facilitate more elongation? (IAA is inhibited by light in tracheophytes.)

In *Sphagnum fimbriatum* (Figure 87) low light caused increased storage of total lipids (Koskimies-Soininen & Nyberg 1991). However, in darkness, as one might expect, lipid content decreased. When low light was accompanied by a decrease in temperature, the moss stored more palmitic, stearic, linoleic, and arachidonic acids in the galactolipids monogalactosyl diglyceride (MGDG), *i.e.* the chloroplast lipids. At the same time, oleic and α-linolenic acids decreased. The MGDG lipids are important in cold hardening and adjustment of plant metabolism to low temperatures. For example, arachidonic acid has a freezing point of -49.5°C (Gellerman et al. 1972), thus maintaining membrane fluidity at any temperature these mosses are likely to experience in nature. Karunen (1982) suggested that the presence both of high quantities of angiospermous type galactolipid fatty acids and the lowest quantities of algal type in the aquatic moss *Fontinalis* (Figure 86) had evolutionary significance in placing this as an advanced genus, at least biochemically.

One cannot generalize from these results, however. When Koskimies-Soininen and Nyberg (1991) compared their results for the shade plant *Sphagnum fimbriatum* (Figure 87) with similar experiments on the high light species *Sphagnum magellanicum* (Figure 19), the responses to light and temperature were different. At low temperatures, *S. fimbriatum* does not increase its unsaturated glycolipids, reaching its lowest level at 10°C, whereas *S. magellanicum* reaches its lowest level at 0°C. In fact, we should expect differences among species, as these are the very things that make many species become species. For example, Li and coworkers (1999) compared photosynthesis of *Plagiomnium acutum* (Figure 64) and of *Herpetineuron toccoae* (Figure 65) under different weather conditions. Photosynthesis of *P. acutum* was lower on sunny days than that of *H. toccoae*, but on cloudy and rainy days it was higher. They determined that *P. acutum* has a higher CO₂ assimilation efficiency in shady and wet habitats. Working with mosses on semi-arid granitic boulders, Alpert and Oechel (1987) also found that species occurring in microhabitats with lower light availability had a higher rate of net photosynthesis at low photon flux densities than did other mosses from that site, suggesting a higher chlorophyll concentration.

Based on the literature, it appears that photosynthetic rates of mosses are considerably less than those of tracheophytes. This is consistent with their slow growth rates. For example, in comparing the shade liverwort *Marchantia polymorpha* (Figure 88) with the sun moss *Ceratodon purpureus* (Figure 37), Aro and coworkers (1981) found that the plastid ultrastructures of these two bryophytes were characteristic of shade and sun plants respectively, but both exhibited the photosynthetic rates typical of shade plants. But Martin and Adamson (2001) disagree with the method of representing these determinations of photosynthetic rates in bryophytes. They found that indeed the CO₂ uptake rate (*i.e.* photosynthetic rate) is much lower than that of tracheophytes when expressed per unit of biomass, but when they used the rate per chlorophyll concentration to compare maximum photosynthetic rates of bryophytes vs tracheophytes under the same conditions of light saturation and ambient CO₂, the photosynthetic rates between bryophytes and
tracheophytes did not differ (Shouldn't we expect that?)
The chlorophyll seems to behave the same way in both; it is
the concentrations of chlorophyll that differ.

Figure 88. *Marchantia polymorpha* with archegoniophores,
a shade plant with plastids characteristic of shade plants. Photo
by Rudolf Macek, with permission.

Forest Gaps

Forest gaps are well known to foresters as sites where
trees experience release growth, expressed in larger tree
rings and greater annual production. Wayne and Bazzaz
(1993) explored the relative effects of forest gaps compared
to shadecages on two species of birch [*Betula populifolia*
(Figure 89) and *B. alleghaniensis* (Figure 90)] and found
that leaf structure (specific leaf mass, leaf mass ratio) in
shadecages more closely resembled that of sun plants than
did that of the gap-grown plants, but that gap-grown plants
behaved more like sun plants in chlorophyll $a:b$ ratios and
maximum net photosynthesis.

Figure 89. *Betula populifolia* leaves, a forest gap species
that exhibits chlorophyll $a:b$ ratios and max net photosynthesis of
sun plants when living in gaps. Photo by Richtid, through Creative Commons.

Figure 90. *Betula alleghaniensis*, a forest gap species that
exhibits chlorophyll $a:b$ ratios and max net photosynthesis of sun
plants when living in gaps. Photo by Keith Kanoti, through Creative Commons.

Despite their adaptations to low light, many
bryophytes also benefit from the brighter spots in the
forest. Even in the relatively open forest types like spruce
(Figure 53), light attenuation between canopy and forest
floor can be considerable (Figure 93) (Tuba & Nyilas
1980). In stands of *Pseudotsuga menziesii* (Figure 91) and
Tsuga heterophylla (Figure 92) in Oregon, USA, bryophyte
abundance increases in canopy gaps and other places with a
higher irradiance within the forest (Rambo & Muir 1998).

Figure 91. *Pseudotsuga menziesii* & *Pinus ponderosa* forest
showing difference in light at the top of the canopy and in lower
parts of the canopy. Photo by Jsayre64, through Creative Commons.
For bryophytes, forest gaps provide periods of high intensity light that for some species can enhance growth, while for others the additional desiccation and high temperatures can mean cessation of growth. However, in the margins of the gaps, where sunlight is intermittent during the day, bursts of sun, or sunflecks, can be significant contributors to the productivity. Studies on vascular plants suggest that responses to light gaps having intermittent light can be significantly different from continuous low or high light (Wayne & Bazzaz 1993). There are few studies on bryophytes to explore the importance of sunflecks within the forest or the effect of intermittent light in gaps. Yet, in many temperate forests, such intermittent light may be more the rule than the exception. Wayne and Bazzaz (1993) suggest that the plasticity of response by some species to intermittent light may have potential for niche differences and coexistence. Such studies should not be difficult to do on bryophytes using either laboratory conditions or strobe lighting in the field, and with modern electronic recording equipment, even natural sunflecks can be recorded and productivity monitored.

But not all gaps are beneficial to bryophytes. Brunkman (1936) puzzled over the presence of *Hylocomium splendens* (Figure 51) in some of the *Myrtillus* associations but not others. After careful quadrat study, he learned that the *Hylocomium splendens* all but disappeared within four years of cutting the forest. He attributed this disappearance to light, since the soil was "decidedly wet," allowing for the indirect effect of sunlight on the available moisture. Since he found the uncut forest to be just as wet as the cut forest, he concluded that light was the factor resulting in the loss of *H. splendens* in the open. He likewise cited differences in moss cover between north and south slopes (71% and 3%, respectively) as evidence that light was the critical factor. He reasoned that the south slope would have a much longer light day and light season than the north slope. On the other hand, *Hylocomium splendens*, *Pleurozium schreberi* (Figure 41), and *Hypnum jutlandicum* (Figure 52) commonly occur in the gaps formed by degenerate *Calluna vulgaris* (Figure 94) bushes in the dry heathland (Scandrett & Gimingham 1989), so it appears that they can benefit from more light under the right conditions.
In one North American forest, where a storm had uprooted nearly half the trees, moss cover disappeared rapidly, whereas in the part where trees remained upright, the moss cover was nearly normal (Brunkman 1936). Brunkman (1936) further cited evidence from two adjacent plots, one of spruce (Figure 53) with 85% mean cover of moss on 16 quadrats and another of poplar (*Populus*, Figure 95) with 6% mean cover on 16 quadrats. Then he compared the densities of the trees on these and other plots in an attempt to correlate the light availability with decrease in moss cover. To his surprise, no correlation existed. To explain this anomaly, he considered the fact that poplar is lacking leaves for eight months of the year, whereas spruce is never without leaves. While Brunkman seemed uncomfortable with the lack of correlation, he still considered that tree density was important above 0.5, and he concluded that densities above 0.8 have high moss cover, the lowest being 59%. He noted that in light gaps, the moss cover would be moderate to high, and the flora of flowering plants would include a "decidedly larger number of individuals."

Larsen (1980) contends that if a gap occurs in a boreal spruce forest (Figure 53), the spaces are occupied to a greater extent by herbaceous species and moss cover will diminish. It appears that the relationship of moss cover to light availability may be complicated by the availability of suitable species and the length of time since the light became available. In any event, the species occupying the lighted gap will be different from those occupying the forest before the opening was created (Larsen 1980).

In an attempt to determine the importance of "reserve trees" to forest management, Shields (2006) examined not only the woody and herbaceous plants in openings with a single central tree (reserve tree) to those of the forest matrix in uneven-aged northern hardwood forests (Figure 96) in the Upper Peninsula of Michigan, but also the bryophytes. He found that bryophyte cover in the opening was only one-third that of the forest matrix, with four species [*Marchantia polymorpha* (Figure 88), *Pleurozium schreberi* (Figure 13), *Ptilidium pulcherrimum* (Figure 97), *Sphagnum* sp. (Figure 98)] disappearing completely. *Brachythecium* spp. (Figure 99) and *Atrichum undulatum* (Figure 100) both decreased in importance as the opening size increased. These disappearances most likely involved several factors. Not only did the light increase in the opening, but temperature increased and moisture decreased. Furthermore, substrate availability changed, with coarse woody debris being less available in the cutover openings than in the forest matrix.

Figure 96. Northern hardwood forest in northern Michigan. Photo by Janice Glime.

Figure 97. *Ptilidium pulcherrimum*, a species sensitive to sun exposure, on a log. Photo by Michael Lüth, with permission.

Figure 98. *Sphagnum girgensohnii* in spruce forest, a species that disappears in forest openings. Photo by Michael Lüth, with permission.
Figure 99. *Brachythecium salebrosum*, a species that decreases in importance in forest gaps. Photo by Michael Lüth, with permission.

Figure 100. *Atrichum undulatum*, a species that decreases in importance in forest gaps. Photo by Michael Lüth, with permission.

Sunflecks

Sunflecks (Figure 95; Figure 101), those tiny patches of bright light that dance about on the forest floor, have reached a new level of importance in our understanding of forest floor dynamics. Skré et al. (1983) found that up to 35% of the forest floor in a black spruce (*Picea mariana*, Figure 53) forest in central Alaska could experience sunflecks at the midday soil surface. These flecks usually had an intensity ~76% of the light reaching the forest canopy and were the major source of light for bryophytes there. Such sunflecks are known to provide for photosynthesis in exposed parts of clones with the resultant photosynthate translocated to shaded parts of the connected clone internally.

For bryophytes, sunflecks have an advantage over full sunlight because of that intermittence (remember how we measure \(V_{\text{max}} \)? The least disturbance of the canopy changes their position, thus striking different branches or patches of bryophytes. For a photosynthetic bryophyte leaf, this means relief from the constant bombardment of light energy on the chlorophyll molecules and prevents these low-light adapted plants from suffering from excitation damage. The light dances about from ramet to ramet as it does from leaf to leaf on the trees. Rincón and Grime (1989) found sunflecks to be very important for six bryophytes from a variety of habitats and referred to the ability of bryophytes to be plastic in rate and direction of shoot proliferation as a "foraging" mechanism that permitted them to exploit resources where they became available, in this case, sunflecks. Bergamini and Peintinger (2002) found a similar foraging behavior in *Calliergonella cuspidata* (Figure 102) and contended that pleurocarpous mosses have a morphological strategy comparable to the "spacer and branching" strategy of some stoloniferous tracheophytes. Even such upright mosses as *Polytrichum* are known to have interconnected ramets that translocate photosynthate to one another.

In the heavily shaded sites of New Zealand, the hornwort *Megaceros pellucidus* (Figure 103) experiences a maximum photon flux density of less than 10 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) (Watkins et al. 2011). Daylight sees only weak variation in intensity. The dense canopy provides little opportunity for sunflecks. Interestingly, hornworts from low light conditions (0.2 \(\mu \text{mol m}^{-2} \text{s}^{-1} \)) had the same carotenoid concentrations as those from higher light conditions (6.9 \(\mu \text{mol m}^{-2} \text{s}^{-1} \)), but the chlorophyll content of high light plants was approximately 2X that of low light plants, whereas the chlorophyll \(a/b \) ratio was the same in both low and higher light conditions. A significant difference is that in low light the hornworts exhibited an absorbance band at 340 nm that was not present in the higher light conditions.

Figure 101. *Hylocomium splendens* in a sunfleck. Photo courtesy of Carrie Andrew.

Figure 102. *Calliergonella cuspidata* with lateral branching pattern that permits foraging of the sunlight. Photo by Michael Lüth, with permission.
Litter Burial

Of course the most drastic effect of the forest canopy on the bryophytes of the forest floor is the virtually total loss of light caused by leaf litter (Figure 1). Although there may be allelopathic effects from the decomposition of leaves that leads to the release of tannins, loss of light is ultimate death to nearly every plant. Johnsen (1959) demonstrated the severity of litter on bryophytes by showing that raking away litter can greatly increase both number of species and cover of bryophytes on the forest floor. It is the leaf litter that relegates the bryophytes to the steep slopes, tip-up mounds, and other places where leaf litter cannot easily accumulate.

The Partnership Choice

While many bryophytes suffer from self-shading that prevents the lower leaves from photosynthesizing, one species actually lives in that shaded habitat, receiving little or no light due to the surrounding moss vegetation. This species is the thallose liverwort Cryptothallus mirabilis (Figure 104). Its name tells much of its story, for it is indeed a hidden thallus, growing beneath the surface in peat, raw humus, or moss carpets (Schofield 1985), yet miraculously surviving in the darkness there. It is totally lacking in chlorophyll (Potemkin 1992); even its spores lack chlorophyll (Hill 1969). It obtains its carbon through a fungal partnership (Malmborg 1933; Airy Shaw 1949; Ligrone et al. 1993; Bidartondo et al. 2003), although it may not contribute anything to the relationship. It appears that it subsists much like the flowering Indian pipe (Monotropa uniflora, Figure 105), actually being a third member in a parasitic relationship with trees, including Betula (Figure 89-Figure 90), that reach the canopy to convert light energy into stored energy in the photosynthate (Bidartondo et al. 2003). The photosynthate is transferred from the tree to the fungus to the liverwort.

Summary

In general, bryophytes are adapted to low light, relative to other land plants. Bryophyte cells may act as lens cells, at least in some cases, focussing light on the chloroplasts or even on leaves beneath them. Branches may behave like leaves in scattering, focussing, and reflecting light while providing air spaces that give access to CO₂. Papillae may serve to scatter light when the leaves are dry or to channel it like a fiber optic when wet. But these are all speculations.

The leaf area index (LAI) of bryophytes appears to be enormous compared to that of tracheophytes (44-129 compared to 3.8 for the forest floor taxa). Perhaps the branch should be considered instead of the leaves of
bryophytes. This same density of leaves results in considerable self-shading, with rapid light extinction within a moss cushion. Light often penetrates deeper in dry mosses, in some cases reaching a level where sufficient hydration exists for photosynthetic activity. Chlorophyll likewise diminishes with depth in a cushion, but this may be a function of age rather than light intensity, at least in some species. Dense packing of stems does not usually seem to deter vertical growth and may actually enhance it through greater conservation of water, despite the attenuation of light. On the other hand, densely overlying mosses seem to benefit from thinning that exposes underlying branches to more light. It appears that light is more important than hydration at determining optimal density.

As in tracheophytes, leaf morphology may respond to shade by such changes as broader leaves. Even leaf weight may decrease as less light becomes available. Other responses to low light are similar to those of tracheophytes, with increased chlorophyll b and antenna pigments, depressed light saturation and compensation points, and deeper green color. However, some bryophytes at least do not have a lower chlorophyll $a:b$ ratio in low light compared to high light, as would the typical tracheophyte. Rather, bryophytes in general have a lower chlorophyll $a:b$ ratio in all light conditions than do tracheophytes. This suggests that the bryophyte, with its chlorophyll a concentrations maintaining proportionality to chlorophyll b concentrations, would be ready for brief opportunities when bright light becomes available. Such a strategy would adapt these plants well to the forest habitat where so many are residing, permitting them to take advantage of changing positions of the sun as it filters through trees and brief bursts of light as sunflecks when angle of the sun changes or the wind changes the arrangement of the overarching canopy. These same adaptations would likewise permit mosses intertwined with grasses to one day be covered by a stem, but a few weeks later have grown past it to receive full light. Accessory antenna pigments such as carotenoids increase with chlorophyll b.

Some species have chloroplasts that move in response to direction of light, maximizing light absorption. In *Physcomitrella patens*, chloroplasts accumulate on the side of the protonema where contact is made, presumably giving them maximum protection from light.

Reduction in photosynthesis in low light has its price in reduced storage of photosynthate. In bryophytes, storage can occur without growth, with growth occurring later based on stored reserves. Low light can also increase storage of lipids and temperature can alter the types of lipids being stored. Such adaptations differ among species, especially between sun and shade species.

Sunflecks provide bryophytes with bursts of bright light without the damaging effects of continuous bombardment of UV light and high light intensity on shade-adapted plants. Particularly in pleurocarpous mosses, the many branches provide "foraging" opportunities that permit production of photosynthate that can be translocated to other parts of the clone.

Even the upright *Polytrichum* is able to translocate photosynthate from one stem to another in ramets of one connected clone. Litterfall can completely bury bryophytes and put them in nearly total darkness. However, some bryophytes may benefit from litter in low-light conditions by forming fungal partnerships that acquire photosynthate from the surrounding leaf litter through this the fungus.

Acknowledgments

My appreciation to all the photographers who have given me permission to use their images, or who have put them in Creative Commons.

Literature Cited

Planta 212: 739-748.

CHAPTER 9-3

LIGHT: EFFECTS OF HIGH INTENSITY

TABLE OF CONTENTS

Effects of High Light Intensity .. 9-3-2
 Light and Moisture Relations .. 9-3-2
 Photoinhibition ... 9-3-3
Adaptations to High Light ... 9-3-4
 Structural Adaptations ... 9-3-5
 Pigmentation .. 9-3-10
 Sphagnorubin .. 9-3-13
 Chlorophyll ratios in Aquatic Bryophytes .. 9-3-13
 UV Absorption .. 9-3-14
Desiccation Effects and Light ... 9-3-20
Avoidance – Hiding under Rocks .. 9-3-25
Summary ... 9-3-27
Acknowledgments ... 9-3-27
Literature Cited ... 9-3-27
CHAPTER 9-3
LIGHT: EFFECTS OF HIGH INTENSITY

Figure 1. *Encalypta rhabdocarpa* in the alpine region where high-intensity UV light can damage chlorophyll and DNA. Photo by Michael Lüth, with permission.

Effects of High Light Intensity

Exposure to UV light has been hypothesized as a major deterrent of evolution to land. Both chlorophyll and DNA are easily damaged by high intensities of direct sunlight (Figure 1). In fact, it has been suggested that a major role of lignin, absent in bryophytes, is to protect cells against UV light. But it appears that the crafty bryophytes have a number of tools at their disposal.

Light and Moisture Relations

One danger of high light intensity in bryophytes is damage it can do to chlorophyll when the moss is dry. In experiments with a number of species, Churchill and Nelson (unpubl. report 1994; pers obs.) have found that the light intensity transmitted through a wet moss leaf is about twice that transmitted through a dry leaf. Takács et al. (2000) found that the non-chlorophyll blue-green fluorescence of *Syntrichia ruralis* (Figure 2) and two lichens increased by an order of magnitude upon drying. They attributed these changes in blue-green fluorescence to altered optical properties, not to any change in pigment or phenolic concentration. Lovelock and Robinson (2002) likewise found that the state of hydration affects the ability of the moss to absorb or reflect light. This increased reflection and decreased absorption by the dry leaf should provide at least some protection from damaging effects of UV radiation that could destroy chlorophyll and damage DNA. It suggests that there may be internal and/or external scattering of light by dry moss, whereas wet moss has a
more homogeneous surface and interior, permitting light to travel with less scattering.

Figure 2. *Syntrichia ruralis* showing hyaline hair points that are drawn close to the stem when the moss is dry and leaves are twisted around the stem. Photo by Michael Lüth, with permission.

Hamerlynck and coworkers (2002) hypothesized that because of its strong desiccation tolerance characters, the moss *Syntrichia ruralis* (Figure 2) would be unable to acclimate to different light intensity regimes. However, they found that in this species sun plants had lower biomass, and lower tissue N, C, and chlorophyll concentrations than shade plants of the species (Figure 3). Interestingly, while the carotenoid:chlorophyll ratios of sun plants were typical of sun plants, they found that as in most bryophytes the chlorophyll a:b ratios were typical of shade plants. When transplanted to shade, sun plants were able to adjust to the lower light level by increasing their photosystem II yields; these yields decreased in shade plants transplanted to the sun. Conversely, sun plants transplanted to shade continued to be out-performed there by non-transplanted shade plants. They suggest that in this species, shade plants may be able to adjust relatively quickly to disturbance that exposes them to greater light and desiccation.

Figure 3. Comparison of N and C content of *Syntrichia ruralis* grown in shade and sun in Kiskunság National Park near Budapest, Hungary. Vertical bars indicate 1 SE; letters indicate significant differences ($p<0.05$). Redrawn from Hamerlynck et al. 2002.

Photoinhibition

Because high light intensities can damage chlorophyll, they can cause photoinhibition. Even sun plants like *Sphagnum* (Figure 49) are vulnerable. Shaded *Sphagnum* plants from temperate and Alaskan populations were given more light following removal of tracheophytes, and plants from full sun were shaded (Murray et al. 1993). Previously shaded mosses from both locations in the high-light treatment (800 μM m$^{-2}$ s$^{-1}$) lost significant photosynthetic capacity in just two days and did not recover in the next 14 days. Increased variation in chlorophyll fluorescence relative to maximum fluorescence suggested this was a result of photoinhibition. By contrast, mosses that were moved from full sun to shade grew at a rate 2-3 times as great as that of those in control plots. Murray and coworkers suggested that the inability to acclimate might relate to low tissue N content of these mosses from low-nutrient habitats.

Bryophytes are limited on both ends of the light scale. At low intensities, they have insufficient energy to replace that lost by dark respiration and photorespiration, but on the other end they suffer chlorophyll damage and photoinhibition. Cleavitt (2002) demonstrated that this photoinhibition in *Mnium spinulosum* (Figure 4) restricted its occurrence to deeply shaded conifer stands, whereas *Bryum pseudotriquetrum* (Figure 5) was limited by its lack of desiccation tolerance. *Mielichhoferia macrocarpa* (Figure 6), on the other hand, occurred in the darkest and wettest sites, yet was tolerant of both high light intensities and desiccation. She showed that what we perceive to be narrow physiological limits that we would expect to limit rare species may not tell the whole story. It appears that our knowledge of light limits and adaptations, coupled with physiological responses of bryophyte tissues, needs additional study.

Figure 4. *Mnium spinulosum*, a species restricted to deep shade. Photo by Jan-Peter Frahm, with permission.

Figure 5. *Bryum pseudotriquetrum*, a species limited by moisture. Photo by Hermann Schachner, through Creative Commons.
Adaptations to High Light

When working with *Pohlia wahlenbergii* (Figure 8) from a subalpine area, Coxson and Mackey (1990) were surprised to find that it had a peak of photosynthesis at 8 mg CO$_2$ g$^{-1}$ h$^{-1}$ in the morning, declined to 5 mg CO$_2$ g$^{-1}$ h$^{-1}$ by late afternoon, then fully recovered by late evening. They considered that it might have full recovery from photodestruction of pigment complexes, but such a degree of photosensitivity would be unusual for plants living in high light environments. However, this would seem to be consistent with observations on *Ceratodon purpureus* (Figure 9) (Rintamaki et al. 1994). One of its mechanisms to tolerate high light is its rapid turnover of the D1 reaction center protein in photosystem II. In mosses such as *Ceratodon purpureus*, this permits rapid replacement of light-damaged protein, thus serving as protection against photoinhibition. Once again, it seems the bryophytes have outdone the tracheophytes.

Plants adapt to high light either by structural adaptations or by protective pigments. Tracheophytes have protective epidermal layers, and in most groups there is a palisade layer beneath that epidermis that further serves to absorb light before it reaches the photosynthetic tissue of the spongy mesophyll. Bryophytes lack this structure. Hence, bryophytes must invest more in cellular level...
protection to mitigate the damaging effects of high light intensity (Robinson & Waterman 2014). In some cases, the bryophytes use mechanisms already known in algae, such as thermal energy dissipation that is associated with the LHCSR protein, a mechanism no longer present in tracheophytes.

Structural Adaptations

Waite and Sack (2010) found that ten Hawaiian mosses did not demonstrate a correlation between habitat irradiance and light-saturated photosynthetic rate per biomass. However, they found that other photosynthetic parameters and structural traits (leaf area, cell size, cell wall thickness, and canopy density) were aligned with microhabitat irradiance. Furthermore, internally, high light can cause a decrease in thylakoid stacking (Post 1990).

Bryophytes often have filters that help to protect them from high light intensity. For example, several *Polytrichum* (Figure 10) species have lamellae (Figure 11) that are enclosed by the inrolled lamina (Figure 11) of the leaf, thus rendering the leaf a structure that is not very different from that of a deciduous tree. Others have leaves with filaments [*Crossidium* (Figure 12-Figure 13)], hyaline tips [*Hedwigia ciliata* (Figure 14-Figure 16), *Bryum argenteum* (Figure 17-Figure 18)], and awns [*Tortula* (Figure 19-Figure 22), *Syntrichia* (Figure 2)] that overlap the next leaf and help to deflect light before it reaches the cell interior. Hyaline hair tips, partially covering adjoining leaves when dry (Figure 14, Figure 20), are spread out of the way of the photosynthetic tissue upon hydration (Figure 15, Figure 21).

Figure 10. *Polytrichum juniperinum*, a species with lamellae and rolled over leaf edges. Photo by Janice Glime.

Figure 11. Leaf cross section of *Polytrichum juniperinum* showing leaf edge rolled over lamellae. Photo from Botany Website, UBC, with permission.

Figure 12. *Crossidium aberrans*, a species with filaments on the leaves. Photo by Michael Lüth, with permission.

Figure 13. *Crossidium aberrans* leaves showing filaments on costa. Photo by Michael Lüth, with permission.

Figure 14. *Hedwigia ciliata* dry. Photo by Janice Glime.
Figure 15. *Hedwigia ciliata* wet. Photo by Robert Klips, with permission.

Figure 16. *Hedwigia ciliata* leaf showing transparent awn. Photo by Dale A. Zimmerman Herbarium, Western New Mexico University, with permission.

Figure 17. *Bryum argenteum* showing tight leaves that overlap and protect each other from light damage. Note the white tips of each leaf. Photo by Michael Lüth, with permission.

Figure 18. *Bryum argenteum* leaves showing the hyaline upper half. Photo by Heike Hofmann © swissbryophytes <swissbryophytes.ch>, with permission.

Figure 19. *Tortula brevissima* showing partially appressed leaves in its dry habitat. Photo by Michael Lüth, with permission.

Figure 20. *Tortula brevissima* dry with twisted leaves and appressed. Photo by Michael Lüth, with permission.
Chapter 9-3: Light: Effects of High Intensity

Frey and Küschner (1991) have demonstrated a correlation between "glass hairs" (Figure 13, Figure 18, Figure 16, Figure 22) and increasing aridity, suggesting that they could be useful as UV shields as aridity, and correlated light exposure, increase. Many taxa curl their leaves (Figure 23), wrap their leaves around the stem (Figure 20), or appress leaves (Figure 20) when dry, causing each leaf to help protect at least part of the next leaf. Structures such as papillae become more transparent when wet, typically doubling their ability to transmit light (Glime, unpubl. data). Short turfs likewise help to protect mosses from high light intensity through self-shading (Schofield 1985).

Epiphytes like *Octoblepharum* (Figure 24-Figure 25) and *Leucobryum* (Figure 26-Figure 27) have numerous hyaline cells that might help to filter the light before it reaches the photosynthetic cells. But I have seen no experiments that demonstrate if this really alters the light intensity. They could, instead, focus the light on the interior photosynthetic cells while serving as a water reservoir to maintain photosynthesis in a dry atmosphere.

Figure 21. *Tortula brevissima* wet, with spreading leaves. Photo by Michael Lüth, with permission.

Figure 22. *Tortula brevissima* leaf tip and awn. Photo by Heike Hofmann ©swissbryophytes <swissbryophytes.ch>, with permission.

Figure 23. *Atrichum altecristatum* drying, showing curling leaves compared to more moist expanded leaves in the background. Photo by courtesy of Eric Schneider.

Figure 24. *Octoblepharum albidum*, a moss that shields its photosynthetic cells with hyaline cells. Photo by Janice Glime.

Figure 25. Cross section of *Octoblepharum albidum* leaf. Photo courtesy of Noris Salazar Allen.
In boreal wetlands, bryophytes have distinct spectral characteristics compared to those of tracheophytes in the visible, near-infrared (NIR), and short-wave infrared (SWIR, 1.50-2.50 µm) regions (Bubier et al. 1997). In the visible portion of the spectrum, these mosses exhibit typical absorption in the blue and red regions but differ from the tracheophytes in having a "green" peak reflective of the color (red, brown, or green) of individual species. The reflectance in the NIR region of mosses is usually less than in the tracheophytes, with strong water absorption features at ~1.00 and 1.20 µm, causing distinct reflectance peaks at ~0.85, 1.10, and 1.30 µm. These are diagnostic of the three groups of mosses – Sphagnum (Figure 48-Figure 49), feather mosses (Figure 28), and brown mosses (Figure 29). Bubier and coworkers suggested that these may indicate different cellular characteristics. The high water content causes the overall reflectance of the mosses in the SWIR region to be lower than that found in tracheophytes.

For aquatic bryophytes, water depth affects light intensity and quality. Martínez Abaigar et al. (1993) found that Scapania undulata (Figure 30-Figure 31) had a Leaf Specific Area (LSA) of 317 cm² g⁻¹DW at 5 cm depth, but at 45 cm depth, the LSA increased to 399 cm² g⁻¹DW. Concomitantly, Leaf Specific Weight was reduced from 3.16 mg cm⁻² to 2.50 mg cm⁻². These differences can be interpreted as a response to lower light availability at 45 cm and parallel the kinds of changes that occur in tracheophyte leaves. Canopy leaf fall likewise causes an increase in accessory pigments relative to chlorophyll a in this liverwort by increasing the light coming through the canopy.
Some structural timing changes are likely to help in protecting developing tissues from high light damage. In tracheophytes, bud scales and leaf primordia can prevent desiccation and most likely prevent light damage to developing tissues when the canopy is free of leaves in the spring (Budke et al. 2012). But mosses have no such mechanism. Nevertheless, in the moss *Funaria hygrometrica* (Figure 32-Figure 35), there are indications that the calyptra plays this role for the developing sporophyte. Not only does the calyptra remain on the developing tip of the young sporophyte until the capsule begins to form, but as the calyptra develops, it produces its cuticle before any cuticle develops on the young capsule. In fact, the calyptrae are covered by four layers of cuticle at all stages. Although Budke and co-workers emphasized the importance of the cuticularized calyptra in preventing desiccation, I would consider it likely that this structure also serves as a filter to protect the developing apical cells from UV-B.
Pigmentation

Plant leaves and plant cells are much like a system of filters and lenses. We have already discussed the use of cell structure (lenses) to focus light on a particular location or to alter its intensity. Another way to protect chlorophyll and DNA from high light intensity is through colored pigments (filters) that absorb light.

Increased levels of chlorophyll b and xanthophylls, both antenna pigments, are consistent with the suggestion that it is the antenna pigments that dissipate light energy in *Rhytidiadelphus squarrosus* (Figure 36); specifically, zeaxanthin strongly enhances light quenching (dissipation of light energy) in an atmosphere of 20% CO$_2$ (Bukhov et al. 2001a). This appears to be fundamentally different from mechanisms in tracheophytes, as represented by spinach and *Arabidopsis* (Figure 37), where the reaction center appears to be important in quenching. In *R. squarrosus*, it requires only a few short light pulses, separated by a prolonged dark period, to stimulate the production of additional zeaxanthin (Bukhov et al. 2001b). But that was in 20% CO$_2$! What can it do in the more normal 0.04% CO$_2$? The interaction of zeaxanthin with thylakoid protonation permits the effective thermal dissipation of light energy in the chlorophyll antenna system of photosystem II in this bryophyte, but not in the two tracheophytes.

It appears that there is a physiological mechanism that facilitates pigment production in response to high light. The gaseous hormone *ethylene* inhibits the synthesis of carotenoids and chlorophyll (Kang & Burg 1972), but stimulates the production of red pigments. Ultimately, its production is inhibited by red light, a convenient feedback mechanism to stop production when the cells have enough red pigment. Ethylene is inhibited by CO$_2$ and requires O$_2$ for its formation.

Red pigments become more common in mosses at low temperatures. In our experiments with *Fontinalis squamosa* (Figure 38-Figure 40) (Glime & Rohwer 1983), a water-soluble red pigment (anthocyanin derivative?) was produced as a wall pigment in aborted apical buds (Figure 41) and some of the older leaves under treatment with ACC, an ethylene precursor.
Figure 39. *Fontinalis squamosa* stranded above water in the low water levels of summer. Photo by Janice Glime.

Figure 40. *Fontinalis squamosa* showing dark pigmentation out of water. Photo by Michael Lüth, with permission.

Figure 41. *Fontinalis squamosa* broken-branch buds showing dark pigmentation. Photo by Janice Glime.

In *Fontinalis antipyretica* (Figure 42), red leaves were present in a population growing in cold mountain water in full sun (Figure 43-Figure 44) (Glime & Rohwer 1983). A similar response occurred when shoots were kept out of the water under fluorescent light (Figure 45). A similar response is present in *Ceratodon purpureus* (Figure 46) in the Antarctic (Post 1990). In high light, the leaves become ginger-colored, a color caused largely by an increase in anthocyanin and decrease in chlorophyll concentrations (Figure 60).
In intense light and cold, these C3 bryophytes would have a high photosynthesis/photorespiration ratio due to the fact that photorespiration is low at low temperatures, whereas photosynthesis, when lowered at these temperatures, will not be lowered as much as photorespiration (Zelitch 1971). This high ratio will result in a high O₂/CO₂ ratio that will favor an increase in ethylene production; ethylene will then inhibit production of carotenoids and chlorophyll while stimulating anthocyanin production. The resulting pigmentation will then reflect, scatter, and transmit red light. Since red light should inhibit ethylene production (Kang & Burg 1972), it appears that this system should be self-limiting, with intense red pigment reducing or turning off ethylene production and protecting chlorophyll from overexcitation in intense light (Figure 47). However, this assumes that the red pigment behaves like anthocyanin.

Maseyk et al. (1999) compared New Zealand samples of Sphagnum cristatum (Figure 48) of different colors to determine the effects of pigmentation on photosynthetic response. Brown mosses required higher light intensities (photon flux densities, PFD) than did green samples, had lower quantum efficiencies, and had higher light compensation points, all suggesting that the pigments played a role in filtering out light. An interesting correlation to this was that brown moss samples had a wider range of optimum water content (1400-3000%) than did green mosses (1200-2000%).

Gerdol (1996) found that Sphagnum magellanicum (Figure 49) had its greatest growth rates in the shade in plants with the highest chlorophyll b concentrations and that a high ratio of chlorophyll to carotenoids was also beneficial in the shade. In the open, growth rates were negatively correlated with the chlorophyll a:b ratio. Gerdol suggested that this negative relationship is due to the greater ease with which chlorophyll a is degraded under environmental stress.

Light quality matters. In the thalllose liverwort Marchantia polymorpha (Figure 50-Figure 51) the red/far-red ratio matters. De Greef and Fredericq (1969) tested this liverwort in a series of R/FR ratios in 10-minute exposures at the end of the day. In a decreased R/FR ratio, there was a decrease in chlorophyll content. The growth of this liverwort was similar to that shown for seedlings of tracheophytes. The researchers concluded that high levels of the PFR form of phytochrome were necessary to maintain optimal chlorophyll content in these thalli.
Chapter 9-3: Light: Effects of High Intensity 9-3-13

Figure 50. *Marchantia polymorpha* demonstrating the pale color of sun plants. Photo by James K. Lindsey, with permission.

Figure 51. *Marchantia polymorpha* demonstrating the dark color of shade plants. Photo by Walter Obermayer, with permission.

Sphagnorubin

As with anthocyanin, concentration of *sphagnorubin*, a red wall pigment in some species of *Sphagnum* (Figure 49), was also highest in the open (Gerdol 1996). However, the sphagnorubin concentration was not correlated with chlorophyll concentration and growth rate.

Sphagnorubin is a flavonoid related to anthocyanin (Rudolph et al. 1977). Schmidt-Stohn (1977) found that in *Sphagnum magellanicum* (Figure 49), its synthesis is related to rapid changes in chlorophyll concentration. When Gerdol (1996) did not find the expected negative correlation with chlorophyll concentration, he assumed that the timing of the chlorophyll and sphagnorubin metabolic pathways were different. Sphagnorubin is produced when nights are cold (5°C) and daytime light is intense, but not when both nights and days are warm (18°C) (Rudolph et al. 1977; Gerdol et al. 1998).

Chlorophyll Ratios in Aquatic Bryophytes

Whereas the brook moss *Fontinalis antipyretica* (Figure 42-Figure 45) likewise can be brilliant red in nature in intense light and cold water (Glime 1984), on the other end of the scale, aquatic bryophytes alter pigment concentrations as light attenuation occurs with increasing depth. In *Scapania undulata* (Figure 30-Figure 31) populations, plants growing at 5 cm depth gained chlorophyll *a* in summer (from 3.43 to 3.69 mg g⁻¹ dw) while losing chlorophyll *b* (from 1.17 to 0.87 mg g⁻¹ dw), suggesting that they had a much higher light availability in summer (Martínez Abaigar et al. 1993). At 45 cm depth, they lost chlorophyll *a* in summer (from 4.08 to 3.41 mg g⁻¹ dw) and likewise lost chlorophyll *b* (from 1.47 to 1.15 mg g⁻¹ dw). The increase in chlorophyll *b* with depth was significant (p<0.01) in both spring and summer, whereas chlorophyll *a* had a significant increase with depth in spring (p<0.01) but not in summer (p>0.05). The resulting chlorophyll *a:b* ratio was significantly less at 45 cm in both seasons. Variance in carotenoid ratios was extremely small, causing differences of less than 5% between the two depths to be significant for spring samples.

Martínez-Abiaigar et al. (2003) subjected the aquatic moss *Fontinalis antipyretica* (Figure 42) and aquatic leafy liverwort *Jungermannia exsertifolia* subsp. *cordifolia* (Figure 52) to 3 different radiation regimes for 36 days in the laboratory. In *F. antipyretica*, UV-A had little biological effect. UV-B caused decreases in both chlorophyll and carotenoid concentrations, chlorophyll *a/b* ratios, chlorophyll/phaeopigment ratios, net photosynthetic rates, light saturation point, maximum quantum yield of photosystem II, and apparent electron transport rate, along with increases in their *sclerophyll index* and dark respiration rates. Most of these changes were indicative of plant stress. In the liverworts, however, UV-B caused only an increase in the concentration of UV-absorbing compounds and a decrease in *Fᵥ/Fm*. The researchers concluded that these differences would permit the liverwort to tolerate higher levels of UV-B radiation. But in my observations of *Fontinalis antipyretica* growing near the surface in cold water in full sun, the mosses were a deep red-green, protected by red pigments (Figure 42-Figure 44).

Figure 52. *Jungermannia exsertifolia* subsp. *cordifolia*, a species that produces more UV-absorbing compounds in response to high light. Photo by Michael Lüth, with permission.

The *sclerophyll index* has rarely been applied to bryophytes. It was developed to compare features of Australian sclerophyllous plants (literally, hard-leaved plants) and included broad, leathery leaves; reduced leaf size; needle leaves; winged stems; spiny stems; sunken stomata; cutinization and lignification of leaves; development of tannins and resinous substances; strong...
development of palisade mesophyll and weak development of spongy mesophyll; and presence of hairs, scales, or waxy bloom on leaf surface (Grieve 1955). Few of these can be applied to bryophytes, but reduced leaf size, cutinization of leaves, development of tannins (phenolic compounds), thicker leaves, presence of awns or papillae, and waxy bloom might be instructive.

Using 17 species of bryophytes from low light habitats of Yuan-Yang Lake at 1760 m elevation in northern Taiwan, Yang et al. (1994) found that the mean chlorophyll \(a/b \) ratio was 2.41, with all mean ratios equalling or exceeding 2.17. Two hydrophytes used for comparison had a mean of 3.08. Nevertheless, these 17 bryophytes had a higher chlorophyll \(a/b \) ratio than most mosses reported in the literature, suggesting that they were adapted (or acclimated) to the intense illumination of that elevation (250 \(\mu \text{mol m}^{-2} \text{s}^{-1} \)).

UV Absorption

Bryophytes are able to produce pigments that absorb UV-A and UV-B while permitting most of the photosynthetically active radiation to penetrate (Jorgensen 1994). These pigments are primarily phenylpropanoids and flavonoids. Jorgensen suggests that these pigments may have evolved along with the high biosynthetic activity that is needed for UV protection. One of the necessary components of this evolution was to provide a means of sequestering these protective compounds that would otherwise be toxic. Clarke and Robinson (2008) demonstrated that the Antarctic moss Ceratodon purpureus (Figure 46) produced cell wall-bound UV protective compounds, an effective place to sequester them to protect their own cells. These UV-B protective compounds not only protect against damaging radiation, but at least some are also important in antitherbivory and antimicrobial activity (Davidson et al. 1989; Graham et al. 2004).

Unlike the popular perception, some mosses are able to grow in large numbers in full sun. How do these mosses cope with high light and UV-B radiation? Physcomitrella patens (Figure 53) is one of these sun-dwelling mosses. This remarkable tiny moss actually has greater ability to survive UV-B stress than the flowering sun plant Arabidopsis thaliana (Figure 37) (Wolf et al. 2010). This moss has \~400 genes that are expressed in response to UV-B radiation! Its response pathways are also distinct.

In Norway, Wilson et al. (1998) found that the growth of Hylocomium splendens (Figure 54-Figure 55) was strongly stimulated by UV-B when provided with extra water, but under its natural water conditions, UV-B displayed no effect on growth or appearance. On the other hand, leaves of the shrub Vaccinium vitis-idaea (Figure 56) became thicker, whereas those of deciduous dwarf shrubs became thinner.

Figure 53. Physcomitrella patens, a tiny sun-dwelling moss that survives high light better than the weedy tracheophyte Arabidopsis thaliana (Figure 37). Photo by Michael Lüth, with permission.

Figure 46. Hylocomium splendens with its typical forest floor color. Photo by James K. Lindsey, with permission.

Figure 55. Hylocomium splendens showing the yellowish color typical when the tree canopy is cut. Photo by John Game, through Creative Commons.

Figure 56. Vaccinium vitis-idaea, a species that develops thicker leaves in high light intensity. Photo by Jonas Bergsten, through public domain.
Frey and Küchsel (1991) found a correlation between black pigmentation and increasing aridity in mosses. This most likely is an adaptation to protect the moss from UV light during periods of drought. Normally, water helps to protect chlorophyll from UV light, but during periods of drought, this is not possible. The dark color could serve as a filter against the UV, becoming more transparent to light when water returns. Certainly, the color should not be needed for warmth by absorbing heat rays since it is during the warmest periods that high light intensity and desiccation provide the greatest problems.

Many members of the leafy liverwort genus *Frullania* (Figure 57) possess red coloration, grading into nearly black. This genus typically lives on trees and boulders, often at high elevations or high in the canopy. Deeply pigmented species can actually require high light, and account for the presence of this species at high elevations above timberline or high in the canopy of the tropics. On Barro Colorado Island, Panama, epiphyllous liverworts grow more quickly in high light intensities than in the shade, attesting to their adaptations to high light intensity (Coley *et al.* 1993). But these locations also often have higher UV-B light, so the pigmentation may serve as an important filter against UV damage.

![Figure 57. Red coloration of *Frullania tamarisci*. Photo by Michael Lüth, with permission.](image)

Searles *et al.* (2002) examined the responses of peatland mosses in southern South America to near-ambient (90%) and reduced (20%) UV-B radiation for three growing seasons. The reduction of UV-B cause an increased height growth in *Sphagnum magellanicum* (Figure 49), but the plant density decreased. Hence, there was no net influence on biomass production. *S. magellanicum* experienced a 10-20% decrease in UV-B-absorbing compounds under the low UV-B regime, but there were no effects on chlorophyll or carotenoid concentrations.

UV radiation is much more intense in terrestrial habitats because in aquatic habitats water quickly absorbs it. It appears that aquatic mosses and liverworts may differ from each other in their UV-absorbing spectra. In ten mosses and four liverworts from a mountain stream at 2,000 m elevation, only the liverworts had high levels of methanol-extractable UV-absorbing compounds, with the exception of *Polytrichum commune* (Figure 58) (Arróniz-Crespo *et al.* 2004). Accumulations of such compounds could protect liverworts against the high UV-B light on stream rocks above and near the surface.

![Figure 58. *Polytrichum commune*, a species that produces high levels of methanol-extractable UV-absorbing compounds in high light. Photo by Michael Lüth, with permission.](image)

In their study of aquatic bryophytes, Martínez Abaigar *et al.* (1993) found very little seasonal or species-specific differences in carotenoid ratios, suggesting that the carotenoids responded little to changes in light intensity in these bryophytes. We know that UV-B quickly loses energy in water, converting to longer wavelengths, and perhaps reducing the danger of UV-B damage in aquatic bryophytes.

UV-B penetration changes throughout the day as the Earth turns and the sunlight travels through less atmosphere as time approaches 12:00 hours, then decreases as the rays strike at a greater angle, once again having to penetrate more atmosphere. The aquatic leafy liverwort *Jungermannia exsertifolia* subsp. *cordifolia* (Figure 52) exhibited significant diel (within 24 hours) changes, responding within a few hours to changes in radiation levels (Fabón *et al.* 2012). The strongest response was to UV-B. High levels of photosynthetically active radiation (PAR), UV-A, and UV-B radiation elicited significant and rapid diel changes in the components of the xanthophyll cycle. Furthermore, the Fv/Fm, phi PSII (absolute quantum yield of CO$_2$ fixation in photosystem II), and non-photochemical quenching likewise responded quickly to the changes in radiation levels. These changes provided dynamic photoinhibition and protection of PSII, with the xanthophyll cycle providing protection from the excess radiation.

Accessory pigments such as carotenoids can serve to protect chlorophyll from damage by high intensity UV light (Siefermann-Harms 1987) such as that in the Antarctic. The three mosses examined by Siefermann-Harms all had sustained high levels of xanthophyll pigments, especially at exposed sites (Lovelock & Robinson 2002). Among these was an increase in violaxanthin (Post 1990). These pigments are photoprotective and indicate that the moss most likely is subjected to continual high levels of photochemical stress (Lovelock & Robinson 2002). *Ceratodon purpureus* (Figure 59-Figure 60) had a higher carotenoid:chlorophyll ratio in high light intensities (0.55) than in low ones (0.35).
Since the Antarctic has received much publicity due to the ozone hole and resulting increase in UV-B penetration through the atmosphere, many of our studies on bryophyte responses to increased UV-B radiation have involved Antarctic bryophytes. Responses are seasonal, resulting in an increase in photoprotective pigments as the ice melts and the mosses become exposed (Dunn & Robinson 2006). One interesting result of these studies is finding that the two cosmopolitan mosses _Bryum pseudotriquetrum_ (Figure 5) and _Ceratodon purpureus_ (Figure 46, Figure 59-Figure 60) appear to be better protected against UV-B radiation than is the Antarctic endemic _Schistidium antarctici_ (Figure 7). Of these three mosses, _B. pseudotriquetrum_ accumulates the highest concentration of UV-B protective pigments, exhibiting a positive correlation between UV-B radiation and both UV-B-absorbing and anthocyanin pigments. Under desiccating conditions, this species has greater concentrations of these protective pigments than in well-hydrated conditions. This combination would mean that at low temperatures and low moisture, the moss would have limited physiological activity and thus be protected from potential UV-B damage.

Ceratodon purpureus (Figure 59-Figure 60) is the most exposed species of the three studied (Dunn & Robinson 2006). It uses a different strategy of protection, with concentrations of UV-B absorbing pigments being stable through varying light and moisture conditions (Dunn & Robinson 2006). Dunn and Robinson suggested that this is evidence that the protective pigments are constitutive in this species. On the other hand, the anthocyanin pigments were responsive, providing increased antioxidant protection during exposure to high levels of UV-B radiation.

The endemic _Schistidium antarctici_ (Figure 7), unlike these two cosmopolitan species, is poorly protected, showing no evidence of pigment production in response to UV-B stimulation (Dunn & Robinson 2006). This raises an interesting question of survival, since this species grows along side _Ceratodon purpureus_ (Figure 59-Figure 60). Are there physiological mechanisms that permit its survival, or is it indeed more vulnerable to a diminished ozone layer, as suggested Dunn and Robinson?

A study by Proctor and Smirnoff (2011) may explain the survival of _Schistidium antarctici_ (Figure 7). Mosses typically saturate at moderate light levels. Light intensities above those levels can therefore be harmful because of more excited electrons than the photosynthetic apparatus can handle. These saturating levels are similar to those of shade species, demonstrated by the moss _Plagiomnium undulatum_ (Figure 61) and leafy liverwort _Trichocolea tomentella_ (Figure 62). But what about bryophytes that live in exposed sites with no shade to protect them? _Andreaea rothii_ (Figure 63-Figure 64), _Schistidium apocarpum_ (Figure 65), many _Sphagnum_ species (Figure 48-Figure 49), and _Frullania dilatata_ (Figure 66) show a non-saturating electron transfer rate at high light levels, accompanied by high non-photochemical quenching (protection from the adverse effects of high light intensity by dissipating excess excitation energy). _Plagiomnium undulatum_ and _Schistidium apocarpum_ can use oxygen and carbon dioxide interchangeably as electron sinks (in this case, binding the electrons so they cannot do damage). These two moss species have a high capacity for oxygen photoreduction when CO₂ assimilation is limited. But when the atmosphere is reduced to 1% O₂ with normal levels of CO₂, non-saturating electron flow is not suppressed. Nitrogen + saturating CO₂ causes a higher relative electron transport rate while depressing the non-photochemical quenching. These high abilities of supporting the electron transport by oxygen photoreduction may be a mechanism to permit such mosses as the Antarctic _Schistidium antarctici_ to survive the high UV-B levels in the Antarctic.
Chapter 9-3: Light: Effects of High Intensity 9-3-17

Figure 62. *Trichocolea tomentella*, a shade species. Photo by Michael Lüth, with permission.

Figure 63. *Andreaea rothii* wet, from the Black Forest, Germany, a sun species. Photo by Michael Lüth, with permission.

Figure 64. *Andreaea rothii* dry, living in an exposed site. Photo by Michael Lüth, with permission.

The moss *Hennediella heimii* (Figure 67) from Southern Victoria Land, Antarctica, is provided with glacial melt water during the summer. When Pannewitz *et al.* (2003) monitored this moss for 18 days in summer, they found that it had a constant potential photosynthetic activity during that entire period. It grew in the predicament of high light and low temperatures. Nevertheless, it showed no sign of photoinhibition or light saturation, and its electron transport rate response to photosynthetic photon flux densities remained linear at all temperatures. The researchers speculated that it must have a highly effective non-photochemical quenching system.

Figure 65. *Schistidium apocarpum*, a species that physiological adaptations in addition to its color, awns, and ability to wrap leaves around its stem, all of which aid it in living in exposed sites. Photo by Michael Lüth, with permission.

Figure 66. *Frullania dilatata*, a desiccation-tolerant leafy liverwort. Photo by Michael Lüth, with permission.

Figure 67. *Hennediella heimii*, a species that shows no sign of photoinhibition even in the high UV-B light of the Antarctic continent. Photo by Michael Lüth, with permission.

When the snow melts on the Antarctic Peninsula, bryophytes are suddenly exposed to high UV-B levels while still at near-freezing temperatures. Post and Vesk (1992) studied the only continental Antarctic liverwort,
Cephaloziella varians (Figure 68-Figure 69). It occurs in full sun once its ice cover melts. The researchers compared plants from sun-exposed and shaded sites. Those from full sun exhibited dark purple leaves with an anthocyanin-like pigment in thick cell walls. These purple plants grew in dense turfs, were larger, had more closely spaced leaves, and had a higher carotenoid to chlorophyll ratio than did the shaded green plants. The shaded green plants, on the other hand, contained more chlorophyll per unit weight. Like a number of other bryophyte studies, this one showed no variation in the chlorophyll a/b ratio with differences in light intensity. In low light levels the green plants exhibited higher photosynthetic oxygen evolution rates. The two colors of leaves in similar positions on the plants had more appressed thylakoids in green leaves than did the purple leaves. These differences are the same as expected under varying light exposure.

Snell et al. (2007) experimented with the same leafy liverwort species, Cephaloziella varians (Figure 68-Figure 69), by covering it with screens containing Mylar polyester for 44 days. This treatment resulted in changes in thalli, which are normally black, to exhibit a green color. This was the result of reduced concentrations of the anthocyanidin riccionidin A in the plant tips. These plants were then exposed to an abrupt increase in their UV-B radiation when the screens were removed. Within only 48 hours the plants were visibly darker. This color change was due to de novo synthesis of riccionidin A that reached the same concentrations as that in plants that had not been covered during those 44 days. This synthesis required an equivalent of 1.85% of the carbon fixed during those 48 hours. The Fv/Fm and photochemical quenching were likewise the same in both groups of plants. Nevertheless, the level of chlorophyll fluorescence indicated that non-photochemical quenching was higher in the plants that had just experienced the sudden increase in UV-B.

Otero et al. (2008) examined five liverworts and ten mosses from open aquatic habitats of Tierra del Fuego on the southern tip of Argentina, where the atmosphere is thinner than in temperate regions, to determine their responses to UV radiation. They found that the species differed in spectra form and area under the absorbance curve (AUC). The spectra had one, two, or no defined peaks. They suggested that phenolic derivatives might be responsible for the differences in peaks among the species. These phenolic derivatives could serve not only as screening compounds, but also as antioxidants. The AUC values for most of the liverworts were higher than those for most of the mosses. The liverworts Noteroclada confluens (Figure 70) and Triandrophyllum subtrifidum (Figure 71) had much higher bulk UV-absorption capacity of the methanolic extracts (BUVACME) than did any other bryophyte in the study. The researchers concluded that "accumulation of UV-absorbing compounds might often increase protection against UV radiation in liverworts, but rarely in mosses." Could this difference be related to their location in southern Argentina? But Otero and coworkers did not find the BUVACME of these aquatic bryophytes to differ significantly from that found elsewhere on the planet.
Huttunen et al. (2005) compared the UV-absorbing compounds in herbarium specimens of terrestrial and peatland mosses collected from 1926 to 1996 from the sub-Arctic to see if it had changed as fluorines in the atmosphere increased the ozone hole, permitting greater penetration of UV light. They found that the average amount of total compounds (sum of A280-320 nm absorption) per mass from the lowest to the highest was *Polytrichum commune* (Figure 58), *Pleurozium schreberi* (Figure 28), *Hylocomium splendens* (Figure 54-Figure 55), *Sphagnum angustifolium* (Figure 72), *Dicranum scoparium* (Figure 73), *Funaria hygrometrica* (Figure 32-Figure 35), *Sphagnum fuscum* (Figure 74), *Sphagnum warnstorfii* (Figure 75), *Sphagnum capillifolium* (Figure 76), and *Polytrichastrum alpinum* (Figure 77). The amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude, but they found no trend in concentration of UV-B-absorbing compounds from 1920 to 1990 except in *Sphagnum capillifolium*, which showed a significant decreasing trend in concentrations. Huttunen and coworkers suggested that this lack of correlation with the increasing size of the ozone hole could be the result of degradation of the protective compounds or the difficulty in extracting the wall-bound pigments p-coumaric acid and ferulic acid (Davidson et al. 1989) and the sphagnorubins (Geiger et al. 1997).
Caldwell et al. (1998) concluded that some of the most important consequences of elevated UV-B might be indirect effects. In tracheophytes, these include changes in susceptibility of plants to attack by pathogens (fungi & bacteria) and insects, changes in the competitive balance among plants, and altered nutrient cycling. More direct effects seem to occur through altered gene activity rather than direct damage. These changes may be exacerbated or diminished by other changes that are coupled with increased UV-B, such as temperature and CO$_2$ level changes. Although these indirect effects would seem to be critical, if forest trees and other tracheophyte examples are indicative, we should look for these effects in bryophytes.

Desiccation Effects and Light

High light intensities are often coupled with desiccating conditions. Yet, it appears that the mosses that live in such desiccating conditions seldom suffer light damage during their dehydrated periods, and photosynthesis is able to resume immediately upon rehydration, not requiring synthesis of new chlorophyll to resume (Di Nola et al. 1983). For example, the desiccation-tolerant moss *Syntrichia ruralis* (Figure 2) retains all its pigments upon drying, thus rapidly recovering its photosynthetic functions upon rehydration (Hamerlynck et al. 2002). This species permits recovery on a daily basis by a thermal dissipation of the excess light energy as the moss dehydrates in the morning, and recovery upon rehydration depends on light conditions and the rapidity of drying.

Tracheophytes do not enjoy this pigment conservation (Heber et al. 2001) and rapidly lose their photosystem II capability under desiccation conditions (Hamerlynck et al. 2002). In desiccation-tolerant bryophytes, protein protonation, coupled with the presence of high levels of zeaxanthin, seems fully capable of dissipating excess light energy (Heber et al. 2001). A similar rise in zeaxanthin with dehydration occurs in the desiccation-tolerant tracheophyte *Selaginella lepidophylla* (Figure 78). This rise occurs during the dehydration process, and Casper et al. hypothesized that zeaxanthin-related protection is engaged in response to the dehydrating conditions, even in low light levels. Nevertheless, chlorophyll fluorescence is lost during drying of predarkened desiccation-tolerant mosses, suggesting that energy dissipation in the dry state is not related to protonation and high levels of zeaxanthin.
Deltoro et al. (1998a) found that desiccation-tolerant bryophytes [*Hedwigia ciliata* (Figure 14-Figure 16), *Hypnum cupressiforme* (Figure 80), *Leucodon sciuroides* (Figure 81-Figure 82), *Orthotrichum cupulatum* (Figure 83), *Pleurochaete squarrosa* (Figure 84), *Porella platyphylla* (Figure 85), and *Syntrichia ruralis* (Figure 2)] were able to resume photosynthesis rapidly upon rehydration, whereas desiccation-intolerant bryophytes [*Barbula ehrenbergii* (Figure 86-Figure 87), *Cinclidotus aquaticus* (Figure 88), *Conocephalum conicum* (Figure 89), *Lunularia cruciata* (Figure 90), *Palustriella commutata* (Figure 91-Figure 92), *Philonotis calcarea* (Figure 93), and *Platyhypnidium riparioides* (Figure 94)] from mesic and hydric habitats were unable to resume their photosynthetic activity.

Figure 80. *Hypnum cupressiforme*, a widespread, desiccation-tolerant species. Photo by J. C. Schou, with permission.

Figure 81. *Leucodon sciuroides* wet, a desiccation-tolerant epiphyte. Photo by Michael Lüth, with permission.

Figure 82. *Leucodon sciuroides* dry, showing appressed leaves and decreased surface area. Photo by Michael Lüth, with permission.

Figure 83. *Orthotrichum cupulatum*, a xerophytic epiphyte. Photo by Michael Lüth, with permission.

Figure 84. *Pleurochaete squarrosa*, a desiccation-tolerant moss. Photo by Michael Lüth, with permission.
Figure 85. *Porella platyphylla*, a desiccation-tolerant leafy liverwort epiphyte. Photo by Michael Lüth, with permission.

Figure 86. *Barbula ehrenbergii*, a desiccation-intolerant moss. Photo by Michael Lüth, with permission.

Figure 87. *Barbula ehrenbergii*, a species that is unable to resume photosynthesis after desiccation. Photo by Michael Lüth, with permission.

Figure 88. *Cinclidotus aquaticus*, a species of wet habitats that is unable to resume photosynthesis after desiccation. Photo by Michael Lüth, with permission.

Figure 89. *Conocephalum conicum*, a species of damp, usually shaded, habitats that is unable to resume photosynthesis after desiccation. Photo by Janice Glime.

Figure 90. *Lunularia cruciata*, a species that is unable to resume photosynthesis after desiccation. Photo by David Holyoak, with permission.
Chapter 9-3: Light: Effects of High Intensity

FIGURE 91. *Palustriella commutata*, a species of wet habitats. Photo by J. C. Schou, through Creative Commons.

FIGURE 92. *Palustriella commutata*, a species of wet habitats that is unable to resume photosynthesis after desiccation. Photo by David T. Holyoak, with permission.

FIGURE 93. *Philonotis calcarea*, a species of wet habitats that is unable to recover photosynthesis after desiccation. Photo by Michael Lüth, with permission.

In examining the xanthophyll content of a desiccation-tolerant leafy liverwort, *Frullania dilatata* (Figure 66), they found an increase in de-epoxidized xanthophylls in response to dehydration (Deltoro et al. 1998b), whereas this did not occur in the desiccation-intolerant *Pellia endiviifolia* (= *Apopellia endiviifolia*; Figure 95), and the latter species had less ability to dissipate the light while dry. Upon rehydration, *Frullania dilatata* resumed full photosynthetic capability rapidly, whereas *P. endiviifolia* suffered irreversible damage to photosystem II. They suggested that *F. dilatata* likewise possesses a desiccation-induced production of zeaxanthin, but they were unable to rule out the loss of K⁺ from damaged membranes in *P. endiviifolia* as a causal factor for its demise.

FIGURE 94. *Platyhypnidium riparioides*, a species of submersed and wet habitats that is unable to recover photosynthesis after desiccation. Photo by Hermann Schachner, through Creative Commons.

FIGURE 95. *Pellia endiviifolia*, a species with weak ability to dissipate light when dry. Photo by Michael Lüth, with permission.

Bartoskova et al. (1999) offer a somewhat different explanation for observed changes in chlorophyll fluorescence during drying. Working with leaves of *Rhizomnium punctatum* (Figure 96), they found a 50% decrease in the F685/F735 ratio in the chlorophyll fluorescence spectrum during drying. No changes occurred in the E475/E436 bands of fluorescence. They could find no functional changes resulting from desiccation at the energy transfer level and suggested that the change in fluorescence ratio is the result of a rearrangement of chloroplasts into groups that enhance the effect of chlorophyll reabsorption. My own experience in extracting chlorophyll from dry mosses is that they extract better if they are rehydrated first. This would be consistent with the grouping of chloroplasts, hence preventing the solvent from reaching the interior of the clump. In a conversation with Zoltan Tuba, I learned that he had experienced a similar response.
At least in alpine areas, where UV light may be more intense, desiccation can affect moss (and lichen) fluorescence differently from its effects on tracheophytes. In its dehydrated state, the moss *Grimmia alpestris* (Figure 97) had very low chlorophyll fluorescence, whereas it was high in the alpine tracheophytes tested (Heber et al. 2000). Conversely, upon rehydration, the mosses and lichens experienced increased chlorophyll fluorescence, whereas the tracheophytes experienced a decrease. This is because, unlike their tracheophyte counterparts, the mosses and lichens do not experience photodamage in their dry state. Both groups of plants form potential chlorophyll fluorescence quenchers as a response to desiccation, but only the dehydrated mosses and lichens responded to the energy transfer from light by exhibiting a decrease in fluorescence. It appears that among these alpine taxa, only the poikilohydric *Grimmia alpestris* has a deactivation pathway that enables it to avoid photodamage both in its hydrated and dehydrated states.

Beckett et al. (2005) found that **hardening** (process of increasing resistance) of the moss *Atrichum androgynum* (Figure 98) during drying permitted it to recover fully from dehydration, whereas lack of time for this preparation did not (Figure 99). That is to say, mosses that hardened by slow drying before the silica gel desiccation treatment had a better recovery than mosses that were placed immediately into the desiccation treatment from full hydration. More importantly, hardening greatly increased the photochemical quenching during the first few hours of rehydration. In these early stages photophosphorylation occurs, but not carbon fixation. Thus, it is in these early stages that photoprotection is most important, and the moss experiences reduced efficiency during drying in order to accomplish photoprotection during rehydration.
leaves against the stem is realized, and the tips of the branches tend to curve upward, reducing exposure. In *S. ruralis*, the drying leaves twist (Figure 100) and become more vertically oriented. Hamerlynck *et al.* (2000) suggested that *S. ruralis* has a "coordinated suite of architectural and physiological characteristics maintaining the photosynthetic integrity of these plants." These include not only their ability to change the positions of their leaves, but also to alter the surface reflectance as water leaves the leaf cells. This alteration causes more reflectance from a dry surface than from a wet one.

Figure 100. Dry *Syntrichia ruralis* exhibiting dark color and twisted leaves that protect it from high light intensity. Photo by Janice Glime.

In the Antarctic, where desiccation is frequent, Lovelock and Robinson (2002) also found significant differences among species and the sites they occupied based on their surface reflectance properties, especially at ~700 nm, whereas pigment concentration did not seem to be important.

Avoidance – Hiding under Rocks

Imagine a light so intense that you must hide under a rock to avoid damaging your pigments. The only light you ever see is that which comes through the rock, or occasionally reflects off the ground around that rock. There are some mosses that take just such a refuge. Using the rock as a filter, *Syntrichia inermis* (Figure 101) survives the intense light (and dryness) of the Californian desert by living beneath a piece of translucent rock (Werger & During 1989).

Figure 101. *Syntrichia inermis*, a moss capable of living under quartz pebbles in the desert. Photo courtesy of Lloyd Stark.

As we have seen, polar deserts are unfriendly habitats due to the damaging effects of UV radiation. For *Cyanobacteria* (Figure 102) and algae, living under translucent rocks is a way to escape that damaging radiation (Thomas 2005). These assemblages can be as productive as their neighbors that are not protected by rocks. It seems likely to me that some members of these microbial communities might enhance the habitat for the few species of bryophytes that live there. For example, *Cyanobacteria* can convert atmospheric nitrogen to a form usable by the bryophytes. Non-photosynthetic bacteria can provide CO₂. This remains another microecosystem begging for ecological study.

Figure 102. *Cyanobacteria* under quartz rock. Photo by Michael Wing, public domain through NSF funds.

Williams (1943) described a "moss peat" under translucent pebbles in the American Great Plains, but there seems to be no publication of the actual species. The rare moss *Aschisma kansanum* is known only from this unique habitat, where it occurs at the base of nearly clear quartz pebbles (Cridland 1959). The thick, leathery protonema, which is persistent, covers the buried part of the pebbles overlying sandy Pleistocene gravels. And in the Antarctic, where mosses must "worry" about the effects of UV light – what better place to hide than behind glass, in the form of quartz. And there one might also find the tiny *Hennediella heimii* (Figure 103) beneath the rock (Fife 2005).

Figure 103. *Hennediella heimii*, a moss that lives under quartz rocks in the Antarctic. Photo by Michael Lüth, with permission.
Marchand (1998) determined that about 1.5% of the full sunlight hitting a milky quartz rock penetrated through about 2.5 cm of rock, comparing this to the light reaching a potted plant in a well-lit office. In some cases, visible light can reach a depth of 5 cm. The rock offers the added advantage of reflecting much of the heat and registering temperatures ~7ºC less than under a dark-colored volcanic rock.

Terry Hedderson (Bryonet 22 February 2005) tells of quartz-field bryophyte communities beneath stones in the Knersvlakte area of Namaqualand and from the inselbergs of Bosmansland, both in South Africa. He provides this anecdotal account: "The bryophyte assemblages seem to come in two forms: In some areas where there are extensive and relatively deep patches of translucent small quartz pebbles, one can find entire communities comprising **Bryum argenteum** (Figure 17-Figure 18), **Riccia** spp. (Figure 104), **Hennediella longipedunculata**, other small **Pottiaceae**, **Chamaebryum**, **Gigaspermum** (Figure 105) and others, buried to a depth of a few centimetres (3-10 say). These often occur with various Aizoaceae seedlings, as mentioned by a previous contributor. Some of the best examples that I've seen of these are on the summits of Ghamsberg and Pellaberg in Bosmansland. In areas where the pebble cover is less continuous (like in the Knersvlakte), I have found communities under flattish single stones that are imbedded in a clay matrix. Here they often occur with lots of blue-greens, with the main bryophyte component comprising **Archidium dinteri**, **Bryum argenteum**, various **Riccias** and small **Fissidens** spp (Figure 106). The vast majority of stones have only blue-greens and it is not at all clear what determines whether bryophytes are present or not. In both cases the plants are often quite vigorous and healthy looking, and not the least bit etiolated, so I imagine that they receive sufficient light."

But records of these sequestered mosses are far more rare than those of algae. This intriguing habitat has led a number of bryologists to overturn numerous rocks in places like the Namib Desert, so far only to find more algae.

In the Antarctic, bryophytes (and algae) occur beneath rocks, stones, and sand (Lewis-Smith 2000). Seppelt (2005) finds buried mosses there occupying ephemeral riverbeds and other places where they have been buried by sand carried by wind or water. **Bryum pseudotriquetrum** (Figure 5) and **B. subrotundifolium** (Figure 107) can be uncovered by sweeping away the sand. In these habitats, as in sand dunes and volcanic tephra, the acrocarpous mosses are able to grow upward and eventually emerge into the light. For those buried by sand, refracted and reflected light may help to sustain them through photosynthesis as they wend their way to the top.
Lava fields often provide cracks through which rays of light may penetrate. Yojiro Iwatsuki (the finder), Zen Iwatsuki, and I were surprised in Iceland to uncover a miniature moss garden, predominately *Saelania glaucescens*, hidden under a fissure in the lava rock (Figure 108). Juana María González-Mancebo related an experience in the Canary Islands (Bryonet, 22 February 2005) where the researchers found 69 species of bryophytes living among the second layer of rock, under the rocks of the first layer of lava, in lava tubes, and in volcanic pits. Even the epiphyte *Neckera intermedia* (Figure 109) can grow in the more humid lava flows of Tenerife.

Summary

Due to their one-cell-thick leaves, bryophytes are especially susceptible to damage by UV light. Dry plants are especially vulnerable to chlorophyll and DNA damage due to the lack of protective water. Some have altered optical properties that reduce the light penetration into cells. Bryophytes can suffer photoinhibition due to overstimulation of chlorophyll in high light, which can result in a decrease in thylakoid stacking.

Some mosses have lamellae, inrolled leaf lamina, filaments, hyaline tips, and awns that partially cover the leaf and protect it from light. Others curl the leaves or wrap them around the stem. Aquatic mosses are protected by their water medium.

In response to high light intensities, bryophytes experience a decrease in chlorophyll. By having a relatively high amount of chlorophyll a compared to chlorophyll b in their shade plants, they are ready for sunflecks and other short periods of light availability, thus making up for the low productivity that is possible in the shade.

Pigments can filter light and reduce its energy, thus protecting the chlorophyll and DNA. Ethylene stimulates the production of red pigments, which are particularly common at low temperatures and in bright light. In *Sphagnum*, this red pigment is a cell wall pigment, sphagnorubin. *Violaxanthin* is known to increase in response to high light. *Zeaxanthin* responds by disabling the chlorophyll antenna pigments (quenching), thus reducing the energy reaching the chlorophyll a.

Bryophytes are superior to tracheophytes in preserving their chlorophyll during desiccation and are thus ready for photosynthesis upon rehydration. This may be due to a rearrangement of the chloroplasts into protective groups. **Hardening** is important in this preparation.

Some bryophytes avoid the intense radiation by growing under translucent rocks. These locations are especially important in deserts where light is intense and desiccation is a major problem.

Acknowledgments

Thank you to Rod Seppelt for helping me resolve which liverwort name belonged to species from the Antarctic continent.

Literature Cited

during rehydration by increasing fast- rather than slow-relaxing quenching. J. Bryol. 27: 7-12.

CHAPTER 9-4

LIGHT: SEASONAL EFFECTS

TABLE OF CONTENTS

Bryophyte View of Light .. 9-4-2
High Light and Low Temperatures ... 9-4-2
Light Effects on Reproduction .. 9-4-3
Seasonal Effects on Pigments .. 9-4-4
Colors of Light ... 9-4-8
Photoperiod Effects .. 9-4-9
Summary ... 9-4-10
Literature Cited ... 9-4-11
Bryophyte View of Light

Light is a constantly changing parameter in the world of the bryophytes. They experience long and short periods (photoperiod) as the seasons change. They experience high intensity and low intensity as the leaves grow on the trees. They experience changes from white light to green light as the canopy closes. And each of these changes is coupled with changes in temperature and available moisture. Each of these requires its own set of adaptations to permit the bryophyte to survive. But bryophytes can also take advantage of these changes as signals to them of the upcoming series of climatic events.

High Light and Low Temperatures

When plants are metabolically slowed by low temperatures (ca. 1°C) and light intensity is high (Figure 1), photo-oxidation damage can occur in cells (Kuiper 1978). This can result in such responses as rupture of the chloroplast envelope, formation of vesicles in thylakoids, and rapid degradation of linolenic acid. Adamson and coworkers (1988) suggest that such photoinhibition may be the major factor in limiting production of Antarctic bryophytes.

Blue light seems to be especially effective in the photo-oxidation of unsaturated fatty acids, indicating that carotenoids (yellow pigments absorb blue light) contribute to the process. One of the causes of the breakdown of chlorophyll can be attributed to the degradation of its complexing lipid, monogalactose diglyceride (Kuiper 1978). Ironically, it is the unsaturated fatty acids that are susceptible to this oxidation, causing a risky condition for plants preparing for the cold of winter while sustaining the bright light of autumn. However, presence of tocopherol, an anti-oxidant, can nullify this photo-oxidation process (Kuiper 1978) and may play a key role in protection of chlorophyll during autumn and spring when such low temperature and bright light conditions prevail.

When days are bright and nights are cold, Sphagnum magellanicum (Figure 2) produces sphagnorubin and becomes a deep wine red (Gerdol 1996). When the plants occur in the open, where higher light intensities are expected, the concentration of sphagnorubin is greater.
However, in intense light and warm temperatures *Sphagnum magellanicum* does not produce much red pigmentation (Rudolph *et al.* 1977). In this case the photorespiration/photosynthesis ratio would be high due to the fact that photorespiration has a $Q_{10} = 3$ with very little damping at higher temperatures. Photosynthesis, however, is observed to reach an optimum and then decrease its rate rapidly (Zelitch 1971). This would result in a high CO_2/O_2 ratio that would decrease ethylene production and stimulate chlorophyll and carotenoid synthesis. Anthocyanin (and sphagnorubin?) production would not be enhanced and so no red pigmentation would be found. In the case of warm temperatures, the red pigment would convey no adaptive advantage since the greatly increased photorespiration would serve as an energy shunt to protect the chlorophyll from overexcitation by the intense light (Bidwell 1979).

Light Effects on Reproduction

Humans don't think in terms of high light intensities for reproduction, but it appears that at least some mosses do. *Hylocomium splendens* (Figure 26) had poor reproduction in all populations except those that had received extra light as the result of removal of stems (Rydgren & Økland 2001). Those that were merely clipped to remove all growing tips and provide extra light did no better than the controls, suggesting that it was not the stimulus of the wounding or the extra energy diverted away from growing buds that caused the greater reproduction. In the second year of the experiment, the removal group had ten times as many sporophytes as the other treatment groups. But is this an indication of good or of bad conditions? Many algae and even flowering plants go into a sexual stage when growing conditions are poor, providing a means for the species to survive through its offspring.

To confound the issue further, Hughes and Wiggin (1969) found that in *Phascum cuspidatum* (Figure 5), light had just the opposite effect. Plants grown in culture in the shade had significantly more antheridia, more antheridial dehiscence, and larger antheridia than plants grown with light from the north sky. They did find more archegonial heads on plants grown in the light, but the success of fertilization was greater for plants grown in the shade (11%) than in the light (6%). However, they suggested that some of these differences could be accounted for by differences in population sizes.

In the Antarctic, bryophytes are frozen in winter, but in summer they are fully exposed to the polar sun. In fact, Post *et al.* (1990) found that the major limiting factor to
Antarctic bryophyte productivity is photoinhibition. This would not be unusual for C₃ plants such as bryophytes growing at low temperatures in high light. Nevertheless, this topic has rarely been studied in bryophytes.

Seasonal Effects on Pigments

Light intensity changes with the seasons, and at least some plants are adapted to respond to those changes. Tracheophytes change their chlorophyll concentration based on the amount of light reaching the leaf. Plants grown in low light will increase their chlorophyll \(b \) concentration, and thus their chlorophyll \(a:b \) ratio decreases. Those plants kept indoors in low light will suddenly turn red or become bleached if they are put out in bright sunlight, and the photosynthetic apparatus will become permanently damaged. Leaves growing on the shady side of a tree will be thinner and darker, while those in the sun put on extra layers of palisade tissue. Bryophytes cannot change their leaf thickness in response to light changes, but it is possible for them to change the chlorophyll concentration and the ratio of shoot area to biomass. A bryophyte branch can effectively operate like a leaf of a seed plant and thus some of the same size ratio responses are possible.

Hicklenton and Oechel (1977) found that *Dicranum fuscescens* (Figure 6) from northern Canada exhibited an increase in the light required to saturate photosynthesis from early season until mid summer, with the trend reversing later in the season. They suggest that ability to photosynthesize at low light levels is an advantage to mosses that are still under the snow in early spring. Mosses exposed to high light when they are acclimated to low light actually experience damage, and it appears that the continuous light of summer in the Arctic may likewise be deleterious (Kallio & Valanne 1975). However, the continuous light damage occurred in laboratory experiments and it may be that plants living in the Arctic may acclimate to the seasonal change in photoperiod (Richardson 1981).

Table 1. Shoot area to dry weight ratio of mosses in September (n=20) and December (n=25). From van der Hoeven et al. (1993).

<table>
<thead>
<tr>
<th>Species</th>
<th>September</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calliergonella cuspidata</td>
<td>143±12</td>
<td>302±45</td>
</tr>
<tr>
<td>Rhytidiadelphus squarrosus</td>
<td>140±10</td>
<td>230±30</td>
</tr>
<tr>
<td>Ctenidium molluscum</td>
<td>147±11</td>
<td>226±43</td>
</tr>
</tbody>
</table>

There is sufficient indirect evidence that we might expect chlorophyll differences with seasons. For example, we know that photosynthetic capacity changes between summer and winter in at least some mosses. In *Plagiomnium acutum* (Figure 8) and *P. maximoviczii* (Figure 9), photosynthetic capacity diminishes from 126 and 95 \(\mu \text{M CO}_2 \ \text{kg}^{-1} \ \text{dw s}^{-1} \) in summer to 58 and 62 in winter, respectively (Liu et al. 2001). On the other hand, the light compensation point of 40 \(\mu \text{mol m}^{-2} \ \text{s}^{-1} \) in summer drops to 20 \(\mu \text{mol m}^{-2} \ \text{s}^{-1} \) in winter while the light saturation point drops similarly from 400 \(\mu \text{mol m}^{-2} \ \text{s}^{-1} \) in summer to 200 \(\mu \text{mol m}^{-2} \ \text{s}^{-1} \) in winter. This can most likely be attributed to the lower respiration rate in winter.
Figure 9. *Plagiomnium maximoviczii*, a species that changes chlorophyll concentrations and light compensation points between summer and winter. Photo from Hiroshima University Digital Museum of Natural History, with permission.

Although Raeymaekers and Glime (1986) found similar chlorophyll content in the 2 cm terminal parts of *Pleurozium schreberi* (Figure 7) in August (2.1 mg/g dw), end of September (2.1), and end of October (2.2) in Baraga County, Michigan, I have observed that *Fontinalis* becomes pale by the end of summer (Figure 10) and bright to dark green by February (Figure 11), remaining deep green until June, in New Hampshire and the Upper Peninsula of Michigan. Martínez Abaigar et al. (1993) found distinct differences in chlorophyll a with season in two species of *Fontinalis* (Figure 15). There is no reason to expect all species to behave the same way, nor to expect the same species to behave the same way in all parts of its distribution.

In their study of 13 aquatic bryophytes, Martínez Abaigar et al. (1993) found considerable differences among species in the chlorophyll concentration changes with seasons (Figure 15). For example, *Fontinalis antipyretica* (Figure 11) had its highest content in summer, whereas *F. squamosa* (Figure 12) had its highest in spring with summer exhibiting the second lowest (Figure 13), the lowest being in autumn. They reported that the greatest chlorophyll content occurred in the immersed species [*Fontinalis antipyretica*, *F. squamosa*, *Fissidens grandifrons* (Figure 14) from San Pedro, *Jungermannia cordifolia* (Figure 16), and *Platyhypnidium riparioides* (Figure 17-Figure 18)]. The emergent *Cratoneuron commutatum* (Figure 19) had the least. This relationship to water is very likely correlated with light availability; the submerged taxa should produce more chlorophyll.
Figure 15. Seasonal changes in chlorophyll (left axis) and phaeophytin (right axis) concentrations (mg/gDW) in 13 species of aquatic bryophytes. Based on Martínez Abaigar et al. 1993.
Chlorophyll is not the only pigment to respond to seasons. In *Rhytidadelphus squarrosus* (Figure 20), *R. triquetris* (Figure 21), and *Mnium hornum* (Figure 22), the biflavonoid and coumestane concentrations likewise showed seasonal variation, with concentrations increasing with periods of active growth (Brinkmeier *et al.* 1999). These concentrations were also affected by light intensity, independent of season.

We cannot rule out light intensity as the cause for these observed seasonal differences. In their study on *Brachythecium rutabulum* (Figure 23), Kershaw and Webber (1986) found that total chlorophyll increased from 1.70 mg chl g$^{-1}$ on 8 May to 11.1 mg chl g$^{-1}$ on 11 October, corresponding with full canopy conditions that reduced the light intensity reaching the moss. Concomitantly, light saturation declined from 200 µmol m$^{-2}$ s$^{-1}$ to 30 µmol m$^{-2}$ s$^{-1}$ and the light compensation point declined from 65 µmol m$^{-2}$ s$^{-1}$ to 4 µmol m$^{-2}$ s$^{-1}$.
But what do bryophytes do in total darkness, as found under deep snow in winter? Only 3-4 mm of older crystalline snow is required for snow to become opaque (Gates 1962), rendering photosynthesis impossible. It appears that at least some of them should have no problem. When grown in total darkness for four months, the leafy liverwort *Plagiochila asplenioides* (Figure 25) rapidly lost starch, but exhibited little loss of chlorophyll (Suleiman & Lewis 1980). Once revived, the tissues were photosynthetically viable immediately. Thus, we should expect that many bryophytes might become photosynthetically active as soon as the snow recedes. Furthermore, low light levels penetrating the snow prior to total melt are sufficient to initiate photosynthesis.

Colors of Light

Those bryophytes living on the forest floor receive quite a different light quality from those in the open. The canopy, with its massive quantity of green leaves, serves as an effective filter against red light, the part of the spectrum creating the greatest photosynthetic activity. Thus, bryophytes on the forest floor must succeed in light that is weighted toward green and diminished in red wavelengths.

But the color of light is a seasonal attribute. When the canopy is gone from a deciduous forest in winter, light quality is nearly that of full sunlight, whereas in summer it is highly displaced toward the green end of the spectrum when red light is filtered out by the canopy. And the quality of light changes at the two ends of the photoperiod as well as light penetrates a greater distance through the atmosphere when it arrives nearly parallel to the Earth's surface.

Lakes present a similar problem, but for different reasons. Water, both liquid and as snow, is an effective filter against both UV light and the low-energy red wave lengths. Hence, the deeper into the water, or snow, the less of these wavelengths available to the moss. Older, crystalline snow is almost completely opaque to infra-red light. While this water medium is good as protection against UV light, it is detrimental in providing appropriate wavelengths for maximal photosynthesis. Nevertheless, bryophytes, with their single layer of cells, are well adapted, compared to tracheophytes, to capture what little light is able to penetrate, and they benefit from the blue and
green wavelengths that have greater penetration through water and ice. One adaptation to this blue and green light environment is that green light can cause major increases in content of chlorophylls and carotenoids in aquatic bryophytes (Czeczuga 1987). The yellow carotenoids are able to capture the blues and greens that penetrate to the greatest depths. Carotenoids, like chlorophyll \(b \), serve as antenna pigments, creating additional surfaces for trapping light and transferring it to the active site of chlorophyll \(a \). Might a similar change occur in terrestrial bryophytes, adapting them to life beneath the green filter created by the canopy?

Turbidity of water can have other effects on the light quality. Algae will act much like the canopy and absorb red light with their chlorophyll pigments. Detrital and suspended matter also block and filter the light, altering the quality and the intensity. These can have physiological effects on the bryophytes.

Few studies have examined the effects of the wavelength of light, i.e. its color, on the growth or physiology of bryophytes. Most of these have been laboratory studies on tropisms, germination, or growth (see chapter on development). However, Jägerbrand and During (2006) experimented with Icelandic Hylocomium splendens (Figure 26) and Racomitrium lanuginosum (Figure 27) in the greenhouse using shade cloth (black netting; green plastic film) compared to colorless plastic film to alter the light quality and intensity in a manner consistent with forest shade. The reduced light of both shade types caused greater elongation, reduced biomass growth, and a lower biomass:length ratio in new growth for both species, but the number of branches, branch density, and biomass:length ratio were higher for H. splendens (Figure 28). Both shade treatments caused similar increases in length (etiolation) and decreases in the biomass:length ratio. Branch density was significantly decreased by the reduction in red:far red ratio in Racomitrium lanuginosum, typically a sun species. Such a response to shade would permit greater light penetration and reduce self-shading. Similar behavior is seen in the needles of balsam fir (Abies balsamea), in which the arrangement of needles on branches is relatively flat on shade branches but go all the way around the upper half of the branch on sun branches.

![Figure 26. Hylocomium splendens, a species in which a reduction in the red:far red ratio cause a decrease in branch density. Photo by Sheila, through Creative Commons.](image)

![Figure 27. Racomitrium lanuginosum, a species in which a reduction in the red:far red ratio cause a decrease in branch density. Photo by Michael Lüth, with permission.](image)

![Figure 28. Effects of simulated shade on branch density and biomass to length ratio in two bryophytes. Bars indicate ± SE. Bars with different letters within treatment indicate significant differences (Tukey-Kramer post-hoc-tests, \(p < 0.05 \) except Racomitrium lanuginosum branch density at \(p < 0.10 \)). Redrawn from Jägerbrand & During 2006.](image)

Photoperiod Effects

An alternation of day and night has been with plants since their inception. Thus, we should expect that most species have taken advantage of this alternation in various ways. Continuous light over a long period of time can cause mosses to lose their chlorophyll (Kallio & Valanne 1975). The stroma thylakoids are destroyed, much like the destruction seen in continuous dark in the cave experiments of Rajczy (1982). However, many moss taxa flourish in the continuous light of summer in the Arctic, so destruction in this way must not be universal. Or does it depend on the wavelengths?

Continuous darkness will cause bryophytes to use up their reserves. For example, ethanol-soluble sugars and lipids decrease in green portions of Racomitrium...
barbuloides (Figure 29) maintained in continuous darkness, whereas senescent brown portions of the moss do not lose these substances (Sakai et al. 2001). Starch, on the other hand, is maintained within the cells under continuous dark treatments. When this same moss was subjected to continuous light, the ethanol-soluble sugars and lipids initially increased in the green portions, but then decreased, concomitant with a significant decline in photosynthetic capacity. The maximum sugar and lipid concentrations stored under 12 hours light/12 hours dark were similar to those in continuous light, but this day/night treatment did not result in diminished photosynthetic capacity.

Figure 29. *Racomitrium barbuloides*, a species in which continuous darkness results in a decrease in ethanol-soluble sugars and lipids. Photo from Digital Museum, Hiroshima University, with permission.

This marked diurnal periodicity under a normal light regime is manifest in peak times for photosynthetic activity. Early morning hours provide the best moisture conditions, so it is not surprising that subalpine populations of *Pohlia wahlenbergii* (Figure 30) exhibited their highest photosynthetic activity in the early hours of morning. This high rate repeated itself in the early evening, suggesting photosensitivity and repair (Coxson & Mackey 1990), or could it be only a moisture relationship? Another possible explanation for the peak twice a day is an endogenous rhythm (Coxson & Mackey 1990). In any case, this would appear to be an adaptive behavior for bryophytes that must contend with drying in the afternoon sun, particularly in their most active photosynthetic tissues near the tips.

Figure 30. *Pohlia wahlenbergii* var. *glaciale*, whose peaks in photosynthetic activity are early morning and evening. Photo by Michael Lüth, with permission.

In *Marchantia polymorpha* (Figure 31-Figure 32), short photoperiod, and not nutrient supply, cause the plants to produce more gemmae cups (Figure 31), whereas on a long photoperiod more gametangiophores (Figure 32) are produced than on plants in a short photoperiod (Voth & Hamner 1940).

Figure 31. *Marchantia polymorpha* gemmae cups, a stage that is promoted by a short photoperiod. Photo by Michael Lüth, with permission.

Figure 32. *Marchantia polymorpha* archegoniophores, a stage that is promoted by long photoperiods. Photo by Janice Glime.

Photoperiod can play a role in development, productivity, acclimation, and other aspects of the bryophyte life (Kallio & Saarnio 1986). These topics will be discussed in other chapters related to these topics.

Summary

Changes in light quality, duration, and intensity can signal changing seasons and cause physiological changes that prepare bryophytes for winter or summer conditions. But high light intensities can damage chlorophyll and DNA, especially at low temperatures. When photooxidation occurs under high light intensities, bryophytes can experience photoinhibition in the form of rupture of the chloroplast envelope, formation of vesicles in thylakoids, and rapid degradation of linolenic acid. Some bryophytes respond to the damaging effects of high light intensity.
and low temperatures by producing light-quenching pigments such as sphenanorubin. At warm temperatures, photorespiration provides an energy shunt to protect chlorophyll from overexcitation. Red pigments may also warn the bryophytes by absorbing heat.

Increased light intensity may stimulate the production in gametangia, but in others it inhibits them. Chlorophyll concentrations may change with seasons, with some bryophytes having high concentrations in early spring, enabling them to take advantage of low light under diminishing snow. Shoot area to dry weight increases in some bryophytes during autumn, perhaps likewise permitting the plants to take advantage of diminishing light. Some mosses have diminished capacity for photosynthesis in winter, but their compensation point and saturation points are also depressed. The changes vary with species and are part of what makes them different species. Nevertheless, generally the chlorophyll b concentration increases as light diminishes. Bryophytes that have been under the snow for months are generally ready to begin photosynthesis immediately upon receiving enough light.

Forest canopy leaves filter out a large portion of red light and transmit green light to the bryophytes below. Water accomplishes a similar filtering function, but the green light can cause chlorophylls and carotenoids to increase in aquatic taxa.

Reduced light can cause greater elongation, reduced biomass growth, and a lower biomass:length ratio in new growth, while the number of branches, branch density, and biomass:length ratio can be higher. However, greatly reduced light can cause etiolation, thus reducing self-shading. A reduced ratio of red:far red can decrease branch density.

Continuous light is detrimental to some taxa, but bryophytes in polar regions thrive on the added summer light. Continuous dark can cause some mosses to use up their energy reserves, but low polar temperatures minimize this effect. Many, perhaps most, bryophytes have their peak photosynthetic activity in early morning and late evening when the most moisture is available. Moss gardeners, take note!

Literature Cited

CHAPTER 9-5
LIGHT: REFLECTION AND FLUORESCENCE

TABLE OF CONTENTS

Cave Mosses – Reflectance... 9-5-2
Schistostega pennata – Luminous Moss... 9-5-2
Cynthia.. 9-5-4
Wombat Holes .. 9-5-5
Cave Communities .. 9-5-6
Rockhouses ... 9-5-8
Responses to Low Light in Caves........... .. 9-5-10
Reflectance in the Desert... 9-5-12
Fluorescence ... 9-5-12
Pigments.. 9-5-14
Leaf Canopy ... 9-5-14
Leaf Angle... 9-5-14
Summary ... 9-5-15
Acknowledgments... 9-5-16
Literature Cited ... 9-5-16
CHAPTER 9-5
LIGHT: REFLECTION AND FLUORESCENCE

Figure 1. *Schistostega pennata*, the luminous moss, growing on the roof of a cave in Rausu, Japan. Photo by Janice Glime.

Cave Mosses - Reflectance

Caves provide a classical example of gradients, with diminishing light and temperatures gradually descending or ascending from the mouth to an interior temperature near 10°C. As light diminishes, so does ability of the plant to meet its light compensation point. Thus, through this gradient, we see that flowering plants are the least tolerant, then ferns, followed by bryophytes, and last algae (Dalby 1966b).

In non-commercial caves where light diminishes rapidly, or in buried lava caves, finding these bryophytes can be difficult and time consuming. Hanley (1982) used an echo sounder to locate bryophytes in caves and other dark areas such as deep lakes. However, in many caves, artificial lights provide sufficient illumination for algae, bryophytes, and ferns to succeed deep within the cave (Boros 1964). In fact, in many commercial caves, bryophytes have been considered to be a nuisance and measures have been taken to remove them, often using sodium hypochlorite. However, to avoid release of chlorine and other dangerous gases into caves, researchers tested hydrogen peroxide. But even the dilute 15% hydrogen peroxide necessary to remove bryophytes is destructive to fragile limestone formations, and the solution must be buffered with bits of limestone rock for at least 10 hours before its application (Faimon et al. 2003). I fail to understand why the bryophytes are considered offensive!

Schistostega pennata – Luminous Moss

No moss seems to be revered more than the clandestine cave moss *Schistostega pennata* (Figure 1-Figure 3), also known as dragon's gold (Berqvist 1991). Always a delight to find, its protonemata shine like emerald jewels from the darkness of a rock crevice or cave. So intriguing is this moss that the Japanese have a monument to it in Hokkaido (Iwatsuki 1977, Kanda 1988; Figure 2), where it grows in profusion in a cave barely large enough for a child to stand. At just the right position, you can see its marvelous reflections, but move the wrong way and they
are lost. The frond-like gametophyte and terminal sporophyte have none of that ethereal luminescent quality (Figure 3). Ignatov et al. (2012) examined the developmental pattern of this species and determined that it has sexual reproduction in September.

Figure 2. Monument to Schistostega in Hokkaido, Japan. Photo by Janice Glime.

Figure 3. Schistostega pennata plants showing their frond-like appearance and capsules at the end of the stem. Photo by Martin Hutten, with permission.

This unusual jewel-like property (Figure 4) is the result of the protonema (Gisf 1926). The cells are lens-shaped (Figure 7) and their upper surface is curved in such a way as to focus the light on the interior of the cell (Figure 6; Figure 5). This "normal" form is reached only when they grow in light that comes at all times from the same oblique direction. The chloroplasts orient themselves so that they are always at the most intensely lighted spot on the inner wall of the cell (Figure 7). If a change in the light direction occurs, as may happen seasonally, the chloroplasts can reposition themselves within one to three hours.

Figure 4. Protonemata of Schistostega pennata showing upright clumps. Photo courtesy of Misha Ignatov.

Figure 5. Protonema of Schistostega pennata showing lens-shaped cells. Photo courtesy of Misha Ignatov.

Figure 6. The cave moss, Schistostega pennata, reprinted with permission from Zen Iwatsuki.

Figure 7. Lens-shaped cells of protonema of Schistostega pennata with chloroplasts arranged on one side of cell to focus light. Photo courtesy of Misha Ignatov.
Like Crum (1973), we find appeal in retelling the account by Kerner von Marilaun in *Pflanzenleben*, as translated by F. W. Oliver in *The Natural History of Plants*:

"On looking into the interior of the cave, the background appears quite dark, and an ill-defined twilight only appears to fall from the center on to the side walls; but on the level floor of the cave innumerable golden-green points of light sparkle and gleam, so that it might be imagined that small emeralds had been scattered over the ground. If we reach curiously into the depth of the grotto to snatch a specimen of the shining objects, and examine the prize in our hand under a bright light, we can scarcely believe our eyes, for there is nothing else but dull lusterless earth and damp, mouldering bits of stone of yellowish-grey color! Only on looking closer will it be noticed that the soil and stones are studded and spun over with dull green dots and delicate threads, and that, moreover, there appears a delicate filigree of tiny moss-plants, resembling a small arched feather stuck in the ground [Figure 10]. This phenomenon, that an object should only shine in dark rocky clefts, and immediately lose its brilliance when it is brought into the bright daylight, is so surprising that one can easily understand how the legends have arisen of fantastic gnomes and cave-inhabiting goblins who allow the covetous sons of earth to gaze on the gold and precious stones, but prepare a bitter disappointment for the seeker of the enchanted treasure; that, when he empties out the treasure which he hastily raked together in the cave, he sees roll out of the sacks, not glittering jewels, but only common earth. . . . On the floor of rocky caves one may discern by careful examination two kinds of insignificant-looking plant-structures, one a web of threads studded with small crumbling bodies, and the other bluish-green moss-plants resembling a small arched feather. . . . On the floor of rocky caves one may discern by careful examination two kinds of insignificant-looking plant-structures, one a web of threads studded with small crumbling bodies, and the other bluish-green moss-plants resembling tiny feathers. The threads form the so-called protonema, and the green moss-plants grow up as a second generation from this protonema . . . the gleams do not issue from the green moss-plants, but only from their protonema."

"From the much branched threads . . . numerous twigs rise up vertically, bearing groups of spherical cells arranged like bunches of grapes. All the cells of a group lie in one plane, and each of these plants is at right angles to the rays of light entering through the aperture of the rocky cleft. Each of the spherical cells contains chlorophyll-granules, but in small number . . . and they are always collected together on those sides of the cells which are turned towards the dark background of the cave.... Taken together, these chlorophyll-granules form a layer which under low power of the microscope appears as a round green spot . . . the light which falls on such cells through the opening of a rocky cleft behaves like the light which reaches a glass globe at the further end of a dark room. The parallel incident rays which arrive at the globe are so refracted that they form a cone of light, and since the hinder surface of the globe is within this cone, a bright disc appears on it. If this disc, in which the refracted rays of light fall, is furnished with a lining, this also will be comparatively strongly illuminated by the light concentrated on it and will stand out from the darker surroundings as a bright, circular patch.... It is well worthy of notice that the patch of green chlorophyll-granules on the hinder side of the spherical cell extends exactly so far as it is illuminated by the refractive rays, while beyond this region, where there is no illumination, no chlorophyll granules are to be seen. The refracted rays which fan on the round green spot are, moreover, only partially absorbed; in part they are reflected back as from a concave mirror, and these reflected rays give a luminous appearance. This phenomenon, therefore, has the greatest resemblance to the appearance of light which the eyes of cats and other animals display in half-dark places, only illumined from one side, and so does not depend upon a chemical process, an oxidation, as perhaps does the light from a glow-worm or of the mycelium of fungi which grow on decaying wood. Since the reflected light-rays take the same path as the incident rays had taken, it is clear that the gleams of the *Schistostega* can only be seen when the eye is in the line of the incident rays of light. In consequence of the small extent of the aperture through which the light penetrates into the rock cleft, it is not always easy to get a good view.... If we hold the head close to the opening, we thereby prevent the entrance of the light, and obviously in that case no light can be reflected. It is, therefore, better when looking into the cave to place one's self so that some light at any rate may reach its depth. Then the spectacle has indeed an indescribable charm."

The result of these very reflective chloroplasts in *Schistostega pennata* is that the protonema takes on the appearance of "goblin gold" and can create quite eerie effects (Figure 4-Figure 5; Figure 8-Figure 9).

![Figure 8: Luminous appearance of *Schistostega pennata* protonemata. Photo by Janice Glime.](image)

![Figure 9: Luminous protonemata of *Schistostega pennata* in natural light. Photo by Martin Hutten, with permission.](image)
In Japan, there is an opera written about this moss! The opera, written by Ikuma Dan, is based on a book of the same title, "Luminous Moss," by Taijun Takeda (Glime & Iwatsuki 1987). The story relates the tragedy of several sailors who were stranded by a blizzard on the northern island of Hokkaido. With no hope of escaping that remote northern tip of the island before spring to find food and shelter elsewhere, they hid in a cave. As their rations ran out and their fellow sailors died of starvation, they did the only thing they could to survive – they became cannibals. Finally, the captain alone remains. When he is brought to trial for his unthinkable acts, he reflects on the halo of green (the luminous moss) about the heads of each who has been a cannibal, but he tells the courtroom that the halo is visible only to those who have not been cannibals. He alludes to the cannibal in each of us as we struggle to survive among the millions of the world. Today a cave in Hokkaido is set aside as a memorial to protect this unusual moss (Kanda 1971, 1988; Figure 2).

Schistostega pennata (Figure 8-Figure 10) is widespread in the North Temperate Zone. Bowers (1968) and Conard (1938) have reported it from the Upper Peninsula of Michigan, where I have seen it growing on the roof of a cave behind a waterfall. Outside that same cave, I have observed the leafy gametophore, which resembles a tiny fern frond (Figure 11), growing on a small ledge of the rock wall, but protonemata there, if present, did not exhibit their highly reflective property. Bowley (1973) found the moss in several localities in Vermont, Champlin (1969) reported it from Rhode Island, Christy and Meyer (1991) from Wisconsin, Case (1975) found it in Alberta, Canada. Matsuda (1963) reported it in artificial caves in Japan. Perhaps the most unusual report is that of Koike (1989) who reported its culture in empty bottles in urban areas of Japan. Reinoso Franco et al. (1994) considered it to be an acidophile, at least on the Iberian Peninsula.

When I went to Germany, I was delighted to find Schistostega pennata (Figure 8-Figure 11) growing at the base of a boulder where it probably did not get direct sunlight except at sunset and most likely did not get direct rainfall very often either. Perhaps one reason for its success in such habitats is the presence of protonemal gemmae (Edwards 1978).

Cyathodium

In the thallose liverwort genus Cyathodium (Figure 12), some species that grow in caves and similar low-light environments also emit a yellowish luminescence from their thalli (Crum 1973). These liverworts are tropical and subtropical and in China grow in karst caves (Zhang et al. 2004).

Wombat Holes

In Australia, a similar moss, Mittenia plumula (Figure 13) lives on dimly lit, clay-covered rock ledges and at the entrances to wombat holes, where the moss lives on soil. Stone (1961, 1986) concluded that Mittenia belongs in the order Schistostegales with Schistostega (Figure 1-Figure 11. Both have a pinnate leaf arrangement, protonemata with similar luminescent properties, similar pale color of the leafy plant, and similar habitats.)
Cave Communities

Growth of other bryophytes in caves far from a natural light source has been a source of fascination for both bryologists and non-bryologists all over the world, and these bryophytes often form zones around electric lights (Haring 1930). So fascinating are these plants of low light that their descriptions have appeared in non-botanical journals. Boros (1964) was able to publish a paper in the first volume of the International Journal of Speleology (speleology is the study of caves), reporting on mosses growing around electric light sources deep within a cave. Dalby (1966b) later published a similar article on their growth under reduced light in caves, this time in the first volume of Studies in Speleology. Numerous communities have been described from caves around the world: Shiomi (1973) in Japan; Maheu and Guerin (1935) in France; Rajczy (1979) in Greece; Ziober (1981), Komáromy et al. (1985), Rajczy et al. (1986), and Buczkó and Rajczy (1989) in Hungary; Lo Giudice & Privitera (1984) in Italian grottos; Stefürea (1985) in Romanian grottos; Weber (1989) for both animals and flora, including bryophytes, in two German caves and artificial caverns; Kubešová (2009) in the Czech Republic. Even Science has accepted articles on mosses in Virginia (USA) caverns, including the famous Luray Cavern (Lang 1941, 1943), and Prior again studied Luray Cavern mosses, publishing in 1961 in The Bryologist.

Most cave bryophytes are not specific to these habitats. Reinoso Franco et al. (1994) have found Schistostega pennata with Isopterygium elegans (Figure 14; low-light species of canyons and crevices), Diplophyllum albicans (Figure 15; forest epiphyte), Calypogeia arguta (Figure 16), C. azurea (Figure 17; also an epiphyte), Po gonatum nanum (Figure 18), and Fissidens curvovii at a pH of 5.7 in caves.

Figure 13. Mittenia plumula growing in a wombat hole in Australia. Photos by Janice Glime.

Figure 14. Isopterygium elegans, a species that is able to grow in low light. Photo by Michael Lüth, with permission.

Figure 15. Diplophyllum albicans, a species that is able to grow in low light. Photo by Michael Lüth, with permission.

Figure 16. Calypogeia arguta, a species that is able to grow in low light. Photo by Des Callaghan, with permission.

Figure 17. Calypogeia azurea, a species that is able to grow in low light. Photo by Hermann Schachner through Creative Commons.
Figure 18. *Pogonatum nanum*, a species that is able to grow in low light. Photo by J. C. Schou, with permission.

The widespread *Fissidens taxifolius* (Figure 19) grew in Crystal Caverns in Virginia, USA, and aroused the curiosity of a visitor who delivered it to Conard (1932). This moss grew on the damp ceiling, forming circles about 8" from several electric light bulbs, having appeared only a few years earlier. The moss looked normal, but the leaves were further apart than in typical specimens, not an unusual trait for a moss of low light.

Figure 19. *Fissidens taxifolius*, a common moss that can grow on the ceiling of caves. Photo by Jan-Peter Frahm, with permission.

A variety of species seem to be capable of growing in caves. Buczkó & Rajczy (1989) reported nineteen bryophyte taxa from three caves in Hungary. Dalby (1966a) reported the occurrence of the tufa-former, *Eucladium verticillatum* (Figure 31), in a poorly lit cave, also occurring in caves in Hungary (Buczkó & Rajczy 1989). In Crystal Cave, Wisconsin, Thatcher (1949) found *Barbula unguiculata* (Figure 20), *Brachythecium populeum* (Figure 21), *Brachythecium salebrosum* (Figure 22), *Bryoerythrophyllum recurvirostre* (Figure 23), *Bryum caespiticium* (Figure 24), *Bryum capillare* (Figure 25), *Ceratodon purpureus* (Figure 26), *Fissidens taxifolius* (Figure 19), *Leptodictyum riparium* (Figure 27), *Marchantia polymorpha* (Figure 28), *Plagiomnium cuspidatum* (Figure 29), and *Warnstorfia fluitans* (Figure 30). Like Conard, Thatcher observed the leaves to be more distant than is typical.

Figure 20. *Barbula unguiculata*, a species that is able to grow in caves. Photo by Michael Lüth, with permission.

Figure 21. *Brachythecium populeum* with capsules, a species that is able to grow in caves. Photo by Janice Glime.

Figure 22. *Brachythecium salebrosum*, a species that is able to grow in caves. Photo by Michael Lüth, with permission.

Figure 23. *Bryoerythrophyllum recurvirostre*, a species that is able to grow in caves. Photo by Michael Lüth, with permission.
Figure 24. *Bryum caespiticium* with capsules, a species that is able to grow in caves. Photo by Bob Klips, with permission.

Figure 25. *Bryum capillare*, a species that is able to grow in caves. Photo by Andrew Spink, with permission.

Figure 26. *Ceratodon purpureus*, a species that is able to grow in caves. Photo by Jiří Kameniček, with permission.

Figure 27. *Leptodictyum riparium*, a species that is able to grow in caves. Photo by Michael Lüth, with permission.

Figure 28. *Marchantia polymorpha*, a species that is able to grow in caves. Photo by Botany Website, UBC, with permission.

Figure 29. *Plagiomnium cuspidatum*, a species that is able to grow in caves. Photo by Michael Lüth, with permission.

Figure 30. *Warnstorfia fluitans*, a species that is able to grow in caves. Photo by Michael Lüth, with permission.

Komáromy *et al.* (1985) likewise found *Eucladium verticillatum* (Figure 31), a *Brachythecium* (*B. velutinum*), and two species of *Fissidens* [*F. dubius* (Figure 32), *F. pusillus* (Figure 33)] in a cave. Within only one year from its first illumination, Howe Cavern in New York, USA, already was adorned with *Amblystegium serpens* (*var. juratzkanum*; Figure 34), *Amphidium mougeotii* (Figure 35), *Brachythecium rutabulum* (Figure 36), *Bryum caespiticium* (Figure 24), *Bryum capillare* (Figure 25), *Leptobryum pyriforme* (Figure 37), and *Marchantia polymorpha* (Figure 28) encircling its new lights (Haring 1930). Buczko and Rajczy (1989) found that *Amblystegium serpens* (*= A. juratzkanum var. juratzkanum*;
Figure 34) was the most characteristic moss in several Hungarian caves, extending furthest from the cave entrance that provided the only light, surviving at only 232 lux. Niklas Lönnell reported to Bryonet (3 March 2010) that *Eucladium verticillatum* (Figure 31) introduced at an underground station in Stockholm, Sweden, thrives decades later on moist areas of the walls where artificial light is available.

Figure 31. *Eucladium verticillatum*, a tufa-forming moss. Photo by Michael Lüth.

Figure 32. *Fissidens dubius*, a known cave dweller. Photo by Bernd Haynold, through Creative Commons.

Figure 33. *Fissidens pusillus*, a species known to live in caves. Photo by Michael Lüth, with permission.

Figure 34. *Amblystegium serpens*, a common cave moss in Hungary. Photo by Michael Lüth.

Figure 35. *Amphidium mougeotii*, a species that colonized around lights in a cave within one year. Photo by Michael Lüth, with permission.

Figure 36. *Brachythecium rutabulum* with capsules, a species that colonized around lights in a cave within one year. Photo by Tim Waters, through Creative Commons.

Figure 37. *Leptobryum pyriforme*, an invader of bare soil. Photo by Michael Lüth.
Tufa formers such as *Eucladium* (von der Dunk & von der Dunk 1980), *Barbula* (Figure 20), and *Didymodon* (Figure 38) are found in many of these caves, since the caves are usually limestone, and tufa formers must be adapted to relatively dim light to survive the calcium carbonate covering they must endure.

Rockhouses

Rockhouses are really just small caves created by deep recesses in bedrock cliffs. But despite their smaller size, they can create conditions much different from those of their surroundings outside the cavity. They tend to be buffered from extremes in both temperature and moisture, with cold blasts emanating in the summer and protection from severely cold winds in the winter. Nevertheless, despite their moderate climate, their low light levels greatly restrict the potential flora. It is therefore interesting that the greatest affinities of these floras are with the tropics (Farrar 1998). While the species in the rockhouses tend to be endemic to the eastern United States, the conditions created for them mimic the low light intensities of the dense rainforests. It is possible that the climatic moderation of the rockhouses might have permitted adapted plant groups to persist here since the time when a tropical/subtropical climate existed in the eastern US during the Pre-Pleistocene. It is in these secluded habitats that a number of endemic ferns reside, but the most numerous plants are the bryophytes. Farrar considered both groups to be preadapted to this habitat by their vegetative reproduction and their ability to have net photosynthetic gain in very low light.

Responses to Low Light in Caves

If you have ever picked up a board from your lawn, you know how thin and long the grass stems can be. This elongation response by plants in low light is termed etiolation. Dunham and Lowe (1927) described etiolation of bryophytes in caves and among boulders in New England, USA. But at least some light should be present, right? Nevertheless, Fries (1945) succeeded in growing the mosses *Funaria hygrometrica* (Figure 40) and *Leptobryum pyriforme* (Figure 37) from protonemata on inorganic media in total darkness. Thus, it would appear that some growth can occur, using the plant's reserves, even in the absence of light.

Jedrzejko and Ziobor (1992) illustrated the effects of light on the species composition of moss communities and the ability of mosses to survive at low light intensities with their study of bryophytes in seven Polish caves. More than 50% of the bryophyte flora occurred where they had full access to daylight. As the investigators went deeper into the caves, the number of species decreased, but with 1.3% of the species occurring only in the darkest zone.
placed in a cave where the climate is very constant, having a temperature of 9.5 ±1°C and 95-100% relative humidity. *Plagiomnium ellipticum* rapidly became brown and within three months had produced long, fine, vertical, leafless stems of 4-6 cm length. *Atrichum undulatum*, on the other hand, remained green for two years. Its chloroplasts increased from a mean of 8.8 to 10.3 per cell from May to October. In the cave both species had a much higher ratio of dark CO$_2$ fixation that did the control samples from normal light (Table 1). One interesting event in Rajczy's experiment was that isopods (*Mesoniscus graniger*, Figure 41) consumed all the dead material of the plants. The mosses soon grew pale, then partly brown.

Table 1. Incorporation of CO$_2$ into moss biomass in caves compared to controls. From Rajczy 1978-1979.

<table>
<thead>
<tr>
<th></th>
<th>Net Activity (cmp/leaf)</th>
<th>% Contrib dk to total fix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total</td>
<td>dark</td>
</tr>
<tr>
<td>Atrichum undulatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>898</td>
<td>85</td>
</tr>
<tr>
<td>cave sample</td>
<td>174</td>
<td>81</td>
</tr>
<tr>
<td>Plagiomnium ellipticum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>3790</td>
<td>340</td>
</tr>
<tr>
<td>cave sample</td>
<td>550</td>
<td>220</td>
</tr>
</tbody>
</table>

When *Atrichum undulatum* (Figure 42) cells were examined with the electron microscope after four months of experiment (September), the chloroplasts differed considerably from those of the control plants. The size of the grana had increased but their number decreased and they were arranged mostly at the periphery of the chloroplast. There were no starch grains. Then, in March, there was a most unexpected change. The chloroplasts contained starch once more and the grains appeared to be identical to those of the control plants. Thylakoids (Figure 44) were even thinner than in September, and only 1-2 stroma thylakoids were present. From 3 to 10 broad, low grana were present.

Surprisingly, *Plagiomnium ellipticum* (Figure 43) also had starch grains in March. However, these were not like those of their control plants. Some were far larger, and most chloroplasts lacked them. Most of the chloroplast envelopes were torn up.

In April, samples taken from the cave to the lab had measurable photosynthesis, although they had no exposure to light prior to the time of measurement. For *Atrichum undulatum* (Figure 42), photosynthesis reached 15-20% of that in the controls. Both species retained some photosynthetic activity for the two years of the experiment, but that of *Atrichum undulatum* was greater.
Rajczy (1978-1979) interpreted these results to mean that the mosses were subsisting on heterotrophic energy sources. He could find no other explanation for the sudden appearance of starch after 10 months in the cave. Furthermore, he cited the dark-culturing experiments of Servettaz (1913), Pringsheim and Pringsheim (1935), and Fries (1945) to support his position. Could the mosses be using electromagnetic rays? symbiosis? chemosynthesis? Cave algae are known to subsist using these unusual methods of obtaining energy (Kol 1966; Hadju 1971). And why did both species [Atrichum undulatum (Figure 42) and Plagionnium ellipticum (Figure 43)] have starch grains in March when the grains had disappeared earlier? Did some endogenous rhythm, lacking stimulus by photoperiod or temperature, trigger a change in metabolic activity?

Reflectance in the Desert

In desiccation-tolerant species, surface properties often change. This can result in a change in surface reflectance, as exemplified in the xerophytic moss Syntrichia ruralis (Hamerlynck et al. 2000). In this species, distinct differences occur in the ability to establish thermal dissipation of excess light energy throughout a range of light levels, helping to protect the sensitive chlorophyll and DNA.

Figure 45. Syntrichia ruralis, a species that changes its optical properties when dry vs wet. Photo by Jan-Peter Frahm, with permission.

In the Antarctic, surface reflectance properties differed over a range of water content, but did not correlate with pigment content (Lovelock and Robinson 2002). Nevertheless, the photochemical reflectance was correlated with the concentrations of active xanthophyll-cycle pigments and the photosynthetic light use efficiency as measured by chlorophyll fluorescence. The water content had a strong influence on both the amplitude and position of the red-edge and may itself cause the differences in reflectance. Continuous high levels of xanthophyll pigments indicate the continual high light levels.

Fluorescence

Wikipedia defines fluorescence as "emission of light by a substance that has absorbed light or other electromagnetic radiation of a different wavelength." One little-known property of at least some bryophytes is their ability to fluoresce various colors in UV light. Lichenologists are familiar with this property in lichens, using it as an identification tool (Hale 1956), but bryologists seem rarely to use it. Bees know it in flowers, being attracted to black patches of oriental poppy (Papaver orientale – Figure 46) petals and fine lines of marsh marigold (Caltha palustris – Figure 47) by their emission of fluorescence in the UV light of the sun.

Figure 46. The oriental poppy (Papaver orientale) has patches that appear black to us, but that reflect UV light that is visible to bees, guiding them to the center of the flower where the pollen and stigma reside. Photo by Janice Glime.

Figure 47. Caltha palustris, a species whose flowers appear yellow to us, but that reflect UV rays seen by bees. Photo by H. Zell, through Creative Commons.

Chlorophyll fluorescence is well known in plants, including bryophytes (Shi et al. 1992, Proctor & Smirnoff 2011), giving indication of the health of the plant by its ability to emit light from its active chloroplasts (Figure 48) (e.g. Csintalan et al. 1999; Deltoro et al. 1999; Arróniz-Crespo 2008). But other tissues can fluoresce as well. In Fontinalis antipyretica, the cell wall fluoresces yellow (Figure 49). Ridgway and Larson (1966) reported on the usefulness of the fluorescence technique to follow sporogenesis in the hornwort Anthoceros (Figure 50).
Figure 48. *Funaria hygrometrica* leaf chlorophyll fluorescence, showing the typical red fluorescence of that molecule. Note that the cell walls lack fluorescence. Photo by Janice Glime.

Figure 49. *Fontinalis antipyretica* wall yellow fluorescence, contrasting with the red of the chlorophyll fluorescence. Photo by Janice Glime.

Figure 50. *Anthoceros punctatus*, member of a genus in which fluorescence permits us to follow development of spores. Photo by Jonathan Sleath, with permission.

My first encounter with the phenomenon was on a field trip in Europe where I entered in conversation with Gisela Nordhorn-Richter. She had stopped by a display of microscopes at her university just because the poor guys didn’t have many visitors. She took her research organisms, members of the genus *Pohlia* (Figure 51-Figure 52), to test the quality of the microscopes, one of which had UV light capabilities. To her amazement, gemmae lit up all over the place, displaying far more than she had been able to see without the UV aid. She then looked at other species and found that this was a good tool to help in determining number and shape, enabling her to delineate species more easily (Nordhorn-Richter 1984 a, b, c, 1985 a, b, 1988).

Figure 51. *Pohlia bulbifera* showing location of bulbils – structures that can be located in UV light by their fluorescence. Photo by Jan-Peter Frahm, with permission.

Figure 52. *Pohlia bulbifera* bulbils that fluoresce, making them easier to locate. Photo by Des Callaghan, with permission.

But for some reason, this view of bryophytes has been neglected in other arenas. It was not until Dale Kruse inquired about bryophyte fluorescence on bryonet (25 March 2011) that the subject again surfaced. “I just returned from a trip to Puerto Rico where I visited the rainforests of the Caribbean (El Yunque) National Forest. A ‘non-bryological’ employee there suggested there were fluorescent mosses in the forests of El Yunque. I did a quick search on the web and found very little information. I have seen fluorescent lichens but not mosses.” Bryologists responded with skepticism, suggesting it was a fungus or bacterium (or possibly a lichen). Then Michael Lüth responded (Bryonet 26 March 2011): “We saw a fluorescent *Frullania dilatata* (Figure 53) on an excursion,
when someone held a fluorescent lamp to a tree searching for some lichens." But Michael is able to show us proof.

Figure 53. *Frullania dilatata* demonstrating purple fluorescence under UV light from a special hand lens. Photo by Michael Lüth.

Pigments

As in the algae, one can use the chlorophyll-to-phaeophytin ratio to assess physiological stress in bryophytes (Lopez *et al.* 1997). This ratio proved to be a better indicator of environmental stress than presence-absence data for species in 188 stretches of river in northwest Spain. Organic pollution was indicated most strongly, with pH also strongly correlated.

As discussed in other chapters, pigments can respond to changes in light intensity. Dark-colored wall or cytoplasmic pigments are present in genera like *Frullania* (Figure 53) that are able live high in the canopy or at high elevations (Li *et al.* 1989; Glime *et al.* 1990). Aquatic bryophytes that grow in cold water and full sunlight likewise produce red cytoplasmic pigments, as seen in *Fontinalis* (Figure 54).

Figure 54. *Fontinalis antipyretica* producing red cytoplasmic pigments under water stress in high light. Photo by Janice Glime.

Leaf Canopy

It is well known that chlorophyll concentration increases in response to reduced light availability (Niinemets & Tobias 2014). But within the bryophyte canopy, older tissues are lower on the plant and thus receive less light. In this case, the chlorophyll concentration decreases with not only age, but also with decreasing light availability (Davey & Ellis-Evans 1996; Niinemets & Tobias 2014). Furthermore, in lower light, the plants are less dense and the leaves are usually farther apart, decreasing the density (Niinemets & Tobias 2014). This reduction in density increases the light interception per leaf area. Pleurocarpous mosses are able to acclimate structurally to light levels by adjusting the density of leaves and branches, whereas non-branching acrocarpous mosses lack the ability to change branching density. In addition, mosses under low water conditions have a greater degree of aggregation, thus further reducing light penetration. But as mosses desiccate they have greater light penetration further down the stem than the same mosses when hydrated, increasing productivity in older parts (Davey & Ellis-Evans 1996).

Absorption is not equal throughout the spectrum. Davey and Ellis-Evans (1996) observed that the greatest attenuation occurred at wavelengths corresponding to the peaks of chlorophyll absorption (675 nm and below 450 nm). Other factors that affect absorption include stem orientation, stem density, leaf size and orientation, and pigment content.

Leaf Angle

Leaf angle (Figure 55) is the angle made by the axil of the leaf and the axis. It affects the reflectance of light in plants. **Angle of incidence** (Figure 56) is the angle formed between the direction of light and the vertical (difference from straight on), so a low sun has a higher angle of incidence. Therefore, a small leaf angle (approaching vertical) creates the effect of a large angle of incidence.

Figure 55. Incidence light and reflectance on a leaf at an acute angle. In this case, the incident light strikes the leaf at an angle of 60° from the straight up light that would strike the leaf from a perpendicular direction. Redrawn from Howard 1967.
Howard (1967) demonstrated that leaf angles in four tracheophyte species of 0-30° (=90-60° angle of incidence) made little difference in reflectance, but when the angle of incidence was smaller, the reflectance increased rapidly, consequently rapidly reducing photosynthesis. In *Eucalyptus regnans*, photosynthesis begins to decrease at ~72° leaf angle, and at 45°, photosynthesis drops to 70% of values of horizontal leaves. At 5° leaf angles it approaches 0% (Kriedmann et al. 1964).

In bryophytes, many moss species raise their leaves and wrap them around the stem as they dry, effectively providing greater protection to the chlorophyll by greater overlapping of leaves. In the desert moss *Syntrichia caninervis* (Figure 57), leaf angle changes (Figure 58) are an important means of protecting against the effects of high light intensity during long periods of desiccation (Wu et al. 2014). First, the leaf movement helps to slow drying, permitting the plant to adjust physiologically in preparation for desiccation (see Chapters 7-5 and 7-6 in Water Relations). Second, the acute leaf edge of only 30° of a dry plant protect the photosynthetic cells. And third, when the leaf rehydrates, it returns in 7 seconds to an angle of 69-84°, with the first leaves reaching normal position in only 1 second. The hyaline cells at the leaf base are thin-walled and facilitate rapid uptake of water, swell, and push the leaf away from the stem. The leaf hair also play a role in reflecting light and reducing its impact on the chlorophyll. But the leaf hairs (awns) play another role that thus far has not been explained. They somehow are important in adjusting the leaf angle. When these awns are removed, the angle adjustment is retarded.

Xerophytic mosses like *Syntrichia ruralis* (Figure 45) can look much darker and expose less surface area to the atmosphere, whereas the wet cells change the optical properties, making the cell walls more translucent (Glime & Church, unpubl.).

Summary

Protonemata of some mosses, such as *Schistostega pennata*, are able to position their chloroplasts to receive maximum available light and the lens-shaped cells help to focus the light. Their high reflectance provides a luminescence in caves. Similar reflective abilities are present in *Mittenia plumula* that lives in wombat holes. *Cyathodium* species that live in caves have a similar reflective ability in their thalli.

Some bryophytes are able to live in the dim light surrounding light bulbs in visitor caves, exceeded in their low-light survival only by the algae. Many of the cave bryophytes are also typical of other habitats of greater light intensity, including high-light tolerators like *Ceratodon purpureus* and *Pohlia nutans*. Some are the tufa formers that often are so encrusted with limestone that only their tips are able to get sufficient light for photosynthesis. *Amblystegium serpens* seems able to live in the lowest light at only 232 lux.

One response to bryophytes in deep caves is etiolation, which spaces leaves further apart, thus exposing more surface area to the little light available. In some species, the number of chloroplasts and size of grana can increase and growth can occur even in the dark. Long, thin "exploratory" branches may form. In *Atrichum undulatum* the starch disappeared in winter but reappeared in spring, in the dark! When placed in the light, photosynthesis began without delay.

Various plant parts may exhibit fluorescence. So far this ability is known from chloroplasts, leaf cell walls, developing spores, and bulbils and aside from the chlorophyll fluorescence known from all photosynthetic plants, it is known from at least some species of all three bryophyte groups.

Some mosses develop pigments in response to increased light intensity, although chlorophyll concentrations usually decrease. Others change the leaf angles, decreasing the damage to chlorophyll.
The light intensity diminishes as it penetrates the bryophyte canopy, but when the leaves dry, more light may reach older portions.

Acknowledgments

Thank you to Misha Ignatov for providing me with a prepublication copy of Ignatov et al. and providing me with numerous images of *Schistostega*. And thank you to Martin Hutten for offering his *Schistostega* images. Noris Salazar Allen introduced me to *Cyathodium cavernarum* and provided me with images. Michael Lüth has been especially generous in granting permission for me to use any of his images.

Literature Cited

Koponen, T. 1977. Kulosammal (Ceratodon purpureus) ja varstasammal (Pohlia nutans) 176 m syvyydessä Vihannin Kaivoksessa. [Ceratodon purpureus and Pohlia nutans found at a depth of 176 m in the mine at Vihanti, Finland.]. Luonnon Tutkija 81: 59.

