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CHAPTER 2-2 

LIFE CYCLES:  SURVIVING CHANGE 

 

 
Figure 1.  Dicranum majus showing leafy gametophyte and attached sporophyte.  Photo by Michael Lüth, with permission. 

The General Bryobiotina Life Cycle 
Perhaps one could explain most of plant and animal 

ecology by explaining all the factors that contribute to and 
control the life cycle and development of individuals of a 
species.  These interwoven abilities and responses to 
signals determine who arrives, who survives, and who 
leaves any given community.  It is in this context that 
plants and animals are able to contend with the changing 
seasons – they have programmed into their life cycle the 
means by which to escape when the going gets rough.  
Thus, it is appropriate that we continue our discussion of 
bryophyte ecology with a thorough understanding of the 
limits imposed upon a species by its developmental 
processes and life cycle.  For bryophytes, these limits affect 
different stages and in different ways from those same 
limits on the lives of the tracheophytes (lignified plants). 

As Niklas (1976) points out, plants "oscillate between 
morphological and biosynthetic adaptive impasses."  For 
bryophytes, the limitations imposed by the lack of lignin 
prevented them from accomplishing significant size and 

thus limited their morphological development.  However, 
they have achieved tremendous variety in their biochemical 
development, often having capabilities rare or unknown in 
tracheophytes.  This development is manifest in their 
biochemical protection from interactions with other 
organisms, including herbivores, bacteria, and fungi, as 
well as their ability to survive desiccation, temperature 
extremes, and low light levels unavailable to tracheophytes 
in caves and deep water.  In addition, their unique 
biochemically driven life cycle strategies and physiological 
behaviors permit them to occupy a wide variety of niches – 
even those polluted with sulfur or heavy metals.  It is 
indeed true that bryophytes have tremendous genetic 
diversity (see Krazakowa 1996), expressed in their highly 
variable and rich biochemistry.  It appears that our 
definition of a species as being reproductively isolated is 
inadequate for representing the variety of biochemical 
forms that exist among bryophytes.  May Father Hedwig 
save us from those who want to identify them by numbers! 
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Fortunately for the systematists, the life cycles differ 
among the phyla and classes in the anatomy of their 
specific reproductive structures and the environmental and 
biochemical controls that regulate them.  But bryophytes 
have in common the characteristic of retaining the zygote 
within an archegonium, separating them from all algae. 

Dominant Generation 
One of the ways that plants manage to survive as 

"immobile" organisms, yet are able to survive the severe 
changes of seasons, is by having different life cycle stages 
that are adapted to different conditions.  As we progress 
through the protist and plant kingdoms, we see that most 
green algae (Chlorophyta), especially in freshwater, spend 
most of their time in the water and most of them have only 
one set of chromosomes (1n).  Although there is much 
disagreement about evolutionary pathways among 
photosynthetic organisms, all evolutionary biologists seem 

to agree that this life strategy came first, with both 
invasion of land and dominant 2n organisms coming later.  
(The dominant generation refers to the most conspicuous 
and generally the most long-lived generation.)  This 1n 
stage is termed the gametophyte generation (1n or 
haploid generation that reproduces by gametes in plants) 
because the generation ends when it produces gametes 
(sexual reproductive structures that have one set of 
chromosomes and must unite with another of the same 
species but opposite strain to continue the life cycle) that 
join to form the 2n zygote (2n cell resulting from fusion of 
male and female gametes, i.e. from fertilization; Figure 2).  
Hence, the zygote is the first structure of the 2n stage or 
sporophyte generation [diploid (2n) generation that 
reproduces by meiospores in plants; Figure 2].  The 
meiospores in many bryophytes are able to survive many 
years in a dry state, thus permitting at least some taxa to 
live in habitats that only occasionally get moisture. 

 

 
Figure 2.  Basic sexual life cycle of a bryophyte.  Gemmae or other propagules, not shown here, can occur on the leafy plant or on 

the protonema (pl. protonemata: alga-like, usually filamentous, stage that develops from spores of bryophytes), giving rise to the same 
generation as its origin.  Diagram by Janice Glime. 

 

The Life Cycle 

The dominant 1n condition (the nuclear condition, 
referring to having 1 set of chromosomes, where n 
represents the number of chromosomes in a complete set) 
begins as a spore (reproductive cell that develops into plant 
without union with another cell, usually 1-celled; Figure 3), 
produced by meiosis (reduction division; nuclear process in 
which each of four daughter cells has half as many 
chromosomes as parent cell; produces spores in bryophytes 
and other plants), hence a meiospore (Figure 3-Figure 4).  
Linnaeus observed these spores and considered this "fine 
powder" to be of the same sort as the "dust" liberated from 
anthers of flowers (Farley 1982).  Indeed he was close, 
although the pollen grain (dust) is already a mature 
gametophyte in the flower, having divided a few times 
within the spore wall, whereas the spore of the moss or 
liverwort is the very first cell of that generation. 

 
Figure 3.  SEM of tetrad of meiospores of aquatic moss 

Fontinalis squamosa, with fourth spore hidden beneath.  Photo 
by Janice Glime 
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Figure 4.  Fontinalis squamosa spore germination.  Photo by 

Janice Glime. 

Bryophytes differ in their life cycle behavior in another 
way as well.  They have two gametophyte phases with very 
different life forms and often very different requirements 
for growth.  Prior to development of a leafy shoot (or 
thalloid plant body in many liverworts), they exist in a 
protonema stage (proto = first; nema = thread; Figure 5-
Figure 10) that develops from the germinating spore 
(Figure 4).  In most mosses, this protonema is truly the 
"first thread," forming a mat of green filaments (Figure 8-
Figure 10), but in most liverworts (Figure 5-Figure 6) and 
Sphagnopsida (Figure 7) it becomes more thalloid after a 
few cell divisions.   
 

 
Figure 5.  Young thalloid protonema of the thallose liverwort 

Cyathodium.  Photo courtesy of Noris Salazar Allen. 

 
Figure 6.  Thalloid protonema of liverwort Sphaerocarpus 

texanus.  Photo from Plant Actions through Eugenia Ron and 
Tom Sobota, with permission. 

 
Figure 7.  Sphagnum protonemata on a branch of 

Sphagnum.  Photo by Andras Keszei, with permission. 

 
Figure 8. Threadlike protonema of the moss Funaria 

hygrometrica.  Photo by Janice Glime. 

 
Figure 9.  Moss Grimmia orbicularis protonema.  Photo 

from Plant Actions through Eugenia Ron and Tom Sobota, with 
permission. 

 
Figure 10.  Protonemata of the moss Plagiomnium sp.  Photo 

by Janice Glime. 
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These protonemata produce buds (Figure 11-Figure 
12) and grow into thalloid (thallose liverworts) or leafy 
plants.  These plants are haploid (containing one set of 
chromosomes; 1n); thus they are the gametophyte 
generation of the life cycle.   
 
 

 
Figure 11.  Moss Funaria hygrometrica protonemal bud.  

Photo by Janice Glime. 

 

 
Figure 12.  Moss protonema with bud.  Photo by Janice 

Glime. 

The mature gametophytes are the leafy plants you see 
(Figure 13-Figure 19).  They produce antheridia (sing. 
antheridium; male gamete containers; sperm-containers; 
Figure 20-Figure 27) and archegonia (sing. archegonium; 
multicellular egg-containing structures that later house 
embryo; Figure 31-Figure 37) on the same or different 
plants, depending on the species.  Antheridia can number 

up to several hundred in Philonotis, but a much smaller 
number is typical (Watson 1964).  Archegonia are 
generally few, but can reach as many as 20-30 in Bryum. 
 
 

 
Figure 13.  Leafy liverwort Porella navicularis male 

branches.  Photo from botany website at the University of British 
Columbia, with permission. 

 

 
Figure 14.  Leafy liverwort Porella antheridia in antheridial 

branch.  Photo by Paul Davison, with permission. 

 

 
Figure 15.  Porella navicularis female with arrow indicating 

perianth.  Photo from botany website at the University of British 
Columbia, with permission. 
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Figure 16.  Porella archegonia in perianth.  Photo by Paul 

Davison, with permission. 

 

 
Figure 17.  Bryum capillare males with antheridia in a splash 

platform.  Photo by Dick Haaksma, with permission. 

 

 
Figure 18.  Polytrichum juniperinum males with antheridial 

splash cups.  Photo by David Holyoak, with permission. 

 

Figure 19.  Polytrichum ohioense female showing lack of 
any special structures at the stem tips, but tight leaves looking 
somewhat budlike.  Note that unopened male splash cups can be 
seen around the periphery of the clump at the right.  Photo by 
Janice Glime. 

The antheridium consists of a layer of cells, the 
sterile jacket, surrounding the spermatogenous cells 
(Figure 21), i.e., those that divide to form the 
spermatocytes (sperm-containing cells).  If you remember 
that this is the gametophyte generation and, therefore, 
already in the haploid state, you will realize that the sperm 
(Figure 27-Figure 30), produced in large numbers within an 
antheridium and released as a mass (Figure 28), and the 
egg (non-motile female gamete that is larger than motile 
sperm), produced singly within an archegonium, must be 
produced by mitosis (ordinary cell division).   
 
 

 

Figure 20.  Plagiomnium insigne antheridium and 
paraphyses.  Photo from Botany 321 website at the University of 
British Columbia, with permission. 
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Figure 21.  Moss antheridia showing spermatocytes that 

have been formed by the spermatogenous tissue.  Photo by 
Janice Glime. 

 

 
Figure 22.  Thallose liverwort, Androcryphia confluens, 

with brown antheridia along stem.  Photo by George Shepherd, 
through Creative Commons. 

 

 
Figure 23.  Andreaea nivalis antheridium.  Photo from 

botany website at the University of British Columbia, with 
permission. 

 
Figure 24.  Bryum capillare antheridia and paraphyses at 

the base of a leaf.  Photo by Dick Haaksma, with permission. 

 

 
Figure 25.  Fissidens bryoides antheridia on a special 

branch.  Photo by Dick Haaksma, with permission. 

 

 

Figure 26.  Orthotrichum pusillum antheridia nestled 
among leaves.  Photo by Bob Klips, with permission. 
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Figure 27.  Porella navicularis antheridium releasing 

sperm as a mass.  Photo by Jonathan Choi from Botany 321 
website at the University of British Columbia, with permission. 

 

 
Figure 28.  Aloina ambigua sperm release in packages.  

Photo  courtesy of Llo Stark. 

 

 
Figure 29.  Marchantia polymorpha sperm.  Photo from 

Botany 321 website at the University of British Columbia. 

 
Figure 30.  Stained bryophyte sperm.  Photo by Janice 

Glime. 

It is then the task of the sperm (Figure 29-Figure 30), 
with its two flagella, to find a film of water within which to 
swim to the awaiting egg in the archegonium (Figure 31-
Figure 37).  This is facilitated, most likely in all cases, by 
the presence of a chemical gradient produced by the 
archegonium and serving as an attractant (Figure 34).  The 
archegonium is shaped like a flask with a neck (Figure 31), 
albeit a short one in some taxa.  This neck has an outer 
layer of cells and a middle layer, the neck canal cells that 
disintegrate prior to fertilization, leaving this area as the 
neck canal (Figure 31).  It is this disintegration that 
releases the chemicals that attract the sperm, and the 
cellular remains provide a fluid medium in which the sperm 
can swim.  This fluid exudes from the archegonium (Figure 
34) and can serve as a chemical gradient.  Yet it appears 
that the ability of the sperm to advance any great distance 
by means of its flagella may be unlikely, if Riccardia 
pinguis is at all representative.  Showalter (1926) found 
that when sperm of that species were placed at one end of a 
1 x 0.5 cm pool, the majority still remained at that end of 
the pool an hour later, retaining motility up to 6 hours.  
Cronberg et al. (2008) showed the timescale of sperm 
deterioration (Figure 38). 
 
 

 

Figure 31.  Archegonium of Fontinalis dalecarlica showing 
entry pathway (neck canal) for the sperm.  Photo by Janice 
Glime. 
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Figure 32.  Terminal archegonia (arrows) of leafy liverwort 

Jungermannia evansii.  Photo by Paul Davison, with permission. 

 

 
Figure 33.  Immature archegonia of leafy liverwort 

Lophocolea cuspidata.   Photo from Botany 321 website at the 
University of British Columbia, with permission. 

 

 
Figure 34.  Aloina ambigua showing archegonial exudate.  

Photo courtesy of Llo Stark. 

 
Figure 35.  Pleurozium schreberi archegonia with two 

developing embryos, on short side branch.  The large one is likely 
to be the only one to mature.  Photo by Janice Glime. 

 

 
Figure 36.  Moss Zygodon intermedius archegonia with 

paraphyses.  Photo by Tom Thekathyil, with permission. 

 

 
Figure 37.  Porella archegonia in perianth.  Photo by Paul 

Davison, with permission. 
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Figure 38.  Time lapse of sperm release in Bryum 

argenteum.  Modified from Cronberg, Hans Berggren, & Rayna 
Natcheva 2008. 

 
But that does not mean that all species have such short 

sperm longevity.  In their experiments with the paroicous 
(having archegonia and antheridia on same branch) Pohlia 
nutans (Figure 39-Figure 40), a widespread moss that 
tolerates the high temperatures of geothermal areas and the 
extremes of the Antarctic, Rosenstiel and Eppley (2009) 
found that 20% of the sperm were still viable after 100 
hours in DI or rainwater.  They furthermore found that 
longevity was not affected by 22-60ºC, but at 75ºC it was 
significantly shortened.  Dilution reduced viability.  This 
longevity is much longer than anticipated, but it may not be 
representative of bryophytes with more narrow ecological 
distributions. 
 
 

 
Figure 39.  Pohlia nutans perigonia (modified leaves 

around antheridia in bryophytes).  This species is usually 
paroicous.  Photo by Michael Lüth, with permission. 

 
Figure 40.  Pohlia nutans with capsules, a widespread moss 

from geothermal areas to the Arctic.  Photo by Michael Lüth, with 
permission. 

It appears to be typical for sperm to be shed within 
their spermatocyte cells as a mass, being squeezed out of 
the antheridium by the swelling tissues (Figure 41-Figure 
43).  Both paraphyses (sterile filaments among the 
reproductive organs; Figure 20-Figure 24) and the 
antheridium (Figure 20-Figure 27) itself, swell.  Then the 
spermatocytes drift to the top of the splash apparatus.  It 
seems usual that the sperm do gain distance from the 
antheridium when they reach the surface of the surrounding 
water, especially in a splash cup, and break away from their 
enclosing spermatocyte cell membrane (Muggoch & 
Walton 1942).  At that point, the sperm seem to disperse 
readily across the surface of the water, hopefully 
facilitating their dispersal in splashing raindrops.  Yet, this 
leaves them to fend for themselves once they reach the 
surface upon which they land, hopefully that of a female 
plant or near a female organ.  Could it be that they are 
programmed to avoid wasting energy unless they are within 
the liquid from a female plant or near a female organ? 
 
 

 
Figure 41.  Bryum argenteum releasing sperm masses from 

antheridia.  Photo by Nils Cronberg, Hans Berggren, & Rayna 
Natcheva, with permission. 
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Figure 42.  Bryum argenteum antheridium with initial 

explosive sperm mass release.  Photo by Nils Cronberg, Hans 
Berggren, & Rayna Natcheva, with permission. 

 

 
Figure 43.  Bryum argenteum antheridium with final sperm 

mass release.  Photo by Nils Cronberg, Hans Berggren, & Rayna 
Natcheva, with permission. 

To put this in perspective, compare a study on corn 
(Zea mays) sperm where the researchers were attempting to 
improve sperm longevity (Zhang et al. 1992).  By adjusting 
sucrose concentrations, using six sugars, ten buffers, five 
pH levels, and three membrane protective agents, they 
screened for the best combination.  By adding 0.55 M 
galactose and performing other fine-tuning, they improved 
longevity to 72 hours with 70% viability.  This was to keep 
a sperm alive that would normally travel in the protection 
of a pollen tube and female gametophyte tissue.  For the 
bryophyte sperm, normal travel is in the harsh and 
unpredictable environment.  In some ways, this might 
predict that the bryophyte sperm is tolerant of a wider 
range of conditions, but should we really expect it to live 
longer? 

We know little about the ability of the archegonial 
fluid to attract the sperm, but it appears that sucrose may 
be one of the factors, perhaps the only one, involved 
(Kaiser et al. 1985; Ziegler et al. 1988).  These researchers 
found that in the moss Bryum capillare (Figure 44), once 
the neck canal cells of the archegonium had disintegrated, 

the leaves and the archegonia contained less than 20% of 
the sucrose found in the intact neck region.  There was 
virtually no fructose in the intact archegonium, but the 
glucose concentration rose after the receptive period ended. 
 

 
Figure 44.  Bryum capillare with capsules.  Photo by David 

Holyoak, with permission. 

Once the sperm reaches the venter of the archegonium 
(the bulbous base of the flask; Figure 45), it penetrates the 
egg and together they form the zygote (Figure 46), the first 
2n cell of the sporophyte.  Unlike an alga, the bryophyte 
retains its zygote in the female gametangium 
(archegonium) and when conditions are right the zygote 
divides, forming the embryo (young plant still contained in 
archegonium).  This embryo continues dividing (Figure 47) 
and then specializing, forming eventually a foot, stalk, and 
capsule (sporangium; spore-container of mosses and 
liverworts; Figure 47) with a cuticle (water-protective 
layer; Crum 2001), which together constitute the mature 
sporophyte (Figure 48-Figure 58). 
 

 
Figure 45.  Moss Polytrichum archegonia.  The archegonium 

on the right has an egg in the bottom of the venter and a 
biflagellate sperm near the neck.  Two more sperm are in the neck 
canal of the archegonium on the right.  Photo from botany 
teaching collection, Michigan State University, with permission. 
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Figure 46.  Thallose liverwort Marchantia polymorpha 

fertilization.  Archegonium on left is young and neck canal cells 
have not broken down yet.  The egg cell is in the swollen venter.  
On the right is an egg that is fusing with the sperm during 
fertilization.  Photo from botany teaching collection at Michigan 
State University, with permission. 

 
 
 
 
 
 
 

Because the base of this sporophyte is still firmly 
anchored in the gametophyte tissue, the sporophyte is at 
least partially a parasite on the gametophyte, gaining at 
least some of its nutrition through a joining tissue called the 
haustorium.  Being contained in the gametophyte, the 
zygote necessarily competes for energy, as well as space, 
with other zygotes or embryos, and thus it is not surprising 
that multiple capsules are rare.  Notable exceptions occur in 
the mosses Dicranum (Figure 1), Plagiomnium (Figure 
59), Rhodobryum (Figure 60), and Mittenia plumula, with 
as many as nine capsules in Plagiomnium insigne (Figure 
59) (Crum 2001). 

Consideration of the sporophyte as a parasite on the 
gametophyte is controversial.  Some botanists find this to 
be an obvious interpretation, but others are adamantly 
opposed to such a label.  Part of this reasoning against the 
relationship as parasitic is because most sporophytes, at 
least in mosses, are photosynthetic until the spores near 
maturity.  They also argue that the fitness of the 
gametophyte is tied to the fitness of the sporophyte with, in 
at least some monoicous species, the same genome.  Llo 
Stark (pers. comm. 25 February 2023) has also found that 
the strategy for desiccation tolerance can change shortly 
after fertilization, changing from constitutive protection to 
inducible protection.  He suggests that this could cause the 
release of sugars that are moved to the sporophyte.  The 
same dilemma of terminology applies to the human 
embryo, but the case against calling it a parasite in 
bryophytes seems stronger due to the photosynthetic ability 
of many sporophytes, at least in Anthocerotophyta and 
most Bryophyta. 

 
Figure 47.  Thallose liverwort Marchantia polymorpha 

embryo in archegonium, showing development of the foot, seta, 
and sporogonium.  Note the red-stained neck canal of the 
archegonium.  Photo by Janice Glime. 

When meiosis occurs and spores begin development, 
the supply of nutrition from the gametophyte may be cut 
off due to material that is deposited in the spaces within the 
cell walls of the haustorium (Wiencke & Schulz 1978).  
Water, however, still moves from the gametophyte to the 
sporophyte.  
 

 
Figure 48.  Liverwort Blasia pusilla capsule and stalk.  

Photo by Walter Obermayer, with permission. 

 
Figure 49.  Liverwort Blasia pusilla open capsule showing 

spores and elaters.  Photo by Walter Obermayer, with permission. 
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Figure 50.  Liverwort Lophocolea cuspidata capsule with 

elongated seta.   Photo from Botany 321 website at the University 
of British Columbia, with permission. 

 

 
Figure 51.  Moss Orthotrichum stramineum capsule with 

calyptra.  Photo by Des Callaghan, with permission. 

 
Figure 52.  Polytrichum commune capsule.   Photo from 

Botany 321 website at the University of British Columbia, with 
permission. 

 
 

 

Figure 53.  Polytrichum commune capsule longitudinal 
section.   Photo from Botany 321 website at the University of 
British Columbia, with permission. 
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Figure 54.  Polytrichum capsule cross section.  The blue 

center is the columella.  The dark circle around it is the 
developing sporogenous tissue.  Photo by Janice Glime. 

 

 

Figure 55.  Bartramia pomiformis showing leafy 
gametophytes and sporophyte capsules.  Photo by Janice Glime. 

 
It is this dependence on the gametophyte that makes 

the sporophyte unique among photosynthetic organisms.  
On the one hand, it differs from algae by being retained 
within the archegonium; on the other it differs from the 
remainder of the plant kingdom by being dependent on the 
gametophyte.  Furthermore, it lies within the protection of 
the gametophyte tissue through a great part of its 
development, although less so in the Bryophyta.  This 
protection shelters it from selection pressures of the 
environment and could therefore slow the evolution of this 
generation (Crum 2001).  It is this greater stability of 
sporophyte characters that makes them seemingly more 
useful for deriving classification within the Bryobiotina 
(bryophytes). 

The details of the foregoing structures differ among the 
phyla of Bryobiotina and in many cases form the basis for 
separating the phyla.  These are best understood by 
examining each phylum and class in greater detail. 

 
Figure 56.  Mature sporophyte of thallose liverwort 

Marchantia polymorpha showing foot, stalk, and capsule.  
Photo modified from botany teaching collection, Michigan State 
University, with permission. 

 
Figure 57.  Gigaspermum repens capsule showing spores.  

Photo by David Tng, with permission. 

 
Figure 58.  Longitudinal section through mature Fontinalis 

squamosa capsule, showing green spores.  Photo by Janice Glime. 
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Figure 59.  Plagiomnium insigne sporophytes, illustrating 

multiple sporophytes on one shoot.   Photo from Botany 321 
website at the University of British Columbia, with permission. 

 

 
Figure 60.  Rhodobryum roseum with multiple capsules 

from one shoot.  Photo by Michael Lüth, with permission. 
 

Life Cycle Controls 
For life cycles to work effectively in their 

environments, they need controls that respond to 
environmental cues.  Without these, they cannot respond to 
differences in the weather between years, to changing 
climate, or to dispersal to other parts of the world.  Among 
these, response to photoperiod and temperature provide 
effective cues that the season is changing and it is time to 
initiate a life cycle stage (Newton 1972).   

For example, in Mnium hornum (Figure 61) there is 
an endogenous rhythm that coincides approximately with 
the seasonal cycle (Newton 1972).  Short days delay 
gametangial production, but when 7.25-hour days are 
maintained, neither 10 nor 20°C is capable of completely 
suppressing the gametangia.  Newton interpreted this to 
mean that the short days of winter maintain coordination 
with the seasons.  In Plagiomnium undulatum (Figure 62), 
archegonial induction responds to long days (7.25-12 hours 
at 10°C).  Males are also long-day plants, but in addition 
they require a diurnal temperature fluctuation. 

 
Figure 61.  Mnium hornum showing antheridia that cease 

production in response to short days.  Photo by Michael Lüth, 
with permission. 

 

 
Figure 62.  Plagiomnium undulatum with antheridia that 

respond to long days and diurnal temperature fluctuations.  Photo 
by Jan-Peter Frahm, with permission. 

Generation Time 

The concept of generation time is well known even to 
the layperson.  We know that in humans it means the time 
from birth to becoming a parent, and for the population we 
average the data from everybody.  I like the Wikipedia 
definition:  The average difference in age between parents 
and offspring when the population is at the stable age 
distribution.  For plants, it seems the best definition is one 
complete life cycle.  Llo Stark (Bryonet 20 February 2014) 
agrees with this implied spore-to-spore definition, but he 
suggests expanding it to include shoot fragment or 
fragment of a protonema as the starting point instead of a 
spore.  For example, he and John Brinda have found that it 
takes only 5-6 months for a shoot fragment of Aloina 
ambigua (Figure 63) to produce viable spores.  In this rapid 
cycle, only 40 days are required for the sporophyte to 
develop.  On the other hand, Stenøien (Bryonet 21 
February 2014) suggests that the average length of time 
required to replace an individual is a workable definition of 
generation time.  But Lars Hedenäs (Bryonet 21 February 
2014) cautions us that we rarely know what this means in 
any specific case. 
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Figure 63.  Aloina ambigua, a moss with a short generation 

time of only 5-6 months.  Photo by Hermann Schachner, through 
Creative Commons. 

But do we have information for many, or even any, 
bryophytes on the amount of time required to progress from 
spore or fragment germination to spore production?  This is 
easy for annual bryophytes, but for perennials, few have 
been grown from spore to mature capsule and field 
observations would be based mostly on colonists because 
spores are an important part of their life strategy.  And 
some bryophytes further complicate this by rarely or never 
producing capsules, forcing us to guess based on 
gametangial maturation time.  However, once fertilization 
occurs, sporophyte maturation can proceed rapidly as in the 
annuals, or take 15 months as in some Polytrichum (Figure 
64) species. 
 

 
Figure 64.  Polytrichum commune sporophytes, in 4 cases 

covered by the gametophyte calyptra.  Photo by Michael Lüth, 
with permission. 

Even "annuals" might cause problems.  For example, 
Buxbaumia (Figure 65-Figure 66) is usually considered an 
annual because the sporophyte lasts only one year and there 
is no leafy gametophore.  But Hancock and Brassard 
(1974) found that despite the annual disappearance of the 
sporophyte, the protonema remained for several years. 

 
Figure 65.  Buxbaumia aphylla with mature capsules.  Photo 

by  Jan-Peter Frahm, with permission. 

 
 

 
Figure 66.  Buxbaumia aphylla with capsule wall peeled 

back and interior exposed.  The greenish ground cover is caused 
by protonemata that will survive the winter and form new plants.  
Photo by Janice Glime. 



  Chapter 2:  The Life Cycle:  Surviving Change 2-2-17 

Let us take an example first given by Hans Stenøien 
and carried further by Lars Hedenäs (Bryonet 21 February 
2014).  If a moose walks across a bog and kills a 
Sphagnum (Figure 67) shoot, the empty space created will 
most likely be filled by an expanding neighboring shoot.  
The probability is high that the neighbor originated by 
branching from the now dead shoot.  This means the same 
individual survives despite the death of one of its shoots.  
Do we know anything about the frequency of this 
happening? 
 

 
Figure 67.  Sphagnum capillifolium, a moss that spreads by 

branches.  Photo by David Holyoak, with permission. 

To these comments, Lars Hedenäs (Bryonet 20 
February 2014) adds that many bryophytes reproduce 
sexually numerous times during their lifetimes, perhaps for 
hundreds of years.  Note that this can occur while the lower 
parts of the plants are dying so that it may be more typical 
for only 4-5 years of growth to remain alive.  How do we 
treat these long-lived taxa?  Do we take the average of the 
first to last reproduction, or do we use the first? 

And how do we treat the asexual "generations?"  
Hedenäs points out that these clones may block the 
establishment of new introductions due to lack of space. 

If we consider genetic change in terms of generations, 
the issue has even more complications.  As Richard Zander 
(Bryonet 20 February 2014) points out, genetic change may 
be more the result of point mutation than of recombination.  
And these may be passed on through fragmentation or 
ramets (physiologically distinct organism that is part of 
group of genetically identical individuals derived from one 
progenitor; individual of clone). 

By now it is clear that generation time in bryophytes 
cannot be defined as it is in humans (Brent Mishler, 
Bryonet 20 February 2014).  In fact, Guy Brassard 
(Bryonet 20 February 2014) reminds us that it is an animal 
term.  As Mishler concludes, "maybe there is no reasonable 
concept of generation time in mosses!"  Rod Seppelt 
(Bryonet 20 February 2014) agrees: "I rather like the 
suggestion that 'generation time' is nonsensical in 
bryophytes."  At the very least, we need to define the term 
whenever we use it in order to make clear what we mean 
by it.  In that case, we should consider the suggestion of 
Hans Stenøien (Bryonet 20 February 2014):  "The length of 
a generation could be defined as the average time it takes to 
replace an individual (a shoot or a ramet) in a stable 
population. This could be done by sexual or vegetative 
means, by residents or immigrants. Bog systems can be 
quite dynamic, and many shoots die and are replaced from 
time to time (because mosses do what they do, competition 
etc.)." 

Rod Seppelt (Bryonet 2 January 2022) has suggested 
what might be the shortest "generation time" for a 
bryophyte.  When in Alaska, he found a population of 
Riccia cf. cavernosa (Figure 68) on a floodplain about a 
week after the water receded.  These were very small 
plants, suggesting their origin from spores rather than 
dormant thalli.  It was late autumn, and a new submersion 
was imminent due to upstream rains.  He collected more 
plants about two weeks later and found mature spores in 
the thalli.  He estimated that these plants went from spore 
to producing mature sporangia in just 2-3 weeks! 
 
 

 
Figure 68.  Riccia cavernosa, a species that can apparently 

complete its life cycle in less than 3 weeks on a floodplain.  Photo 
by Richard Orr, with permission. 

 

Importance 

So why is it important to understand generation time of 
a bryophyte?  The question about the length of a generation 
was raised by Jon Shaw who wanted to know the 
generation time in Sphagnum (Figure 67).  As Hans 
Stenøien and Richard Zander summarized on Bryonet (21 
February 2014), understanding generation times (and 
population sizes) enables us to use population genetic 
models to infer the action of evolutionary processes.  
Likewise, phylogenetic models enable us to infer 
evolutionary relationships.  From these, we can infer 
migration rates and divergence time between lineages.   
 

Longevity and Totipotency 

Bryophyte longevity can be difficult to define because 
unlike most other plants, they die at the bottom and 
continue growing at the tip.  Furthermore, they may seem 
dead, yet still be capable of life.  For example, I have 
boiled Fontinalis (Figure 69) for two weeks, replaced it in 
its native stream, and found a few new leaves on one stem 
tip a year later, whereas all the original leaves were brown 
or gone. 
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Figure 69.  Fontinalis dalecarlica, a species that can survive 

two weeks of boiling because of its totipotency.  Photo by J. C. 
Schou, through Creative Commons. 

 
 
 
 
 

This capability of "coming back to life" is in part the 
result of totipotency – the ability of any cell of the 
organism to dedifferentiate and then differentiate into a 
new plant.  We have seen this regeneration many times in 
the growth from fragments, to be discussed in other 
chapters, especially in Dispersal. 

We know that Sphagnum (Figure 67) continues 
growing for hundreds of years, but only the recent few 
years of growth seem to be alive.  But is that really true?  

Recent studies in polar regions suggest that parts of 
some bryophytes can retain life for 1500 years under ice 
(LaFarge et al. 2013; Roads et al. 2014).  Working in the 
Arctic, LaFarge et al. (2013) were able to grow new 
gametophytes from two species of buried bryophytes:  
Aulacomnium turgidum (Figure 70) ~400 years old and 
Bartramia ithyphylla (Figure 71) ~460 years old.  
 
 
 
 
 

 
Figure 70.  Aulacomnium turgidum, a species found buried 

in Arctic ice cores.  Photo by Michael Lüth, with permission. 

 
Figure 71.  Bartramia ithyphylla, a moss found in ice cores 

from the Arctic.  Photo by Michael Lüth, with permission. 

 
Then Roads et al. (2014) found new growth of 

Chorisodontium aciphyllum (Figure 72-Figure 73) in 
Antarctic cores at 138 cm, a layer they interpreted to be 
~1500 years old!  They found that after 55 days the 
Chorisodontium aciphyllum grew in situ at the base of 
their ice core at 110 cm.  Protonemata developed on the 
rhizoids at the base in 22 days.  (See also Miller 2014; 
Zimmer 2014). 
 
 

 
Figure 72.  Chorisodontium aciphyllum showing the 

extensiveness of a mat.  Photo through Creative Commons. 

 
 

 
Figure 73.  Chorisodontium aciphyllum showing upper live 

green parts and lower dead or dormant parts.  Photo through 
Creative Commons. 
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Summary 

The traditional bryophytes (Subkingdom 
Bryobiotina) are classified into three phyla 
(Marchantiophyta = liverworts, Bryophyta = mosses, 
Anthocerotophyta = hornworts).   

Bryophytes have a dominant gametophyte (1n) 
generation that limits their ability to store recessive 
alleles.  The life cycle involves a protonema that 
develops from the germinating spore, becoming thalloid 
in most liverworts and Sphagnopsida, but becoming a 
branched thread in most other mosses.  The protonema 
produces buds that develop into leafy gametophores.  
Mosses in the Bryopsida, but not liverworts or 
Sphagnum, can produce multiple upright 
gametophytes from one protonema, and therefore from 
one spore. 

Gametophores produce archegonia and/or 
antheridia and the zygote divides to form an embryo 
that develops within the archegonium.  Sporophytes 
remain attached to the gametophyte and produce spores 
by meiosis. 
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