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Abstract 

 

Phosphomolybdic acid (H3PMo12O40) along with niobium,pyridine and niobium 

exchanged phosphomolybdic acid catalysts were prepared. Ammonia adsorption 

microcalorimetry and methanol oxidation studies were carried out to investigate the acid 

sites strength acid/base/redox properties of each catalyst. The addition of niobium, 

pyridine or both increased the ammonia heat of adsorption and the total uptake. The 

catalyst with both niobium and pyridine demonstrated the largest number of strong sites. 

For the parent H3PMo12O40 catalyst, methanol oxidation favors the redox product. 

Incorporation of niobium results in similar selectivity to redox products but also results in 

no catalyst deactivation. Incorporation of pyridine instead changes to the selectivity to 

favor the acidic product. Finally, the inclusion of both niobium and pyridine results in 

strong selectivity to the acidic product while also showing no catalyst deactivation. Thus 

the presence of pyridine appears to enhance the acid property of the catalyst while 

niobium appears to stabilize the active site. 
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Chapter 1 
 
Introduction 

In modern chemical industries today, more than 60% of the chemicals and intermediates 

synthesized via catalytic processes are done by oxidation [1, 2]. Oxidation reactions play 

an important role in the total catalytic oxidation where the desired products are obtained 

and also the destruction of undesired products [3]. In catalytic selective oxidation 

reactions the surface acidity/basicity and redox properties of the metal oxides play an 

important role.  

Selective oxidation is extensively carried out on light hydrocarbons or alkanes like 

ethane, propane and butane[4], to obtain products such as acetic acid, acrylic acid and 

maleic  acid. The work is focusing on ethane and propane because they are readily 

available and cheap[1]. Production of acetic acid and acrylic acid from ethane and 

propane are not commercial today. Production of maleic acid from butane is commercial 

in industry today.  One of the well known selective oxidation reaction that is commercial 

in industry today is the conversion of n-butane to maleic anhydride over vanadium 

phosphorous oxide catalyst [1, 2].  

In the chemical industries, the selective oxidations of hydrocarbon reactions continue to 

play an important role, resulting in ongoing investigation of the heterogeneous catalysts 

that accomplish these reactions. Polyoxometalates and phosphomolybdates have been 

extensively investigated for the selective oxidation of light alkanes [5-7]. The reason that 

these heterogeneous catalysts and their salts are usually investigated for their ability to 
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perform selective oxidation reactions is because their structure and composition can be 

finely controlled. One of the major challenges is to determine the surface active sites on 

the metal oxides to understand the fundamental catalytic relationships for metal oxide 

catalysts [8]. The nature of active sites, their number and their strength on the catalyst 

surface, determines the selectivity and conversion capabilities of the catalyst. The nature 

of the oxide, the charge and the radius of the metal ions, will have an effect on the acidity 

and basicity of the catalyst [9].   

1.1 Catalyst 

The commercial use of heteropolyacid catalysts (HPA’s) in some process have already 

been carried out. One of the main advantages is the reduced need for separation of solid 

heteropolyacids over liquid acids.[10-13] . The HPA’s consists of primary, secondary and 

tertiary structures.  Keggin – type HPA’s are the most commonly known primary 

structure and are also thermally stable [14]. A simple Keggin unit is shown in figure (1-

1). The general formula for the keggin-type HPA is QM12O40 x-, where Q is the central 

atom consisting of either P, Si or Ge and M being the transition-metal atom commonly 

consisting of either molybdenum or tungsten and x being the charge on the structure. The 

central atom of a primary structure consists of tetrahedral arrangement of oxygen atoms 

which is surrounded by 12 oxygen octahedra-transition-metal. A keggin unit consists of 

four types of oxygen atoms, one central oxygen atom, one terminal oxygen atom and two 

different types of bridging atoms [10, 15]. The bridging atoms form single bonds to the 

two different transition-metal atoms, and the double bond to a single transition-metal 

atom is formed by the terminal oxygen atom[13].When the keggin unit is located at the 
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lattice position, the secondary structure takes the form of Bravais lattices. The number of 

waters of hydration found in the solid will determine if it is a secondary structure[12]. 

Water bridges are formed in the secondary structure when the water of crystallization in 

the HPA’s binds the keggin units.[13] . When heavy alkali salts are present or produced, 

tertiary structures are formed[13].   

 

Figure (1-1): Keggin unit PMo12O40
3- [1] 

See Appendix A for documentation of permission to republish this figure.  
 

Figure 1a
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In this work, the catalysts that are investigated include: 
 

1) H3PMo12O40        [Phosphomolybdic acid hydrate] 

2) NbPMo12O40      [Niobium exchanged phosphomolybdic acid] 

3) PMo12O40pyr     [Pyridine exchanged phosphomolybdic acid] 

4) NbPMo12O40pyr [Niobium and pyridine exchanged phosphomolybdic acid] 

 

Previously the above catalysts were studies by Holles et al., for the selective oxidation of 

n-butane. In the previous work, it was found that the catalyst with the combination of 

niobium and pyridine was the most active and had high selectivity [1]. These studies 

were done to see how the selectivity and reactivity of the catalysts changed with the 

addition of niobium and pyridine. Li and Ueda showed that treating H3PMo12O40 catalyst 

with pyridine and then activating in nitrogen at 420⁰C improved the activity for the 

selective oxidation of propane to acrylic acid [16].  

 

1.2 Microcalorimetry 

The surface acid and base sites distributions on oxide surfaces can be determined through 

microcalorimetric studies [17-20]. Microcalorimetry studies help in determining the 

strength of the acidic sites exposed on the solid surface of the catalyst. The distribution of 

these sites is necessary to understand the catalytic properties. The conversion and 

selectivity of a reaction are influenced by the nature of the active sites, their number and 

also their strength. Auroux and Gervasini have reported the study of acidity and basicity 

on metal oxides surfaces[9] and have used microcalorimetry in order to determine the 
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number and character of basic and acidic surface sites. Several other papers have also 

studied the acidity of heteropolycomponents using ammonia absorption[10, 15, 21, 22]. 

 

Previously, methods such as titration with Hammett indicators, temperature-programmed 

desorption, adsorption microcalorimetry, catalytic probe reactions and NMR 

spectroscopy were used to determine the solid acids for the strength and number of 

sites[23]. Interactions with acid sites in solids are usually studied with ammonia because 

it is one of the simplest molecules and is also the most studied basic probe molecule[15]. 

Strong acids bind more strongly with ammonia than weaker acids. The choice of the base 

probe molecule is important in order to aptly characterize the surface. Ammonia is used 

because it is a small molecule and has affinity to base catalysts and most of the acid sites 

can be detected by ammonia [9, 10].   

 

The calorimetric determination of heats of adsorption of bases produces curves of the 

type of differential heat of adsorption as a function of amount adsorbed, from which the 

distribution of adsorption sites over adsorption energies can be obtained[24]. This 

information gives details of the concentration of acid sites with different strengths in 

catalysts and also for identifying the relation between acidity and activity of different 

catalytic reactions[24]. In this study, chemisorption is of interest and is an essential step 

in heterogenous catalysis, therefore, the bonding strength between the adsorbate and 

surface is an important parameter[25]. The activation energy of the surface reaction and 

also the surface concentration of the reactants can be affected depending on the strength 

of the chemisorptions bond[25]. Therefore the determination of the heats of adsorption of 
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gas-phase molecules on strong active sites is of importance and it should also be noted 

that the values of heat of adsorption can indicate not only the strength of the interaction 

on the surface of the catalyst but also the properties on it [25].   

 

Previously, Bardin et al have reported the heat of ammonia adsorption for H3PMO12040 

catalyst to be around 100 KJ/mol at 573 K and 120 KJ/mol at 473 K. They had very few 

sites at 573K and ammonia uptake of about 200 (µmol/g). But when the temperature was 

decreased to 473K, they ended up having more number of sites and higher ammonia 

uptake of above 1000 (µmol/g). This shows that the strength of the sites was high at 

473K[10]. Jozefowicz et al have shown that H3PMO12040 activated at 423K had initial 

heat of adsorption of about 200 KJ/mol and at 523K the heat of adsorption dropped to 

150 KJ/mol[26]. Lapkin et al have also shown similar result for the heat of adsorption for 

H3PMO12040[27]. It can be noted that as pretreatment temperature increases, the initial 

heat of adsorption decreases. The strength of the sites also decreases with increase in 

temperature.   

 

Jin et al have shown that the heat of adsorption of Nb2O5 at 373K was 80 KJ/mol[28]. 

But, recently Sun et al have reported that the ammonia adsorption at 423K for Nb2O5 had 

an initial heat of adsorption of 150 KJ/mol with an ammonia uptake of about 280 

(µmol/g)[29]. Interestingly, Petre et al did not find any change in the heat of adsorption 

for Nb2O5 at 353K and 423K; at both the temperatures it was at 125KJ/mol[30].  Xue et 

al have reported the heat of adsorption of MoO3 to be as low as 20KJ/mol with an 

ammonia uptake of 125 (µmol/g)[31]. Bardin et al have performed acidity of keggin type 
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heteropolycompounds by a number of methods including ammonia adsorption 

microcalorimetry[10, 15] . Xie et al shows the use of microcalorimetry to investigate the 

acid site distribution on carbons[21]. 

 

1.3 Methanol Oxidation 

Work of Holles et al, Ueda and Suzuki showed that a molybdovanadophosphoric acid 

(PMo11V) when treated with pyridine results in an active and selective catalyst for the 

conversion for propane to acrylic acid[1, 32]. Later, Li and Ueda showed that when 

pyridine is added to molybdophosphoric acid (H3PMo12) and heated to 420°C to activate 

the catalyst in presence of nitrogen, it improved the activity for the selective oxidation of 

propane to acrylic acid[1, 16]. By preheating the catalyst sample to 420°C all the organic 

components from the catalysts precursors are removed [14]. It also helps in finding out if 

the catalyst holds on to its properties at high temperature or if there is any change in it.  

  Methanol oxidation has been recognized as a dependable chemical probe of metal oxide   

catalysts through comparison of the catalytic activity and product selectivity[33]. To 

study the surface metal oxide redox sites, the reactivity of oxidative catalysts can be done 

by methanol oxidation reaction [34-38]. Methanol oxidation as discussed in the review of 

Tatibouët [33] refers to the network of oxidation and dehydration reactions. The reason 

for choosing methanol as the probe molecule to determine the number of surface active 

sites on pure metal oxides is due to the commonality of the surface methoxy intermediate 

formed during dissociative chemisorptions of methanol and methanol oxidation on the 

oxide catalysts [8]. In addition, methanol has high reactivity towards metal oxides [8]. 
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Methanol oxidation reactions on metal oxide surfaces are very sensitive to the nature of 

active catalytic sites[33]. Methanol molecules are initially adsorbed on the surface metal 

sites as methoxy (CH3O) species during the partial oxidation of methanol [34-39]. The 

products formed after the methanol oxidation reactions are formaldehyde, methylformate, 

dimethoxymethane, dimethyl ether and carbon oxides. The product distribution is 

determined by the nature of the surface active sites [3].The dehydration product yields the 

acid sites, that is dimethyl ether. The carbon oxides in the catalyst yield basic sites. The 

redox sites yield formaldehyde, methylformate and dimethoxymethane. 

 

The knowledge of the number of surface active sites enables the calculation of the 

catalytic activity during methanol oxidation. The acid, base and redox properties of the 

products formed after methanol oxidation reaction can be analyzed for a range of pure 

metal oxides catalysts. These findings will help in better understanding of the catalysts 

and hopefully provide new insight into the fundamental catalytic properties of pure metal 

oxides. 

Previous methanol oxidation studies have been carried out on molybdenum oxide 

catalysts, niobium oxide catalysts, vanadium oxide catalysts and other oxides by Wachs 

et al [3, 34, 40]. They have shown that MoO3 had more selectivity for redox than acid 

product, Nb2O5 had only acidic product selectivity and V2O5 had very high selectivity for 

redox product compared with that of acidic product[3, 34, 40]. 
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1.4 Aims/Goals of thesis: 

The aim of this study is to show how the two distinct aspects of selective oxidation, 

acid/base strength and redox properties, contribute to the high activity of the 

heteropolyacids when niobium and pyridine are added on to them. Also to better 

understand the acid, base and redox properties of the catalysts. The catalyst we used are 

phosphomolybdic acid (H3PMo12O40), pyridine exchanged phosphomolyblic acid 

(PMo12O40pyr), niobium exchanged phosphomolybdic acid (NbPMo12O40) and niobium 

and pyridine exchanged phosphomolybdic acid (NbPMo12O40pyr) catalysts. Here the 

methods used to study the properties of these catalysts are ammonia adsorption 

microcalorimetry (acid/base aspect) and methanol oxidation reaction (redox aspect). 

 

 In the present work, we report how the introductions of niobium and pyridine on the 

parent catalyst, H3PMo12O40, have an effect in the heat of adsorption of the catalysts by 

ammonia adsorption microcalorimetry. We further discuss about the nature of active sites 

present on the catalyst surface through product distribution. This is done by methanol 

oxidation reaction, which gives information about the acid, base and redox sites of the 

catalyst surface. The effect of metal oxides on the selectivity and strength of the catalyst 

can be found. This helps in better understanding of the polyoxometalate catalysts. The 

activity of the catalysts is also discussed during methanol oxidation.  

 

The results obtained from our study are compared to the results obtained from other 

literature, carried out using the same methods to study the properties of other similar 

catalysts. Some authors have used the same catalysts but different probe molecule and 
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other authors have used the metal oxides in their study. Nevertheless, comparing the data 

with other literature helps in identifying efficient catalysts for industrial use and also to 

better understand the fundamental properties of the catalysts. 
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Chapter 2 
Catalyst Preparations 

 
1) H3PMo12O40 

Phosphomolybdic acid hydrate (H3PMo12O40) was purchased from Aldrich and used 

directly. 

 

2) NbPMo12O40 

Niobium exchanged phosphomolybdic acid  (NbPMo12O40) catalyst was prepared by 

using a known method from literature [1]. Niobium pentachloride (Nb Cl5) was 

purchased from Aldrich. The solution of Niobium pentachloride (0.3025g)   and water 

(2.5mL) was basified with ammonium hydroxide (0.125 mL). The white precipitate 

formed was then removed by filtration and the product was dissolved in an aqueous 

oxalic acid (0.252g in 5 mL water) to form niobium oxalate solution. The niobium 

oxalate solution was then added slowly to H3PMo12O40 (5g) dissolved in water (10 mL). 

The liquid was then evaporated completely by heating and stirring the mixture 

continuously. 

 

3) PMo12O40pyr 

Pyridine exchanged phosphomolyblic acid (PMo12O40pyr) catalyst was prepared by first 

dissolving phosphomolybdic acid hydrate (H3PMo12O40) (3g) in water and then adding an 

aqueous solution of pyridine (0.4205 mL in 2.5 mL water) to the solution. The liquid was 

then evaporated completely by heating and stirring the mixture continuously[1]. 
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4) NbPMo12O40pyr  

Similar procedure was used to prepare niobium and pyridine exchanged 

phosphomolybdic acid (NbPMo12O40pyr) catalyst. Niobium exchanged phosphomolybdic 

acid (NbPMo12O40) catalyst was prepared by the method shown above. The obtained 

niobium exchanged phosphomolybdic acid (NbPMo12O40) (2g) was dissolved in water. 

To this solution an aqueous solution of pyridine (0.252 mL in 2.5ml water) was added. 

The liquid was then evaporated by heating and stirring the mixture continuously.[1] 

 

2.1 Experimental Setup  

The equipments used for the experiment consisted of gas and liquid units such as gas 

cylinders, mass flow controllers, methanol bubbler, reactor and GC/MS as shown in 

figure (2-1). The reactor setup consisted of a methanol bubbler, digital flow rate 

controller (Omega), a packed bed reactor and a GCMS (Finnegan, Trace GC ultra, Trace 

DSQ, Thermo Electron Corporation). The digital flow rate controller was used to control 

the flowrate of helium and oxygen gaseous mixture that is flowed through the methanol 

bubbler. The catalysts were placed in a glass tube of 6 mm and were supported by glass 

wool. The reactor was a downflow reactor operating at atmospheric pressure. The 

reactant flow was a single pass. Each catalyst sample run was pretreated to 420°C for 6 

hours and held at the same temperature for 4 hours and then cooled to 260°C in 1 hour in 

presence of helium flow. Feed gases consisted of helium compressed (UN 1046, 5.0 ultra 

high purity, (UHP)) and oxygen compressed (UN 1072). The effluent from the reactor 

was connected to the GC/MS were the analysis was done. 
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Figure (2-1): Experimental Setup 
 

2.2 Mass flow controller calibration: 

Digital flow rate controllers (Omega, model-FMA 78P4) were used to control the gas 

flow rates to the methanol bubbler. The flow controllers were calibrated using a glass 

bubble flow meter operating at room temperature and atmospheric pressure. The 

calibration results are plotted in figures (2-2) and (2-3) for helium and oxygen mass flow 

controllers respectively. These controllers enabled precise control of reactant 

concentrations and flow rates. To maintain low conversion, about ∼10%, flow rates were 

changed for each catalyst during methanol oxidation. 
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Figure (2-2):  Helium Mass Flow Controller Calibration Results 

 

Figure (2-3): Oxygen Mass Flow Controller Calibration Results 
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2.3 GC/MS description and Setup 

The GC/MS used was Finnegan, Trace GC ultra, Trace DSQ, Thermo Electron 

Corporation. The column used in the GC/MS was EquityTM-1, fused silica capillary 

column (30m*0.25mm*0.25µm film thickness). The column temperature was maintained 

at 50⁰C throughout the entire analysis. 

2.4 Run procedure: Methanol Oxidation  

The reactivity of supported phosphomolybdic acid derived catalysts was probed by the 

methanol oxidation reaction. The reactor setup consisted of a methanol bubbler, digital 

flow rate controller (Omega), a packed bed reactor and a GCMS (Finnegan, Trace GC 

ultra, Trace DSQ, Thermo Electron Corporation). The digital flow rate controller was 

used to control the flow rate of helium and oxygen gaseous mixture that is flowed 

through the methanol bubbler. The catalysts were placed in a glass tube of 6 mm and 

were supported by glass wool. The reactor was a downflow reactor operating at 

atmospheric pressure. The reactant flow was a single pass. Each catalyst sample run was 

pretreated to 420°C for 6 hours and held at the same temperature for 4 hours and then 

cooled to 260°C in 1 hour in presence of helium flow.  This treatment is consistent with 

pretreatment procedures of this catalyst from the literature [17]. 

 

The methanol bubbler was connected to the reactor and the outlet from the reactor was 

connected to the GC. The outlet connected to the GC was heated to 100⁰C, so that any 

condensation of the products in the line can be avoided and also to remove traces of water 

formed during the reaction. Feed gases consisted of helium compressed (UN 1046, 5.0 
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ultra-high purity, (UHP)) and oxygen compressed (UN 1072). Initially oxygen and 

helium with the required flowrate is bubbled through methanol in the bubbler and run 

without the catalyst in the glass tube, so as to obtain the methanol count. Molar feed ratio 

into the GCMS taken was mixture of He/O2/MeOH at the ratio 5.6:1:1.3, the reaction was 

run at a standard temperature of 260°C for all the catalysts, the flowrates of helium and 

oxygen modified as required and the catalyst weight (0.01gm to 0.04gm) was taken to 

obtain around 10% methanol conversion. Once feed was initiated to the reactor, the 

catalytic runs were taken for 2-3 hours with samples at an interval of 4 min, beginning 10 

min after the methanol flow to the reactor was initiated. Product analysis was done by 

using the GCMS (Finnegan, Trace GC ultra, Trace DSQ, Thermo Electron Corporation) 

with  a Equity TM -1,fused silica capillary column(30m*0.25mm*0.25µm film thickness). 

The selectivity of the products is defined in mole percentages. 

2.5 GCMS Calibration:                                                                                                                                                                                                                         

Calibration of the GC/MS was done for the feed methanol and all the products of interest. 

The main by-products of the catalysts under study from methanol oxidation were 

dimethoxymethane, dimethyl ether and formaldehyde. From these calibrations the 

GC/MS counts can be converted to moles of each product. Determination of the number 

of moles of each product formed allows calculation of reaction rate and selectivity. The 

calibration of the GC/MS for methanol feed and each product is shown in the figures (2-

4), (2-5), (2-6) and (2-7). 

Methanol, formaldehyde and dimethoxymethane liquids were calibrated using a bubbler 

with helium carrier to produce a saturated vapor. The vapor pressure was calculated to 
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determine the gas phase concentration of each component sent into the GC/MS. Because 

of this technique single point calibration was necessary. 

Methanol was calibrated using the GC/MS. Pure methanol was bubbled by using helium 

carrier gas and the concentration in the gas phase was determined by the vapor pressure 

calculations. Peak curves from the GC/MS was averaged and plotted as a single point 

graph. Starting a point at zero was used so that we could establish a linear calibration 

curve from methanol readings. Similar procedure was used for formaldehyde and 

dimethoxymethane. 

Analysis of formaldehyde gave multi components and it was not possible to find the 

concentration of formaldehyde. So for formaldehyde, we used methanol calibration to 

back calculate the formaldehyde concentration in order to establish formaldehyde 

calibration curve.  

Concentration of dimethyl ether was varied using helium gas to establish different 

concentrations in gas phase. The readings were carried out directly in the GC/MS. 
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Figure (2-4): Calibration Curve for Methanol (GC/MS) 

  

Figure (2-5): Calibration Curve for Formaldehyde (GC/MS)  
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Figure (2-6): Calibration Curve for Dimethoxymethane 
(GC/MS) 

      

Figure (2-7): Calibration Curve for Dimethyl Ether (GC/MS) 
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2.6 Microcalorimetry 

This work was carried out by Eric J. Doskocil, Department of Chemical Engineering,                                                  

University of Missouri. 

The microcalorimetry studies was carried out in an International Thermal Instruments 

block in a home built system and all the catalyst samples where pretreated at 420°C under 

vacuum. Pure ammonia was used as the adsorbate and ammonia adsorption was carried 

out at room temperature.  

2.7 Reaction rate calculation 

The rate of each catalyst was calculated as the (concentration of methanol * flowrate of 

the no of moles * conversion of methanol * selectivity of each product) divided by the    

(weight of each catalyst taken * the surface area of each catalyst). 

 

2.8 Selectivity calculations 

The selectivity of each product was carried by using the GC/MS calibration plots from 

figures (2-5), (2-6) and (2-7). From the plot the number of moles of the individual 

product was obtained after the reaction. The selectivity (%) was calculated as the 

(number of moles converted to a product)/(total no of moles of all the products formed). 
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2.9 Surface Area Measurements 

The BET surface area analysis of the catalysts under study was determined by nitrogen 

adsorption isotherms on a Micromeritics surface area and porosity analyzer, 

(Micromertitics, model ASAP 2020) using nitrogen as the carrier gas. Around 0.1 g of 

each sample was used for the measurement and the sample was pretreated at 420°C prior 

to nitrogen adsorption. 
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Chapter 3 
 

Characterization of Partially Reduced Polyoxometalate Catalysts Using Ammonia 

Adsorption Microcalorimetry and Methanol Oxidation Studies 

 

3.1 Introduction  

Heteropolyacids (HPA’s) are commonly known as strong acid catalysts both in liquid and 

solid forms[12]. A variety  of uses for these catalysts has been discussed in a volume of 

chemical reviews[14]. Selective oxidation studies are extensively carried out on light 

hydrocarbons or alkanes like ethane, propane and butane[4], to obtain products such as 

acrylic acid and maleic  acid since these reactants are readily available and 

inexpensive[1]. At present in chemical industries, the selective oxidation of hydrocarbon 

reactions continue to play an important role resulting in ongoing investigation of the 

heterogeneous catalysts that accomplish these reactions. The reason that the hetero poly 

acid catalysts and their salts are usually investigated for their ability to perform selective 

oxidation reactions is because of their structure and composition can be finely controlled. 

One of the major challenges is to determine the surface active sites on the metal oxides to 

understand the fundamental catalytic relationships for metal oxide catalysts[8].The nature 

of active sites, their number and their strength on the catalyst surface determines the 

selectivity and conversion capabilities of the catalyst. The nature of the oxide, the charge 

and the radius of the metal ions will have an effect on the acidity and basicity of the 

catalyst[9]. 
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Auroux and Gervasini have carried out a thermodynamic scale of surface acidity and 

basicity in which they determine the acid and base properties by measuring the heat of 

absorption and adsorption uptake of gas –phase molecules on a number of simple metal 

oxides[9]. The choice of the base probe molecule is important in order to aptly 

characterize the surface and ammonia was used because it is a small molecule and has 

affinity to base catalysts and most of the acid sites can be detected by ammonia[9, 10]. 

Bardin et al have performed acidity measurements of keggin type heteropolycompounds 

by a number of methods including ammonia adsorption microcalorimetry[10, 15]. Xie et 

al shows the use of microcalorimetry to investigate the acid site distribution on 

carbons[21]. 

 

Phosphomolybdic acid hydrate (H3PMo12O40) consists of the Keggin structure which is 

commonly associated with heteropolyacids (HPAs) that have specific molecular 

architectures having metal-oxygen cluster compounds [14, 41]. The 

heterpolyoxomolybdates catalysts having the Keggin type structure are active for partial 

oxidation of alkenes and alkanes [1, 42-45]. The bifunctional nature of the 

heteroployacids and their polyoxometalate as both acid and oxidation catalysts have 

made them effective in many different catalytic applications[1]. Especially, 

polyoxometalates and phosphomolybdates have been extensively investigated for the 

selective oxidation of light alkanes [5-7].  
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To study the surface metal oxide redox sites the reactivity of oxidative catalysts can be 

done by methanol oxidation reaction[34-38]. Previous methanol oxidation studies have 

been carried out on extensive number of oxides such as molybdenum oxide catalysts and 

vanadium oxide catalysts by Wachs and colleagues[3, 34, 40]. Methanol oxidation as 

referred in the review of Tatibouët[33]  refers to the network of oxidation and 

dehydration reactions. Methanol has high reactivity towards metal oxides and has a 

commonality to the surface methoxy intermediate formed during the methanol oxidation 

and dissociative chemisorption of methanol on oxide catalysts [8]. Methanol molecules 

are initially adsorbed on the surface molybdenum sites as methoxy (CH3O) species 

during the partial oxidation of methanol [34-39]. The products formed after the methanol 

oxidation are formaldehyde, methylformate, dimethoxymethane, dimethyl ether and 

carbon oxides. The product distribution is determined by the nature of the surface active 

sites [3].The dehydration product yields the acid sites dimethyl ether, carbon oxides yield 

basic sites and the redox sites yield formaldehyde, methylformate and 

dimethoxymethane. 

 

Work of Ueda and Suzuki showed that a molybdovanadophosphoric acid (PMo11V) when 

treated with pyridine result is an active and selective catalyst for the conversion for 

propane to acrylic acid[1, 32] and later Li and Ueda showed that when pyridine is  added 

to molybdophosphoric acid (H3PMo12) and heating to 420°C to activate in presence of 

nitrogen, improved the activity for the selective oxidation of propane to acrylic acid      

[1, 16]. By preheating the catalyst sample to 420°C all the organic components from          

the catalysts precursors or removed [14]. Niobium and pyridine-exchanged 
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molybdophospheric and molybovanadophospheric acid catalysts (NbPMo12pyr and 

NbPMo11Vpyr) for selective oxidation of propane and butane was reported by Holles et 

al[1, 44].      

     

In this paper we report how the introductions of niobium and pyridine on the parent 

catalyst H3PMo12O40 have an effect on the heat of adsorption of the catalysts as 

determined by ammonia adsorption microcalorimetry. In addition, the methanol oxidation 

reaction is used to obtain information about the acid, base and redox sites of the catalyst 

surface. The aim of this paper is to show how the activities of the heteropolyacid catalysts 

are effected when niobium and pyridine are added to them and also to better understand 

the acid, base and redox properties of the catalysts. 

 

3.2 Experimental: Catalyst preparation 

1) H3PMo12O40 

Phosphomolybdic acid hydrate (H3PMo12O40) was purchased from Aldrich and used 

directly. 

 

2) NbPMo12O40 

Niobium exchanged phosphomolybdic acid (NbPMo12O40) catalyst was prepared by 

using a known method from literature[1]. Niobium pentachloride (NbCl5) was purchased 

from Aldrich. The solution of Niobium pentachloride (0.3025g)   and water (2.5mL) was 

basified with ammonium hydroxide (0.125 mL). The white precipitate formed was then 
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removed by filtration and the product was dissolved in an aqueous oxalic acid (0.252g in 

5 mL water) to form niobium oxalate solution. The niobium oxalate solution was then 

added slowly to H3PMo12O40 (5g) dissolved in water (10 mL). The liquid was then 

evaporated completely by heating to 80°C and stirring the mixture continuously. 

 

3) PMo12O40pyr 

Pyridine exchanged phosphomolybic acid (PMo12O40pyr) catalyst was prepared by first 

dissolving phosphomolybdic acid hydrate (H3PMo12O40) (3g) in water and then adding an 

aqueous solution of pyridine (0.4205 mL in 2.5 mL water) to the solution. The liquid was 

then evaporated completely by heating to 80°C and stirring the mixture continuously[1]. 

 

4) NbPMo12O40pyr  

Similar procedure was used to prepare niobium and pyridine exchanged 

phosphomolybdic acid (NbPMo12O40pyr) catalyst. Once niobium exchanged 

phosphomolybdic acid (NbPMo12O40) catalyst was prepared by the method shown above, 

(2g) was dissolved in water. To this solution an aqueous solution of pyridine (0.252 mL 

in 2.5ml water) was added. The liquid was then evaporated by heating to 80°C and 

stirring the mixture continuously.[1] 

 

3.3 BET Surface Area Analysis: 

 

The BET surface area analysis of the above catalysts was determined by nitrogen 

adsorption isotherms on a Micromeritics surface area and porosity analyzer, 
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(Micromeritics, model ASAP 2020) using nitrogen as the carrier gas. Around 0.1 g of 

each sample was used for the measurement and the sample was pretreated at 420°C prior 

to nitrogen adsorption. 

 

3.4 Methanol Oxidation reactions: 

The reactivity of supported phosphomolybdic acid derived catalysts was probed by the 

methanol oxidation reaction. The reactor setup consisted of a methanol bubbler, digital 

flow rate controller (Omega), a packed bed reactor and a GCMS (Finnegan, Trace GC 

ultra, Trace DSQ, Thermo Electron Corporation). The digital flow rate controller was 

used to control the flowrate of helium and oxygen gaseous mixture that is flowed through 

the methanol bubbler. The catalysts were placed in a glass tube of 6 mm and were 

supported by glass wool. The reactor was a downflow reactor operating at atmospheric 

pressure. The reactant flow was a single pass. Each catalyst sample run was pretreated to 

420°C for 6 hours and held at the same temperature for 4 hours and then cooled to 260°C 

in 1 hour in presence of helium flow.  

 

Feed gases consisted of helium compressed (UN 1046, 5.0 ultra high purity, (UHP)) and 

oxygen compressed (UN 1072). Molar feed ratio into the GCMS taken was mixture of 

He/O2/MeOH at the ratio 5.6:1:1.3, the reaction was run at a standard temperature of 

260°C for all the catalysts, the flowrates of helium and oxygen modified as required and 

the catalyst weight (0.01gm to 0.04gm) was taken to obtain around 10% methanol 

conversion, so that complications due to heat and mass transfer limitations can be 
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avoided [3]. Once feed was initiated to the reactor, the catalytic runs were taken for 2-3 

hours with samples at an interval of 4 min, beginning 10 min after the methanol flow to 

the reactor was initiated. Product analysis was done by using the GCMS (Finnegan, Trace 

GC ultra, Trace DSQ, Thermo Electron Corporation) with a Equity TM -1,fused silica 

capillary column(30m*0.25mm*0.25µm film thickness). The selectivity of the products 

are defined in mole percentages. 

 

3.5 Microcalorimetry:  

 

The microcalorimetry studies was carried out in an International Thermal Instruments 

block in a home built system and all the catalyst samples where pretreated at 420°C under 

vacuum consistent with the literature[44]. Pure ammonia was used as the adsorbate and 

ammonia adsorption was carried out at room temperature.  

 

3.6 Results: 

 

The surface area measurements for the catalysts are listed in table (1). Specific surface 

areas were found to range from 4.6 m2/g for H3PMo12O40 to 13.4 m2/g for 

NbPMo12O40Pyr. The addition of either niobium or pyridine caused an increase in surface 

area with the largest increase for the sample with both niobium and pyridine. 
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Catalyst Surface Area (m
2
/g) 

 H3PMo12O40                4.6  

NbPMo12O40                5.9  

PMo12O40pyr                7.6  

NbPMo12O40pyr                13.4  
 
             All samples, activated at 420°C 

Table 1: Surface Area Measurements 

 

Ammonia adsorption microcalorimetry results considered are shown in figure (3-1).  

Catalytic sites are the stronger sites on the left side in the figure (3-1) and the large 

number of sites on the right is physisorption sites and will not be further considered. The 

strong sites at less than 200 µ mol/g uptake are more closely shown in figure (3-2). The 

heat of adsorption for the H3PMo12O40 parent catalyst is about 80 kJ/mol for initial 

adsorption and decreases fairly linearly to 0 kJ/mol with a total NH3 uptake of 

approximately 130 µ mol/g. Incorporation  of niobium, pyridine or both to the parent 

catalyst increases the number of adsorption sites as shown in figure (3-1). Niobium, 

pyridine or both increases the initial heat of adsorption by about 40 kJ/mol to 120 kJ/mol. 

From an initial value of 120 kJ/mol, the pyridine sample heat of adsorption decreases to 

∼50 kJ/mol value for physorption (beyond 200 µ mol/g uptake). Similarly, the niobium 

sample decreased to approximately ∼60 kJ/mol for physisorption. Finally, both niobium 
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and pyridine resulted in a heat of adsorption of ∼80 kJ/mol for physisorption. After the 

initial 50 µ mol/g uptake, the catalyst with both niobium and pyridine typically had 

adsorption strength  ∼10 kJ/mol stronger than the other catalysts. 

 
 
 

 

Figure (3-1) - NH3 uptake and heat of adsorption of the 
catalysts showing the active sites. All the catalysts activated 

at 420°C 
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Figure (3-2) - NH3 uptake and heat of adsorption of the 
catalysts showing the active sites. All the catalysts activated 

at 420°C 
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acidic product DME 5% at 10% conversion of methanol. Selectivity as a function of time 

is shown in figure (3-4). Although conversion decreased after an initial incubation period, 

selectivity was fairly constant over the entire time.  

 
 

Figure (3-3) - Conversion and selectivity of H3PMo12O40 
catalyst as a function of time. The reaction was carried out at 
260°C and with 0.02g of catalyst and a total flowrate of 96.2 

(ml/min) (He/O2/MeOH =67.69/11.95/16.2 ml/min) 
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Figure (3-4) - Selectivity of all products as a function of time 
of H3PMo12O40 catalyst. The reaction was carried out at 

260°C and with 0.02g of catalyst and a total flowrate of 96.2 
(ml/min) (He/O2/MeOH =67.69/11.95/16.2 ml/min) 
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catalyst at 93% with a corresponding slight increase in the selectivity of DME (acidic) 

product to 7%.  

 

Figure (3-5) - Conversion and selectivity of NbPMo12O40 
catalyst as a function of time. The reaction was carried out at 

260°C and with 0.04g of catalyst and a total flowrate of 
108.2 (ml/min) (He/O2/MeOH =76.5/13.5/18.2 ml/min). 
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Figure (3-6) - Selectivity of all products as a function of time 
of NbPMo12O40 catalyst. The reaction was carried out at 
260°C and with 0.04g of catalyst and a total flowrate of 
108.2 (ml/min) (He/O2/MeOH =76.5/13.5/18.2 ml/min). 
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selectivity of the redox product DMM was 38 % and a small selectivity of formaldehyde 

<1.0% was observed. With pyridine in the catalyst the selectivity of the acidic product 

increased and the selectivity of the redox product decreased, in contrast with the parent 

and niobium exchanged catalyst. In figure (3-8), the selectivity of all products as a 

function of time is shown for PMo12O40pyr catalyst. Here it is seen that the selectivity of 

DME (acidic) is higher initially at around 75% and then decreases to about 45% over 150 

minutes. The selectivity of DMM (redox) was initially low at about 23% and then 

increased to around 60% over 150 minutes. After about 80 minutes the selectivity of 

DMM (redox) overtakes the selectivity of DME (acidic). Following an initial transient, 

the selectivity of DME decreased and the selectivity of DMM increased with time on 

stream. These selectivity changes occur simultaneously with the catalyst deactivation. In 

contrast with the other catalysts, only selectivity for the pyridine sample showed the most 

variability as a function of time on stream.     
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Figure (3-7) -   Conversion and selectivity of PMo12O40Pyr 
catalyst as a function of time. The reaction was carried out at 

260°C and with 0.04g of catalyst and a total flowrate of 
108.2 (ml/min) (He/O2/MeOH =76.5/13.5/18.2 ml/min). 
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Figure (3-8) - Selectivity of all products as a function of time 
of PMo12O40Pyr catalyst. The reaction was carried out at 
260°C and with 0.04g of catalyst and a total flowrate of 
108.2 (ml/min) (He/O2/MeOH =76.5/13.5/18.2 ml/min). 
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selectivity of the acidic product DME was very high at 95%, the selectivity of the redox 

product DMM was 5% and a small selectivity to formaldehyde of < 1% was seen. 

 
 

Figure (3-9) - Conversion and selectivity of NbPMo12O40Pyr 
catalyst as a function of time. The reaction was carried out at 

260°C and with 0.01g of catalyst and a total flow-rate of 
157.3 (ml/min) (He/O2/MeOH =115.2/20.44/27.34 ml/min). 
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Figure (3-10) - Selectivity of all products as a function of 
time of NbPMo12O40Pyr catalyst. The reaction was carried 

out at 260°C and with 0.01g of catalyst and a total flow-rate 
of 157.3 (ml/min) (He/O2/MeOH =115.2/20.44/27.34 

ml/min). 
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traces of formaldehyde (redox) were also noticed. In contrast with the pyridine only 

sample, all selectivities were fairly constant as a function of time.  

 

In table (2) the rate of reactivity of the products for each catalyst is reported at 10 % 

conversion. When niobium was incorporated, the rate of formation both acidic and redox 

products decreased when compared to the parent catalyst.. Addition of pyridine to the 

parent catalyst decreased the rate of DMM (redox) production by a factor of 6 and 

increased the production rate of the acidic product by a factor of 4 compared to the parent 

catalyst. The highest reaction rate to the acidic product occurs when both niobium and 

pyridine was incorporated to H3PMo12O40 catalyst. This rate was 7.5 times the rate of the 

next highest catalyst. 

 

Table 2: Reactivity of the catalyst (mmol/min m2) at 260°C,  
around 10% conversion. 

Catalyst reactivity of the products formed using methanol as 
substrate 

Catalyst 
DME(Acidic) 

(mmol/min 
m2) 

DMM(Redox) 
(mmol/min m2) 

Formaldehyde(Redox) 
(mmol/min m2) 

H
3
PMo

12
O

40
 1.5×10-7 2.7×10-6 - 

NbPMo
12

O
40

 1.0×10-7 1.3×10-6 - 

PMo
12

O
40

pyr 6.9×10-7 4.2×10-7 9.7×10-10 

NbPMo
12

O
40

pyr 5.1×10-6 2.8×10-7 3.2×10-9 
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In table (3) the selectivity of the products at 10 % conversion is reported. The parent 

catalyst had selectivity >90% for DMM (redox). With the addition of niobium to 

H3PMo12O40 catalyst a slight increase of about ∼2% was noticed in the selectivity of the 

DME (acidic). With the pyridine exchanged catalyst, the selectivity of DME increased to 

about ∼62%, selectivity of DMM (redox) decreased to about ∼38% and for formaldehyde 

(redox) it was > 1% at 10% conversion. The niobium and pyridine exchanged catalyst 

had selectivity to DME (acidic) at ∼95%, almost completely reversing the high selectivity 

of the parent catalyst from DMM (redox) to DME (acidic). The selectivity of 

formaldehyde was >1%.  

 

Table 3: Catalyst Selectivity (%) at 260°C,  around 10% 
conversion. 

Catalyst selectivity of the products formed using methanol as 
substrate 

  
 
 

Catalyst DME(Acidic) DMM(Redox) Formaldehyde(Redox) 

H
3
PMo

12
O

40
 5.4 94.6 - 

NbPMo
12

O
40

 7.2 92.8 - 

PMo
12

O
40

pyr 61.5 38.3 0.087 

NbPMo
12

O
40

pyr 94.6 5.3 0.059 
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3.7 Discussion: 

The literature reactivity results for production of maleic acid from n-butane show that the 

most active and selective catalyst is the niobium and pyridine exchanged 

phosphomolybdic acid (NbPMo12O40pyr)[1]. However, by closely examining the activity 

and selectivity effect for each component, a better understanding of the contribution of 

each component to the catalyst can be elucidated. The parent H3PMo12O40 catalyst 

showed the lowest activity with selectivity mainly to combustion products[1]. The 

addition of niobium to the parent catalyst resulted in increased activity with the 

selectivity now mainly to the desired maleic acid product[1]. The addition of pyridine to 

the parent catalyst also resulted in increased activity and selectivity to the desired 

product. Pyridine increased the activity more than niobium, but both had similar 

selectivities. Finally, the combination of both niobium and pyridine resulted in the 

highest activity and   selectivity.   

 

Auroux and Gervasini have reported the study of acidity and basicity on metal oxides 

surfaces[9] and have used microcalorimetry in order to determine the number and 

character of basic and acidic surface sites. Adsorption microcalorimetry has also been 

used to study the acidity of heteropolycomponents using ammonia[10, 15, 21, 22]. 

Interactions with acid sites in solids are often studied with ammonia because it is one of 

the simplest molecules and is also the most studied basic probe molecule[15]. Strong 

acids bind more strongly with ammonia than weaker acids. 
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When pyridine was added to the parent catalyst, the initial heat of adsorption was        

∼10 kJ/mol higher than for niobium addition to the parent catalyst. At increased uptake, 

the pyridine sample heat of adsorption was equal to or slightly greater than the niobium 

sample until the ammonia dosing exceeded 120 µmol/g. When both niobium and pyridine 

were incorporated in the parent sample, the initial heat of adsorption was equivalent to 

the pyridine only sample. However, as ammonia dosing increased, the niobium and 

pyridine sample continued to show stronger sites than either of the samples with only 

niobium or pyridine. Thus, the combination of both niobium and pyridine resulted in a 

higher number of stronger sites. These sites were 10 – 20 kJ/mol stronger after the initial 

adsorption. While the most active catalyst for selective oxidation of n-butane 

(NbPMo12O40pyr) did have a large number of stronger acid sites, there are no significant 

differences between the catalysts, which might account for the dramatic increase in 

activity reported in the literature[1].  

 

The ammonia adsorption result for H3PMo12O40 obtained by Jozefowicz et al 

demonstrated an initial heat of 150 kJ/mol when treated at 323 K. Bardin et al showed 

that the sample pretreated at 473K had a higher heat of adsorption  ∼120 kJ/mol than 

when treated at 573 K, which was ∼100 kJ/mol[10]. The decreasing heat of adsorption as 

pretreatment temperature increased likely results because the structure started to 

decompose as the pretreatment temperature increased [10]. The site density also 

decreased from about 1050 μmol/g to as low as 200 μmol/g as the pretreatment 

temperature increased from 473 K to 573 K [10]. The results in this paper in figure (3-1) 

and (3-2) shows that the parent catalyst H3PMO12O40 which was pretreated at a higher 
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temperature of 698 K had a lower heat of adsorption of about ∼80 kJ/mol. The total 

uptake also decreased to 130 µmoles/g. This loss of adsorption strength and sites is 

consistent with the decomposition of the keggin structure as pretreatment temperature 

increases as shown by phosphorous NMR[45]. However, when niobium, pyridine or both 

was incorporated into the parent H3PMO12O40 catalyst that was pretreated at 698 K, the 

initial heat of adsorption is the same as with that of the parent catalyst pretreated at 473K 

shown in the work of Bardin et al [10]. The number of strong adsorption sites is also 

increased upon incorporation of niobium, pyridine or both. 

 

 Previously, Xue et al have shown that the ammonia adsorption studies on MoO3 at 423K 

produced initial heat lower than 20kJ/mol [31]. Thus, the active sites in these catalysts are 

clearly not just molybdenum oxide. Jin et al have reported that the initial heat of 

adsorption to be about ∼90 kJ/mol for Nb2O5 ammonia adsorption studies[28]. Sun et al 

have showed at 423 K the initial heat of adsorption for Nb2O5 was ∼150 kJ/mol with 

ammonia uptake of 280 µmol/g[29]. But, Petre et al have shown the initial heat of 

adsorption to be ∼125 kJ/mol at 353 K and 423 K with ammonia uptake of 190 µmol/g 

and 250 µmol/g respectively for Nb2O5. While these initial heats for ammonia adsorption 

on Nb2O5 are consistent the values for on niobium containing catalyst, we also observe 

similar heats for non-niobium containing catalysts (i.e., pyridine only). 

 

During oxidation of methanol, the surface methoxy groups are the intermediate species in 

the production of partially oxygenated reaction products such as formaldehyde, dimethyl 

ether, dimethoxymethane, methylformate etc.[33, 46]. The products formed depend on 
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the nature of the active sites: acidic, basic or redox. The products obtained from the 

reaction of our catalysts are dimethyl ether (acidic), dimethoxymethane (redox) and 

formaldehyde (redox). From Tatibouët [33], the  methanol reaction on oxide surfaces is 

very sensitive to the nature of surface active sites which can lead to the formation of 

various products by methanol oxidation. Methanol oxidation reactions can be categorized 

into oxidation reactions that need oxygen and dehydration reactions that need no oxygen. 

The formation of all products except for DME (acidic) needs at least one oxidation step. 

Selectivity of DME (acidic) is attributed to the dehydration capability of the catalyst 

which in turn is related to its own acidic character [8]. 

 

Methanol oxidation reaction result from figure (3-3) for H3PMo12O40 catalyst shows 

conversion of methanol and selectivity at 10% conversion as a function of time. After the 

initiation period, the catalyst activity decreases over time and has high selectivity for the 

redox product DMM ∼95 % and about ∼5 % for the acid product DME. The selectivity of 

the products as a function of time from figure (3-4) shows that there is no change in the 

selectivity even though the catalyst deactivates as shown in figure (3-3). Although no 

direct literature comparisons are available, this catalyst is known to decompose at 

pretreatment conditions in excess of 440°C to MoO3[45]. Wachs et al reported high 

selectivity of redox products for methanol oxidation studies on MoO3 [3, 8]. The 

presence of similar selectivity from H3PMo12O40 and MoO3 suggests the similarity of 

active sites. 
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 The addition of niobium to the parent catalyst stabilizes the catalyst as shown in figure 

(3-5). The conversion is almost stable and the catalyst does not deactivate as that of 

H3PMo12O40 in figure (3-5). With the addition of niobium, the selectivity of the acid 

product increased slightly to about ∼7% and the selectivity of DMM (redox) decreased 

slightly to about ∼93%. Similar to H3PMo12O40, the selectivity for the NbPMo12O40 

catalyst remained constant as a function of time on stream. In contrast with MoO3, 

methanol oxidation studies carried out by Wachs et al on Nb2O5 demonstrated a high 

selectivity for the acidic product [8, 47]. Thus, the slight increase in selectivity of the acid 

product when niobium was added to the parent catalyst is consistent with the addition of 

some active niobium sites.  

 

In figure (3-7) when pyridine is added to the parent catalyst H3PMo12O40, it is seen that 

after 60 minutes the catalyst starts to deactivate. However, the important observation was 

the increase in the selectivity of the acid product which was as high as ∼62% compared 

with that of NbPMo12O40which was less than 10% for acidic product. The selectivity of 

the redox product dropped to ∼38% (at 10 % conversion) from about ∼92% with the 

addition of pyridine instead of niobium to the parent catalyst. Small traces of 

formaldehyde were also observed (<1%). Figure (3-8) shows the selectivity of the 

products as a function of time and the important finding was the selectivity of  DME 

(acidic) was high at about ∼75 % and later decreased to about 45 % over time and the 

selectivity of the redox product increased gradually from about  ∼ 23 % to about ∼60 %. 

The switch in product selectivity occurred in parallel with the loss of activity. The 

selectivity of the redox product was more than that of acid product after about 80 
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minutes. This result is consistent with the ammonia adsorption results in figure (3-1) 

where it is seen that the catalyst with pyridine has the highest initial heat of adsorption 

and is thus the strongest acid. Pyridine increases the strength of acid sites in the catalyst 

but does not stabilize the catalyst like niobium (figure (3-5) and (6)). 

 

When both niobium and pyridine are incorporated into the parent catalyst H3PMo12O40, 

the methanol oxidation result for the conversion and selectivity of the products as a 

function of time are shown in figure (3-9) and (3-10). The conversion of the catalyst 

remains constant over time (figure (3-9)) which is similar to the NbPMo12O40 catalyst 

(figure (3-5)). The selectivity of the acid product, dimethyl ether, is very high at ∼95% 

and that of the redox product, dimethoxy methane, was about ∼5% at 10% conversion of 

methanol. This selectivity shows similarity with H3PMo12O40pyr catalyst where the 

selectivity of DME (acidic) was high initially.   

 

From the figure (3-10) it can be observed that after a very small initial increase, the 

selectivity of the acid product remained constant. A corresponding small initial decrease 

was observed in the selectivity of the redox product and it then remained constant.  These 

results agree fairly well with that of the ammonia adsorption microcalorimetry study in 

figure (3-1) and (3-2), where the NbPMo12O40pyr catalyst has consistently stronger acid 

sites than the other catalysts. The presence of niobium along with pyridine is necessary to 

obtain the maximum activation of the catalyst. Studies done on molybdenum–based 

pyridine exchanged heteroployanion catalysts by Holles et al showed that the presence of 
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niobium increased the activity and productivity significantly for n-butane oxidation to 

maleic acid[4, 14, 15].  

 

In this study, the rate of acid, base and redox sites at 260°C for conversion of methanol 

around 10% shows that the addition of pyridine and niobium has important effects on the 

parent catalyst. We did not detect the presence of any base sites in the product stream; 

either they were non-existent or too small to measure. Wachs et al observed redox and 

acidic products for methanol oxidation of MoO3 at 300⁰C and the ratio was 6:1 [8]. Our 

results also show redox and acidic products for H3PMo12O40 catalyst and the selectivity 

of redox products was high. The ratio of redox to acidic product selectivity at 10% 

conversion at 260⁰C was   19: 1 for the parent catalyst H3PMo12O40. Wachs et al reported 

only acidic and no redox and base product for Nb2O5 during methanol oxidation at 300⁰C 

[8]. While our results show both redox and acidic products for the catalyst with niobium, 

it should be noted that NbPMo12O40 catalyst is still mostly Mo with a small amount of 

niobium. As expected from the literature, the presence of niobium did slightly increase 

the selectivity of the catalyst to the acidic product. 

 

 From Wachs et al work, niobium oxide results only in the acidic product [8]. The 

addition of niobium decreased the ratio of redox and acidic product selectivity to 13:1, 

clearly showing slightly higher selectivity of the acidic product. The slight increase in 

selectivity for the NbPMo12O40 catalyst agrees with the results shown by Wachs et al, 

where only acidic product was found for Nb2O5. With the pyridine exchanged catalyst the 

ratio of redox to acidic product was 1:1.6 at 10% conversion and inverted compared to 
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the parent and niobium exchanged catalyst. This clearly shows that pyridine has a major 

impact on the acidic product selectivity. From the work of Wachs, no previous oxide 

gave more acid than redox products[8]. Finally, when both niobium and pyridine was 

incorporated into the parent catalyst, the ratio of the selectivity of the redox and acidic 

product further decreased to 1:19. This ratio is the opposite of the parent catalyst and 

higher than the pyridine only catalyst.   

 

Wachs et al has reported three oxides that favor redox product over acidic product: V2O5, 

MoO3 and Fe2O3[8]. The oxides that only favor acidic product (no redox/base) reported 

by them are Nb2O5, P2O5, Ga2O3, WO3, Ta2O5 and Al2O3[8]. But, none of the oxides 

reported have the same ratio of redox to acidic product that has been observed in our 

study for the niobium and pyridine exchanged catalyst. Only two oxides TiO2 and SiO2 

have presence of acidic and base product in them[8]. 

 

From these results it can be observed that niobium, when added to the parent catalyst, 

stabilizes the sites and keeps the catalyst active. The pyridine and niobium exchanged 

catalyst has the most activity and selectivity for acid sites. These results are on similar 

grounds as that of the results found in the n-butane reactivity studies carried out by 

Holles et al[1].  

 

 From the results of ammonia adsorption and methanol oxidation of the heteroployacid 

catalysts in our study, it can be noted that the pyridine is main driving factor that 

increases the strength of active sites. The rate of the reaction for the acidic product is 
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higher than that of the redox for catalyst PMo12O40pyr and the catalyst NbPMo12O40pyr 

(Table 2, at 10 % conversion). This is well reflected with their selectivity in this work 

(Table 3). In the results of the paper by Holles el al it was shown that niobium and 

pyridine-exchanged salts of molybophosphoric acid had more activity and selectivity for 

the selective oxidation of butane[1]. Pyridine increases the surface area of the catalyst so 

does niobium. But with niobium though the acid sites are increased, it is the redox sites 

that are very active. Pyridine being more acidic increases the acid sites on the catalyst 

surface and has been shown in the results of ammonia adsorption (figure (3-1) and (3-2)). 

 

3.8 Conclusion: 

Microcalorimetry and methanol oxidation studies on polyoxometalate catalysts have been 

performed. The addition of either niobium or pyridine to the parent H3PMo12O40 catalyst   

results in increased site strength but both have similar heats of adsorption. When both 

niobium and pyridine are present in the catalyst it does not result in higher ammonia heat 

of adsorption. However, more strong sites are present when the catalyst is exchanged 

with both niobium and pyridine. 

 

During methanol oxidation, the parent catalyst H3PMo12O40 and the one with niobium 

only demonstrated high selectivity for the redox product. The parent catalyst has high 

activity for redox product which has been shown with its selectivity. But with niobium 

exchanged catalyst, even though it has high selectivity for redox product, there is a slight 

increase in the selectivity of the acidic product. The addition of pyridine increases the 

selectivity for acidic product but is not well reflected with its activity. The catalyst 
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exchanged with both niobium and pyridine has high activity for acidic products than 

redox and the selectivity is also very high for acidic product.  
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Chapter 4 
 

Conclusions 

Microcalorimetry and methanol oxidation studies on polyoxometalate catalysts have been 

performed. The addition of either niobium or pyridine to the parent H3PMo12O40 catalyst   

results in increased site strength but both have similar heats of adsorption. When both 

niobium and pyridine are present in the catalyst it does not result in higher ammonia heat 

of adsorption. However, more strong sites are present when the catalyst is exchanged 

with both niobium and pyridine. 

 

During methanol oxidation, the parent catalyst H3PMo12O40 and the one with niobium 

only demonstrated high selectivity for the redox product. The parent catalyst has high 

activity for redox product which has been shown with its selectivity. But with niobium 

exchanged catalyst, even though it has high selectivity for redox product, there is a slight 

increase in the selectivity of the acidic product. The addition of pyridine increases the 

selectivity for acidic product but is not well reflected with its activity. The catalyst 

exchanged with both niobium and pyridine has high activity for acidic products than 

redox and the selectivity is also very high for acidic product.  

 
4.1 Recommendations for Future Works 
 
This research work focused on determining the acid, base and redox contribution of 

niobium and pyridine components of heteropolyacid based selective oxidation catalyst. 

This family of catalysts has been shown to successfully convert butane to maleic acid. 

While these catalysts can also be used to convert propane to acrylic acid, the presence of 
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additional vanadium is important. Previously, in catalyst reactivity studies using propane 

as a substrate, the presence of vanadium in the niobium and pyridine exchanged catalyst 

lead to 50% selectivity of acrylic acid, but without vanadium the selectivity dropped to 

6% for acrylic. 

 

Since vanadium appears essential for high selectivity to acrylic acid, it is clearly 

providing a separate contribution to the catalyst. It will be interesting to see the effect of 

the ratio of niobium/pyridine/vanadium in these catalysts, and to know what will be 

minimum niobium required to stabilize the catalyst. The amount of niobium, pyridine and 

vanadium can be altered to optimize the catalyst activity. Similar to the studies discussed 

in this thesis, it is unknown if vanadium contributes to the acid, base or redox component 

of the catalyst. Thus, performance of ammonia adsorption microcalorimetry and 

methanol oxidation studies on these catalysts with vanadium could provide evidence for 

the role of vanadium in the selective oxidation of propane to acrylic acid. 
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