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Exceptional points and lasing self-termination in photonic molecules
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We investigate the rich physics of photonic molecule lasers using a non-Hermitian dimer model. We show that
several interesting features, predicted recently using a rigorous steady-state ab initio laser theory (SALT), can be
captured by this toy model. In particular, we demonstrate the central role played by exceptional points (EPs) in
both pump-selective lasing and laser self-termination phenomena. Due to its transparent mathematical structure,
our model provides a lucid understanding for how different physical parameters (optical loss, modal coupling
between microcavities, and pump profiles) affect the lasing action. Interestingly, our analysis also confirms that,
for frequency mismatched cavities, operation in the proximity of exceptional points (without actually crossing
the square root singularities) can still lead to laser self-termination. We confirm this latter prediction for two
coupled slab cavities using scattering matrix analysis and SALT technique. In addition, we employ our model to
investigate the pump-controlled lasing action and we show that emission patterns are governed by the locations
of exceptional points in the gain space. Finally we extend these results to multicavity photonic molecules, where
we found the existence of higher-order EPs and pump-induced localization.

DOI: 10.1103/PhysRevA.90.013802 PACS number(s): 42.55.Sa, 42.55.Ah, 42.60.Da

I. INTRODUCTION

Optical microcavities and their potential applications in
science and industry have been a subject of intense in-
vestigations in the past decades [1,2]. One particular in-
terest is building low-threshold compact laser systems, as
demonstrated in different physical platforms such as photonic
crystals [3,4], microdisk resonators [5,6], and more recently in
plasmonic nanocavities [7]. These works were later extended
to investigate lasing action in more than one microcavity,
evanescently coupled to form photonic molecules [8,9]. In
principle, the performance of these laser systems can be studied
by numerical simulation of the Maxwell’s Bloch (MB) equa-
tions [10,11]. This, however, requires heavy computational
resources and thus other techniques were developed to achieve
this task. For instance, high-quality factor cavities can be
effectively studied using the cold cavity method, i.e., treating
each quasibound mode as a lasing mode [12]. Recently, a
steady-state ab initio laser theory (SALT) was developed and
shown to provide accurate results for both regimes of high-
and low-quality factor cavities, which captures the openness
of the cavity exactly and treats multimode interactions to
infinite order [13,14]. When compared with time-dependent
simulations of the MB equations, SALT is up to 103 times
faster for the same laser cavity [15,16]. Equipped with this
numerical tool, more investigations of microlasers have been
recently performed and several unique features of these
systems have been identified [17,18]. For example, it was
shown that asymmetric optical pumping can be used to
manipulate the lasing threshold of different modes in random
lasers [17,19,20]. Moreover, careful simulation of laser action
in two-cavity photonic molecules revealed the interesting

*ganainy@mtu.edu
†li.ge@csi.cuny.edu

property of self-terminations of lasing modes [18]. In this
process, lasing action is achieved by pumping only one cavity
and shuts off when this gain level is kept constant while
gradually switching on the pump in the second resonator. More
specifically, the output intensity between the lasing threshold
and the self-termination point does not change monotonically
along this “pump trajectory.” Instead, the emitted laser power
first increases before it diminishes smoothly to zero. This
behavior was demonstrated experimentally using a quantum
cascade laser with two coupled microdisk cavities [21]; it
also occurs in other physical systems, as shown by the
experiment in electronic LRC circuits [22]. We note that
laser self-termination is a counterintuitive effect given the
fact that the overall pumping of the system has increased;
it is different from interaction-induced mode killing [13],
which is a nonlinear effect and the total laser output increases
with pumping despite the killing of a higher-order mode.
The crucial role played by the exceptional points (EPs) of
the non-Hermitian system in explaining laser self-termination
was highlighted in Ref. [18], which indicates that it is a
linear effect. This analysis provides a numerical evidence for
these results as well as a beautiful physical insight into laser
self-termination process. However, it relies on the finding of
the EPs numerically instead of predicting their whereabouts in
terms of simple system parameters.

Here in this work, we employ a toy model based on non-
Hermitian dimers in order to gain more insight into photonic
molecule lasers and their EPs. While our model cannot in
principle substitute for the more rigorous SALT analysis, it
captures all the effects discussed in Ref. [18] transparently,
in terms of cavity detuning and decay rates, the asymmetric
gain profile, and the intercavity coupling J . More specifically,
we show that the formation of the EP is due to a square root
singularity of the difference between J 2 and the asymmetric
gain parameter �γ 2 = (γa − γb)2/4, with γa,b being the gain
coefficients in the two coupled cavities. The self-termination
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behavior can then be easily analyzed in the two-dimensional
pump space (γa,γb), in which there is a continuous EP curve
defined by �γ = J . Along any monotonically increasing
pump trajectory that leads to self-termination, two EPs are
encountered instead of one; the self-termination occurs after
passing the first EP (when �γ increases with the pump in
the first cavity) and before reaching the second EP (when �γ

decreases with the increasing pump in the second cavity).
Our analysis also reveals that, for frequency mismatched
cavities, operation in the proximity of exceptional points
(without actually crossing the square root singularities) can
still lead to laser self-termination. The intuitive understanding
for the interplay between different physical parameters enables
us to probe more complicated systems, exemplified using a
four-cavity array where a fourth-order EP can be realized and
pump-induced localization occurs in quick succession with the
laser self-termination.

II. PUMP-CONTROLLED LASER EMISSION
AND SELF-TERMINATION

We consider a non-Hermitian optical dimer made of two
coupled cavities with loss and subject to asymmetric pumping:

i
da

dt
= ωaa + i(γa − κa)a + Jb, (1a)

i
db

dt
= ωbb + i(γb − κb)b + Ja, (1b)

In Eq. (1), a and b are the field amplitudes of these two lasing
modes and ωa,b are their respective frequencies. In addition,
γa,b and κa,b are the associated gain and loss of the two
cavities and J is the evanescent coupling coefficient. When
ωa = ωb = ω0 (this condition does not necessarily imply
identical cavities), Eq. (1) can be cast into the following form:

i
d

dt

[
ã

b̃

]
= H

[
ã

b̃

]
,

(2)

H =
[
i (�γ − �κ) J

J −i (�γ − �κ)

]
,

via the transformation [a(t) b(t)]T = [ã(t) b̃(t)]T

exp(−iωot − κavgt + γavgt). Here �κ = (κa − κb)/2 is
the asymmetric loss parameter defined similarly to the
asymmetric gain parameter �γ ; κavg = (κa + κb)/2 and
γavg = (γa + γb)/2 is the average loss or gain parameter,
respectively. Finally, the superscript T denotes the matrix
transpose. We note that the effective Hamiltonian in Eq. (2)
respects parity-time reversal (PT) symmetry [23–25], which
implies the existence of EPs with a single-parameter tuning.
Without loss of generality, we assume a zero asymmetric loss
parameter, i.e., κa = κb = κ . This can be easily justified by
offsetting the asymmetric gain parameter accordingly. The
eigenvalues of Eq. (1) are then given by

ω± = ωo ±
√

J 2 − (�γ )2 + i(γavg − κ). (3)

The corresponding eigenfunctions are V± =
[1 ±

√
1 − (�γ/J )2 − i(�γ/J )]T up to a normalization

constant, and we note that it is independent of γavg. From

the expressions of ω± and V±, we immediately see that the
EPs occur when �γ = J , at which V± = [1 −i]T and the
intensity profile of the coupled modes is symmetric. In fact the
latter property holds for all values of �γ ∈ [0,J ], including
the usually studied case where the pump is uniform (�γ = 0).
Thus we can define an intensity-symmetric “phase,” which
is broken once �γ > J . In the broken-symmetry phase
the relation V T

+ V− = const still holds, independent of �γ .
For �γ/J → ∞, V+ = [1 0]T , and V− = [0 1]T , i.e., the
intercavity coupling becomes negligible.

The laser threshold is reached when Im[ω±] = 0, which
leads to a self-sustained oscillation while for Im[ω±] < 0,
the supermodes decay with time. On the other hand when
Im[ω±] > 0, the system is above threshold and the amplitudes
of the lasing modes are determined by the nonlinear terms
not considered in Eq. (1). Since the laser self-termination
is essentially a linear effect [18], the linear equation (1) is
sufficient for our analysis here. We note that Im[ω+] = Im[ω−]
in the intensity-symmetric phase and Im[ω+] > Im[ω−] in
the symmetry-broken phase. Consequently, the V+ mode can
always be treated as the first lasing mode in our linear
formulism. As pointed out in [18], the strong nonlinear
interaction between the two eigenfunctions V+ and V− leads
to a suppression of the latter. Thus we focus our attention only
on the lasing V+ supermode.

We first discuss the symmetry of the lasing mode at its
threshold when pumping only cavity a. Depending on the
relative strength of the overall loss of each cavity and the
evanescent coupling between the two cavities, two distinct
behaviors can take place. If κ/J < 1, the lasing threshold at
γa = 2κ precedes the exceptional point at γa = 2J . As a result,
the photonic molecule starts lasing in the intensity-symmetric
phase. The situation is reversed if κ/J > 1. The symmetric
phase now only exists below the threshold, and the photonic
molecule starts lasing in the symmetry-broken phase. These
two contrasting behaviors are depicted in Fig. 1 for J = 1
and κ = 0.5, 1.5, respectively. They highlight the fact that
while lasing in cavities with high-quality factors is largely
predetermined by the passive modes or resonances, it can be
controlled by nonuniform pumping in cavities having higher
loss [17,19,20].

Next we consider pumping the two cavities of the photonic
molecule sequentially, first for κ/J > 1. As the gain is
increased along the trajectory S1 (i.e., increasing γa while
keeping γb = 0), the asymmetric intensity mode is formed
at the first crossing of the square root singularity (point
EP1) and reaches the lasing threshold at L+

1 . By further
increasing the average gain along the path S2 (i.e., increasing
γb from zero while keeping γa at its maximum, γmax), the
system experiences lasing self-termination (marked by the
point ST ) followed by a second exceptional point EP2 before
the symmetric eigenmode starts to lase as L+

2 . This behavior
is depicted in Fig. 2(a). The intensity distributions of the
lasing modes at both points L+

1,2 are shown schematically at
Fig. 2(b) where high (low) intensities are indicated by the red
(blue) colors. We note that EP1 and EP2 are connected by a
continuous line of EPs given by �γ = J as mentioned before.
It is remarkable that such a simple model for a photonic laser
molecule can capture the laser self-termination characteristics
as well as the general behavior of the lasing modes.
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FIG. 1. (Color online) Pump-controlled laser action: Real (solid
lines) and imaginary (dashed lines) parts of ω± − ω0 as a function
of the pump power γa in cavity a for a photonic molecule laser with
intercavity coupling J = 1. In (a) κ = 0.5 and the V+ mode starts
lasing in the symmetric phase. Once above threshold the nonlinear
effect is important, and the transition from R2 to R3 is most likely
suppressed. In (b) κ = 1.5 and the V+ mode starts lasing in the
asymmetric phase. The symmetry of the mode profile at threshold
(“TH” in the figure) in (a) and (b) is depicted schematically in the
lower panels, and R+

j denotes the lasing of V+ mode in region Rj

defined in the plots.

To further demonstrate the profound role of the exceptional
points in lasing self-termination and the predictive power of
our model, we consider a group of distinct pump trajectories
S = S1 ∪ S2 as in Fig. 2 but with different values of γmax. We
note that on these trajectories the average gain parameter γavg

increases monotonically, but the asymmetric gain parameter
�γ first increases from zero on S1 and then decreases to
zero on S2. If γmax < 2J (i.e., max[�γ ] < J ), the photonic
molecule is always in the intensity-symmetric phase, and
there is only a single onset threshold for the V+ mode,

(b)

(a)

FIG. 2. (Color online) Laser self-termination: (a) depicts the
imaginary part of the eigenmode ω+ for the parameters J = 1
and κ = 1.5. Self-termination can be observed along the trajectory
S = S1 ∪ S2. As the gain is increased along the trajectory S1 (only
the portion starting from γa = 1.5 is shown), the system undergoes
a phase transition at γa = 2 (denoted by EP1), beyond which the
intensity of the eigenmode becomes asymmetric [see (b)]. At the point
marked by L+

1 where Im[ω+] = 0, the asymmetric mode reaches the
lasing threshold. Along the trajectory S2, the system experiences three
distinct stages: laser self-termination (ST ), second exceptional point
EP2, and lasing threshold at L+

2 with a symmetric-intensity profile
[see (b)]. For clarity, we used green (red) colors for the top (bottom)
surface of the function Im[ω+ − ωo] in Fig. 2(a).
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FIG. 3. (Color online) Real (solid lines) and imaginary (dashed
lines) part of ω± − ω0 for J = 1, κ = 1.5 along different pump
trajectories. Along each pump trajectory γa is first increased to γmax

and then fixed, followed by the increase of γb. γmax = 1.8 ∈ [0,2J ]
in (a), 2.12 ∈ [2J,κ + J 2/κ] in (b), 2.25 ∈ [κ + J 2/κ,κ + J ] in (c),
and 3.2 ∈ [κ + J,∞] in (d). The red regions show where the V+ mode
is lasing. The black dot and triangle points indicate EP1 at γa = 2J ,
γb = 0 and EP2 at γa = γmax, γb = γmax − 2J , respectively.

similar to the conventional lasing behavior with a uniform
pump profile [Fig. 3(a)]. This lasing behavior holds even if
2J < γmax < (κ + J 2/κ) and κ > J . In this case we encounter
two EPs at γa = 2J , γb = 0 and γa = γmax, γb = γmax − 2J ,
respectively, similar to those in Fig. 2. Between them the
system is in the symmetry-broken phase [Fig. 3(b)]. Although
Im[ω+] peaks at �γ = γmax in this phase, it still cannot reach
the threshold until the system enters the symmetric phase
again after passing EP2. In both cases discussed above, the
intensity of the V+ mode increases monotonically after its
onset (scenario I).

The occurrence of laser self-termination requires not just
γmax > (κ + J 2/κ); i.e., the peak of Im[ω+] in the symmetry-
broken phase is above the threshold. More importantly, it
also requires that EP2 is below the threshold, which causes
the self-termination [scenario II; Fig. 3(c)]. This condition is
achieved when γmax < (κ + J ), which in turn requires κ > J

when compared with the lower bound of γmax. The latter
inequality highlights the necessity of having a relatively large
loss for self-termination; Ref. [18] focused on the terahertz
laser for exactly the same reason (strong absorption per
wavelength) but did not quantify this relation. If κ < J or
if κ > J and γmax > (κ + J ), EP2 occurs above threshold
[Fig. 3(d)] and the intensity of the V+ mode experiences a
drop in the vicinity of EP2, without decreasing all the way to
zero (scenario III).

Evidently, our non-Hermitian dimer model captures all the
scenarios (I, II, and III above) found in Ref. [18]. This is
a remarkable result given that this phenomenological model
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does not take into account all the processes involved in the
lasing action, such as the line pulling of the cavity frequency
towards the atomic transition frequency and the variation of the
coupling between the two cavities along the pump trajectory.
In order to understand this, we note that laser thresholds can be
described by the poles of the corresponding linear scattering
matrix, which are the eigenvalues ω± in our simplified model.
In particular, we consider the typical case of uniform pumping.
Before adding any gain, the poles of a passive dimer in the
absence of detuning are given by ω± = ω0 ± J − iκ . Under
uniform pumping conditions, these poles move vertically
upward in the complex frequency plane in the direction of
the real axis, as described in standard textbooks [10,11]. On
the other hand, when the gain is added asymmetrically, the
two poles move towards each other while approaching the real
axis, as shown in Fig. 3 and similar to the finding of using ab
initio calculations of the scattering matrix in Ref. [20]. Given
this close relationship between ω± and the scattering matrix,
it is tempting to associate the EPs of a non-Hermitian dimer
Hamiltonian with those of the scattering matrix. However, this
was shown not to be the case [26,27].

Our model also predicts a few unique features. For
example, laser self-termination can still occur for mis-
matched cavities having different resonant frequencies,
even though the EPs are not encountered exactly. Under
the detuned condition �ω = ωa − ωb, the eigenvalues are
given by ω± = ωavg ±

√
J 2 − (�γ )2 + (�ω)2 + 2i�ω�γ +

i(γavg − κ), where ωavg = (ωa + ωb)/2. Evidently, in this case
ω± undergo avoided crossings in the complex plane, instead
of coalescing at the two EPs. We note again that Im[ω±]
determines the thresholds of the lasing modes, and they behave
similarly to the zero detuning case if |�ω| � J . This is
illustrated in Fig. 4, in which we revisit the cases considered
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FIG. 4. (Color online) Real (solid lines) and imaginary (dashed
lines) part of ω± − ωavg. Here the cavity detuning is �ω = 0.02 and
the other parameters are the same as in Fig. 3. The red regions show
where the V+ mode is lasing.
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FIG. 5. (Color online) (a) Ab initio calculation of the real (solid
lines) and imaginary (dashed lines) part of (ω± − ωavg)L/c for two
coupled one-dimensional cavities. The red regions show where the
V+ mode is lasing. Inset: Schematic of the coupled system. Arrows
indicate the laser radiation. (b) Corresponding trajectories of ω± in
the complex plane. The arrows indicate the direction of increasing
pump, and two avoided crossings can be identified. The dashed line
shows the real axis.

in Fig. 3 but now with a frequency detuning of 0.02. If the
detuning is too strong, the avoided crossings are smoothed out
and the lasing behaviors become similar to the case of uniform
pumping (not shown). Thus it is precisely the detuning that
hinders the possibility of self-termination in low-loss cavities.

To confirm the existence of laser self-termination in the
presence of detuning, we calculate the threshold and laser
intensity in a photonic molecule, consisting of two coupled
one-dimensional cavities of length L and refractive index
n = 3 + 0.007i, with an air gap of width L/10 between
them [inset, Fig. 5(a)]. Using the approach in Ref. [20],
we first calculate the poles of the scattering matrix, which
are equivalent to ω± in our simple model as mentioned
previously. Moreover, we focus on the isolated modes (for
each individual cavity in the absence of coupling) located at
ω0L/c = 19.7896 − 0.5313i, which has 20 peaks inside the
cavity. In the absence of pumping, the poles of the combined
system are given by ω−L/c = 19.7404 − 0.1590i, ω+L/c =
19.8509 − 0.0741i. Note that Re[ω+ − ω0] �= Re[ω0 − ω−];
i.e., a detuning naturally occurs even though the two cavities
are identical. Here we assume that the pumps γa,γb reduce the
absorption (represented by the positive imaginary part of the
refractive index n) inside the cavity linearly. At threshold Im[n]
becomes negative in at least one cavity, since the gain has to
compensate the cavity loss as well. As before, we increase the
gain in the coupled cavity system along pumping trajectories
similar to those used previously and we find similar qualitative
behaviors for the poles of the scattering matrix ω± for different
maximum pump power. In particular, one such trajectory with
modes having max|Im{n}| = 0.034 is shown in Fig. 5. Clearly
self-termination of the V+ mode occurs at γb/γmax ≈ 0.105.

Next we calculate the nonlinear laser intensity using
SALT. Here the gain γ is represented by the density of the
inversion in the lasing medium D0, scaled by its nature unit
dc = �γ⊥/4πg2 to be dimensionless [14]. Here � is Planck’s
constant, g is the dipole matrix element of the lasing transition,
and γ⊥ is the transverse relaxation rate of the lasing medium.
For a pump value D0 � |n|2 and a lasing mode close to
the atomic transition frequency, the main role of D0 is to
linearly reduce the absorption and compensate for the cavity
loss before the threshold is reached, as in the calculation

013802-4



EXCEPTIONAL POINTS AND LASING SELF- . . . PHYSICAL REVIEW A 90, 013802 (2014)

0 0.05 0.1 0.15 0.2 0.25
0.23

0.24

0.25

T
hr

es
ho

ld
 p

um
p 

va
lu

e 
D

 

0.091

DDb/ aDD
0.95 1 0.05

0

0.02

0.04

0.06

0.08

0.1

|
|2

0.0910
Da/ max Db/ max

(b)(a)

a
FIG. 6. (Color online) (a) Ab initio calculation of lasing intensity

for the V+ mode at the left edge of the photonic molecule studied
in Fig. 5. The V− mode does not lase along this pump trajectory. (b)
The threshold pump value of the left cavity as a function of the pump
ratio. The horizontal dashed line shows the fixed maximum pump
value Da = 0.25 in cavity a as we increase the pump Db in cavity b.
The system remains above the threshold (indicated by the red region)
until the self-termination point at Db/Da ≈ 0.091 (marked by the
vertical dotted line).

of the poles discussed above. The maximum pump value
corresponding to that in Fig. 5 is Dmax ≈ 0.25, given by
2Re[n]|�Im[n]|. The output field intensity |ψ |2 at the left edge
of the photonic molecule is shown in Fig. 6(a), and the laser
amplitude is expressed in its nature unit ec = �

√
γ||γ⊥/2g,

where γ|| is the longitudinal relaxation rate of the lasing
medium [14]. Reasonable agreement with the pole calculation
is obtained, with self-termination of the V+ mode observed
at Db/Dmax ≈ 0.091. In Fig. 6(b) we also show that the
point at which the self-termination occurs is a function of
the maximum pump value. We note that the cavity absorption
here (Im[n] = 0.007) is much lower than that used in Ref. [18]
(Im[n] = 0.13). It contributes to the loss rate κ together with
the cavity decay rate, and this observation highlights that the
self-termination only requires a κ larger than the intercavity
coupling J , which can still be relatively small.

III. MULTICAVITY PHOTONIC MOLECULES

The discussion in the previous section is by no means
pertinent only to two-cavity laser molecules but can be also
extended to multicavity array. As an example, consider a
non-Hermitian system of four-cavity array described by the
Hamiltonian

H =

⎡
⎢⎢⎢⎢⎣

�o + 3iχ
√

3J 0 0√
3J �o + iχ 2J

2J �o − iχ
√

3J√
3J �o − 3iχ

⎤
⎥⎥⎥⎥⎦ ,

(4)

where �o = ωo + i(γ − κ) and the parametrization χ ac-
counts for the asymmetric pumping. Figure 7(a) shows a
schematic of this four-element photonic molecule where
coupling coefficients and asymmetric gain parameters are also
indicated.

The eigenvalues of this multicavity photonic molecule are
given by

ωn = ωo + i(γ − κ) + (2n − 5)
√

J 2 − χ2, n = 1, 2 , 3 , 4.

(5)

J3J3 J2

χ3 χ χ3−χ−

(a)

(b)

(c)

FIG. 7. (Color online) (a) Schematic of the four-cavity photonic
molecule arrangement given by H in Eq. (4). When J = 1, κ = 1.5,
γ = 1.5, and χ = 0.5, we find four symmetric supermodes at lasing
threshold point, and full SALT equations are necessary to analyze the
lasing mode competition. Panel (b) depicts the intensity profile of the
eigenmode ω4 under the above conditions. On the other hand, when
J = 1, κ = 1.5, γ = 1.5, and χ = √

J 2 + κ2/9, only ω4 reaches
lasing threshold with an asymmetric intensity distribution as shown
in (c). Note that in both (b) and (c), high-intensity fields do not
reside in the cavity element with the largest gain parameter (leftmost
resonator). This peculiar effect does not exist in dimer photonic
molecules.

Note that this system exhibits a fourth-order exceptional point
at J = χ . Similar to the dimer scenario, we identify two lasing
regimes for the lowest threshold mode ω4. When J > χ and
γ � κ , the lasing action of ω4 will be in the symmetric phase.
On the other hand, if the threshold is reached while J < χ , the
laser emission profile will be asymmetric. These distinct lasing
regimes are depicted in Figs. 7(b) and 7(c) for the parameters
indicated in the figure caption.

This analysis reveals that pump-controlled lasing is a
universal phenomenon that depends mainly on the exceptional
points of the Hamiltonian. We note that the lasing characteris-
tics of the other modes ω1,2,3 can be determined only by taking
nonlinear modal interaction into account and thus cannot be
captured by the above linear array model. It would be of interest
to analyze the effect of these higher-order exceptional points
on the laser action and we carry this out elsewhere.

Next we break the apparent PT symmetry of the Hamilto-
nian (4) by pumping only the left two cavities:

H =

⎡
⎢⎢⎢⎢⎣

�c + iγ1

√
3J 0 0√

3J �c + iγ2 2J 0

0 2J �c

√
3J

0 0
√

3J �c

⎤
⎥⎥⎥⎥⎦ , (6)

in which �c = ωo − iκ . We again increase the pump in
cavity 1 to a maximum value while keeping γ2 = 0 (trajectory
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FIG. 8. (Color online) Pump-induced laser self-termination and
localization in a four-cavity array. (a) The imaginary parts of the four
eigenvalues. The dotted line shows the real axis. Mode 1 (dashed
line) is the only lasing mode before EP2. Its intensity profiles at the
onset threshold and self-termination point are shown in the upper and
middle panels of (b). Mode 2 (solid line) is localized in cavity 2 with
the highest net gain after EP3. Its intensity profile at γ2/γmax = 3 is
shown in the lower panel of (b).

S1), after which we fix γ1 and increase γ2 (trajectory S2).
Similar to the two-cavity case, we encounter one EP [EP1

in Fig. 8(a)] on S1 for J = 1 and κ = 1.5, which takes
place below the threshold at γ1 ≈ 2.5 and lasing occurs at
γ1 ≈ 2.635 for a single mode [see Fig. 7(b)]. With γmax = 2.8,
we encounter another EP (EP2) at γ2/γmax ≈ 0.14 on S2,
which occurs again below the threshold, thus preceded by
the laser self-termination (at γ2/γmax ≈ 0.12) and followed
by revival at γ2/γmax ≈ 0.68. A third EP (EP3) takes place if
we further increase the pump in cavity 2 to γ2/γmax ≈ 2.51.
This transition is accompanied by a localization transition and
gives rise to two highly confined modes in cavities 1 and 2,
respectively. The latter (mode 2) has the highest net gain as
shown in Fig. 8(a). These two modes have very weak overlap
and lase simultaneously at frequency ωo.

IV. DISCUSSION AND CONCLUSION

Here we offer some additional physical insights about the
self-termination. First we note that lasing in the symmetric
phase does not depend on how the gain is divided in the two

cavities, as the net gain felt by the lasing mode [given by
the imaginary part of Eq. (3)] only depends on γavg and not
on �γ ; the different ways of pumping (represented by �γ )
only change the lasing frequencies slightly. As a result, self-
termination cannot occur in the symmetric phase.

The transition between the symmetric and symmetric-
broken phases, on the other hand, only depends on �γ and not
on γavg. As the asymmetric gain parameter �γ increases, the
effective loss of the V± modes [i.e., κeff ≡ κ ±

√
(�γ )2 − J 2]

deviates from the bare cavity loss κ , with that of the V+ mode
decreases. The self-termination of the V+ mode can then be
understood as a competition between the enhanced gain (due
to increased γavg) and the increased effective loss (due to the
reduced �γ ), with the latter winning the competition.

In conclusion, we have introduced a non-Hermitian dimer
model as a means to gain more insight into the behavior of
photonic molecule lasers. We have shown that this model
predicts laser self-termination in two coupled resonators and
provides a clear understanding for the role played by the
system’s exceptional points. The interplay between all relevant
physical parameters (cavity coupling, loss, etc.) during this
process emerges naturally from the investigated equations.
Even more interestingly, we have demonstrated that, for
frequency mismatched cavities, operation in the proximity of
exceptional points (without actually crossing the square root
singularities) can still lead to laser self-termination. In order
to confirm our findings, we have compared these latter results
with scattering matrix analysis and SALT simulations for
one-dimensional two-coupled resonators and good agreements
were found. We have also used our model to gain an insight into
the pump-controlled lasing action. In particular we have shown
that laser emission patterns are governed by the locations of
the exceptional points of the Hamiltonian. Finally, we have
extended our results to multicavity photonic molecules having
higher-order exceptional points.
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